

M 1 Microsoft Way Redmond, Washington 98052

TrueType 1.0 Font Files

Technical Specification
Revision 1.66
August 1995

Information in this document is subject to change without notice and does not represent
a commitment on the part of Microsoft Corporation. The software described in this
document in furnished under a license agreement or nondisclosure agreement. The
software may be used or copied only in accordance with the terms of the agreement. It
is against the law to copy the software on any medium except as specifically allowed in
the license or nondisclosure agreement. No part of this manual may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including
photocopying and recording, for any purpose without the express written permission of
Microsoft.

Portions of this manual are copyrighted by Apple Computer, Inc.

U.S. Government Restricted Rights

The SOFTWARE and documentation are provided with RESTRICTED RIGHTS. Use, duplication, or
disclosure by the Government is subject to restrictions as set forth in subparagraph (c) (1) (ii) of the Rights
in Technical Data and Computer Software clause at DFARS 252.227-7013 or subparagraphs (c) (1) and (2)
of the Commercial Computer Software -- Restricted Rights at 48 CFR 52.227-19, as applicable.
Contractor/manufacturer is Microsoft Corporation/One Microsoft Way/Redmond, WA 98052-6399.

© 1990-1995 Microsoft Corporation. All rights reserved.

Microsoft, MS, MS-DOS, GW-BASIC, QuickC, CodeView, XENIX, and Wingdings are registered
trademarks, and Windows is a trademark of Microsoft Corporation.

Apple, the Apple logo, MPW, LaserWriter, and Macintosh are registered trademarks, and TrueType is a
trademark of Apple Computer, Inc. PostScript is a registered trademark of Adobe Systems Incorporated.
ITC Zapf Dingbats is a registered trademark of International Typeface Corporation. OS/2 is a registered
trademark of International Business Machines Corporation. Helvetica is a trademark of Linotype AG.
Times New Roman is a trademark of The Monotype Corporation plc and is registered in the U.S. Patent
and Trademark Office and elsewhere.

Revision History
Revision Date Comment
1.66 9 August 1995 Updates to bit settings for ulCodePageRange and ulUnicodeRange fields in

the OS/2 table
1.65 19 July 1995 Reprint of rev 1.65, typos corrected, VendID table updated, note added to

loca about long-aligning local offsets
1.65 18 January 1995 Added tables: gasp, new OS/2, vhea, vmtx, EBDT, EBLC, EBSC; TTC’s;

minor corrections and clarifications throughout; reorganized spec.
1.50 21 January 1994 Added smart scan control, Grayscale support, and minor corrections

throughout
1.02 19 May 1993 Update to OS/2 table fsType field description
1.01 19 January 1993 Minor corrections throughout
1.00 9 June 1992 Original release

Revision 1.66 Page i
File Name: _toc.doc

Table of Contents

Preface

Part 1 - Fundamentals

Chapter 1 - TrueType Fundamentals ... 3
From design to font file ... 3
From font file to paper .. 4
Digitizing a design .. 5
Scaling a glyph .. 13
Grid-fitting a glyph outline ... 16
The scan converter .. 24

Part 2 - TrueType Font Files

Chapter 2 - The TrueType Font File ... 31
Data Types .. 31
The Table Directory .. 32
'cmap' - Character To Glyph Index Mapping Table 35
'cvt ' - Control Value Table ... 41
‘EBDT’ - Bitmap Data .. 42
‘EBLC’ - Bitmap Data Locations ... 46
‘EBSC’ - Bitmap Data Scaling ... 55
'fpgm' - Font Program ... 56
'gasp' - Grid-fitting and Scan Conversion Procedure 57
'glyf' - Glyph Data ... 59
'hdmx' - Horizontal Device Metrics .. 64
'head' - Font Header .. 65
'hhea' - Horizontal Header ... 67
'hmtx' - Horizontal Metrics ... 68
'kern'- Kerning ... 69
'loca' - Index to Location ... 74
'LTSH' - Linear Threshold .. 75

Table of Contents

Page ii Revision 1.66
 File Name: _toc.doc

'maxp' - Maximum Profile ...76
'name' - Naming Table ...77
'OS/2' - OS/2 and Windows Metrics ..83
'PCLT' - PCL 5 Table...103
'post' - PostScript ..110
'prep' - Control Value Program ..113
'VDMX' - Vertical Device Metrics ..114
‘vhea’ - Vertical Metrics Header ...117
‘vmtx’ - Vertical Metrics ...120

Chapter 3 - Recommendations for Windows Fonts 123
Table Requirements & Recommendations ..123
General Recommendations ..128
Embedded Bitmaps ..131
TrueType Collection Files (TTC’s) ...132

Chapter 4 - Character Sets ... 135
Introduction ..135
Microsoft Platform Requirements..136
Macintosh Platform Requirements ..137
Character Set Specifications: WGL4, Win31, UGL, and Macintosh 138

Part 3 - The TrueType Instruction Set

Chapter 5 - Instructing Glyphs .. 163
Choosing a scan conversion setting ...163
Controlling rounding ..163
Points..164
Determining distances ..168
Controlling movement ...171
Managing the direction of distances ..173
Interpolating points ..174
Maintaining minimum_distance ..174
Controlling regularization using the cut_in175
Managing at specific sizes ...178

Table of Contents

Revision 1.66 Page iii
File Name: _toc.doc

Chapter 6 - The TrueType Instruction Set 181
Anatomy of a TrueType Instruction ... 181
Data types .. 186
Pushing data onto the interpreter stack ... 188
Managing the Storage Area .. 193
Managing the Control Value Table ... 196
Managing the Graphics State .. 200
Reading and writing data .. 254
Managing outlines ... 262
Managing exceptions .. 292
Managing the stack ... 302
Managing the flow of control ... 311
Logical functions .. 321
Arithmetic and math instructions .. 335
Compensating for engine characteristics .. 346
Defining and using functions and instructions 349
Debugging ... 355
Miscellaneous instructions .. 356

Chapter 7 - Graphics State Summary .. 357

Appendix A - IBM Font Class Parameters 361

Appendix B - Instruction Set Summary .. 377
Instructions by Category ... 377
Instructions by Name .. 383

Appendix C - Instruction Set Index ... 387

Revision 1.66 Page v
File Name: _ttpref.doc

Preface

Welcome to TrueType 95! This is Microsoft's first major update and extension
of the TrueType outline font format. This document describes the state of
TrueType as it exists in Windows NT 3.5/3.51 and Windows 95.

The TrueType Font Format specification version 1.6 covers all the
improvements and extensions made to the 1.6.x rasterizers included in
Windows NT 3.5/3.51 and Windows 95:

• 32-bit rasterization, eliminating previous problems with complex fonts

• Faster, optimized code

• Gray-scale rasterization, for easy-to-read anti-aliased text on screen

 (Gray-scale rasterization is not exposed through API’s on
Windows NT 3.5/3.51)

• Embedded bitmaps for efficient display of complex characters at sizes
where hinting is difficult

• Vertical metrics, for scripts written vertically

• Expanded character sets and better code page classification for
international uses

• TrueType Collections (TTCs), for efficient sharing of data among related
fonts

 (TTCs are implemented only on some versions of Windows 95. The other
features are available across all versions of Windows NT 3.5/3.51 and
Windows 95.)

Microsoft has defined a number of new tables for TrueType font files (TTFs)
to support these features:

• EBLC, EBDT, and EBSC for embedded bitmaps

• gasp for control of rasterizer and gray-scale features

• vhea and vmtx for vertical metrics

• An extended OS/2 for script classification information

Preface

Revision 1.66 Page vi
File Name: _ttpref.doc

We have also improved the organization of this document. As most font
developers are chiefly concerned with producing TrueType font files (TTFs),
we have moved the description of the file format to the front of the book, and
organized the tables in alphabetical order. A new unified chapter presents a
comparative list of the chief character set standards relevant to TrueType
developers, including the Windows Glyph List 4 (WGL4), the new standard
for the core fonts used in Windows 95. And throughout, we have tried to
correct and clarify some of the more confusing aspects of TrueType
development.

Although Microsoft has created new ways of extending the functionality of
the TrueType font format, none of these changes need affect the end user.
Both the rasterizers and the file formats are completely compatible with past,
present, and future Microsoft software. Existing TrueType fonts will continue
to work on current and future Microsoft platforms. And new fonts created to
take advantage of the new tables listed above will continue to work (albeit
without the new features) on existing platforms, such as Microsoft
Windows 3.1.

TrueType 95 is just the first step in Microsoft's program to address new and
changing uses for digital type, called TrueType Open. Among the extensions
already planned are an expansion of TrueType to support high-quality
international typography.

TrueType Open is an open format (Microsoft documents will describe
everything you need to know); but it's also “Open” because its features are not
dependent on a particular platform or a particular piece of operating system
software.

Stay tuned for more information!

Microsoft Typography

 Empty page

 Empty page

Chapter 1

Revision 1.66 Page 3
File Name: ttch01.doc

TrueType Fundamentals

This chapter introduces the basic concepts needed to create and instruct a
TrueType font. It begins with an overview of the steps involved in taking a
design from paper to the creation of a bitmap that can be sent to an output
device and follows with a closer look at each of the steps in the process.

From design to font file
A TrueType font can originate as a new design drawn on paper or created on a
computer screen. TrueType fonts can also be obtained by converting fonts
from other formats. Whatever the case, it is necessary to create a TrueType
font file that, among other things, describes each glyph in the font as an
outline in the TrueType format.

Original Master Digitized drawing Digitized outline with
FUnit coordinates in

font file

TrueType Fundamentals

Page 4 Revision 1.66
 File Name: ttch01.doc

From Font File to Paper
This section describes the process that allows glyphs from a TrueType font
file to be displayed on raster devices.

First, the outline stored in the font file is scaled to the requested size. Once
scaled, the points that make up the outline are no longer recorded in the
FUnits used to describe the original outline, but have become device-specific
pixel coordinates.

Next, the instructions associated with this glyph are carried out by the
interpreter. The result of carrying out the instructions is a grid-fitted outline
for the requested glyph. This outline is then scan converted to produce a
bitmap that can be rendered on the target device.

 TrueType Fundamentals

Revision 1.66 Page 5
File Name: ttch01.doc

0> NPUSHB[]
1> SRP0[] 48
2> SROUND[] 71
3> MDRP[00100] 49
4> RTG[]
5> MIRP[10110] 22 75
6> MIRP[11110] 37 37
7> ALIGNRP[] 24
8> SRP0[] 49
9> MDRP [11110]
10> DELTAP1[] 1

e (x,y)

a (x,y)

c (x,y)

d (x,y)

FUnits

Scaler converts FUnits
to pixel coordinates and

scales outline to size
requested by application

Digitize outline with
FUnit coordinates

in TrueType font file
Outline "sized"

to new grid

Scaled outline
with pixel

coordinates

Interpreter executes
instructions associated

with glyph "B" and gridfits
Grid-fitted outline

e (x,y)

a (x,y)

c (x,y)

d (x,y)

e (x,y)

a (x,y)

c (x,y)

d (x,y)

e (x,y)

a (x,y)

c (x,y)

d (x,y)











FUnits FUnits FUnits

pixel
coordinates

e (x,y)

a (x,y)

c (x,y)

d (x,y)

Grid-fitted outline Scan converter decides
which pixels to turn on

Bitmap is rendered on
raster device

pt size 12

pt size 12

Digitizing a design
This section describes the coordinate system used to establish the locations of
the points that define a glyph outline. It also documents the placement of
glyphs with respect to the coordinate axes.

TrueType Fundamentals

Page 6 Revision 1.66
 File Name: ttch01.doc

Outlines

In a TrueType font, glyph shapes are described by their outlines. A glyph
outline consists of a series of contours. A simple glyph may have only one
contour. More complex glyphs can have two or more contours. Composite
glyphs can be constructed by combining two or more simpler glyphs. Certain
control characters that have no visible manifestation will map to the glyph
with no contours.

Figure 1-1 Glyphs with one, two, three contours respectively

Contours are composed of straight lines and curves. Curves are defined by a
series of points that describe second order Bezier-splines. The TrueType
Bezier-spline format uses two types of points to define curves, those that are
on the curve and those that are off the curve. Any combination of off and on
curve points is acceptable when defining a curve. Straight lines are defined by
two consecutive on curve points.

 TrueType Fundamentals

Revision 1.66 Page 7
File Name: ttch01.doc

Figure 1-2 A glyph description consisting of a series of on and off curve
points

The points that make up a curve must be numbered in consecutive order. It
makes a difference whether the order is increasing or decreasing in
determining the fill pattern of the shapes that make up the glyph. The direction
of the curves has to be such that, if the curve is followed in the direction of
increasing point numbers, the black space (the filled area) will always be to
the right.

FUnits and the em square

In a TrueType font file point locations are described in font units, or FUnits.
An FUnit is the smallest measurable unit in the em square, an imaginary
square that is used to size and align glyphs. The dimensions of the em square
typically are those of the full body height of a font plus some extra spacing to
prevent lines of text from colliding when typeset without extra leading.

TrueType Fundamentals

Page 8 Revision 1.66
 File Name: ttch01.doc

Q
Descent

Ascent EMBody

While in the days of metal type, glyphs could not extend beyond the em
square, digital typefaces are not so constrained. The em square may be made
large enough to completely contain all glyphs, including accented glyphs. Or,
if it proves convenient, portions of glyphs may extend outside the em square.
TrueType fonts can handle either approach so the choice is that of the font
manufacturer.

Figure 1-3 A character that extends outside of the em square

f

 TrueType Fundamentals

Revision 1.66 Page 9
File Name: ttch01.doc

The em square defines a two-dimensional coordinate grid whose x-axis
describes movement in a horizontal direction and whose y-axis describes
movement in a vertical direction. This is discussed in more detail in the
following section.

FUnits and the grid

A key decision in digitizing a font is determining the resolution at which the
points that make up glyph outlines will be described. The points represent
locations in a grid whose smallest addressable unit is known as an FUnit or
font Unit. The grid is a two-dimensional coordinate system whose x-axis
describes movement in a horizontal direction and whose y-axis describes
movement in a vertical direction. The grid origin has the coordinates (0,0).
The grid is not an infinite plane. Each point must be within the range -16384
and +16383 FUnits. Depending upon the resolution chosen, the range of
addressable grid locations will be smaller.

The choice of the granularity of the coordinate grid—that is, number of units
per em (upem)—is made by the font manufacturer. Outline scaling will be
fastest if units per em is chosen to be a power of 2, such as 2048.

Figure 1-4 The coordinate system

(0,0)

(-16384, -16384)

(16383, 16383)

y

x

TrueType Fundamentals

Page 10 Revision 1.66
 File Name: ttch01.doc

The origin of the em square need not have any consistent relationship to the
glyph outlines. In practice, however, applications depend upon the existence
of some convention for the placement of glyphs for a given font. For Roman
fonts, which are intended to be laid out horizontally, a y-coordinate value of 0
typically is assumed to correspond to the baseline of the font. No particular
meaning is assigned to an x-coordinate of 0 but manufacturers may improve
the performance of applications by choosing a standard meaning for the
x-origin.

For example, you might place a glyph so that its aesthetic center is at the
x-coordinate value of 0. That is, a set of glyphs so designed when placed in a
column such that their x-coordinate values of 0 are coincident will appear to
be nicely centered. This option would be used for Kanji or any fonts that are
typeset vertically. Another alternative is to place each glyph so that its
leftmost extreme outline point has an x-value equal to the left-side-bearing of
the glyph. Fonts created in this way may allow some applications to print
more quickly to PostScript printers.

Figure 1-5 Two possible choices for the glyph origin in a Roman font. In
the first case (left) the left side bearing is x-zero. In the second
(right), the aesthetic center of the character is x-zero

 TrueType Fundamentals

Revision 1.66 Page 11
File Name: ttch01.doc

Non-Roman fonts may wish to use other conventions for the meaning of the
x-origin and y-origin. For best results with high-lighting and carets, the body
of the character should be roughly centered within the advance width. For
example, a symmetrical character would have equal left and right side
bearings.

The granularity of the em square is determined by the number of FUnits per
em, or more simply units per em . The em square as divided into FUnits
defines a coordinate system with one unit equaling an FUnit. All points
defined in this coordinate system must have integral locations. The greater the
number of units per em, the greater the precision available in addressing
locations within the em square.

Figure 1-6 Two em squares, 8 units per em (left), 16 units per em (right)

FUnits are relative units because they vary in size as the size of the em square
changes. The number of units per em remains constant for a given font
regardless of the point size. The number of points per em, however, will vary
with the point size of a glyph. An em square is exactly 9 points high when a
glyph is displayed at 9 points, exactly 10 points high when the font is
displayed at 10 point, and so on. Since the number of units per em does not
vary with the point size at which the font is displayed, the absolute size of an
FUnit varies as the point size varies.

TrueType Fundamentals

Page 12 Revision 1.66
 File Name: ttch01.doc

Figure 1-7 72 point M and 127 point M and their em squares.
Upem equals 8 in both cases.

M M
127 points

72 points
1 em

1 em

Because FUnits are relative to the em square, a given location on a glyph will
have the same coordinate location in FUnits regardless of the point size at
which the font is rendered. This is convenient because it makes it possible to
instruct outline points once considering only the original outline and have the
changes apply to the glyph at whatever size and resolution it is ultimately
rendered.

 TrueType Fundamentals

Revision 1.66 Page 13
File Name: ttch01.doc

Scaling a glyph
This section describes how glyph outlines are scaled from the master size
stored in the font file to the size requested by an application.

Device space

Whatever the resolution of the em square used to define a glyph outline,
before that glyph can be displayed it must be scaled to reflect the size,
transformation and the characteristics of the output device on which it is to be
displayed. The scaled outline must describe the character outline in units that
reflect an absolute rather than relative system of measurement. In this case the
points that make up a glyph outline are described in terms of pixels.

Intuitively, pixels are the actual output bits that will appear on screen or
printer. To allow for greater precision in managing outlines, TrueType
describes pixel coordinates to the nearest sixty-fourth of a pixel.

Converting FUnits to pixels

Values in the em square are converted to values in the pixel coordinate system
by multiplying them by a scale. This scale is:

pointSize *
resolution

 72 points per inch * units_per_em

where pointSize is the size at which the glyph is to be displayed, and
resolution is the resolution of the output device. The 72 in the denominator
reflects the number of points per inch.

.

For example, assume that a glyph feature is 550 FUnits in length on a 72 dpi
screen at 18 point. There are 2048 units per em. The following calculation
reveals that the feature is 4.83 pixels long.

550 *
18 * 72

72 * 2048

Display device characteristics

 = 4.83

The resolution of any particular display device is specified by the number of
dots or pixels per inch (dpi) that are displayed. For example, a VGA under
OS/2 and Windows is treated as a 96 dpi device, and most laser printers have
a resolution of 300 dpi. Some devices, such as an EGA, have different
resolution in the horizontal and vertical directions (i.e. non-square pixels); in
the case of the EGA this resolution is 96 x 72. In such cases, horizontal dots
per inch must be distinguished from vertical dots per inch.

TrueType Fundamentals

Page 14 Revision 1.66
 File Name: ttch01.doc

The number of pixels per em is dependent on the resolution of the output
device. An 18 point character will have 18 pixels per em on a 72 dpi device.
Change the resolution to 300 dpi and it has 75 pixels per em, or change to
1200 dpi and it has 300 pixels per em.

Figure 1-8 18 point figure 8 at 72 dpi, 300 dpi and 1200 dpi

Displaying type on a particular device at a specific point size yields an
effective resolution measured in pixels per em (ppem). The formula for
calculating pixels per em is:

 ppem = pointSize *
dpi
72

 = (pixels per inch) * (inches per pica point) * (pica points per em)

 = dpi *

On a 300 dpi laser printer, a 12 point glyph would have 12*300/72 or 50
ppem. On a typesetter with 2400 dpi, it would have 12*2400/72 or 400 ppem.
On a VGA, a 12 point glyph would have 12*96/72 or 16 ppem. Similarly, the
ppem for a 12 point character on a 72 dpi device would be 12*72/72, or 12.
This last calculation points to a useful rule of thumb: on any 72 dpi device,
points and pixels per em are equal. Note, however, that in traditional
typography an inch contains 72.2752 points (rather than 72); that is, one point
equals .013836 inches.

1
72 * pointSize

 TrueType Fundamentals

Revision 1.66 Page 15
File Name: ttch01.doc

If you know the ppem, the formula to convert between FUnits and pixel space
coordinates is:

 pixel_coordinate = em_coordinate *
ppem
upem

An em_coordinate position of (1024, 0) would yield a device_pixels
coordinate of (6, 0), given 2048 units per em and 12 pixels per em.

TrueType Fundamentals

Page 16 Revision 1.66
 File Name: ttch01.doc

Grid-fitting a glyph outline
The fundamental task of instructing a glyph is one of identifying the critical
characteristics of the original design and using instructions to ensure that
those characteristics will be preserved when the glyph is rendered at different
sizes on different devices. Consistent stem weights, consistent color, even
spacing, and the elimination of pixel dropouts are common goals.

To accomplish these goals, it is necessary to ensure that the correct pixels are
turned on when a glyph is rasterized. It is the pixels that are turned on that
create the bitmap image of the glyph. Since it is the shape of the glyph outline
that determines which pixels will make up the bitmap image of that character
at a given size, it is sometimes necessary to change or distort the original
outline description to produce a high quality image. This distortion of the
outline is known as grid-fitting.

The figure below illustrates how grid-fitting a character distorts the outline
found in the original design.

Figure 1-9 12 point outlines ungrid-fitted (left) and grid-fitted (right)

As the illustration above suggests, the grid-fitting employed in TrueType goes
well beyond aligning a glyph’s left side bearing to the pixel grid. This
sophisticated grid-fitting is guided by instructions. The beneficial effects of
grid-fitting are illustrated in the next figure.

 TrueType Fundamentals

Revision 1.66 Page 17
File Name: ttch01.doc

Figure 1-10 12 point outlines and bitmap ungrid-fitted (left) and
grid-fitted (right)

Grid-fitting is the process of stretching the outline of a glyph according to the
instructions associated with it. Once a glyph is grid-fitted, the point numbers
will be unchanged but the actual location of that point in the coordinate grid
may have shifted. That is, the coordinates for a given point number will, very
likely, have changed after a glyph is grid-fitted.

What are instructions?

The TrueType instruction set provides a large number of commands designed
to allow designers to specify how character features should be rendered.
Instructions are the mechanism by which the design of a character is preserved
when it is scaled. In other words, instructions control the way in which a
glyph outline will be grid-fitted for a particular size or device.

Instructing a font will reshape the outline for a given glyph at a specific size
on a given target device in such a way that the correct pixels are included
within its outline. Reshaping the outline means moving outline points. Points
that have been acted upon by an instruction are said to have been touched.
Note that a point need not actually be moved to be touched. It must simply be
acted upon by an instruction. (See MDAP, chapter 3.)

TrueType Fundamentals

Page 18 Revision 1.66
 File Name: ttch01.doc

TrueType fonts can be used with or without instructions. Uninstructed fonts
will generally produce good quality results at sufficiently high resolutions and
point sizes. The range of sizes over which an uninstructed font will produce
good quality results depends not only on the output device resolution and
point size of the character but also on the particular font design. The
intended use of the font can also be a factor in determining whether or not a
particular font should be instructed. For most fonts, if legibility of small point
sizes on low resolution devices is important, adding instructions will be
critical.

Instructing a font is a process that involves analyzing the key elements of a
glyph’s design and using the TrueType instruction set to ensure that they are
preserved. The instructions are flexible enough to allow characteristics that
are roughly the same to be “homogenized” at small sizes while allowing the
full flavor of the original design to emerge at sizes where there are sufficiently
many pixels.

How does the TrueType interpreter know the manner in which an outline
should be distorted to produce a desirable result? This information is
contained in instructions attached to each character in the font. Instructions
specify aspects of a character's design that are to be preserved as it is scaled.
For example, using instructions it is possible to control the height of an
individual character or of all the characters in a font. You can also preserve
the relationship between design elements within a character thereby ensuring,
for example, that the widths of the three vertical stems in the lower case m
will not differ dramatically at small sizes.

The following figure illustrates how changing a glyph’s outline at a specific
size will yield a superior result. They show that an uninstructed 9 point
Arial lowercase m suffers the loss of a stem due to chance effects in the
relationship of stems to pixel centers. In the second glyph, instructions have
aligned the stems to the grid so that the glyph suffers no similar loss.

 TrueType Fundamentals

Revision 1.66 Page 19
File Name: ttch01.doc

Figure 1-11 9 point Arial m—uninstructed (left), instructed (right)

The TrueType interpreter

This section describes the actions of the TrueType interpreter. It is the
interpreter, as the name suggests, that “interprets” or carries out the
instructions.

More concretely, the interpreter processes a stream or sequence of
instructions. Typically these instructions take their arguments from the
interpreter stack and place their results on that stack. The only exceptions are
a small number of instructions that are used to push data onto the interpreter
stack. These instructions take their arguments from the instruction stream.

All of the interpreter’s actions are carried on in the context of the Graphics
State, a set of variables whose values guide the actions of the interpreter and
determine the exact effect of a particular instruction.

The interpreter’s actions can be summarized as follows:
1. The interpreter fetches an instruction from the instruction stream, an

ordered sequence of instruction opcodes and data. Opcodes are 1-byte in
size. Data can consist of a single byte or two bytes (a word). If an
instruction takes words from the instruction stream it will create those
words by putting together two bytes. The high byte appears first in the
instruction stream and the low byte appears second.

 The following instruction stream is depicted as it will be shown in the
examples that follow. Note that the pointer indicates the next instruction
to be executed.

TrueType Fundamentals

Page 20 Revision 1.66
 File Name: ttch01.doc

byte

byte

byte

Push

high

Push

low

high

low

Other Instr

Other Instr

Other Instr



2. The instruction is executed
• If it is a push instruction it will take its arguments from the instruction stream.

• Any other instruction will pop any data it needs from the stack. A pop is illustrated
below.

22

• Any data the instruction produces is pushed onto the interpreter stack. A push is
illustrated below.

0x0000 00FA

 As the previous discussion indicates, the interpreter stack is a LIFO or last in first out
data structure. An instruction takes any data it needs from the last item placed on the
stack. The action of removing the top item from the stack is commonly termed a pop.
When an instruction produces some result it pushes that result to the top of the stack
where it is potential input to the next instruction.

 The instruction set includes a full range of operators for manipulating the stack
including operators for pushing items onto the stack, popping items from the stack,
clearing the stack, duplicating stack elements and so forth.

 TrueType Fundamentals

Revision 1.66 Page 21
File Name: ttch01.doc

• The effect of execution depends on the values of the variables that make up the
Graphics State.

• The instruction may modify one or more Graphics State variables. In the illustration
shown, the Graphics State variable rp0 is updated using a value taken from the
interpreter stack.

rp0 22
22

3. The process is repeated until there are no further instructions to be
executed.

Using instructions

Instructions can appear in a number of places in the font file tables that make
up a TrueType font. They can appear as part of the Font Program, the CVT
Program, or as glyph data. Instructions appearing in the first two apply to the
font as a whole. Those found in glyph data ('glyf') apply to individual glyphs
within a font.

The Font Program

The Font Program consists of a set of instructions that is executed once, the
first time a font is accessed by an application. It is used to create function
definitions (FDEFs) and instruction definitions (IDEFs). Functions and
instructions defined in the Font Program can be used elsewhere in the font
file.

The CVT Program

The CVT Program is a sequence of TrueType instructions executed every
time the point size or transformation change. It is used to make font wide
changes rather than to manage individual glyphs. The CVT Program is used to
establish the values in the Control Value Table.

The purpose of the Control Value Table or CVT is to simplify the task of
maintaining consistency when instructing a font. It is a numbered list of
values that can be referenced by either of two indirect instructions (MIRP and
MIAP). CVT entries can be used to store values that need to be the same
across a number of glyphs in a font. For example an instruction might refer to
a CVT entry whose purpose is to regularize stem weights across a font.

TrueType Fundamentals

Page 22 Revision 1.66
 File Name: ttch01.doc

Figure 1-12 Some sample CVT entries

Entry # Value Description
0 0 upper and lower case flat

base (base line)
1 -39 upper case round base
2 -35 lower case round base
3 -33 figure round base
4 1082 x-height flat
5 1114 x-height round overlap
6 1493 flat cap
7 1522 round cap
8 1463 numbers flat
9 1491 numbers round top
10 1493 flat ascender
11 1514 round ascender
12 157 x stem weight
13 127 y stem weight
14 57 serif
15 83 space between the dot and

the i

Instructions that refer to values in the CVT are called indirect instructions as
opposed to the direct instructions which take their values from the glyph
outline.

As part of the TrueType font file, the values in the CVT are expressed in
FUnits. When the outlines are converted from FUnits to pixel units, values in
the CVT are also converted.

When writing to the CVT you may use a value that is in the glyph coordinate
system (using WCVTP) or you can use a value that is in the original FUnits
(using WCVTF). The interpreter will scale all values appropriately. Values
read from the CVT are always in pixels (F26Dot6).

The Storage Area

The interpreter also maintains a Storage Area consisting of a portion of
memory that can be used for temporary storage of data from the interpreter
stack. Instructions exist that make it possible to read the values of stored data
and to write new values to storage. Storage locations range from 0 to n-1
where n is the value established in the maxStorage entry in the maxProfile
table of the font file. Values are 32 bit numbers.

 TrueType Fundamentals

Revision 1.66 Page 23
File Name: ttch01.doc

Figure 1-13 Some storage area entries

Address Value
0 343
1 241
2 -27
3 4654
4 125
5 11

The Graphics State

The Graphics State consists of a table of variables and their values. All
instructions act within the context of the Graphics State. Graphics State
variables have default values as specified in Appendix B, “Graphics State
Summary”. Their values can be determined or changed using instructions.

The Graphics State establishes the context within which all glyphs are
interpreted. All Graphics State variables have a default value. Some of these
values can be changed in the CVT Program if desired. Whatever the default
value, it will be reestablished at the start of interpretation of any glyph. In
other words, the Graphics State has no inter-glyph memory. Changing the
value of a Graphics State variable while processing an individual glyph will
result in a change that remains in effect only for that glyph.

TrueType Fundamentals

Page 24 Revision 1.66
 File Name: ttch01.doc

The scan converter
The TrueType scan converter takes an outline description of a glyph and
produces a bitmap image for that glyph.

The TrueType scan converter offers two modes. In the first mode, the scan
converter uses a simple algorithm for determining which pixels are part of that
glyph. The rules can be stated as follows:

Rule 1
 If a pixel’s center falls within the glyph outline, that pixel is turned on

and becomes part of that glyph.
Rule 2
 If a contour falls exactly on a pixel’s center, that pixel is turned on.

A point is considered to be an interior point of a glyph if it has a non-zero
winding number. The winding number is itself determined by drawing a ray
from the point in question toward infinity. (The direction in which the ray
points in unimportant.) Starting with a count of zero, we subtract one each
time a glyph contour crosses the ray from right to left or bottom to top. Such a
crossing is termed an on transition. We add one each time a contour of the
glyph crossed the ray from left to right or top to bottom. Such a crossing is
termed an off transition. If the final count is non-zero, the point is an interior
point.

The direction of a contour can be determined by looking at the point numbers.
The direction is always from lower point number toward higher point number.

The illustration that follows demonstrates the use of winding numbers in
determining whether a point is inside a glyph. The point p1 undergoes a
sequence of four transitions (on transition, off transition, on transition, off
transition). Since the sequence is even, the winding number is zero and the
point is not inside the glyph. The second point, p2, undergoes an off transition
followed by an on transition followed by an off transition yielding a winding
number of +1. The point is in the interior of the glyph.

 TrueType Fundamentals

Revision 1.66 Page 25
File Name: ttch01.doc

Figure 1-14 Determining the winding number of a point

+1 -1 +1 = 1

-1 +1 +1 = 0 p1

p2

-1

TrueType Fundamentals

Page 26 Revision 1.66
 File Name: ttch01.doc

What is a dropout?

A dropout occurs whenever there is a connected region of a glyph interior that
contains two black pixels that cannot be connected by a straight line that only
passes through black pixels.

Figure 1-15 The letter m with two dropouts

Preventing dropouts

The TrueType instructions are designed to allow you to gridfit a glyph so that
the desired pixels will be turned on by the simple scan converter regardless of
the point size or the transformation used. It may prove difficult to foresee all
possible transformations that a glyph might undergo. It is therefore difficult to
instruct a glyph to ensure that the proper grid-fitting distortion of the outline
will take place for every desired transformation. This problem is especially
difficult for very small numbers of pixels per em and for complex typefaces.
In these situations, some renditions of a glyph may contain dropouts.

 TrueType Fundamentals

Revision 1.66 Page 27
File Name: ttch01.doc

It is possible to test for potential dropouts by looking at an imaginary line
segment connecting two adjacent pixel centers. If this line segment is
intersected by both an on-Transition contour and an off-Transition contour, a
potential dropout condition exists. The potential dropout only becomes an
actual dropout if the two contour lines continue on in both directions to cut
other line segments between adjacent pixel centers. If the two contours join
together immediately after crossing a scan line (forming a stub), a dropout
does not occur, although a stem of the glyph may become shorter than desired.

To prevent dropouts, type manufacturers can choose to have the scan
converter use two additional rules:

Rule 3
 If a scan line between two adjacent pixel centers (either vertical or

horizontal) is intersected by both an on-Transition contour and an
off-Transition contour and neither of the pixels was already turned on
by rules 1 and 2, turn on the left-most pixel (horizontal scan line) or
the bottom-most pixel (vertical scan line)

Rule 4
 Apply Rule 3 only if the two contours continue to intersect other scan

lines in both directions. That is do not turn on pixels for 'stubs'. The
scanline segments that form a square with the intersected scan line
segment are examined to verify that they are intersected by two
contours. It is possible that these could be different contours than the
ones intersecting the dropout scan line segment. This is very unlikely
but may have to be controlled with grid-fitting in some exotic glyphs.

The type manufacturer can choose to use the simple scan converter employing
rules 1 and 2 only or may optionally invoke either rule 3 or rule 4. The
decision about which scan converter to use can be made on a font wide basis
or a different choice can be specified for each glyph. The selection made in
the preProgram will be the default for the entire font. A change made to the
default in the instructions for an individual glyph will apply only to that glyph.

 Empty page

 Empty page

 Empty page

Chapter 2

Revision 1.66 Page 31
File Name: ttch02.doc

The TrueType Font File

A TrueType font file contains data, in table format, that comprises an outline
font. The rasterizer uses combinations of data from different tables to render
the glyph data in the font.

The rasterizer has a much easier time traversing tables if they are padded so
that each table begins on a 4-byte boundary. It is highly recommended that all
tables be long aligned and padded with zeroes.

Data Types
The following data types are used in the TrueType font file. All TrueType
fonts use Motorola-style byte ordering (Big Endian):

Data type Description
BYTE 8-bit unsigned integer.
CHAR 8-bit signed integer.
USHORT 16-bit unsigned integer.
SHORT 16-bit signed integer.
ULONG 32-bit unsigned integer.
LONG 32-bit signed integer.
FIXED 32-bit signed fixed-point number (16.16)
FUNIT Smallest measurable distance in the em space.
FWORD 16-bit signed integer (SHORT) that describes a quantity in FUnits.
UFWORD Unsigned 16-bit integer (USHORT) that describes a quantity in

FUnits.
F2DOT14 16-bit signed fixed number with the low 14 bits of fraction (2.14).

Most tables have version numbers, and the version number for the entire font
is contained in the Table Directory (see below). Note that there are two
different version number types, each with its own numbering scheme.
USHORT version numbers always start at zero (0). Fixed version numbers
always start at one (1.0 or 0x00010000).

The TrueType Font File

Page 32 Revision 1.66
 File Name: ttch02.doc

The Fixed point format consists of a signed, 2’s complement mantissa and an
unsigned fraction. To compute the actual value, take the mantissa and add the
fraction. Examples of 2.14 values are:

Decimal Value Hex Value Mantissa Fraction
1.999939 0x7fff 1 16383/16384
1.75 0x7000 1 0/16384
0.000061 0x0001 0 1/16384
0.0 0x0000 0 0/16384
-0.000061 0xffff -1 16383/16384
-2.0 0x8000 -2 0/16384

The Table Directory
The TrueType font file begins at byte 0 with the Offset Table.

Type Name Description
Fixed sfnt version 0x00010000 for version 1.0.
USHORT numTables Number of tables.
USHORT searchRange (Maximum power of 2 ≤

numTables) x 16.
USHORT entrySelector Log2(maximum power of 2 ≤

numTables).
USHORT rangeShift NumTables x 16-searchRange.

This is followed at byte 12 by the Table Directory entries. Entries in the Table
Directory must be sorted in ascending order by tag.

Type Name Description
ULONG tag 4 -byte identifier.
ULONG checkSum CheckSum for this table.
ULONG offset Offset from beginning of

TrueType font file.
ULONG length Length of this table.

The Table Directory makes it possible for a given font to contain only those
tables it actually needs. As a result there is no standard value for numTables.

Tags are the names given to tables in the TrueType font file. At present, all
tag names consist of four characters, though this need not be the case. Names
with less than four letters are allowed if followed by the necessary trailing
spaces. A list of the currently defined tags follows.

The TrueType Font File

Revision 1.66 Page 33
File Name: ttch02.doc

Required Tables
Tag Name
cmap character to glyph mapping
glyf glyph data
head font header
hhea horizontal header
hmtx horizontal metrics
loca index to location
maxp maximum profile
name naming table
post PostScript information
OS/2 OS/2 and Windows specific metrics

Optional Tables
Tag Name
cvt Control Value Table
EBDT Embedded bitmap data
EBLC Embedded bitmap location data
EBSC Embedded bitmap scaling data
fpgm font program
gasp grid-fitting and scan conversion procedure (grayscale)
hdmx horizontal device metrics
kern kerning
LTSH Linear threshold table
prep CVT Program
PCLT PCL5
VDMX Vertical Device Metrics table
vhea Vertical Metrics header
vmtx Vertical Metrics

Other tables may be defined for other platforms and for future expansion.
Note that these tables will not have any effect on the scan converter. Tags for
these tables must be registered with Apple Developer Technical Support. Tag
names consisting of all lower case letters are reserved for Apple’s use. The
number 0 is never a valid tag name.

The TrueType Font File

Page 34 Revision 1.66
 File Name: ttch02.doc

Table checksums are the unsigned sum of the longs of a given table. In C, the
following function can be used to determine a checksum:

ULONG

CalcTableChecksum(ULONG *Table, ULONG Length)

{

ULONG Sum = 0L;

ULONG *Endptr = Table+((Length+3) & ~3) / sizeof(ULONG);

while (Table < EndPtr)

 Sum += *Table++;

return Sum;

}

Note: This function implies that the length of a table must be a multiple of four
bytes. While this is not a requirement for the TrueType scaler itself, it is
suggested that all tables begin on four byte boundries, and pad any remaining
space between tables with zeros. The length of all tables should be recorded in
the table directory with their actual length.

Note that the offset in the Table Directory is measured from the start of the
TrueType font file.

The TrueType Font File

Revision 1.66 Page 35
File Name: ttch02.doc

cmap - Character To Glyph Index Mapping Table
This table defines the mapping of character codes to the glyph index values
used in the font. It may contain more than one subtable, in order to support
more than one character encoding scheme. Character codes that do not
correspond to any glyph in the font should be mapped to glyph index 0. The
glyph at this location must be a special glyph representing a missing character.

The table header indicates the character encodings for which subtables are
present. Each subtable is in one of four possible formats and begins with a
format code indicating the format used.

The platform ID and platform-specific encoding ID are used to specify the
subtable; this means that each platform ID/platform-specific encoding ID pair
may only appear once in the cmap table. Each subtable can specify a different
character encoding. (See the ‘name’ table section). The entries must be sorted
first by platform ID and then by platform-specific encoding ID.

When building a Unicode font for Windows, the platform ID should be 3 and
the encoding ID should be 1. When building a symbol font for Windows, the
platform ID should be 3 and the encoding ID should be 0. When building a
font that will be used on the Macintosh, the platform ID should be 1 and the
encoding ID should be 0.

All Microsoft Unicode encodings (Platform ID = 3, Encoding ID = 1) must
use Format 4 for their ‘cmap’ subtable. Microsoft strongly recommends using
a Unicode ‘cmap’ for all fonts. However, some other encodings that appear in
current fonts follow:

Platform ID Encoding ID Description
3 0 Symbol
3 1 Unicode
3 2 ShiftJIS
3 3 Big5
3 4 PRC
3 5 Wansung
3 6 Johab

The Character To Glyph Index Mapping Table is organized as follows:

Type Description
USHORT Table version number (0).
USHORT Number of encoding tables, n.

The TrueType Font File

Page 36 Revision 1.66
 File Name: ttch02.doc

This is followed by an entry for each of the n encoding table specifying the
particular encoding, and the offset to the actual subtable:

Type Description
USHORT Platform ID.
USHORT Platform-specific encoding ID.
ULONG Byte offset from beginning of table to the

subtable for this encoding.

Format 0: Byte encoding table

This is the Apple standard character to glyph index mapping table.

Type Name Description
USHORT format Format number is set to 0.
USHORT length This is the length in bytes of the

subtable.
USHORT version Version number (starts at 0).
BYTE glyphIdArray[256] An array that maps character codes to

glyph index values.
This is a simple 1 to 1 mapping of character codes to glyph indices. The glyph
set is limited to 256. Note that if this format is used to index into a larger
glyph set, only the first 256 glyphs will be accessible.

Format 2: High-byte mapping through table

This subtable is useful for the national character code standards used for
Japanese, Chinese, and Korean characters. These code standards use a mixed
8/16-bit encoding, in which certain byte values signal the first byte of a 2-byte
character (but these values are also legal as the second byte of a 2-byte
character). Character codes are always 1-byte. The glyph set is limited to
256.

In addition, even for the 2-byte characters, the mapping of character codes to
glyph index values depends heavily on the first byte. Consequently, the table
begins with an array that maps the first byte to a 4-word subHeader. For 2-
byte character codes, the subHeader is used to map the second byte’s value
through a subArray, as described below. When processing mixed 8/16-bit text,
subHeader 0 is special: it is used for single-byte character codes. When
subHeader zero is used, a second byte is not needed; the single byte value is
mapped through the subArray.

The TrueType Font File

Revision 1.66 Page 37
File Name: ttch02.doc

Type Name Description
USHORT format Format number is set to 2.
USHORT length Length in bytes.
USHORT version Version number (starts at 0)
USHORT subHeaderKeys[256] Array that maps high bytes to

subHeaders: value is subHeader
index * 8.

4 words struct subHeaders[] Variable-length array of subHeader
structures.

4 words-struct subHeaders[]
USHORT glyphIndexArray[] Variable-length array containing

subarrays used for mapping the low
byte of 2-byte characters.

A subHeader is structured as follows:

Type Name Description
USHORT firstCode First valid low byte for this subHeader.
USHORT entryCount Number of valid low bytes for this

subHeader.
SHORT idDelta See text below.
USHORT idRangeOffset See text below.

The firstCode and entryCount values specify a subrange that begins at
firstCode and has a length equal to the value of entryCount. This subrange
stays within the 0–255 range of the byte being mapped. Bytes outside of this
subrange are mapped to glyph index 0 (missing glyph).The offset of the byte
within this subrange is then used as index into a corresponding subarray of
glyphIndexArray. This subarray is also of length entryCount. The value of the
idRangeOffset is the number of bytes past the actual location of the
idRangeOffset word where the glyphIndexArray element corresponding to
firstCode appears.

Finally, if the value obtained from the subarray is not 0 (which indicates the
missing glyph), you should add idDelta to it in order to get the glyphIndex.
The value idDelta permits the same subarray to be used for several different
subheaders. The idDelta arithmetic is modulo 65536.

The TrueType Font File

Page 38 Revision 1.66
 File Name: ttch02.doc

Format 4: Segment mapping to delta values

This is the Microsoft standard character to glyph index mapping table.

This format is used when the character codes for the characters represented by
a font fall into several contiguous ranges, possibly with holes in some or all of
the ranges (that is, some of the codes in a range may not have a representation
in the font). The format-dependent data is divided into three parts, which must
occur in the following order:
1. A four-word header gives parameters for an optimized search of the

segment list;
2. Four parallel arrays describe the segments (one segment for each

contiguous range of codes);
3. A variable-length array of glyph IDs (unsigned words).

Type Name Description
USHORT format Format number is set to 4.
USHORT length Length in bytes.
USHORT version Version number (starts at 0).
USHORT segCountX2 2 x segCount.
USHORT searchRange 2 x (2**floor(log2(segCount)))
USHORT entrySelector log2(searchRange/2)
USHORT rangeShift 2 x segCount - searchRange
USHORT endCount[segCount] End characterCode for each segment,

last =0xFFFF.
USHORT reservedPad Set to 0.
USHORT startCount[segCount] Start character code for each segment.
USHORT idDelta[segCount] Delta for all character codes in

segment.
USHORT idRangeOffset[segCount] Offsets into glyphIdArray or 0
USHORT glyphIdArray[] Glyph index array (arbitrary length)

The number of segments is specified by segCount, which is not explicitly in
the header; however, all of the header parameters are derived from it. The
searchRange value is twice the largest power of 2 that is less than or equal to
segCount. For example, if segCount=39, we have the following:
segCountX2 78
searchRange 64 (2 * largest power of 2 ≤ 39)
entrySelector 5 log2(32)
rangeShift 14 2 x 39 - 64

The TrueType Font File

Revision 1.66 Page 39
File Name: ttch02.doc

Each segment is described by a startCode and endCode, along with an idDelta
and an idRangeOffset, which are used for mapping the character codes in the
segment. The segments are sorted in order of increasing endCode values, and
the segment values are specified in four parallel arrays. You search for the
first endCode that is greater than or equal to the character code you want to
map. If the corresponding startCode is less than or equal to the character code,
then you use the corresponding idDelta and idRangeOffset to map the
character code to a glyph index (otherwise, the missingGlyph is returned). For
the search to terminate, the final endCode value must be 0xFFFF. This
segment need not contain any valid mappings. (It can just map the single
character code 0xFFFF to missingGlyph). However, the segment must be
present.

If the idRangeOffset value for the segment is not 0, the mapping of character
codes relies on glyphIdArray. The character code offset from startCode is
added to the idRangeOffset value. This sum is used as an offset from the
current location within idRangeOffset itself to index out the correct
glyphIdArray value. This obscure indexing trick works because glyphIdArray
immediately follows idRangeOffset in the font file. The C expression that
yields the glyph index is:

*(idRangeOffset[i]/2 + (c - startCount[i]) + &idRangeOffset[i])

The value c is the character code in question, and i is the segment index in
which c appears. If the value obtained from the indexing operation is not 0
(which indicates missingGlyph), idDelta[i] is added to it to get the glyph
index. The idDelta arithmetic is modulo 65536.

If the idRangeOffset is 0, the idDelta value is added directly to the character
code offset (i.e. idDelta[i] + c) to get the corresponding glyph index.
Again, the idDelta arithmetic is modulo 65536.

As an example, the variant part of the table to map characters 10–20, 30–90,
and 100–153 onto a contiguous range of glyph indices may look like this:
segCountX2: 8
searchRange: 8
entrySelector: 4
rangeShift: 0
endCode: 20 90 153 0xFFFF
reservedPad: 0
startCode: 10 30 100 0xFFFF
idDelta: -9 -18 -27 1
idRangeOffset: 0 0 0 0

The TrueType Font File

Page 40 Revision 1.66
 File Name: ttch02.doc

This table performs the following mappings:
10 –> 10 – 9 = 1
20 –> 20 – 9 = 11
30 –> 30 – 18 = 12
90 –> 90 – 18 = 72
...and so on.

Note that the delta values could be reworked so as to reorder the segments.

Format 6: Trimmed table mapping
Type Name Description
USHORT format Format number is set to 6.
USHORT length Length in bytes.
USHORT version Version number (starts at 0)
USHORT firstCode First character code of subrange.
USHORT entryCount Number of character codes in subrange.
USHORT glyphIdArray

[entryCount]
Array of glyph index values for character
codes in the range.

The firstCode and entryCount values specify a subrange (beginning at
firstCode,length = entryCount) within the range of possible character codes.
Codes outside of this subrange are mapped to glyph index 0. The offset of the
code (from the first code) within this subrange is used as index to the
glyphIdArray, which provides the glyph index value.

The TrueType Font File

Revision 1.66 Page 41
File Name: ttch02.doc

cvt - Control Value Table
This table contains a list of values that can be referenced by instructions. They
can be used, among other things, to control characteristics for different glyphs.

Type Description
FWORD[n] List of n values referenceable by instructions.

The TrueType Font File

Page 42 Revision 1.66
 File Name: ttch02.doc

EBDT - Embedded Bitmap Data Table
Three new tables are used to embed bitmaps in TrueType fonts. They are the
‘EBLC’ table for embedded bitmap locators, the ‘EBDT’ table for embedded
bitmap data, and the ‘EBSC’ table for embedded bitmap scaling information.

TrueType embedded bitmaps are also called ‘sbits’ (for “scaler bitmaps”). A
set of bitmaps for a face at a given size is called a strike.

The ‘EBLC’ table identifies the sizes and glyph ranges of the sbits, and keeps
offsets to glyph bitmap data in indexSubTables. The ‘EBDT’ table then stores
the glyph bitmap data, in a number of different possible formats. Glyph
metrics information may be stored in either the ‘EBLC’ or ‘EBDT’ table,
depending upon the indexSubTable and glyph bitmap data formats. The
‘EBSC’ table identifies sizes that will be handled by scaling up or scaling
down other sbit sizes.

The ‘EBDT’ table uses the same format as Apple has defined for the
QuickDraw GX ‘bdat’ table.

The ‘EBDT’ table begins with a header containing simply the table version
number.

Type Name Description
FIXED version Initially defined as 0x00020000

The rest of the ‘EBDT’ table is a simply a collection of bitmap data. The data
can be in a number of possible formats, indicated by information in the
‘EBLC’ table. Some of the formats contain metric information plus image
data, and other formats contain only the image data. Long word alignment is
not required for these sub tables; byte alignment is sufficient.

There are also two different formats for glyph metrics: big glyph metrics and
small glyph metrics. Big glyph metrics define metrics information for both
horizontal and vertical layouts. This is important in fonts (such as Kanji)
where both types of layout may be used. Small glyph metrics define metrics
information for one layout direction only. Which direction applies, horizontal
or vertical, is determined by the ‘flags’ field in the bitmapSizeTable field of
the ‘EBLC’ table.

The TrueType Font File

Revision 1.66 Page 43
File Name: ttch02.doc

bigGlyphMetrics
Type Name
BYTE height
BYTE width
CHAR horiBearingX
CHAR horiBearingY
BYTE horiAdvance
CHAR vertBearingX
CHAR vertBearingY
BYTE vertAdvance

smallGlyphMetrics
Type Name
BYTE height
BYTE width
CHAR BearingX
CHAR BearingY
BYTE Advance

The nine different formats currently defined for glyph bitmap data are listed
and described below. Different formats are better for different purposes.
Apple ‘bdat’ tables support only formats 1 through 7.

Format 1: small metrics, byte-aligned data
Type Name Description
smallGlyphMetrics smallMetrics Metrics information for the glyph
VARIABLE image data Byte-aligned bitmap data

Glyph bitmap format 1 consists of small metrics records (either horizontal or
vertical depending on the bitmapSizeTable ‘flag’ value in the ‘EBLC’ table)
followed by byte aligned bitmap data. The bitmap data begins with the most
significant bit of the first byte corresponding to the top-left pixel of the
bounding box, proceeding through succeeding bits moving left to right. The
data for each row is padded to a byte boundary, so the next row begins with
the most significant bit of a new byte. 1 bits correspond to black, and 0 bits to
white.

The TrueType Font File

Page 44 Revision 1.66
 File Name: ttch02.doc

Format 2: small metrics, bit-aligned data
Type Name Description
smallGlyphMetrics small Metrics Metrics information for the glyph
VARIABLE image data Bit-aligned bitmap data

Glyph bitmap format 2 is the same as format 1 except that the bitmap data is
bit aligned. This means that the data for a new row will begin with the bit
immediately following the last bit of the previous row. The start of each glyph
must be byte aligned, so the last row of a glyph may require padding. This
format takes a little more time to parse, but saves file space compared to
format 1.

Format 3: (obsolete)

Format 4: (not supported) metrics in EBLC, compressed data

Glyph bitmap format 4 is a compressed format used by Apple in some of their
Far East fonts. MS has not implemented it in our rasterizer.

Format 5: metrics in EBLC, bit-aligned image data only
Type Name Description
VARIABLE image data Bit-aligned bitmap data

Glyph bitmap format 5 is similar to format 2 except that no metrics
information is included, just the bit aligned data. This format is for use with
‘EBLC’ indexSubTable format 2 or format 5, which will contain the metrics
information for all glyphs. It works well for Kanji fonts.

The rasterizer recalculates sbit metrics for Format 5 bitmap data, allowing
Windows to report correct ABC widths, even if the bitmaps have white space
on either side of the bitmap image. This allows fonts to store monospaced
bitmap glyphs in the efficient Format 5 without breaking Windows
GetABCWidths call.

Format 6: big metrics, byte-aligned data
Type Name Description
bigGlyphMetric
s

bigMetrics Metrics information for the glyph

VARIABLE image data Byte-aligned bitmap data

Glyph bitmap format 6 is the same as format 1 except that is uses big glyph
metrics instead of small.

The TrueType Font File

Revision 1.66 Page 45
File Name: ttch02.doc

Format 7: big metrics, bit-aligned data
Type Name Description
bigGlyphMetrics bigMetrics Metrics information for the glyph
VARIABLE image data Bit-aligned bitmap data

Glyph bitmap format 7 is the same as format 2 except that is uses big glyph
metrics instead of small.

ebdtComponent; array used by Formats 8 and 9
Type Name Description
USHORT glyphCode Component glyph code
CHAR xOffset Position of component left
CHAR yOffset Position of component top

The component array, used by Formats 8 and 9, contains the glyph code of the
component, which can be looked up in the ‘EBLC’ table, as well as xOffset
and yOffset values which tell where to position the top-left corner of the
component in the composite. Nested composites (a composite of composites)
are allowed, and the number of nesting levels is determined by
implementation stack space.

Format 8: small metrics, component data
Type Name Description
smallGlyphMetrics smallMetrics Metrics information for the glyph
BYTE pad Pad to short boundary
USHORT numComponents Number of components
ebdtComponent componentArray[n] Glyph code, offset array

Format 9: big metrics, component data
Type Name Description
bigGlyphMetrics bigMetrics Metrics information for the glyph
USHORT numComponents Number of components
ebdtComponent componentArray[n] Glyph code, offset array

Glyph bitmap formats 8 and 9 are used for composite bitmaps. For accented
characters and other composite glyphs it may be more efficient to store a copy
of each component separately, and then use a composite description to
construct the finished glyph. The composite formats allow for any number of
components, and allow the components to be positioned anywhere in the
finished glyph. Format 8 uses small metrics, and format 9 uses big metrics.

The TrueType Font File

Page 46 Revision 1.66
 File Name: ttch02.doc

EBLC - Embedded Bitmap Location Table
Three new tables are used to embed bitmaps in TrueType fonts. They are the
‘EBLC’ table for embedded bitmap locators, the ‘EBDT’ table for embedded
bitmap data, and the ‘EBSC’ table for embedded bitmap scaling information.
TrueType embedded bitmaps are called ‘sbits’ (for “scaler bitmaps”). A set of
bitmaps for a face at a given size is called a strike.

The ‘EBLC’ table identifies the sizes and glyph ranges of the sbits, and keeps
offsets to glyph bitmap data in indexSubTables. The ‘EBDT’ table then stores
the glyph bitmap data, also in a number of different possible formats. Glyph
metrics information may be stored in either the ‘EBLC’ or ‘EBDT’ table,
depending upon the indexSubTable and glyph bitmap formats. The ‘EBSC’
table identifies sizes that will be handled by scaling up or scaling down other
sbit sizes.

The ‘EBLC’ table uses the same format as the Apple QuickDraw GX ‘bloc’
table.

The ‘EBLC’ table begins with a header containing the table version and
number of strikes. A TrueType font may have one or more strikes embedded
in the ‘EBDT’ table.

eblcHeader
Type Name Description
FIXED version initially defined as 0x00020000
ULONG numSizes Number of bitmapSizeTables

The TrueType Font File

Revision 1.66 Page 47
File Name: ttch02.doc

The eblcHeader is followed immediately by the bitmapSizeTable array(s). The
numSizes in the eblcHeader indicates the number of bitmapSizeTables in the
array. Each strike is defined by one bitmapSizeTable.

bitmapSizeTable
Type Name Description
ULONG indexSubTableArrayOffset offset to index subtable from

beginning of EBLC.
ULONG indexTablesSize number of bytes in corresponding

index subtables and array
ULONG numberOfIndexSubTables an index subtable for each range or

format change
ULONG colorRef not used; set to 0.
sbitLineMetrics hori line metrics for text rendered

horizontally
sbitLineMetrics vert line metrics for text rendered

vertically
USHORT startGlyphIndex lowest glyph index for this size
USHORT endGlyphIndex highest glyph index for this size
BYTE ppemX horizontal pixels per Em
BYTE ppemY vertical pixels per Em
BYTE bitDepth set to 1 for now
CHAR flags vertical or horizontal (see

bitmapFlags)

The indexSubTableArrayOffset is the offset from the beginning of the
‘EBLC’ table to the indexSubTableArray. Each strike has one of these arrays
to support various formats and discontiguous ranges of bitmaps. The
indexTablesSize is the total number of bytes in the indexSubTableArray and
the associated indexSubTables. The numberOfIndexSubTables is a count of
the indexSubTables for this strike.

The horizontal and vertical line metrics contain the ascender, descender,
linegap, and advance information for the strike. The line metrics format is
described in the following table:

The TrueType Font File

Page 48 Revision 1.66
 File Name: ttch02.doc

sbitLineMetrics
Type Name
CHAR ascender
CHAR descender
BYTE widthMax
CHAR caretSlopeNumerator
CHAR caretSlopeDenominator
CHAR caretOffset
CHAR minOriginSB
CHAR minAdvanceSB
CHAR maxBeforeBL
CHAR minAfterBL
CHAR pad1
CHAR pad2

The caret slope determines the angle at which the caret is drawn, and the
offset is the number of pixels (+ or -) to move the caret. This is a signed char
since we are dealing with integer metrics. The minOriginSB, minAdvanceSB ,
maxBeforeBL, and minAfterBL are described in the diagrams below. The
main need for these numbers is for scalers that may need to pre-allocate
memory and/or need more metric information to position glyphs. All of the
line metrics are one byte in length. The line metrics are not used directly by
the rasterizer, but are available to clients who want to parse the ‘EBLC’ table.

The startGlyphIndex and endGlyphIndex describe the minimum and
maximum glyph codes in the strike, but a strike does not necessarily contain
bitmaps for all glyph codes in this range. The indexSubTables determine
which glyphs are actually present in the ‘EBDT’ table.

The ppemX and ppemY fields describe the size of the strike in pixels per Em.
The ppem measurement is equivalent to point size on a 72 dots per inch
device. Typically, ppemX will be equal to ppemY for devices with ‘square
pixels’. To accommodate devices with rectangular pixels, and to allow for
bitmaps with other aspect ratios, ppemX and ppemY may differ.

The ‘flags’ byte contains two bits to indicate the direction of small glyph
metrics: horizontal or vertical. The remaining bits are reserved.

Bitmap Flags
Type Value Description
CHAR 0x01 Horizontal
CHAR 0x02 Vertical

The colorRef and bitDepth fields are reserved for future enhancements. For
monochrome bitmaps they should have the values colorRef=0 and
bitDepth=1.

The TrueType Font File

Revision 1.66 Page 49
File Name: ttch02.doc

g maxBeforeBL

minAfterBL

minAdvanceSB

minOriginSB

Y axis

X axis

Horizontal Text

Â
 +

 +

 -

 -

minOriginSB = Minimum of
(horiBearingX)

minAdvanceSB = Minimum of
(hori.advance - (horiBearingX + width))

maxBeforeBL = Maximum of
(horiBearingY)

minAfterBL = Minimum of
(horiBearingY - height)

maxBeforeBL minAfterBL

minAdvanceSB

minOriginSB

Y axis

X axis

Vertical Text

 +

 +

 -

 -

minOriginSB = Minimum of
(vertBearingY)

minAdvanceSB = Minimum of
(vert.advance - (vertBearingY + height))

maxBeforeBL = Maximum of
(vertBearingX)

minAfterBL = Minimum of
(vertBearingX - width)

gÂ

The TrueType Font File

Page 50 Revision 1.66
 File Name: ttch02.doc

Associated with the image data for every glyph in a strike is a set of glyph
metrics. These glyph metrics describe bounding box height and width, as well
as side bearing and advance width information. The glyph metrics can be
found in one of two places. For ranges of glyphs (not necessarily the whole
strike) whose metrics may be different for each glyph, the glyph metrics are
stored along with the glyph image data in the ‘EBDT’ table. Details of how
this is done is described in the ‘EBDT’ section of this document. For ranges of
glyphs whose metrics are identical for every glyph, we save significant space
by storing a single copy of the glyph metrics in the indexSubTable in the
‘EBLC’.

There are also two different formats for glyph metrics: big glyph metrics and
small glyph metrics. Big glyph metrics define metrics information for both
horizontal and vertical layouts. This is important in fonts (such as Kanji)
where both types of layout may be used. Small glyph metrics define metrics
information for one layout direction only. Which direction applies, horizontal
or vertical, is determined by the ‘flags’ field in the bitmapSizeTable.

bigGlyphMetrics
Type Name
BYTE height
BYTE width
CHAR horiBearingX
CHAR horiBearingY
BYTE horiAdvance
CHAR vertBearingX
CHAR vertBearingY
BYTE vertAdvance

smallGlyphMetrics
Type Name
BYTE height
BYTE width
CHAR BearingX
CHAR BearingY
BYTE Advance

The TrueType Font File

Revision 1.66 Page 51
File Name: ttch02.doc

The following diagram illustrates the meaning of the glyph metrics.

g
horiAdvance

height

width
horiBearingX

horiBearingY

pen position

Horizontal Glyph Metrics

g vertAdvanceheight

width

vertBearingX
vertBearingY

pen position

Vertical Glyph Metrics

The bitmapSizeTable for each strike contains the offset to an array of
indexSubTableArray elements. Each element describes a glyph code range
and an offset to the indexSubTable for that range. This allows a strike to
contain multiple glyph code ranges and to be represented in multiple index
formats if desirable.

indexSubTableArray
Type Name Description
USHORT firstGlyphIndex first glyph code of this range
USHORT lastGlyphIndex last glyph code of this range

(inclusive)
ULONG additionalOffsetToIndexSubtabl

e
add to indexSubTableArrayOffset to
get offset from beginning of ‘EBLC’

After determining the strike, the rasterizer searches this array for the range
containing the given glyph code. When the range is found, the
additionalOffsetToIndexSubtable is added to the indexSubTableArrayOffset
to get the offset of the indexSubTable in the ‘EBLC’.

The first indexSubTableArray is located after the last bitmapSizeSubTable
entry. Then the indexSubTables for the strike follow. Another
indexSubTableArray (if more than one strike) and its indexSubTables are
next. The ‘EBLC’ continues with an array and indexSubTables for each strike.

The TrueType Font File

Page 52 Revision 1.66
 File Name: ttch02.doc

We now have the offset to the indexSubTable. All indexSubTable formats
begin with an indexSubHeader which identifies the indexSubTable format, the
format of the ‘EBDT’ image data, and the offset from the beginning of the
‘EBDT’ table to the beginning of the image data for this range.

indexSubHeader
Type Name Description
USHORT indexFormat format of this indexSubTable
USHORT imageFormat format of ‘EBDT’ image data
ULONG imageDataOffset offset to image data in ‘EBDT’ table

There are currently five different formats used for the indexSubTable,
depending upon the size and type of bitmap data in the glyph code range.
Apple ‘bloc’ tables support only formats 1 through 3.

The choice of which indexSubTable format to use is up to the font
manufacturer, but should be made with the aim of minimizing the size of the
font file. Ranges of glyphs with variable metrics — that is, where glyphs may
differ from each other in bounding box height, width, side bearings or advance
— must use format 1, 3 or 4. Ranges of glyphs with constant metrics can save
space by using format 2 or 5, which keep a single copy of the metrics
information in the indexSubTable rather than a copy per glyph in the ‘EBDT’
table. In some monospaced fonts it makes sense to store extra white space
around some of the glyphs to keep all metrics identical, thus permitting the
use of format 2 or 5.

Structures for each indexSubTable format are listed below.

indexSubTable1: variable metrics glyphs with 4 byte offsets
Type Name Description
indexSubHeader header header info
ULONG offsetArray[] offsetArray[glyphIndex]+imageDataOffset=

glyphData
sizeOfArray=(lastGlyph-firstGlyph+1)+1+1 pad
if needed

indexSubTable2: all glyphs have identical metrics
Type Name Description
indexSubHeader header header info
ULONG imageSize all the glyphs are of the same size
bigGlyphMetrics bigMetrics all glyphs have the same metrics; glyph data

may be compressed, byte-aligned, or bit-aligned

The TrueType Font File

Revision 1.66 Page 53
File Name: ttch02.doc

indexSubTable3: variable metrics glyphs with 2 byte offsets
Type Name Description
indexSubHeader header header info
USHORT offsetArray[] offsetArray[glyphIndex]+imageDataOffset=

glyphData
sizeOfArray=(lastGlyph-firstGlyph+1)+1+1 pad
if needed

indexSubTable4: variable metrics glyphs with sparse glyph codes
Type Name Description
indexSubHeader header header info
ULONG numGlyphs array length
codeOffsetPair glyphArray[] one per glyph; sizeOfArray=numGlyphs+1

codeOffsetPair: used by indexSubTable4
Type Name Description
USHORT glyphCode code of glyph present
USHORT offset location in EBDT

indexSubTable5: constant metrics glyphs with sparse glyph codes
Type Name Description
indexSubHeader header header info
ULONG imageSize all glyphs have the same data size
bigGlyphMetrics bigMetrics all glyphs have the same metrics
ULONG numGlyphs array length
USHORT glyphCodeArray[] one per glyph, sorted by glyph code;

sizeOfArray=numGlyphs

The size of the ‘EBDT’ image data can be calculated from the indexSubTable
information. For the constant metrics formats (2 and 5) the image data size is
constant, and is given in the imageSize field. For the variable metrics formats
(1, 3, and 4) image data must be stored contiguously and in glyph code order,
so the image data size may be calculated by subtracting the offset for the
current glyph from the offset of the next glyph. Because of this, it is necessary
to store one extra element in the offsetArray pointing just past the end of the
range’s image data. This will allow the correct calculation of the image data
size for the last glyph in the range.

Contiguous, or nearly contiguous, ranges of glyph codes are handled best by
formats 1, 2, and 3 which store an offset for every glyph code in the range.
Very sparse ranges of glyph codes should use format 4 or 5 which explicitly
call out the glyph codes represented in the range. A small number of missing
glyphs can be efficiently represented in formats 1 or 3 by having the offset for
the missing glyph be followed by the same offset for the next glyph, thus
indicating a data size of zero.

The TrueType Font File

Page 54 Revision 1.66
 File Name: ttch02.doc

The only difference between formats 1 and 3 is the size of the offsetArray
elements: format 1 uses ULONG’s while format 3 uses USHORT’s. Therefore
format 1 can cover a greater range (> 64k bytes) while format 3 saves more
space in the ‘EBLC’ table. Since the offsetArray elements are added to the
imageDataOffset base address in the indexSubHeader, a very large set of
glyph bitmap data could be addressed by splitting it into multiple ranges, each
less than 64k bytes in size, allowing the use of the more efficient format 3.

The ‘EBLC’ table specification requires double word (ULONG) alignment for
all subtables. This occurs naturally for indexSubTable formats 1, 2, and 4, but
may not for formats 3 and 5, since they include arrays of type USHORT.
When there is an odd number of elements in these arrays it is necessary to add
an extra padding element to maintain proper alignment.

The TrueType Font File

Revision 1.66 Page 55
File Name: ttch02.doc

EBSC - Embedded Bitmap Scaling Table
The ‘EBSC’ table provides a mechanism for describing embedded bitmaps
which are created by scaling other embedded bitmaps. While this is the sort of
thing that outline font technologies were invented to avoid, there are cases
(small sizes of Kanji, for example) where scaling a bitmap produces a more
legible font than scan-converting an outline. For this reason the ‘EBSC’ table
allows a font to define a bitmap strike as a scaled version of another strike.

The ‘EBSC’ table begins with a header containing the table version and
number of strikes.

ebscHeader
Type Name Description
FIXED version initially defined as 0x00020000
ULONG numSizes

The ebscHeader is followed immediately by the bitmapScaleTable array. The
numSizes in the ebscHeader indicates the number of bitmapScaleTables in the
array. Each strike is defined by one bitmapScaleTable.

bitmapScaleTable
Type Name Description
sbitLineMetrics hori line metrics
sbitLineMetrics vert line metrics
BYTE ppemX target horizontal pixels per Em
BYTE ppemY target vertical pixels per Em
BYTE substitutePpemX use bitmaps of this size
BYTE substitutePpemY use bitmaps of this size

The line metrics have the same meaning as those in the bitmapSizeTable, and
refer to font wide metrics after scaling. The ppemX and ppemY values
describe the size of the font after scaling. The substitutePpemX and
substitutePpemY values describe the size of a strike that exists as an sbit in the
‘EBLC’ and ‘EBDT’, and that will be scaled up or down to generate the new
strike.

Notice that scaling in the x direction is independent of scaling in the y
direction, and their scaling values may differ. A square aspect-ratio strike
could be scaled to a non-square aspect ratio. Glyph metrics are scaled by the
same factor as the pixels per Em (in the appropriate direction), and are
rounded to the nearest integer pixel.

The TrueType Font File

Page 56 Revision 1.66
 File Name: ttch02.doc

fpgm - Font Program
This table is similar to the CVT Program, except that it is only run once, when
the font is first used. It is used only for FDEFs and IDEFs. Thus the CVT
Program need not contain function definitions. However, the CVT Program
may redefine existing FDEFs or IDEFs.

This table is optional.

Type Description
BYTE[n] Instructions

The TrueType Font File

Revision 1.66 Page 57
File Name: ttch02.doc

gasp - Grid-fitting And Scan-conversion Procedure
This table contains information which describes the preferred rasterization
techniques for the typeface when it is rendered on grayscale-capable devices.
This table also has some use for monochrome devices, which may use the
table to turn off hinting at very large or small sizes, to improve performance.

At very small sizes, the best appearance on grayscale devices can usually be
achieved by rendering the glyphs in grayscale without using hints. At
intermediate sizes, hinting and monochrome rendering will usually produce
the best appearance. At large sizes, the combination of hinting and grayscale
rendering will typically produce the best appearance.

If the ‘gasp’ table is not present in a typeface, TrueType will apply default
rules to decide how to render the glyphs on grayscale devices.

The ‘gasp’ table consists of a header followed by groupings of ‘gasp’ records:

gasp Table
Type Name Description
USHORT version Version number (set to 0)
USHORT numRanges Number of records to follow
GASPRANGE gaspRange[numRanges] Sorted by ppem

Each GASPRANGE record looks like this:

Type Name Description
USHORT rangeMaxPPEM Upper limit of range, in PPEM
USHORT rangeGaspBehavior Flags describing desired rasterizer

behavior.

There are two flags for the rangeGaspBehavior flags:

Flag Meaning
GASP_GRIDFIT Use gridfitting
GASP_DOGRAY Use grayscale rendering

The set of bit flags may be extended in the future.

The TrueType Font File

Page 58 Revision 1.66
 File Name: ttch02.doc

The four currently defined values of rangeGaspBehavior would have the
following uses:

Flag Value Meaning
GASP_DOGRAY 0x0002 small sizes, typically ppem<9
GASP_GRIDFIT 0x0001 medium sizes, typically 9<=ppem<=16
GASP_DOGRAY|
GASP_GRIDFIT

0x0003 large sizes, typically ppem>16

(neither) 0x0000 optional for very large sizes, typically
ppem>2048

The records in the gaspRange[] array must be sorted in order of increasing
rangeMaxPPEM value. The last record should use 0xFFFF as a sentinel value
for rangeMaxPPEM and should describe the behavior desired at all sizes
larger than the previous record’s upper limit. If the only entry in ‘gasp’ is the
0xFFFF sentinel value, the behavior described will be used for all sizes.

Sample ‘gasp’ table
Field Value Meaning
version 0x0000
numRanges 0x0003
Range[0], Flag 0x0008 0x0002 ppem<=8, grayscale only
Range[1], Flag 0x0010 0x0001 9<=ppem<=16, gridfit only
Range[2], Flag 0xFFFF 0x0003 16<ppem, gridfit and grayscale

The TrueType Font File

Revision 1.66 Page 59
File Name: ttch02.doc

 glyf - Glyph Data
This table contains information that describes the glyphs in the font. Each
glyph begins with the following header:

Type Name Description
SHORT numberOfContours If the number of contours is greater

than or equal to zero, this is a single
glyph; if negative, this is a composite
glyph.

FWORD xMin Minimum x for coordinate data.
FWORD yMin Minimum y for coordinate data.
FWORD xMax Maximum x for coordinate data.
FWORD yMax Maximum y for coordinate data.

Note that the bounding rectangle from each character is defined as the
rectangle with a lower left corner of (xMin, yMin) and an upper right corner
of (xMax, yMax).

Note: The scaler will perform better if the glyph coordinates have been
created such that the xMin is equal to the lsb. For example, if the lsb is 123,
then xMin for the glyph should be 123. If the lsb is -12 then the xMin should
be -12. If the lsb is 0 then xMin is 0. If all glyphs are done like this, set bit 1 of
flags field in the ‘head’ table.

Simple Glyph Description

This is the table information needed if numberOfContours is greater than zero,
that is, a glyph is not a composite.

Type Name Description
USHORT endPtsOfContours[n] Array of last points of each contour;

n is the number of contours.
USHORT instructionLength Total number of bytes for

instructions.
BYTE instructions[n] Array of instructions for each glyph;

n is the number of instructions.
BYTE flags[n] Array of flags for each coordinate in

outline; n is the number of flags.
BYTE or
SHORT

xCoordinates[] First coordinates relative to (0,0);
others are relative to previous point.

BYTE or
SHORT

yCoordinates[] First coordinates relative to (0,0);
others are relative to previous point.

The TrueType Font File

Page 60 Revision 1.66
 File Name: ttch02.doc

Note: In the glyf table, the position of a point is not stored in absolute terms
but as a vector relative to the previous point. The delta-x and delta-y vectors
represent these (often small) changes in position.

Each flag is a single byte. Their meanings are shown below.

Flags Bit Description
On Curve 0 If set, the point is on the curve; otherwise, it is off the

curve.
x-Short Vector 1 If set, the corresponding x-coordinate is 1 byte long,

not 2.
y-Short Vector 2 If set, the corresponding y-coordinate is 1 byte long,

not 2.
Repeat 3 If set, the next byte specifies the number of additional

times this set of flags is to be repeated. In this way,
the number of flags listed can be smaller than the
number of points in a character.

This x is same
(Positive x-Short
Vector)

4 This flag has two meanings, depending on how the x-
Short Vector flag is set. If x-Short Vector is set, this
bit describes the sign of the value, with 1 equalling
positive and 0 negative. If the x-Short Vector bit is
not set and this bit is set, then the current x-
coordinate is the same as the previous x-coordinate.
If the x-Short Vector bit is not set and this bit is also
not set, the current x-coordinate is a signed 16-bit
delta vector.

This y is same
(Positive y-Short
Vector)

5 This flag has two meanings, depending on how the y-
Short Vector flag is set. If y-Short Vector is set, this
bit describes the sign of the value, with 1 equalling
positive and 0 negative. If the y-Short Vector bit is
not set and this bit is set, then the current y-
coordinate is the same as the previous y-coordinate.
If the y-Short Vector bit is not set and this bit is also
not set, the current y-coordinate is a signed 16-bit
delta vector.

Reserved 6 This bit is reserved. Set it to zero.
Reserved 7 This bit is reserved. Set it to zero.

The TrueType Font File

Revision 1.66 Page 61
File Name: ttch02.doc

Composite Glyph Description

This is the table information needed for composite glyphs (numberOfContours
is -1). A composite glyph starts with two USHORT values (“flags” and
“glyphIndex,” i.e. the index of the first contour in this composite glyph); the
data then varies according to “flags”). The C pseudo-code fragment below
shows how the composite glyph information is stored and parsed; definitions
for “flags” bits follow this fragment:

do {

 USHORT flags;

 USHORT glyphIndex;

 if (flags & ARG_1_AND_2_ARE_WORDS) {

 (SHORT or FWord) argument1;

 (SHORT or FWord) argument2;

 } else {

 USHORT arg1and2; /* (arg1 << 8) | arg2 */

 }

 if (flags & WE_HAVE_A_SCALE) {

 F2Dot14 scale; /* Format 2.14 */

 } else if (flags & WE_HAVE_AN_X_AND_Y_SCALE) {

 F2Dot14 xscale; /* Format 2.14 */

 F2Dot14 yscale; /* Format 2.14 */

 } else if (flags & WE_HAVE_A_TWO_BY_TWO) {

 F2Dot14 xscale; /* Format 2.14 */

 F2Dot14 scale01; /* Format 2.14 */

 F2Dot14 scale10; /* Format 2.14 */

 F2Dot14 yscale; /* Format 2.14 */

 }

} while (flags & MORE_COMPONENTS)

if (flags & WE_HAVE_INSTR){

 USHORT numInstr

 BYTE instr[numInstr]

Argument1 and argument2 can be either x and y offsets to be added to the
glyph or two point numbers. In the latter case, the first point number indicates
the point that is to be matched to the new glyph. The second number indicates
the new glyph’s “matched” point. Once a glyph is added, its point numbers
begin directly after the last glyphs (endpoint of first glyph + 1).

The TrueType Font File

Page 62 Revision 1.66
 File Name: ttch02.doc

When arguments 1 and 2 are an x and a y offset instead of points and the bit
ROUND_XY_TO_GRID is set to 1, the values are rounded to those of the
closest grid lines before they are added to the glyph. X and Y offsets are
described in FUnits.

If the bit WE_HAVE_A_SCALE is set, the scale value is read in 2.14
format—the value can be between -2 to almost +2. The glyph will be scaled
by this value before grid-fitting.

The bit WE_HAVE_A_TWO_BY_TWO allows for an interrelationship
between the x and y coordinates. This could be used for 90-degree rotations,
for example.

These are the constants for the flags field:

Flags Bit Description
ARG_1_AND_2_ARE_WORDS 0 If this is set, the arguments are words;

otherwise, they are bytes.
ARGS_ARE_XY_VALUES 1 If this is set, the arguments are xy

values; otherwise, they are points.
ROUND_XY_TO_GRID 2 For the xy values if the preceding is

true.
WE_HAVE_A_SCALE 3 This indicates that there is a simple

scale for the component. Otherwise,
scale = 1.0.

RESERVED 4 This bit is reserved. Set it to 0.
MORE_COMPONENTS 5 Indicates at least one more glyph after

this one.
WE_HAVE_AN_X_AND_Y_SCALE 6 The x direction will use a different

scale from the y direction.
WE_HAVE_A_TWO_BY_TWO 7 There is a 2 by 2 transformation that

will be used to scale the component.
WE_HAVE_INSTRUCTIONS 8 Following the last component are

instructions for the composite
character.

USE_MY_METRICS 9 If set, this forces the aw and lsb (and
rsb) for the composite to be equal to
those from this original glyph. This
works for hinted and unhinted
characters.

The TrueType Font File

Revision 1.66 Page 63
File Name: ttch02.doc

The purpose of USE_MY_METRICS is to force the lsb and rsb to take on a
desired value. For example, an i-circumflex (Unicode 00ef) is often composed
of the circumflex and a dotless-i. In order to force the composite to have the
same metrics as the dotless-i, set USE_MY_METRICS for the dotless-i
component of the composite. Without this bit, the rsb and lsb would be
calculated from the HMTX entry for the composite (or would need to be
explicitly set with TrueType instructions).

Note that the behavior of the USE_MY_METRICS operation is undefined for
rotated composite components.

The TrueType Font File

Page 64 Revision 1.66
 File Name: ttch02.doc

hdmx - Horizontal Device Metrics
The Horizontal Device Metrics table stores integer advance widths scaled to
particular pixel sizes. This allows the font manager to build integer width
tables without calling the scaler for each glyph. Typically this table contains
only selected screen sizes. This table is sorted by pixel size. The checksum for
this table applies to both subtables listed.

Note that for non-square pixel grids (for example, on an EGA), the character
width (in pixels) will be used to determine which device record to use. For
example, a 12 point character on an EGA (resolution of 72x96) would be 12
pixels high, and 16 pixels wide, and the hdmx device record for 16 pixel
characters would be used.

If bit 4 of the flag field in the ‘head’ table is not set, then it is assumed that the
font scales linearly; in this case an ‘hdmx’ table is not necessary and should
not be built. If bit 4 of the flag field is set, then one or more glyphs in the
font are assumed to scale nonlinearly. In this case, performance can be
improved by including the ‘hdmx’ table with one or more important
DeviceRecord’s for important sizes. Please see the chapter
“Recommendations for Windows Fonts” for more detail.

The table begins as follows:

Type Description
USHORT Table version number (starts at 0)
SHORT Number of device records.
LONG Size of a device record, long aligned.
DeviceRecord Records[number of device records].

Each DeviceRecord for format 0 looks like this.

Type Description
BYTE Pixel size for following widths (as ppem).
BYTE Maximum width.
BYTE Widths[numGlyphs] (numGlyphs is from the ‘maxp’ table).

Each DeviceRecord is padded with 0’s to make it long word aligned.

Each Width value is the width of the particular glyph, in pixels, at the pixels
per em (ppem) size listed at the start of the DeviceRecord.

The ppem sizes are measured along the y axis.

The TrueType Font File

Revision 1.66 Page 65
File Name: ttch02.doc

head - Font Header
This table gives global information about the font. The bounding box values
should be computed using only glyphs that have contours. Glyphs with no
contours should be ignored for the purposes of these calculations.

Type Name Description
FIXED Table version number 0x00010000 for version 1.0.
FIXED fontRevision Set by font manufacturer.
ULONG checkSumAdjustment To compute: set it to 0, sum the entire font

as ULONG, then store 0xB1B0AFBA - sum.
ULONG magicNumber Set to 0x5F0F3CF5.
USHORT flags Bit 0 - baseline for font at y=0;

Bit 1 - left sidebearing at x=0;
Bit 2 - instructions may depend on point size;
Bit 3 - force ppem to integer values for all
internal scaler math; may use fractional ppem
sizes if this bit is clear;
Bit 4 - instructions may alter advance width
(the advance widths might not scale linearly);
Note: All other bits must be zero.

USHORT unitsPerEm Valid range is from 16 to 16384
longDateTime created International date (8-byte field).
longDateTime modified International date (8-byte field).
FWORD xMin For all glyph bounding boxes.
FWORD yMin For all glyph bounding boxes.
FWORD xMax For all glyph bounding boxes.
FWORD yMax For all glyph bounding boxes.
USHORT macStyle Bit 0 bold (if set to 1); Bit 1 italic (if set to 1)

Bits 2-15 reserved (set to 0).
USHORT lowestRecPPEM Smallest readable size in pixels.
SHORT fontDirectionHint 0 Fully mixed directional glyphs;

 1 Only strongly left to right;
 2 Like 1 but also contains neutrals 1

-1 Only strongly right to left;
;

-2 Like -1 but also contains neutrals.
SHORT indexToLocFormat 0 for short offsets, 1 for long.
SHORT glyphDataFormat 0 for current format.

1 A neutral character has no inherent directionality; it is not a character with zero (0) width.
Spaces and punctuation are examples of neutral characters. Non-neutral characters are those with
inherent directionality. For example, Roman letters (left-to-right) and Arabic letters (right-to-left)
have directionality. In a “normal” Roman font where spaces and punctuation are present, the font
direction hints should be set to two (2).

The TrueType Font File

Page 66 Revision 1.66
 File Name: ttch02.doc

Note that macStyle bits must agree with the ‘OS/2’ table fsSelection bits. The
fsSelection bits are used over the macStyle bits in Microsoft Windows. The
PANOSE values and ‘post’ table values are ignored for determining bold or
italic fonts.

The Date format used in this table follows the Macintosh convention of the
number of seconds since 1904 (see Apple’s Inside Macintosh series).

The TrueType Font File

Revision 1.66 Page 67
File Name: ttch02.doc

hhea - Horizontal Header
This table contains information for horizontal layout. The values in the
minRightSidebearing, minLeftSideBearing and xMaxExtent should be
computed using only glyphs that have contours. Glyphs with no contours
should be ignored for the purposes of these calculations. All reserved areas
must be set to 0.

Type Name Description
FIXED Table version number 0x00010000 for version 1.0.
FWORD Ascender Typographic ascent.
FWORD Descender Typographic descent.
FWORD LineGap Typographic line gap. Negative

LineGap values are treated as zero
in Windows 3.1, System 6, and
System 7.

UFWORD advanceWidthMax Maximum advance width value in
‘hmtx’ table.

FWORD minLeftSideBearing Minimum left sidebearing value in
‘hmtx’ table.

FWORD minRightSideBearing Minimum right sidebearing value;
calculated as Min(aw - lsb - (xMax -
xMin)).

FWORD xMaxExtent Max(lsb + (xMax - xMin)).
SHORT caretSlopeRise Used to calculate the slope of the

cursor (rise/run); 1 for vertical.
SHORT caretSlopeRun 0 for vertical.
SHORT (reserved) set to 0
SHORT (reserved) set to 0
SHORT (reserved) set to 0
SHORT (reserved) set to 0
SHORT (reserved) set to 0
SHORT metricDataFormat 0 for current format.
USHORT numberOfHMetrics Number of hMetric entries in

‘hmtx’ table; may be smaller than the
total number of glyphs in the font.

The TrueType Font File

Page 68 Revision 1.66
 File Name: ttch02.doc

hmtx - Horizontal Metrics
The type longHorMetric is defined as an array where each element has two
parts: the advance width, which is of type uFWord, and the left side bearing,
which is of type FWord. Or, more formally:

typedef struct _longHorMertric {

 uFWord advanceWidth;

 FWord lsb;

} longHorMetric;

Field Type Description
hMetrics longHorMetric

[numberOfHMetrics]
Paired advance width and left side bearing
values for each glyph. The value
numOfHMetrics comes from the ‘hhea’ table.
If the font is monospaced, only one entry
need be in the array, but that entry is required.
The last entry applies to all subsequent
glyphs.

leftSideBearing FWord[] Here the advanceWidth is assumed to be the
same as the advanceWidth for the last entry
above. The number of entries in this array is
derived from numGlyphs (from ‘maxp’ table)
minus numberOfHMetrics. This generally is
used with a run of monospaced glyphs (e.g.,
Kanji fonts or Courier fonts). Only one run is
allowed and it must be at the end. This allows
a monospaced font to vary the left side
bearing values for each glyph.

For any glyph, xmax and xmin are given in ‘glyf’ table, lsb and aw are given
in ‘hmtx’ table. rsb is calculated as follows:

rsb = aw - (lsb + xmax - xmin)

If pp1 and pp2 are phantom points used to control lsb and rsb, their initial
position in x is calculated as follows:

pp1 = xmin - lsb pp2 = pp1 + aw

The TrueType Font File

Revision 1.66 Page 69
File Name: ttch02.doc

kern- Kerning
The kerning table contains the values that control the intercharacter spacing
for the glyphs in a font. There is currently no system level support for kerning
(other than returning the kern pairs and kern values).

Each subtable varies in format, and can contain information for vertical or
horizontal text, and can contain kerning values or minimum values. Kerning
values are used to adjust inter-character spacing, and minimum values are
used to limit the amount of adjustment that the scaler applies by the
combination of kerning and tracking. Because the adjustments are additive,
the order of the subtables containing kerning values is not important.
However, tables containing minimum values should usually be placed last, so
that they can be used to limit the total effect of other subtables.

The kerning table in the TrueType font file has a header, which contains the
format number and the number of subtables present, and the subtables
themselves.

Type Field Description
USHORT version Table version number (starts at 0)
USHORT nTables Number of subtables in the kerning table.

Kerning subtables will share the same header format. This header is used to
identify the format of the subtable and the kind of information it contains:

Type Field Description
USHORT version Kern subtable version number
USHORT length Length of the subtable, in bytes (including this header).
USHORT coverage What type of information is contained in this table.

The TrueType Font File

Page 70 Revision 1.66
 File Name: ttch02.doc

The coverage field is divided into the following sub-fields, with sizes given in
bits:

Sub-field Bits #’s Size Description
horizontal 0 1 1 if table has horizontal data, 0 if vertical.
minimum 1 1 If this bit is set to 1, the table has minimum

values. If set to 0, the table has kerning
values.

cross-stream 2 1 If set to 1, kerning is perpendicular to the
flow of the text.
If the text is normally written horizontally,
kerning will be done in the up and down
directions. If kerning values are positive,
the text will be kerned upwards; if they are
negative, the text will be kerned
downwards.
If the text is normally written vertically,
kerning will be done in the left and right
directions. If kerning values are positive,
the text will be kerned to the right; if they
are negative, the text will be kerned to the
left.
The value 0x8000 in the kerning data resets
the cross-stream kerning back to 0.

override 3 1 If this bit is set to 1 the value in this table
should replace the value currently being
accumulated.

reserved1 4-7 4 Reserved. This should be set to zero.
format 8-15 8 Format of the subtable. Only formats 0 and

2 have been defined. Formats 1 and 3
through 255 are reserved for future use.

The TrueType Font File

Revision 1.66 Page 71
File Name: ttch02.doc

Format 0

This is the only format that will be properly interpreted by Windows and
OS/2.

This subtable is a sorted list of kerning pairs and values. The list is preceded
by information which makes it possible to make an efficient binary search of
the list:

Type Field Description
USHORT nPairs This gives the number of kerning pairs in

the table.
USHORT searchRange The largest power of two less than or equal

to the value of nPairs, multiplied by the size
in bytes of an entry in the table.

USHORT entrySelector This is calculated as log2 of the largest
power of two less than or equal to the value
of nPairs. This value indicates how many
iterations of the search loop will have to be
made. (For example, in a list of eight items,
there would have to be three iterations of
the loop).

USHORT rangeShift The value of nPairs minus the largest power
of two less than or equal to nPairs, and then
multiplied by the size in bytes of an entry in
the table.

This is followed by the list of kerning pairs and values. Each has the following
format:

Type Field Description
USHORT left The glyph index for the left-hand glyph in the

kerning pair.
USHORT right The glyph index for the right-hand glyph in the

kerning pair.
FWORD value The kerning value for the above pair, in FUnits. If

this value is greater than zero, the characters will
be moved apart. If this value is less than zero, the
character will be moved closer together.

The left and right halves of the kerning pair make an unsigned 32-bit number,
which is then used to order the kerning pairs numerically.

The TrueType Font File

Page 72 Revision 1.66
 File Name: ttch02.doc

A binary search is most efficiently coded if the search range is a power of two.
The search range can be reduced by half by shifting instead of dividing. In
general, the number of kerning pairs, nPairs, will not be a power of two. The
value of the search range, searchRange, should be the largest power of two
less than or equal to nPairs. The number of pairs not covered by searchRange
(that is, nPairs – searchRange) is the value rangeShift.

Windows v3.1 does not make use of the ‘kern’ data other than to expose it to
applications through the GetFontData() API.

Format 2

This subtable is a two-dimensional array of kerning values. The glyphs are
mapped to classes, using a different mapping for left- and right-hand glyphs.
This allows glyphs that have similar right- or left-side shapes to be handled
together. Each similar right- or left-hand shape is said to be single class.

Each row in the kerning array represents one left-hand glyph class, each
column represents one right-hand glyph class, and each cell contains a kerning
value. Row and column 0 always represent glyphs that do not kern and
contain all zeros.

The values in the right class table are stored pre-multiplied by the number of
bytes in a single kerning value, and the values in the left class table are stored
pre-multiplied by the number of bytes in one row. This eliminates needing to
multiply the row and column values together to determine the location of the
kerning value. The array can be indexed by doing the right- and left-hand
class mappings, adding the class values to the address of the array, and
fetching the kerning value to which the new address points.

The header for the simple array has the following format:

Type Field Description
USHORT rowWidth The width, in bytes, of a row in the table.
USHORT leftClassTable Offset from beginning of this subtable to left-hand

class table.
USHORT rightClassTable Offset from beginning of this subtable to right-

hand class table.
USHORT array Offset from beginning of this subtable to the start

of the kerning array.

The TrueType Font File

Revision 1.66 Page 73
File Name: ttch02.doc

Each class table has the following header:

Type Field Description
USHORT firstGlyph First glyph in class range.
USHORT nGlyphs Number of glyph in class range.

This header is followed by nGlyphs number of class values, which are in
USHORT format. Entries for glyphs that don’t participate in kerning should
point to the row or column at position zero.

The array itself is a left by right array of kerning values, which are FWords,
where left is the number of left-hand classes and R is the number of right-hand
classes. The array is stored by row.

Note that this format is the quickest to process since each lookup requires only
a few index operations. The table can be quite large since it will contain the
number of cells equal to the product of the number of right-hand classes and
the number of left-hand classes, even though many of these classes do not
kern with each other.

The TrueType Font File

Page 74 Revision 1.66
 File Name: ttch02.doc

loca - Index to Location
The indexToLoc table stores the offsets to the locations of the glyphs in the
font, relative to the beginning of the glyphData table. In order to compute the
length of the last glyph element, there is an extra entry after the last valid
index.

By definition, index zero points to the “missing character,” which is the
character that appears if a character is not found in the font. The missing
character is commonly represented by a blank box (such as) or a space. If
the font does not contain an outline for the missing character, then the first
and second offsets should have the same value. This also applies to any other
character without an outline, such as the space character.

Most routines will look at the ‘maxp’ table to determine the number of glyphs
in the font, but the value in the ‘loca’ table should agree.

There are two versions of this table, the short and the long. The version is
specified in the indexToLocFormat entry in the ‘head’ table.

Short version
Type Name Description
USHORT offsets[n] The actual local offset divided by 2 is

stored. The value of n is numGlyphs
+ 1. The value for numGlyphs is found
in the ‘maxp’ table.

Long version
Type Name Description
ULONG offsets[n] The actual local offset is stored. The

value of n is numGlyphs + 1. The
value for numGlyphs is found in the
‘maxp’ table.

Note that the local offsets should be long-aligned, i.e., multiples of 4. Offsets
which are not long-aligned may seriously degrade performance of some
processors.

The TrueType Font File

Revision 1.66 Page 75
File Name: ttch02.doc

LTSH - Linear Threshold
There are noticeable improvements to fonts on the screen when instructions
are carefully applied to the sidebearings. The gain in readability is offset by
the necessity for the OS to grid fit the glyphs in order to find the actual
advance width for the glyphs (since instructions may be moving the
sidebearing points). TrueType already has one mechanism to side step the
speed issues: the ‘hdmx’ table, where precomputed advance widths may be
saved for selected ppem sizes. The ‘LTSH’ table (Linear ThreSHold) is a
second, complementary method.

The LTSH table defines the point at which it is reasonable to assume linearly
scaled advance widths on a glyph-by-glyph basis. This table should not be
included unless bit 4 of the “flags” field in the ‘head’ table is set. The criteria
for linear scaling is:

a. (ppem size is ≥ 50) AND (difference between the rounded linear
width and the rounded instructed width ≤ 2% of the rounded linear
width)

or b. Linear width == Instructed width

The LTSH table records the ppem for each glyph at which the scaling
becomes linear again, despite instructions effecting the advance width. It is a
requirement that, at and above the recorded threshold size, the glyph remain
linear in its scaling (i.e., not legal to set threshold at 55 ppem if glyph
becomes non-linear again at 90 ppem). The format for the table is:

Type Name Description
USHORT version Version number (starts at 0).
USHORT numGlyphs Number of glyphs (from “numGlyphs” in ‘maxp’

table).
BYTE yPels[numGlyphs] The vertical pel height at which the glyph can be

assumed to scale linearly. On a per glyph basis.

Note that glyphs which do not have instructions on their sidebearings should
have yPels = 1; i.e., always scales linearly.

The TrueType Font File

Page 76 Revision 1.66
 File Name: ttch02.doc

maxp - Maximum Profile
This table establishes the memory requirements for this font.

Type Name Description
Fixed Table version number 0x00010000 for version 1.0.
USHORT numGlyphs The number of glyphs in the font.
USHORT maxPoints Maximum points in a non-composite

glyph.
USHORT maxContours Maximum contours in a non-

composite glyph.
USHORT maxCompositePoints Maximum points in a composite

glyph.
USHORT maxCompositeContours Maximum contours in a composite

glyph.
USHORT maxZones 1 if instructions do not use the

twilight zone (Z0), or 2 if
instructions do use Z0; should be set
to 2 in most cases.

USHORT maxTwilightPoints Maximum points used in Z0.
USHORT maxStorage Number of Storage Area locations.
USHORT maxFunctionDefs Number of FDEFs.
USHORT maxInstructionDefs Number of IDEFs.
USHORT maxStackElements Maximum stack depth2.
USHORT maxSizeOfInstructions Maximum byte count for glyph

instructions.
USHORT maxComponentElements Maximum number of components

referenced at “top level” for any
composite glyph.

USHORT maxComponentDepth Maximum levels of recursion; 1 for
simple components.

2 This includes Font and CVT Programs, as well as the instructions for each glyph.

The TrueType Font File

Revision 1.66 Page 77
File Name: ttch02.doc

name - Naming Table
The naming table allows multilingual strings to be associated with the
TrueType font file. These strings can represent copyright notices, font names,
family names, style names, and so on. To keep this table short, the font
manufacturer may wish to make a limited set of entries in some small set of
languages; later, the font can be “localized” and the strings translated or
added. Other parts of the TrueType font file that require these strings can then
refer to them simply by their index number. Clients that need a particular
string can look it up by its platform ID, character encoding ID, language ID
and name ID. Note that some platforms may require single byte character
strings, while others may require double byte strings.

The Naming Table is organized as follows:

Type Description
USHORT Format selector (=0).
USHORT Number of NameRecords that follow n.
USHORT Offset to start of string storage (from start of table).
n NameRecords The NameRecords.
(Variable) Storage for the actual string data.

Each NameRecord looks like this:

Type Description
USHORT Platform ID.
USHORT Platform-specific encoding ID.
USHORT Language ID.
USHORT Name ID.
USHORT String length (in bytes).
USHORT String offset from start of storage area (in bytes).

Following are the descriptions of the four kinds of ID. Note that the specific
values listed here are the only ones that are predefined; new ones may be
added by registry with Apple Developer Technical Support. Similar to the
character encoding table, the NameRecords is sorted by platform ID, then
platform-specific ID, then language ID, and then by name ID.

Platform ID
ID Platform Specific encoding
0 Apple Unicode none
1 Macintosh Script manager code
2 ISO ISO encoding
3 Microsoft Microsoft encoding

The TrueType Font File

Page 78 Revision 1.66
 File Name: ttch02.doc

The values 240 through 255 are reserved for user-defined platforms. The DTS
registry will never assign these values to a registered platform.

Microsoft platform-specific encoding ID’s (platform ID = 3)
Code Description
0 Undefined character set or indexing

scheme
1 UGL character set with Unicode

indexing scheme (see chapter, “Character
Sets.”)

When building a Unicode font for Windows, the platform ID should be 3 and
the encoding ID should be 1. When building a symbol font for Windows, the
platform ID should be 3 and the encoding ID should be 0. When building a
font that will be used on the Macintosh, the platform ID should be 1 and the
encoding ID should be 0.

The PanEuropean Windows product will contain locale data for the following
locales. This is also the list from which the user may choose a locale in
custom setup and the mapping to Windows and DOS codepages based on that
choice. The language ID (LCID in the table below) refers to a value which
identifies the language in which a particular string is written.

Primary Language Locale Name LCID Win CP DOS CP
Albanian Albania (041c; SQI)
Basque Basque (042D; EUQ) 1252 850
Byelorussian Byelorussia (0423, BEL) 1251 866
Bulgarian Bulgaria (0402, BGR) 1251 866
Catalan Catalan (0403; CAT) 1252 850
Croatian Croatian (041a, SHL) 1250 852
Czech Czech (0405; CSY) 1250 852
Danish Danish (0406; DAN) 1252 865
Dutch (2): Dutch (Standard) (0413; NLD) 1252 850
Dutch (2): Belgian (Flemish) (0813; NLB) 1252 850
English (6): American (0409; ENU) 1252 437
English (6): British (0809; ENG) 1252 850
English (6): Australian (0c09; ENA) 1252 850
English (6): Canadian (1009; ENC) 1252 850
English (6): New Zealand (1409; ENZ) 1252 850
English (6): Ireland (1809; ENI) 1252 850
Estonian Estonia (0425, ETI) 1257 775
Finnish Finnish (040b; FIN) 1252 850
French French (Standard) (040c; FRA) 1252 850

The TrueType Font File

Revision 1.66 Page 79
File Name: ttch02.doc

Primary Language Locale Name LCID Win CP DOS CP
French Belgian (080c; FRB) 1252 850
French Canadian (0c0c; FRC) 1252 850
French Swiss (100c; FRS) 1252 850
French Luxembourg (140c; FRL) 1252 850
German German

(Standard)
(0407; DEU) 1252 850

German Swiss (0807; DES) 1252 850
German Austrian (0c07; DEA) 1252 850
German Luxembourg (1007; DEL) 1252 850
German Liechtenstein (1407; DEC) 1252 850
Greek Greek (0408; ELL) 1253 737 or

8693
Hungarian Hungarian (040e; HUN) 1250 852
Icelandic Icelandic (040F; ISL) 1252 850
Italian (2): Italian (Standard) (0410; ITA) 1252 850
Italian (2): Swiss (0810; ITS) 1252 850
Latvian Latvia (0426, LVI) 1257 775
Lithuanian Lithuania (0427, LTH) 1257 775
Norwegian (2): Norwegian

(Bokmal)
(0414; NOR) 1252 850

Norwegian (2): Norwegian
(Nynorsk)

(0814; NON) 1252 850

Polish Polish (0415; PLK) 1250 852
Portuguese (2): Portuguese

(Brazilian)
(0416; PTB) 1252 850

Portuguese (2): Portuguese
(Standard)

(0816; PTG) 1252 850

Romanian (2): Romania (0418, ROM) 1250 852
Russian Russian (0419; RUS) 1251 866
Slovak Slovak (041b; SKY) 1250 852
Slovenian Slovenia (0424, SLV) 1250 852
Spanish (3): Spanish

(Traditional Sort)
(040a; ESP) 1252 850

Spanish (3): Mexican (080a; ESM) 1252 850
Spanish (3): Spanish (Modern

Sort)
(0c0a; ESN) 1252 850

3 737 is default, but 869 (IBM Greek) will be available at setup time through the selection of
a bogus Greek locale in Custom setup.

The TrueType Font File

Page 80 Revision 1.66
 File Name: ttch02.doc

Primary Language Locale Name LCID Win CP DOS CP
Swedish Swedish (041D; SVE) 1252 850
Turkish Turkish (041f; TRK) 1254 857
Ukrainian Ukraine (0422, UKR) 1251 866

Macintosh platform-specific encoding ID’s (script manager codes)
(platform ID = 1)
Code Script Code Script
0 Roman 17 Malayalam
1 Japanese 18 Sinhalese
2 Chinese 19 Burmese
3 Korean 20 Khmer
4 Arabic 21 Thai
5 Hebrew 22 Laotian
6 Greek 23 Georgian
7 Russian 24 Armenian
8 RSymbol 25 Maldivian
9 Devanagari 26 Tibetan
10 Gurmukhi 27 Mongolian
11 Gujarati 28 Geez
12 Oriya 29 Slavic
13 Bengali 30 Vietnamese
14 Tamil 31 Sindhi
15 Telugu 32 Uninterp
16 Kannada

Macintosh language ID’s:
Code Language Code Language
0 English 12 Arabic
1 French 13 Finnish
2 German 14 Greek
3 Italian 15 Icelandic
4 Dutch 16 Maltese
5 Swedish 17 Turkish
6 Spanish 18 Yugoslavian
7 Danish 19 Chinese
8 Portuguese 20 Urdu
9 Norwegian 21 Hindi
10 Hebrew 22 Thai
11 Japanese

The TrueType Font File

Revision 1.66 Page 81
File Name: ttch02.doc

ISO specific encodings (platform ID = 2)
Code ISO encoding
0 7-bit ASCII
1 ISO 10646
2 ISO 8859-1

There are not any ISO-specific language ID’s.

The following name ID’s are defined, and they apply to all platforms.
Extensions to this table will be registered with Apple DTS.

Name ID’s
Code Meaning
0 Copyright notice.
1 Font Family name
2 Font Subfamily name; for purposes of

definition, this is assumed to address style
(italic, oblique) and weight (light, bold, black,
etc.) only. A font with no particular differences
in weight or style (e.g. medium weight, not
italic and fsSelection bit 6 set) should have the
string “Regular” stored in this position.

3 Unique font identifier
4 Full font name; this should simply be a

combination of strings 1 and 2. Exception: if
string 2 is “Regular,” then use only string 1.
This is the font name that Windows will
expose to users.

5 Version string. In n.nn format.
6 Postscript name for the font.
7 Trademark; this is used to save any trademark

notice/information for this font. Such
information should be based on legal advice.
This is distinctly separate from the copyright.

Note that while both Apple and Microsoft support the same set of name
strings, the interpretations may be somewhat different. But since name strings
are stored by platform, encoding and language (placing separate strings in for
both Apple and MS platforms), this should not present a problem.

The TrueType Font File

Page 82 Revision 1.66
 File Name: ttch02.doc

The key information for this table for MS fonts relates to the use of strings 1,
2 and 4. Some examples:

Helvetica Narrow Oblique 1 = Helvetica Narrow
 2 = Oblique
 4 = Helvetica Narrow Oblique

Helvetica Narrow 1 = Helvetica Narrow
 2 = Regular
 4 = Helvetica Narrow

Helvetica Narrow Light Italic 1 = Helvetica Narrow
 2 = Light Italic
 4 = Helvetica Narrow Light Italic

Note that OS/2 and Windows both require that all name strings be defined in
Unicode. Thus all ‘name’ table strings for platform ID = 3 (Microsoft) will
require two bytes per character. See the chapter, “Character Sets,” for a list
of the current Unicode character codes supported by Microsoft. Macintosh
fonts require single byte strings.

Examples of how these strings might be defined:
0 The copyright string from the font vendor.

© Copyright the Monotype Corporation plc, 1990
1 The name the user sees.

Times New Roman
2 The name of the style.

Bold
3 A unique identifier that applications can store to identify the font being used.

Monotype: Times New Roman Bold:1990
4 The complete, hopefully unique, human readable name of the font. This name is

used by Windows.
Times New Roman Bold

5 Release and version information from the font vendor.
June 1, 1990; 1.00, initial release

6 The name the font will be known by on a PostScript printer.
TimesNewRoman-Bold

7 Trademark string,
Times New Roman is a registered trademark of the Monotype Corporation.

The TrueType Font File

Revision 1.66 Page 83
File Name: ttch02.doc

OS/2 - OS/2 and Windows Metrics
The OS/2 table consists of a set of metrics that are required by Windows and
OS/2. The layout of this table is as follows:

Type Name of Entry Comments
USHORT version 0x0001
SHORT xAvgCharWidth;
USHORT usWeightClass;
USHORT usWidthClass;
SHORT fsType;
SHORT ySubscriptXSize;
SHORT ySubscriptYSize;
SHORT ySubscriptXOffset;
SHORT ySubscriptYOffset;
SHORT ySuperscriptXSize;
SHORT ySuperscriptYSize;
SHORT ySuperscriptXOffset;
SHORT ySuperscriptYOffset;
SHORT yStrikeoutSize;
SHORT yStrikeoutPosition;
SHORT sFamilyClass;
PANOSE panose;
ULONG ulUnicodeRange1 Bits 0–31
ULONG ulUnicodeRange2 Bits 32–63
ULONG ulUnicodeRange3 Bits 64–95
ULONG ulUnicodeRange4 Bits 96–127
CHAR achVendID[4];
USHORT fsSelection;
USHORT usFirstCharIndex
USHORT usLastCharIndex
USHORT sTypoAscender
USHORT sTypoDescender
USHORT sTypoLineGap
USHORT usWinAscent
USHORT usWinDescent
ULONG ulCodePageRange1 Bits 0-31
ULONG ulCodePageRange2 Bits 32-63

The TrueType Font File

Page 84 Revision 1.66
 File Name: ttch02.doc

version
Format: 2-byte unsigned short
Units: n/a
Title: OS/2 table version number.
Description: The version number for this OS/2 table.
Comments: The version number allows for identification of the precise contents and layout for the

OS/2 table. The version number for this layout is one (1). The version number for the
previous layout (in rev.1.5 of this spec and earlier) was zero (0). Version 0 of the OS/2
table was 78 bytes; Version 1 is 86 bytes, having added the ulCodePageRange1 and
ulCodePageRange2 fields.

xAvgCharWidth
Format: 2-byte signed short
Units: Pels / em units
Title: Average weighted escapement.
Description: The Average Character Width parameter specifies the arithmetic average of the

escapement (width) of all of the 26 lowercase letters a through z of the Latin alphabet
and the space character. If any of the 26 lowercase letters are not present, this parameter
should equal the weighted average of all glyphs in the font. For non-UGL (platform 3,
encoding 0) fonts, use the unweighted average.

Comments: This parameter is a descriptive attribute of the font that specifies the spacing of
characters for comparing one font to another for selection or substitution. For
proportionally spaced fonts, this value is useful in estimating the length for lines of text.
The weighting factors provided with this example are only valid for Latin lowercase
letters. If other character sets, or capital letters are used, different frequency of use
values should be used. One needs to be careful when comparing fonts that use
different frequency of use values for font mapping. The average character width is
calculated according to this formula: For the lowercase letters only, sum the
individual character widths multiplied by the following weighting factors and then
divide by 1000. For example:

Letter Weight Factor Letter Weight Factor
a 64 o 56
b 14 p 17
c 27 q 4
d 35 r 49
e 100 s 56
f 20 t 71
g 14 u 31
h 42 v 10
i 63 w 18
j 3 x 3
k 6 y 18
l 35 z 2
m 20 space 166
n 56

The TrueType Font File

Revision 1.66 Page 85
File Name: ttch02.doc

usWeightClass
Format: 2-byte unsigned short
Title: Weight class.
Description: Indicates the visual weight (degree of blackness or thickness of strokes) of the

characters in the font.
Comments:

Value Description C Definition
(from windows.h)

100 Thin FW_THIN
200 Extra-light (Ultra-light) FW_EXTRALIGHT
300 Light FW_LIGHT
400 Normal (Regular) FW_NORMAL
500 Medium FW_MEDIUM
600 Semi-bold (Demi-bold) FW_SEMIBOLD
700 Bold FW_BOLD
800 Extra-Bold (Ultra-bold) FW_EXTRABOLD
900 Black (Heavy) FW_BLACK

usWidthClass
Format: 2-byte unsigned short
Title: Width class.
Description: Indicates a relative change from the normal aspect ratio (width to height ratio) as

specified by a font designer for the glyphs in a font.
Comments:

Value Description C Definition % of normal
1 Ultra-condensed FWIDTH_ULTRA_CONDENSED 50
2 Extra-condensed FWIDTH_EXTRA_CONDENSED 62.5
3 Condensed FWIDTH_CONDENSED 75
4 Semi-condensed FWIDTH_SEMI_CONDENSED 87.5
5 Medium (normal) FWIDTH_NORMAL 100
6 Semi-expanded FWIDTH_SEMI_EXPANDED 112.5
7 Expanded FWIDTH_EXPANDED 125
8 Extra-expanded FWIDTH_EXTRA_EXPANDED 150
9 Ultra-expanded FWIDTH_ULTRA_EXPANDED 200
 Although every character in a font may have a different numeric aspect ratio, each

character in a font of normal width has a relative aspect ratio of one. When a new type
style is created of a different width class (either by a font designer or by some
automated means) the relative aspect ratio of the characters in the new font is some
percentage greater or less than those same characters in the normal font -- it is this
difference that this parameter specifies.

The TrueType Font File

Page 86 Revision 1.66
 File Name: ttch02.doc

fsType
Format: 2-byte unsigned short
Title: Type flags.
Description: Indicates font embedding licensing rights for the font. Embeddable fonts may be stored

in a document. When a document with embedded fonts is opened on a system that does
not have the font installed (the remote system), the embedded font may be loaded for
temporary (and in some cases, permanent) use on that system by an embedding-aware
application. Embedding licensing rights are granted by the vendor of the font.

 The TrueType Font Embedding DLL Specification and DLL release notes describe the
APIs used to implement support for TrueType font embedding and loading.
Applications that implement support for font embedding, either through use of the
Font Embedding DLL or through other means, must not embed fonts which are not
licensed to permit embedding. Further, applications loading embedded fonts for
temporary use (see Preview & Print and Editable embedding below) must

 delete the
fonts when the document containing the embedded font is closed.

Bit Bit Mask Description
0 Reserved, must be zero.
1 0x0002 Restricted License embedding: When only this bit is set, this font

may not be embedded, copied or modified.
2 0x0004 Preview & Print embedding: When this bit is set, the font may

be embedded, and temporarily loaded on the remote system.
Documents containing Preview & Print fonts must be opened
“read-only;” no edits can be applied to the document.

3 0x0008 Editable embedding: When this bit is set, the font may be
embedded and temporarily loaded on other systems. Documents
containing Editable fonts may be opened for reading and writing.

4-15 Reserved, must be zero.
Comments: If multiple embedding bits are set, the least restrictive license granted takes precedence.

For example, if bits 1 and 3 are set, bit 3 takes precedence over bit 1and the font may be
embedded with Editable rights. For compatibility purposes, most vendors granting
Editable embedding rights are also setting the Preview & Print bit (0x000C). This will
permit an application that only supports Preview & Print embedding to detect that font
embedding is allowed.

 Restricted License embedding (0x0002): Fonts that have this bit set must not be
modified, embedded or exchanged in any manner without first obtaining permission
of the legal owner. Caution: note that for Restricted License embedding to take effect,
it must be the only level of embedding selected (as noted in the previous paragraph).

Preview & Print embedding (0x0004): Fonts with this bit set indicate that they may be
embedded within documents but must only be installed temporarily on the remote
system. Any document which includes a Preview & Print embedded font must be
opened “read-only;” the application must not allow the user to edit the document; it can
only be viewed and/or printed.

The TrueType Font File

Revision 1.66 Page 87
File Name: ttch02.doc

 Editable embedding (0x0008): Fonts with this bit set indicate that they may be
embedded in documents, but must only be installed temporarily on the remote system.
In contrast to Preview & Print fonts, documents containing Editable fonts may be
opened “read-write;” editing is permitted, and changes may be saved.

 Installable embedding (0x0000): Fonts with this setting indicate that they may be
embedded and permanently installed on the remote system by an application. The user
of the remote system acquires the identical rights, obligations and licenses for that font
as the original purchaser of the font, and is subject to the same end-user license
agreement, copyright, design patent, and/or trademark as was the original purchaser.

ySubscriptXSize
Format: 2-byte signed short
Units: Font design units
Title: Subscript horizontal font size.
Description: The recommended horizontal size in font design units for subscripts for this font.
Comments: If a font has two recommended sizes for subscripts, e.g., numerics and other, the

numeric sizes should be stressed. This size field maps to the em square size of the font
being used for a subscript. The horizontal font size specifies a font designer’s
recommended horizontal font size for subscript characters associated with this font. If
a font does not include all of the required subscript characters for an application, and the
application can substitute characters by scaling the character of a font or by substituting
characters from another font, this parameter specifies the recommended em square for
those subscript characters.

 For example, if the em square for a font is 2048 and ySubScriptXSize is set to 205, then
the horizontal size for a simulated subscript character would be 1/10th the size of the
normal character.

ySubscriptYSize
Format: 2-byte signed short
Units: Font design units
Title: Subscript vertical font size.
Description: The recommended vertical size in font design units for subscripts for this font.
Comments: If a font has two recommended sizes for subscripts, e.g. numerics and other, the

numeric sizes should be stressed. This size field maps to the emHeight of the font being
used for a subscript. The horizontal font size specifies a font designer’s
recommendation for horizontal font size of subscript characters associated with this
font. If a font does not include all of the required subscript characters for an
application, and the application can substitute characters by scaling the characters in a
font or by substituting characters from another font, this parameter specifies the
recommended horizontal EmInc for those subscript characters.

 For example, if the em square for a font is 2048 and ySubScriptYSize is set to 205, then
the vertical size for a simulated subscript character would be 1/10th the size of the
normal character.

The TrueType Font File

Page 88 Revision 1.66
 File Name: ttch02.doc

ySubscriptXOffset
Format: 2-byte signed short
Units: Font design units
Title: Subscript x offset.
Description: The recommended horizontal offset in font design untis for subscripts for this font.
Comments: The Subscript X Offset parameter specifies a font designer’s recommended horizontal

offset -- from the character origin of the font to the character origin of the subscript’s
character -- for subscript characters associated with this font. If a font does not include
all of the required subscript characters for an application, and the application can
substitute characters, this parameter specifies the recommended horizontal position
from the character escapement point of the last character before the first subscript
character. For upright characters, this value is usually zero; however, if the characters
of a font have an incline (italic characters) the reference point for subscript characters is
usually adjusted to compensate for the angle of incline.

ySubscriptYOffset
Format: 2-byte signed short
Units: Font design units
Title: Subscript y offset.
Description: The recommended vertical offset in font design units from the baseline for subscripts

for this font.
Comments: The Subscript Y Offset parameter specifies a font designer’s recommended vertical

offset from the character baseline to the character baseline for subscript characters
associated with this font. Values are expressed as a positive offset below the character
baseline. If a font does not include all of the required subscript for an application, this
parameter specifies the recommended vertical distance below the character baseline for
those subscript characters.

ySuperscriptXSize
Format: 2-byte signed short
Units: Font design units
Title: Superscript horizontal font size.
Description: The recommended horizontal size in font design units for superscripts for this font.
Comments: If a font has two recommended sizes for subscripts, e.g., numerics and other, the

numeric sizes should be stressed. This size field maps to the em square size of the font
being used for a subscript. The horizontal font size specifies a font designer’s
recommended horizontal font size for superscript characters associated with this font.
If a font does not include all of the required superscript characters for an application,
and the application can substitute characters by scaling the character of a font or by
substituting characters from another font, this parameter specifies the recommended em
square for those superscript characters.

 For example, if the em square for a font is 2048 and ySuperScriptXSize is set to 205,
then the horizontal size for a simulated superscript character would be 1/10th the size of
the normal character.

The TrueType Font File

Revision 1.66 Page 89
File Name: ttch02.doc

ySuperscriptYSize
Format: 2-byte signed short
Units: Font design units
Title: Superscript vertical font size.
Description: The recommended vertical size in font design units for superscripts for this font.
Comments: If a font has two recommended sizes for subscripts, e.g., numerics and other, the

numeric sizes should be stressed. This size field maps to the emHeight of the font being
used for a subscript. The vertical font size specifies a font designer’s recommended
vertical font size for superscript characters associated with this font. If a font does not
include all of the required superscript characters for an application, and the application
can substitute characters by scaling the character of a font or by substituting characters
from another font, this parameter specifies the recommended EmHeight for those
superscript characters.

 For example, if the em square for a font is 2048 and ySuperScriptYSize is set to 205,
then the vertical size for a simulated superscript character would be 1/10th the size of
the normal character.

ySuperscriptXOffset
Format: 2-byte signed short
Units: Font design units
Title: Superscript x offset.
Description: The recommended horizontal offset in font design units for superscripts for this font.
Comments: The Superscript X Offset parameter specifies a font designer’s recommended horizontal

offset -- from the character origin to the superscript character’s origin for the
superscript characters associated with this font. If a font does not include all of the
required superscript characters for an application, this parameter specifies the
recommended horizontal position from the escapement point of the character before the
first superscript character. For upright characters, this value is usually zero; however,
if the characters of a font have an incline (italic characters) the reference point for
superscript characters is usually adjusted to compensate for the angle of incline.

ySuperscriptYOffset
Format: 2-byte signed short
Units: Font design units
Title: Superscript y offset.
Description: The recommended vertical offset in font design units from the baseline for superscripts

for this font.
Comments: The Superscript Y Offset parameter specifies a font designer’s recommended vertical

offset -- from the character baseline to the superscript character’s baseline associated
with this font. Values for this parameter are expressed as a positive offset above the
character baseline. If a font does not include all of the required superscript characters
for an application, this parameter specifies the recommended vertical distance above the
character baseline for those superscript characters.

The TrueType Font File

Page 90 Revision 1.66
 File Name: ttch02.doc

yStrikeoutSize
Format: 2-byte signed short
Units: Font design units
Title: Strikeout size.
Description: Width of the strikeout stroke in font design units.
Comments: This field should normally be the width of the em dash for the current font. If the size is

one, the strikeout line will be the line represented by the strikeout position field. If the
value is two, the strikeout line will be the line represented by the strikeout position and
the line immediately above the strikeout position. For a Roman font with a 2048 em
square, 102 is suggested.

yStrikeoutPosition
Format: 2-byte signed short
Units: Font design units
Title: Strikeout position.
Description: The position of the strikeout stroke relative to the baseline in font design units.
Comments: Positive values represent distances above the baseline, while negative values represent

distances below the baseline. A value of zero falls directly on the baseline, while a
value of one falls one pel above the baseline. The value of strikeout position should not
interfere with the recognition of standard characters, and therefore should not line up
with crossbars in the font. For a Roman font with a 2048 em square, 530 is suggested.

sFamilyClass
Format: 2-byte signed short
Title: Font-family class and subclass. Also see section 3.4.
Description: This parameter is a classification of font-family design.
Comments: The font class and font subclass are registered values assigned by IBM to each font

family. This parameter is intended for use in selecting an alternate font when the
requested font is not available. The font class is the most general and the font subclass is
the most specific. The high byte of this field contains the family class, while the low
byte contains the family subclass.

See Appendix A for full information about this field.

The TrueType Font File

Revision 1.66 Page 91
File Name: ttch02.doc

Panose
Format: 10 byte array
Title: PANOSE classification number
International: Additional specifications are required for PANOSE to classify non Latin character sets.
Description: This 10 byte series of numbers are used to describe the visual characteristics of a given

typeface. These characteristics are then used to associate the font with other fonts of
similar appearance having different names. The variables for each digit are listed
below. The specifications for each variable can be obtained in the specification
PANOSE v2.0 Numerical Evaluation from Microsoft or Elseware Corporation.

Comments: The PANOSE definition contains ten digits each of which currently describes up to
sixteen variations. Windows v3.1 uses bFamilyType, bSerifStyle and bProportion in the
font mapper to determine family type. It also uses bProportion to determine if the font
is monospaced.

Type Name
BYTE bFamilyType;
BYTE bSerifStyle;
BYTE bWeight;
BYTE bProportion;
BYTE bContrast;
BYTE bStrokeVariation;
BYTE bArmStyle;
BYTE bLetterform;
BYTE bMidline;
BYTE bXHeight;

 1. Family Kind (6 variations)
 0 = Any
 1 = No Fit
 2 = Text and Display
 3 = Script
 4 = Decorative
 5 = Pictorial

 2. Serif Style (16 variations)
 0 = Any
 1 = No Fit
 2 = Cove
 3 = Obtuse Cove
 4 = Square Cove
 5 = Obtuse Square Cove
 6 = Square
 7 = Thin
 8 = Bone

The TrueType Font File

Page 92 Revision 1.66
 File Name: ttch02.doc

 9 = Exaggerated
 10 = Triangle
 11 = Normal Sans
 12 = Obtuse Sans
 13 = Perp Sans
 14 = Flared
 15 = Rounded

 3. Weight (12 variations)
 0 = Any
 1 = No Fit
 2 = Very Light
 3 = Light
 4 = Thin
 5 = Book
 6 = Medium
 7 = Demi
 8 = Bold
 9 = Heavy
 10 = Black
 11 = Nord

 4. Proportion (10 variations)
 0 = Any
 1 = No Fit
 2 = Old Style
 3 = Modern
 4 = Even Width
 5 = Expanded
 6 = Condensed
 7 = Very Expanded
 8 = Very Condensed
 9 = Monospaced

The TrueType Font File

Revision 1.66 Page 93
File Name: ttch02.doc

 5. Contrast (10 variations)
 0 = Any
 1 = No Fit
 2 = None
 3 = Very Low
 4 = Low
 5 = Medium Low
 6 = Medium
 7 = Medium High
 8 = High
 9 = Very High

 6. Stroke Variation (9 variations)
 0 = Any
 1 = No Fit
 2 = Gradual/Diagonal
 3 = Gradual/Transitional
 4 = Gradual/Vertical
 5 = Gradual/Horizontal
 6 = Rapid/Vertical
 7 = Rapid/Horizontal
 8 = Instant/Vertical

 7. Arm Style (12 variations)
 0 = Any
 1 = No Fit
 2 = Straight Arms/Horizontal
 3 = Straight Arms/Wedge
 4 = Straight Arms/Vertical
 5 = Straight Arms/Single Serif
 6 = Straight Arms/Double Serif
 7 = Non-Straight Arms/Horizontal
 8 = Non-Straight Arms/Wedge
 9 = Non-Straight Arms/Vertical
 10 = Non-Straight Arms/Single Serif
 11 = Non-Straight Arms/Double Serif

The TrueType Font File

Page 94 Revision 1.66
 File Name: ttch02.doc

 8. Letterform (16 variations)
 0 = Any
 1 = No Fit
 2 = Normal/Contact
 3 = Normal/Weighted
 4 = Normal/Boxed
 5 = Normal/Flattened
 6 = Normal/Rounded
 7 = Normal/Off Center
 8 = Normal/Square
 9 = Oblique/Contact
 10 = Oblique/Weighted
 11 = Oblique/Boxed
 12 = Oblique/Flattened
 13 = Oblique/Rounded
 14 = Oblique/Off Center
 15 = Oblique/Square

 9. Midline (14 variations)
 0 = Any
 1 = No Fit
 2 = Standard/Trimmed
 3 = Standard/Pointed
 4 = Standard/Serifed
 5 = High/Trimmed
 6 = High/Pointed
 7 = High/Serifed
 8 = Constant/Trimmed
 9 = Constant/Pointed
 10 = Constant/Serifed
 11 = Low/Trimmed
 12 = Low/Pointed
 13 = Low/Serifed

 10. X-height (8 variations)
 0 = Any
 1 = No Fit
 2 = Constant/Small
 3 = Constant/Standard
 4 = Constant/Large
 5 = Ducking/Small
 6 = Ducking/Standard
 7 = Ducking/Large

The TrueType Font File

Revision 1.66 Page 95
File Name: ttch02.doc

ulUnicodeRange1 (Bits 0–31)
ulUnicodeRange2 (Bits 32–63)
ulUnicodeRange3 (Bits 64–95)
ulUnicodeRange4 (Bits 96–127)
Format: 32-bit unsigned long (4 copies) totaling 128 bits.
Title: Unicode Character Range
Description: This field is used to specify the Unicode blocks or ranges encompassed by the font file

in the ‘cmap’ subtable for platform 3, encoding ID 1 (Microsoft platform). If the bit is
set (1) then the Unicode range is considered functional. If the bit is clear (0) then the
range is not considered functional. Each of the bits is treated as an independent flag and
the bits can be set in any combination. The determination of “functional” is left up to
the font designer, although character set selection should attempt to be functional by
ranges if at all possible.

 All reserved fields must be zero. Each long is in Big-Endian form. See the Basic
Multilingual Plane of ISO/IEC 10646-1 or the Unicode Standard v.1.1 for the list of
Unicode ranges and characters.

Bit Description
0 Basic Latin
1 Latin-1 Supplement
2 Latin Extended-A
3 Latin Extended-B
4 IPA Extensions
5 Spacing Modifier Letters
6 Combining Diacritical Marks
7 Basic Greek
8 Greek Symbols And Coptic
9 Cyrillic
10 Armenian
11 Basic Hebrew
12 Hebrew Extended (A and B blocks combined)
13 Basic Arabic
14 Arabic Extended
15 Devanagari
16 Bengali
17 Gurmukhi
18 Gujarati
19 Oriya
20 Tamil
21 Telugu
22 Kannada
23 Malayalam
24 Thai

The TrueType Font File

Page 96 Revision 1.66
 File Name: ttch02.doc

Table continued from previous page
Bit Description
25 Lao
26 Basic Georgian
27 Georgian Extended
28 Hangul Jamo
29 Latin Extended Additional
30 Greek Extended
31 General Punctuation
32 Superscripts And Subscripts
33 Currency Symbols
34 Combining Diacritical Marks For Symbols
35 Letterlike Symbols
36 Number Forms
37 Arrows
38 Mathematical Operators
39 Miscellaneous Technical
40 Control Pictures
41 Optical Character Recognition
42 Enclosed Alphanumerics
43 Box Drawing
44 Block Elements
45 Geometric Shapes
46 Miscellaneous Symbols
47 Dingbats
48 CJK Symbols And Punctuation
49 Hiragana
50 Katakana
51 Bopomofo
52 Hangul Compatibility Jamo
53 CJK Miscellaneous
54 Enclosed CJK Letters And Months
55 CJK Compatibility
56 Hangul
57 Reserved for Unicode SubRanges
58 Reserved for Unicode SubRanges
59 CJK Unified Ideographs
60 Private Use Area
61 CJK Compatibility Ideographs
62 Alphabetic Presentation Forms
63 Arabic Presentation Forms-A
64 Combining Half Marks
65 CJK Compatibility Forms

The TrueType Font File

Revision 1.66 Page 97
File Name: ttch02.doc

Table continued from previous page
Bit Description
66 Small Form Variants
67 Arabic Presentation Forms-B
68 Halfwidth And Fullwidth Forms
69 Specials
70–127 Reserved for Unicode SubRanges

achVendID
Format 4-byte character array
Title: Font Vendor Identification
Description: The four character identifier for the vendor of the given type face.
Comments: This is not the royalty owner of the original artwork. This is the company responsible

for the marketing and distribution of the typeface that is being classified. It is reasonable
to assume that there will be 6 vendors of ITC Zapf Dingbats for use on desktop
platforms in the near future (if not already). It is also likely that the vendors will have
other inherent benefits in their fonts (more kern pairs, unregularized data, hand hinted,
etc.). This identifier will allow for the correct vendor’s type to be used over another,
possibly inferior, font file. The Vendor ID value is not required.

 Microsoft has assigned values for some font suppliers as listed below. Uppercase
vendor ID’s are reserved by Microsoft. Other suppliers can choose their own mixed
case or lowercase ID’s, or leave the field blank.

Vendor ID Vendor Name
AGFA AGFA Compugraphic
ADBE Adobe
APPL Apple
ALTS Altsys
B&H Bigelow & Holmes
BERT Berthold
BITS Bitstream
CANO Canon
CTDL China Type Design Ltd.
DTC Digital Typeface Corp.
ELSE Elseware
EPSN Epson
GLYF Glyph Systems
GPI Gamma Productions, Inc.
HP Hewlett-Packard
HY HanYang System
IBM IBM
IMPR Impress
KATF Kingsley/ATF
LANS Lanston Type Co., Ltd.
LEAF Interleaf, Inc.
LETR Letraset

The TrueType Font File

Page 98 Revision 1.66
 File Name: ttch02.doc

Vendor ID Vendor Name
LINO Linotype
LTRX Lighttracks
MACR Macromedia
MONO Monotype
MLGC Micrologic Software
MS Microsoft
NEC NEC
PARA ParaGraph Intl.
PRFS Production First Software
QMSI QMS/Imagen
SFUN Soft Union
SWFT Swfte International
TILD SIA Tilde
URW URW
ZSFT ZSoft

fsSelection
Format: 2-byte bit field.
Title: Font selection flags.
Description: Contains information concerning the nature of the font patterns, as follows:

Bit # macStyle bit C definition Description
0 bit 1 ITALIC Font contains Italic characters,

otherwise they are upright.
1 UNDERSCORE Characters are underscored.
2 NEGATIVE Characters have their foreground

and background reversed.
3 OUTLINED Outline (hollow) characters,

otherwise they are solid.
4 STRIKEOUT Characters are overstruck.
5 bit 0 BOLD Characters are emboldened.
6 REGULAR Characters are in the standard

weight/style for the font.
Comments: All undefined bits must be zero.
 This field contains information on the original design of the font. Bits 0 & 5 can be

used to determine if the font was designed with these features or whether some type of
machine simulation was performed on the font to achieve this appearance. Bits 1-4 are
rarely used bits that indicate the font is primarily a decorative or special purpose font.

 If bit 6 is set, then bits 0 and 5 must be clear, else the behavior is undefined. As noted
above, the settings of bits 0 and 1 must be reflected in the macStyle bits in the ‘head’
table. While bit 6 on implies that bits 0 and 1 of macStyle are clear (along with bits 0
and 5 of fsSelection), the reverse is not true. Bits 0 and 1 of macStyle (and 0 and 5 of
fsSelection) may be clear and that does not give any indication of whether or not bit 6 of
fsSelection is clear (e.g., Arial Light would have all bits cleared; it is not the regular
version of Arial).

The TrueType Font File

Revision 1.66 Page 99
File Name: ttch02.doc

usFirstCharIndex
Format: 2-byte USHORT
Description: The minimum Unicode index (character code) in this font, according to the cmap

subtable for platform ID 3 and encoding ID 0 or 1. For most fonts supporting Win-
ANSI or other character sets, this value would be 0x0020.

usLastCharIndex
Format: 2-byte USHORT
Description: The maximum Unicode index (character code) in this font, according to the cmap

subtable for platform ID 3 and encoding ID 0 or 1. This value depends on which
character sets the font supports.

sTypoAscender
Format: 2-byte SHORT
Description: The typographic ascender for this font. Remember that this is not the same as the

Ascender value in the ‘hhea’ table, which Apple defines in a far different manner. One
good source for usTypoAscender is the Ascender value from an AFM file.

 The suggested useage for usTypoAscender is that it be used in conjunction with
unitsPerEm to compute a typographically correct default line spacing. The goal is to
free applications from Macintosh or Windows-specific metrics which are constrained by
backward compatability requirements. These new metrics, when combined with the
character design widths, will allow applications to lay out documents in a
typographically correct and portable fashion. These metrics will be exposed through
Windows APIs. Macintosh applications will need to access the ‘sfnt’ resource and parse
it to extract this data from the “OS/2” table (unless Apple exposes the ‘OS/2’ table
through a new API).

sTypoDescender
Format: 2-byte SHORT
Description: The typographic descender for this font. Remember that this is not the same as the

Descender value in the ‘hhea’ table, which Apple defines in a far different manner. One
good source for usTypoDescender is the Descender value from an AFM file.

 The suggested useage for usTypoDescender is that it be used in conjunction with
unitsPerEm to compute a typographically correct default line spacing. The goal is to
free applications from Macintosh or Windows-specific metrics which are constrained by
backward compatability requirements. These new metrics, when combined with the
character design widths, will allow applications to lay out documents in a
typographically correct and portable fashion. These metrics will be exposed through
Windows APIs. Macintosh applications will need to access the ‘sfnt’ resource and parse
it to extract this data from the “OS/2” table (unless Apple exposes the ‘OS/2’ table
through a new API).

The TrueType Font File

Page 100 Revision 1.66
 File Name: ttch02.doc

sTypoLineGap
Format: 2-byte SHORT
Description: The typographic line gap for this font. Remember that this is not the same as the

LineGap value in the ‘hhea’ table, which Apple defines in a far different manner.
 The suggested useage for usTypoLineGap is that it be used in conjunction with

unitsPerEm to compute a typographically correct default line spacing. Typical values
average 7-10% of units per em. The goal is to free applications from Macintosh or
Windows-specific metrics which are constrained by backward compatability
requirements (see chapter, “Recommendations for Windows Fonts). These new metrics,
when combined with the character design widths, will allow applications to lay out
documents in a typographically correct and portable fashion. These metrics will be
exposed through Windows APIs. Macintosh applications will need to access the ‘sfnt’
resource and parse it to extract this data from the “OS/2” table (unless Apple exposes
the ‘OS/2’ table through a new API).

usWinAscent
Format: 2-byte USHORT
Description: The ascender metric for Windows. This, too, is distinct from Apple’s Ascender value

and from the usTypoAscender values. usWinAscent is computed as the yMax for all
characters in the Windows ANSI character set. usTypoAscent is used to compute the
Windows font height and default line spacing. For platform 3 encoding 0 fonts, it is the
same as yMax.

usWinDescent
Format: 2-byte USHORT
Description: The descender metric for Windows. This, too, is distinct from Apple’s Descender value

and from the usTypoDescender values. usWinDescent is computed as the -yMin for all
characters in the Windows ANSI character set. usTypoAscent is used to compute the
Windows font height and default line spacing. For platform 3 encoding 0 fonts, it is the
same as -yMin.

The TrueType Font File

Revision 1.66 Page 101
File Name: ttch02.doc

ulCodePageRange1 Bits 0–31
ulCodePageRange2 Bits 32–63
Format: 32-bit unsigned long (2 copies) totaling 64 bits.
Title: Code Page Character Range
Description: This field is used to specify the code pages encompassed by the font file in the ‘cmap’

subtable for platform 3, encoding ID 1 (Microsoft platform). If the font file is encoding
ID 0, then the Symbol Character Set bit should be set. If the bit is set (1) then the code
page is considered functional. If the bit is clear (0) then the code page is not considered
functional. Each of the bits is treated as an independent flag and the bits can be set in
any combination. The determination of “functional” is left up to the font designer,
although character set selection should attempt to be functional by code pages if at all
possible.

 Symbol character sets have a special meaning. If the symbol bit (31) is set, and the font
file contains a ‘cmap’ subtable for platform of 3 and encoding ID of 1, then all of the
characters in the Unicode range 0xF000 - 0xF0FF (inclusive) will be used to enumerate
the symbol character set. If the bit is not set, any characters present in that range will not
be enumerated as a symbol character set.

 All reserved fields must be zero. Each long is in Big-Endian form.

Bit Code Page Description
0 1252 Latin 1
1 1250 Latin 2: Eastern Europe
2 1251 Cyrillic
3 1253 Greek
4 1254 Turkish
5 1255 Hebrew
6 1256 Arabic
 7 1257 Windows Baltic
8–15 Reserved for Alternate ANSI
16 874 Thai
17 932 JIS/Japan
18 936 Chinese: Simplified chars--PRC and Singapore
19 949 Korean Wansung
20 950 Chinese: Traditional chars--Taiwan and Hong Kong
21 1361 Korean Johab
22–28 Reserved for Alternate ANSI & OEM
29 Macintosh Character Set (US Roman)
30 OEM Character Set
31 Symbol Character Set
32-47 Reserved for OEM
48 869 IBM Greek
49 866 MS-DOS Russian
50 865 MS-DOS Nordic
51 864 Arabic
52 863 MS-DOS Canadian French

The TrueType Font File

Page 102 Revision 1.66
 File Name: ttch02.doc

Bit Code Page Description
53 862 Hebrew
54 861 MS-DOS Icelandic
55 860 MS-DOS Portuguese
56 857 IBM Turkish
57 855 IBM Cyrillic; primarily Russian
58 852 Latin 2
59 775 MS-DOS Baltic
60 737 Greek; former 437 G
61 708 Arabic; ASMO 708
62 850 WE/Latin 1
63 437 US

The TrueType Font File

Revision 1.66 Page 103
File Name: ttch02.doc

PCLT - PCL 5 Table
The ‘PCLT’ table is an optional table that is not used directly by Microsoft
Windows v3.1, but it is highly recommended that this table be present in all
TrueType font files. Extra information on many of these fields can be
found in the HP PCL 5 Printer Language Technical Reference Manual
available from Hewlett-Packard Boise Printer Division.

The format for the table is:

Type Name of Entry
FIXED Version
ULONG FontNumber
USHORT Pitch
USHORT xHeight
USHORT Style
USHORT TypeFamily
USHORT CapHeight
USHORT SymbolSet
CHAR Typeface[16]
CHAR CharacterComplement[8]
CHAR FileName[6]
CHAR StrokeWeight
CHAR WidthType
BYTE SerifStyle
BYTE Reserved (pad)

Version
Table version number 1.0 is represented as 0x00010000.

FontNumber
This 32-bit number is segmented in two parts. The most significant bit
indicates native versus converted format. Only font vendors should create
fonts with this bit zeroed. The 7 next most significant bits are assigned by
Hewlett-Packard Boise Printer Division to major font vendors. The least
significant 24 bits are assigned by the vendor. Font vendors should attempt
to insure that each of their fonts are marked with unique values.

Vendor codes:
A Adobe Systems
B Bitstream Inc.
C Agfa Corporation
H Bigelow & Holmes
L Linotype Company
M Monotype Typography Ltd.

The TrueType Font File

Page 104 Revision 1.66
 File Name: ttch02.doc

Pitch
The width of the space in FUnits (FUnits are described by the unitsPerEm
field of the ‘head’ table). Monospace fonts derive the width of all
characters from this field.

xHeight
The height of the optical line describing the height of the lowercase x in
FUnits. This might not be the same as the measured height of the
lowercase x.

Style
The most significant 6 bits are reserved. The 5 next most significant bits
encode structure. The next 3 most significant bits encode appearance
width. The 2 least significant bits encode posture.

Structure (bits 5-9)
0 Solid (normal, black)
1 Outline (hollow)
2 Inline (incised, engraved)
3 Contour, edged (antique, distressed)
4 Solid with shadow
5 Outline with shadow
6 Inline with shadow
7 Contour, or edged, with shadow
8 Pattern filled
9 Pattern filled #1 (when more than one pattern)
10 Pattern filled #2 (when more than two patterns)
11 Pattern filled #3 (when more than three patterns)
12 Pattern filled with shadow
13 Pattern filled with shadow #1 (when more than one

pattern or shadow)
14 Pattern filled with shadow #2 (when more than two

patterns or shadows)
15 Pattern filled with shadow #3 (when more than three

patterns or shadows)
16 Inverse
17 Inverse with border
18-31 reserved

The TrueType Font File

Revision 1.66 Page 105
File Name: ttch02.doc

Width (bits 2-4)
0 normal
1 condensed
2 compressed, extra condensed
3 extra compressed
4 ultra compressed
5 reserved
6 expanded, extended
7 extra expanded, extra extended

Posture (bits 0-1)
0 upright
1 oblique, italic
2 alternate italic (backslanted, cursive, swash)
3 reserved

TypeFamily
The 4 most significant bits are font vendor codes. The 12 least significant
bits are typeface family codes. Both are assigned by HP Boise Division.

Vendor Codes (bits 12-15)
0 reserved
1 Agfa Corporation
2 Bitstream Inc.
3 Linotype Company
4 Monotype Typography Ltd.
5 Adobe Systems
6 font repackagers
7 vendors of unique typefaces
8-15 reserved

CapHeight
The height of the optical line describing the top of the uppercase H in
FUnits. This might not be the same as the measured height of the
uppercase H.

SymbolSet
The most significant 11 bits are the value of the symbol set “number”
field. The value of the least significant 5 bits, when added to 64, is the
ASCII value of the symbol set “ID” field. Symbol set values are assigned
by HP Boise Division. Unbound fonts, or “typefaces” should have a
symbol set value of 0. See the PCL 5 Printer Language Technical
Reference Manual or the PCL 5 Comparison Guide for the most recent
published list of codes.

The TrueType Font File

Page 106 Revision 1.66
 File Name: ttch02.doc

Examples
 PCL decimal
Windows 3.1 “ANSI” 19U 629
Windows 3.0 “ANSI” 9U 309
Adobe “Symbol” 19M 621
Macintosh 12J 394
PostScript ISO Latin 1 11J 362
PostScript Std. Encoding 10J 330
Code Page 1004 9J 298
DeskTop 7J 234

TypeFace
This 16-byte ASCII string appears in the “font print” of PCL printers.
Care should be taken to insure that the base string for all typefaces of a
family are consistent, and that the designators for bold, italic, etc. are
standardized.

Example:
Times New
Times New Bd
Times New It
Times New BdIt
Courier New
Courier New Bd
Courier New It
Courier New BdIt

CharacterComplement
This 8-byte field identifies the symbol collections provided by the font,
each bit identifies a symbol collection and is independently interpreted.
Symbol set bound fonts should have this field set to all F’s (except bit 0).

The TrueType Font File

Revision 1.66 Page 107
File Name: ttch02.doc

Example:
DOS/PCL Complement 0xFFFFFFFF003FFFFE
Windows 3.1 “ANSI” 0xFFFFFFFF37FFFFFE
Macintosh 0xFFFFFFFF36FFFFFE
ISO 8859-1 Latin 1 0xFFFFFFFF3BFFFFFE
ISO 8859-1,2,9 Latin 1,2,5 0xFFFFFFFF0BFFFFFE

The character collections identified by each bit are as follows:
31 ASCII (supports several standard interpretations)
30 Latin 1 extensions
29 Latin 2 extensions
28 Latin 5 extensions
27 Desktop Publishing Extensions
26 Accent Extensions (East and West Europe)
25 PCL Extensions
24 Macintosh Extensions
23 PostScript Extensions
22 Code Page Extensions

The character complement field also indicates the index mechanism used
with an unbound font. Bit 0 must always be cleared when the font
elements are provided in Unicode order.

FileName
This 6-byte field is composed of 3 parts. The first 3 bytes are an industry
standard typeface family string. The fourth byte is a treatment character,
such as R, B, I. The last two characters are either zeroes for an unbound
font or a two character mnemonic for a symbol set if symbol set found.

Examples:
TNRR00 Times New (text weight, upright)
TNRI00 Times New Italic
TNRB00 Times New Bold
TNRJ00 Times New Bold Italic
COUR00 Courier
COUI00 Courier Italic
COUB00 Courier Bold
COUJ00 Courier Bold Italic

The TrueType Font File

Page 108 Revision 1.66
 File Name: ttch02.doc

Treatment Flags:
R Text, normal, book, etc.
I Italic, oblique, slanted, etc.
B Bold
J Bold Italic, Bold Oblique
D Demibold
E Demibold Italic, Demibold Oblique
K Black
G Black Italic, Black Oblique
L Light
P Light Italic, Light Oblique
C Condensed
A Condensed Italic, Condensed Oblique
F Bold Condensed
H Bold Condensed Italic, Bold Condensed Oblique
S Semibold (lighter than demibold)
T Semibold Italic, Semibold Oblique

other treatment flags are assigned over time.

StrokeWeight
This signed 1-byte field contains the PCL stroke weight value. Only
values in the range -7 to 7 are valid:

-7 Ultra Thin
-6 Extra Thin
-5 Thin
-4 Extra Light
-3 Light
-2 Demilight
-1 Semilight
0 Book, text, regular, etc.
1 Semibold (Medium, when darker than Book)
2 Demibold
3 Bold
4 Extra Bold
5 Black
6 Extra Black
7 Ultra Black, or Ultra

Type designers often use interesting names for weights or combinations of
weights and styles, such as Heavy, Compact, Inserat, Bold No. 2, etc. PCL
stroke weights are assigned on the basis of the entire family and use of the
faces. Typically, display faces don’t have a “text” weight assignment.

The TrueType Font File

Revision 1.66 Page 109
File Name: ttch02.doc

WidthType
This signed 1-byte field contains the PCL appearance width value. The
values are not directly related to those in the appearance with field of the
style word above. Only values in the range -5 to 5 are valid.

-5 Ultra Compressed
-4 Extra Compressed
-3 Compressed, or Extra Condensed
-2 Condensed
0 Normal
2 Expanded
3 Extra Expanded

SerifStyle
This signed 1-byte field contains the PCL serif style value. The most
significant 2 bits of this byte specify the serif/sans or contrast/monoline
characterisitics of the typeface.

Bottom 6 bit values:
0 Sans Serif Square
1 Sans Serif Round
2 Serif Line
3 Serif Triangle
4 Serif Swath
5 Serif Block
6 Serif Bracket
7 Rounded Bracket
8 Flair Serif, Modified Sans
9 Script Nonconnecting
10 Script Joining
11 Script Calligraphic
12 Script Broken Letter

Top 2 bit values:
0 reserved
1 Sans Serif/Monoline
2 Serif/Contrasting
3 reserved

Reserved
Should be set to zero.

The TrueType Font File

Page 110 Revision 1.66
 File Name: ttch02.doc

post - PostScript

This table contains additional information needed to use TrueType fonts on
PostScript printers. This includes data for the FontInfo dictionary entry and
the PostScript names of all the glyphs.

The table begins as follows:

Type Name Description
FIXED Format Type 0x00010000 for format 1.0, 0x00020000 for format

2.0, and so on...
FIXED italicAngle Italic angle in counter-clockwise degrees from the

vertical. Zero for upright text, negative for text that
leans to the right (forward)

FWORD underlinePosition Suggested values for the underline position
(negative values indicate below baseline).

FWORD underlineThickness Suggested values for the underline thickness.
ULONG isFixedPitch Set to 0 if the font is proportionally spaced, non-

zero if the font is not proportionally spaced (i.e.
monospaced).

ULONG minMemType42 Minimum memory usage when a TrueType font is
downloaded.

ULONG maxMemType42 Maximum memory usage when a TrueType font is
downloaded.

ULONG minMemType1 Minimum memory usage when a TrueType font is
downloaded as a Type 1 font.

ULONG maxMemType1 Maximum memory usage when a TrueType font is
downloaded as a Type 1 font.

The last four entries in the table are present because PostScript drivers can do
better memory management if the virtual memory (VM) requirements of a
downloadable TrueType font are known before the font is downloaded. This
information should be supplied if known. If it is not known, set the value to
zero. The driver will still work but will be less efficient.

Maximum memory usage is minimum memory usage plus maximum runtime
memory use. Maximum runtime memory use depends on the maximum band
size of any bitmap potentially rasterized by the TrueType font scaler. Runtime
memory usage could be calculated by rendering characters at different point
sizes and comparing memory use.

The TrueType Font File

Revision 1.66 Page 111
File Name: ttch02.doc

How to calculate VM usage

The memory usage of a downloaded TrueType font will vary with whether it
is defined as a TrueType or Type 1 font on the printer. Minimum memory
usage can be calculated by calling VMStatus, downloading the font, and
calling VMStatus a second time.

If the format is 1.0 or 3.0, the table ends here. The additional entries for
formats 2.0 and 2.5 are shown below. Apple has defined a format 4.0 for use
with QuickDraw GX, which is described in their documentation.

Format 1.0

This TrueType font file contains exactly the 258 glyphs in the standard
Macintosh TrueType font file in the order specified in Appendix C, “Standard
Macintosh Character Set to UGL.” As a result, the glyph names are taken
from the system with no storage required by the font.

Format 2.0

This is the format required by Microsoft fonts.

Type Description
USHORT Number of glyphs (this is the same as numGlyphs in ‘maxp’ table).
USHORT glyphNameIndex[numGlyphs].
CHAR Glyph names with length bytes [variable] (a Pascal string).

This TrueType font file contains glyphs not in the standard Macintosh set or
the ordering of the glyphs in the TrueType font file is non-standard (again, for
the Macintosh). The glyph name array maps the glyphs in this font to name
index. If the name index is between 0 and 257, treat the name index as a glyph
index in the Macintosh standard order. If the name index is between 258 and
32767, then subtract 258 and use that to index into the list of Pascal strings at
the end of the table. Thus a given font may map some of its glyphs to the
standard glyph names, and some to its own names.

Index numbers 32768 through 65535 are reserved for future use. If you do
not want to associate a PostScript name with a particular glyph, use index
number 0 which points the name .notdef.

Format 2.5

This format provides a space saving table for fonts which contain a pure
subset of, or a simple reordering of, the standard Macintosh glyph set.

The TrueType Font File

Page 112 Revision 1.66
 File Name: ttch02.doc

Type Description
CHAR offset[numGlyphs]

This format is useful for font files that contain only glyphs in the standard
Macintosh glyph set but which have those glyphs arranged in a non-standard
order or which are missing some glyphs. The table contains one byte for each
glyph in the font file. The byte is treated as a signed offset that maps the glyph
index used in this font into the standard glyph index. In other words, assuming
that the ‘sfnt’ contains the three glyphs A, B, and C which are the 37th, 38th,
and 39th glyphs in the standard ordering, the ‘post’ table would contain the
bytes +36, +36, +36.

Format 3.0

This format makes it possible to create a special font that is not burdened with
a large ‘post’ table set of glyph names.

This format specifies that no PostScript name information is provided for the
glyphs in this font file. The printing behavior of this format on PostScript
printers is unspecified, except that it should not result in a fatal or
unrecoverable error. Some drivers may print nothing, other drivers may
attempt to print using a default naming scheme.

Windows v3.1 makes use of the italic angle value in the ‘post’ table but does
not actually require any glyph names to be stored as Pascal strings .

The TrueType Font File

Revision 1.66 Page 113
File Name: ttch02.doc

prep - Control Value Program
The Control Value Program consists of a set of TrueType instructions that will
be executed whenever the font or point size or transformation matrix change
and before each glyph is interpreted. Any instruction is legal in the CVT
Program but since no glyph is associated with it, instructions intended to
move points within a particular glyph outline cannot be used in the CVT
Program. The name ‘prep’ is anachronistic.

Type Description
BYTE[] Set of instructions executed whenever point size or font or

transformation change

The TrueType Font File

Page 114 Revision 1.66
 File Name: ttch02.doc

VDMX - Vertical Device Metrics
Under Windows, the usWinAscent and usWinDescent values from the ‘OS/2’
table will be used to determine the maximum black height for a font at any
given size. Windows calls this distance the Font Height. Because TrueType
instructions can lead to Font Heights that differ from the actual scaled and
rounded values, basing the Font Height strictly on the yMax and yMin can
result in “lost pixels.” Windows will clip any pixels that extend above the
yMax or below the yMin. In order to avoid grid fitting the entire font to
determine the correct height, the VDMX table has been defined.

The VDMX table consists of a header followed by groupings of VDMX
records:

Type Name Description
USHORT version Version number (starts at 0).
USHORT numRecs Number of VDMX groups present
USHORT numRatios Number of aspect ratio groupings
Ratios ratRange[numRatios] Ratio ranges (see below for more info)
USHORT offset[numRatios] Offset from start of this table to the VDMX

group for this ratio range.
Vdmx groups The actual VDMX groupings (documented

below)

struct Ratios {

 BYTE bCharSet; /* Character set (see below) */

 BYTE xRatio; /* Value to use for x-Ratio */

 BYTE yStartRatio; /* Starting y-Ratio value */

 BYTE yEndRatio /* Ending y-ratio value */

}

Ratios are set up as follows:
For a 1:1 aspect ratio Ratios.xRatio = 1;

Ratios.yStartRatio = 1;
Ratios.yEndRatio = 1;

For 1:1 through 2:1 ratio Ratios.xRatio = 2;
Ratios.yStartRatio = 1;
Ratios.yEndRatio = 2;

For 1.33:1 ratio Ratios.xRatio = 4;
Ratios.yStartRatio = 3;
Ratios.yEndRatio = 3;

For all aspect ratios Ratio.xRatio = 0;
Ratio.yStartRatio = 0;
Ratio.yEndRatio = 0;

The TrueType Font File

Revision 1.66 Page 115
File Name: ttch02.doc

All values set to zero signal the default grouping to use; if present, this must
be the last Ratio group in the table. Ratios of 2:2 are the same as 1:1.

Aspect ratios are matched against the target device by normalizing the entire
ratio range record based on the current X resolution and performing a range
check of Y resolutions for each record after normalization. Once a match is
found, the search stops. If the 0,0,0 group is encountered during the search, it
is used (therefore if this group is not at the end of the ratio groupings, no
group that follows it will be used). If there is not a match and there is no 0,0,0
record, then there is no VDMX data for that aspect ratio.

Note that range checks are conceptually performed as follows:

(deviceXRatio == Ratio.xRatio) && (deviceYRatio >=
Ratio.yStartRatio) && (deviceYRatio <= Ratio.yEndRatio)

Each ratio grouping refers to a specific VDMX record group; there must be at
least 1 VDMX group in the table.

The uCharSet value is used to denote cases where the VDMX group was
computed based on a subset of the glyphs present in the font file. The
currently defined values for character set are:

uCharSet Description
0 No subset; the VDMX group applies to all glyphs in the font. This is

used for symbol or dingbat fonts.
1 Windows ANSI subset; the VDMX group was computed using only the

glyphs required to complete the Windows ANSI character set. Windows
will ignore any VDMX entries that are not for the ANSI subset (i.e.
uCharSet = 1)

VDMX groups immediately follow the table header. Each set of records (there
need only be one set) has the following layout:

Type Name Description
USHORT recs Number of height records in this group
BYTE startsz Starting yPelHeight
BYTE endsz Ending yPelHeight
vTable entry[recs] The VDMX records

struct vTable {

 USHORT yPelHeight; /* yPelHeight to which values apply */

 SHORT yMax; /* yMax (in pels) for this yPelHeight */

 SHORT yMin; /* yMin (in pels) for this yPelHeight */

}

The TrueType Font File

Page 116 Revision 1.66
 File Name: ttch02.doc

This table must appear in sorted order (sorted by yPelHeight), but need not be
continous. It should have an entry for every pel height where the yMax and
yMin do not scale linearly, where linearly scaled heights are defined as:

Hinted yMax and yMin are identical to scaled/rounded yMax and yMin

It is assumed that once yPelHeight reaches 255, all heights will be linear, or at
least close enough to linear that it no longer matters. Please note that while the
Ratios structure can only support ppem sizes up to 255, the vTable structure
can support much larger pel heights (up to 65535). The choice of SHORT and
USHORT for vTable is dictated by the requirement that yMax and yMin be
signed values (and 127 to -128 is too small a range) and the desire to word-
align the vTable elements.

The TrueType Font File

Revision 1.66 Page 117
File Name: ttch02.doc

vhea - Vertical Header Table
The vertical header table (tag name: ‘vhea’) contains information needed for
vertical fonts. The glyphs of vertical fonts are written either top to bottom or
bottom to top. This table contains information that is general to the font as a
whole. Information that pertains to specific glyphs is given in the vertical
metrics table (tag name: ‘vmtx’) described separately. The formats of these
tables are similar to those for horizontal metrics (hhea and hmtx).

Data in the vertical header table must be consistent with data that appears in
the vertical metrics table. The advance height and top sidebearing values in
the vertical metrics table must correspond with the maximum advance height
and minimum bottom sidebearing values in the vertical header table.

The vertical header table format follows:

The TrueType Font File

Page 118 Revision 1.66
 File Name: ttch02.doc

Vertical Header Table
Type Name Description
FIXED32 version Version number of the vertical header table

(0x00010000 for the initial version).
SHORT ascent Distance in FUnits from the centerline to the

previous line’s descent.
SHORT descent Distance in FUnits from the centerline to the next

line’s ascent.
SHORT lineGap Reserved; set to 0
SHORT advanceHeightMax The maximum advance height measurement in

FUnits found in the font. This value must be
consistent with the entries in the vertical metrics
table.

SHORT minTopSideBearing The minimum top sidebearing measurement found
in the font, in FUnits. This value must be
consistent with the entries in the vertical metrics
table.

SHORT minBottomSideBearing The minimum bottom sidebearing measurement
found in the font, in FUnits. This value must be
consistent with the entries in the vertical metrics
table.

SHORT yMaxExtent Defined as
yMaxExtent=minTopSideBearing+(yMax-yMin)

SHORT caretSlopeRise The value of the caretSlopeRise field divided by
the value of the caretSlopeRun Field determines
the slope of the caret. A value of 0 for the rise and
a value of 1 for the run specifies a horizontal caret.
A value of 1 for the rise and a value of 0 for the
run specifies a vertical caret. Intermediate values
are desirable for fonts whose glyphs are oblique or
italic. For a vertical font, a horizontal caret is best.

SHORT caretSlopeRun See the caretSlopeRise field. Value=1 for
nonslanted vertical fonts.

SHORT caretOffset The amount by which the highlight on a slanted
glyph needs to be shifted away from the glyph in
order to produce the best appearance. Set value
equal to 0 for nonslanted fonts.

SHORT reserved Set to 0.
SHORT reserved Set to 0.
SHORT reserved Set to 0.
SHORT reserved Set to 0.
SHORT metricDataFormat Set to 0.
USHORT numOfLongVerMetrics Number of advance heights in the vertical metrics

table.

The TrueType Font File

Revision 1.66 Page 119
File Name: ttch02.doc

Vertical Header Table Example
Offset/
length

Value Name Comment

0/4 0x00010000 version Version number of the vertical header
table, in fixed-point format, is 1.0

4/2 1024 ascent Half the em-square height.
6/2 -1024 descent Minus half the em-square height.
8/2 0 lineGap Typographic line gap is 0 FUnits.
10/2 2079 advanceHeightMax The maximum advance height

measurement found in the font is
2079 FUnits.

12/2 -342 minTopSideBearing The minimum top sidebearing
measurement found in the font is -
342 FUnits.

14/2 -333 minBottomSideBearing The minimum bottom sidebearing
measurement found in the font is -
333 FUnits.

16/2 2036 yMaxExtent minTopSideBearing+(yMax-
yMin)=2036.

18/2 0 caretSlopeRise The caret slope rise of 0 and a caret
slope run of 1 indicate a horizontal
caret for a vertical font.

20/2 1 caretSlopeRun The caret slope rise of 0 and a caret
slope run of 1 indicate a horizontal
caret for a vertical font.

22/2 0 caretOffset Value set to 0 for nonslanted fonts.
24/4 0 reserved Set to 0.
26/2 0 reserved Set to 0.
28/2 0 reserved Set to 0.
30/2 0 reserved Set to 0.
32/2 0 metricDataFormat Set to 0.
34/2 258 numOfLongVerMetrics Number of advance heights in the

vertical metrics table is 258.

The TrueType Font File

Page 120 Revision 1.66
 File Name: ttch02.doc

vmtx - Vertical Metrics Table
The vertical metrics table (tag name: ‘vmtx’) allows you to specify the vertical
spacing for each glyph in a vertical font. This table consists of either one or
two arrays that contain metric information (the advance heights and top
sidebearings) for the vertical layout of each of the glyphs in the font. The
vertical metrics coordinate system is shown below.

b
Ascent

Descent

Advance
Height

Top side
bearing

TrueType vertical fonts require both a vertical header table (tag name: ‘vhea’)
discussed previously and the vertical metrics table discussed below. The
vertical header table contains information that is general to the font as a
whole. The vertical metrics table contains information that pertains to specific
glyphs. The formats of these tables are similar to those for horizontal metrics
(hhea and hmtx).

Vertical Metrics Table Format

The overall structure of the vertical metrics table consists of two arrays shown
below: the vMetrics array followed by an array of top side bearings.

This table does not have a header, but does require that the number of glyphs
included in the two arrays equals the total number of glyphs in the font.

The number of entries in the vMetrics array is determined by the value of the
numOfLongVerMetrics field of the vertical header table.

The vMetrics array contains two values for each entry. These are the advance
height and the top sidebearing for each glyph included in the array.

In monospaced fonts, such as Courier or Kanji, all glyphs have the same
advance height. If the font is monospaced, only one entry need be in the first
array, but that one entry is required.

The TrueType Font File

Revision 1.66 Page 121
File Name: ttch02.doc

The format of an entry in the vertical metrics array is given below.

Type Name Description
USHORT advanceHeight The advance height of the glyph. Unsigned

integer in FUnits
SHORT topSideBearing The top sidebearing of the glyph. Signed

integer in FUnits.

The second array is optional and generally is used for a run of monospaced
glyphs in the font. Only one such run is allowed per font, and it must be
located at the end of the font. This array contains the top sidebearings of
glyphs not represented in the first array, and all the glyphs in this array must
have the same advance height as the last entry in the vMetrics array. All
entries in this array are therefore monospaced.

The number of entries in this array is calculated by subtracting the value of
numOfLongVerMetrics from the number of glyphs in the font. The sum of
glyphs represented in the first array plus the glyphs represented in the second
array therefore equals the number of glyphs in the font. The format of the top
sidebearing array is given below.

Type Name Description
SHORT topSideBearing[] The top sidebearing of the glyph. Signed

integer in FUnits.

 Empty page

Chapter 3

Revision 1.66 Page 123
File Name: ttch03.doc

Recommendations for Windows Fonts

There are many ways to construct a TrueType font file. This chapter outlines
Microsoft recommendations for constructing a font file that will operate on
Windows, Macintosh, and OS/2 systems, as well as with applications using
Microsoft’s TrueType Font Adaptation Kit. It should be noted that all
TrueType fonts use Motorola-style byte ordering (Big Endian).

Filenames

The preferred suffix for TrueType font files under Windows is *.TTF.

Table Requirements & Recommendations

Table Alignment and Length

As suggested in the introduction to Chapter 2, all tables should be aligned to
begin at offsets which are multiples of four bytes. While this is not required
by the TrueType rasterizer, it does prevent ambiguous checksum calculations
and greatly speeds table access on some processors.

All tables should be recorded in the table directory with their actual length. To
ensure that checksums are calculated correctly, it is suggested that tables
begin on LONG word boundries, as mentioned in Chapter 2. Any extra space
after a table (and before the next LONG word boundry) should be padded
with zeros.

‘cmap’ Table

When building a Unicode font for Windows, the platform ID should be 3 and
the encoding ID should be 1 (this subtable must use cmap format 4). When
building a symbol font for Windows, the platform ID should be 3 and the
encoding ID should be 0.

Remember that, despite references to “first” and “second” subtables, the
subtables must be stored in sorted order by platform and encoding ID.

Recommendations for Windows Fonts

Page 124 Revision 1.66
 File Name: ttch03.doc

Macintosh ‘cmap’ Table

When building a font containing Roman characters that will be used on the
Macintosh, an additional subtable is required, specifying platform ID of 1 and
encoding ID of 0 (this subtable must use cmap format 0).

In order for the Macintosh ‘cmap’ table to be useful, the glyphs required for
the Macintosh must have glyph indices less than 256 (since the ‘cmap’
subtable format 0 uses BYTE indices and therefore cannot index any glyph
above 255).

The Apple ‘cmap’ subtable should be constructed according to the guidelines
in the “Character Sets” chapter. Note that the “apple logo” and “propeller”
() should be mapped to the nonexistent glyph.

‘cvt’ Table

Should be defined only if required by font instructions.

‘fpgm’ Table

Should be defined only if required by font instructions.

‘glyf’ Table

Must contain all data required to construct the complete UGL character set as
specified by the ‘cmap’ table.

In order for the Macintosh ‘cmap’ table to be useful, the glyphs required for
the Macintosh must have glyph indices less than 256 (since the ‘cmap’
subtable format 0 uses BYTE indices and therefore cannot index any glyph
above 255). This, of course, means that all the glyphs needed to map to the
Macintosh character set (as per Chapter 4) must be placed within the first 256
glyph “slots” in this table.

‘hdmx’ Table

This table is not necessary at all unless instructions are used to control the
“phantom points,” and should be omitted if bit 2 of the flags field in the ‘head’
table is zero. (See the ‘head’ table documentation in Chapter 2.) Microsoft
recommends that this table be included for fonts with one or more non-
linearly scaled glyphs (i.e., bit 2 or 4 of the flags field is set).

Recommendations for Windows Fonts

Revision 1.66 Page 125
File Name: ttch03.doc

Device records should be defined for all sizes from 8 through 14 point, and
even point sizes from 16 through 24 point. However, the table requires pixel-
per-em sizes, which depend on the horizontal resolution of the output device.
The records in ‘hdmx’ should cover both 96 dpi devices (CGA, EGA, VGA)
and 300 dpi devices (laser and ink jet printers).

Thus, ‘hdmx’ should contain entries for the following pixel sizes: 11, 12, 13,
15, 16, 17, 19, 21, 24, 27, 29, 32, 33, 37, 42, 46, 50, 54, 58, 67, 75, 83, 92,
100. These values have been rounded to the nearest pixel. For instance, 12
points at 300 dpi would measure 37.5 pixels, but this is rounded down to 37
for this list.

This will add approximately 9,600 bytes to the font file. However, there will
be a significant improvement in speed when a client requests advance widths
covered by these device records.

If the font includes an ‘LTSH’ table, the hdmx values are not needed above
the linearity threshold.

‘head’ Table

All data required.

‘hhea’ Table

All data required. It is suggested that monospaced fonts set
numberLongMetrics to three (see hmtx).

‘hmtx’ Table

All data required. It is suggested that monospaced fonts have three entries in
the nMetric field.

‘kern’ Table

Should contain a single kerning pair subtable (format 0). Windows and OS/2
will not support format 2 (two-dimensional array of kern values by class).
Windows and OS/2 will not support multiple tables; only the first format 0
table found will be used. Also, Windows and OS/2 will not support coverage
bits 0 through 4 (i.e. assumes horizontal data, kerning values, no cross stream,
and override).

Recommendations for Windows Fonts

Page 126 Revision 1.66
 File Name: ttch03.doc

‘loca’ Table

All data required. In order for the Macintosh ‘cmap’ table to be useful, the
glyphs required for the Macintosh must have glyph indices less than 256
(since the ‘cmap’ subtable format 0 uses BYTE indices and therefore cannot
index any glyph with an index greater than 255). Beyond this requirement, the
actual ordering of the glyphs in the font can be optimized based on expected
utilization, with the most frequently used glyphs appearing at the beginning of
the font file. Additionally, glyphs that are often used together should be
grouped together in the file. The will help to minimize the amount of
swapping required when the font is loaded into memory.

‘LTSH’ Table

Should be defined if bit 2 or 4 of flags in ‘head’ is set.

‘maxp’ Table

All data required.

‘name’ Table

When building a Unicode font for Windows, the platform ID should be 3 and
the encoding ID should be 1. When building a symbol font for Windows, the
platform ID should be 3 and the encoding ID should be 0.

When building a font containing Roman characters that will be used on the
Macintosh, an additional name record is required, specifying platform ID of 1
and encoding ID of 0.

Each set of name records should appear for US English (language ID =
0x0409 for Microsoft records, language ID = 0 for Macintosh records);
additional language strings for the Microsoft set of records (platform ID 3)
may be added at the discretion of the font vendor.

Remember that, despite references to “first” and “second,” the name record
must be stored in sorted order (by platform ID, encoding ID, language ID,
name ID). The ‘name’ table platform/encoding IDs must match the ‘cmap’
table platform/encoding IDs, which is how Windows knows which name set
to use.

Recommendations for Windows Fonts

Revision 1.66 Page 127
File Name: ttch03.doc

Name strings

The Subfamily string in the ‘name’ table should be used for variants of weight
(ultra light to extra black) and style (oblique/italic or not). So, for example,
the full font name of “Helvetica Narrow Italic” should be defined as Family
name “Helvetica Narrow” and Subfamily “Italic.” This is so that Windows
can group the standard four weights of a font in a reasonable fashion for non-
typographically aware applications which only support combinations of
“bold” and “italic.”

‘OS/2’ Table

All data required.

‘post’ Table

All information required, although the VM Usage fields may be set to zero.
Format 2 is required in order to support the two-byte glyph indices in the UGL
character set. Glyph names for the PostScript character set must be defined
as per the “PostScript Reference Manual” (Adobe Systems Incorporated,
1988); note that names for all glyphs must be supplied as it cannot be assumed
that all Microsoft platforms will support the default names supplied on the
Macintosh. Names for the Unicode glyphs outside the PostScript set should
be assigned a four character hexidecimal string that corresponds to their
Unicode index (e.g. ‘2302’ for the small house glyph). See Chapter 4 for the
complete Unicode character set, including PostScript glyph names (where
defined).

‘prep’ Table

Should be defined only if required by the font instructions.

‘VDMX’ Table

Should be present if hints cause the font to scale non-linearly. If not present,
the font is assumed to scale linearly. Clipping may occur if values in this table
are absent and font exceeds linear height.

Recommendations for Windows Fonts

Page 128 Revision 1.66
 File Name: ttch03.doc

General Recommendations

Non-Standard Fonts

Non-standard fonts such as Symbol or Wingdings™ have special
requirements for Microsoft platforms. These requirements affect the ‘cmap’
and ‘name’ tables; the requirements and recommendations for all other tables
remain the same.

For the Macintosh, non-standard fonts can continue to use platform ID 1
(Macintosh) and encoding ID 0 (Roman character set). The ‘cmap’ subtable
should use format 0 and follow the standard PostScript character encodings.

For non-standard fonts on Microsoft platforms, however, the ‘cmap’ and
‘name’ tables must use platform ID 3 (Microsoft) and encoding ID 0
(Unicode, non-standard character set). Remember that ‘name’ table encodings
should agree with the ‘cmap’ table.

The Microsoft ‘cmap’ subtable (platform 3, encoding 0) must use format 4.
The character codes should start at 0xF000, which is in the Private Use Area
of Unicode. Microsoft suggests deriving the format 4 (Microsoft) encodings
by simply adding 0xF000 to the format 0 (Macintosh) encodings.

Under both OS/2 and Windows, only the first 224 characters of non-standard
fonts will be accessible: a space and up to 223 printing characters. It does not
matter where in user space these start, but 0xF020 is suggested. The
usFirstCharIndex and usLastCharIndex values in the ‘OS/2’ table would be set
based on the actual minimum and maximum character indices used.

Recommendations for Windows Fonts

Revision 1.66 Page 129
File Name: ttch03.doc

Device Resolutions

OS/2 and Windows make use of a logical device resolution. The physical
resolution of a device is also available, but fonts will be rendered based on the
logical resolution. The table below lists some important logical resolutions
in dots per inch (Horizontal x Vertical). The most important ratios (in order)
are 1:1, 1.67:1 and 1.33:1.

Device Resolution Aspect Ratio
CGA 96 x 48 2:1
EGA 96 x 72 1.33:1
VGA 96 x 96 1:1
8514 120 x 120 1:1
Dot Matrix 120 x 72 1.67:1
Laser Printer 300 x 300

or 600 x 600
1:1

Baseline to Baseline Distances

The suggested Baseline to Baseline Distance (BTBD) is computed differently
for Windows and the Macintosh, and it is based on different TrueType
metrics. However, if the recommendations below are followed, the BTBD will
be the same for both Windows and the Mac.

Windows

Windows Metric1 TrueType Metric
ascent usWinAscent
descent usWinDescent
internal leading usWinAscent + usWinDescent - unitsPerEm
external leading MAX(0, LineGap - ((usWinAscent + usWinDescent) -

(Ascender - Descender)))

Suggested BTBD = ascent + descent + external leading
It should be clear that the “external leading” can never be less than zero.
Pixels above the ascent or below the descent will be clipped from the
character; this is true for all output devices.

1 These metrics are returned as part of the logical font data structure by the GDI
CreateLogFont() API.

Recommendations for Windows Fonts

Page 130 Revision 1.66
 File Name: ttch03.doc

The usWinAscent and usWinDescent are values from the ‘OS/2’ table. The
unitsPerEm value is from the ‘head’ table. The LineGap, Ascender and
Descender values are from the ‘hhea’ table.

Macintosh

Ascender and Descender are metrics defined by Apple and are not to be
confused with the Windows ascent or descent, nor should they be confused
with the true typographic ascender and descender that are found in AFM files.

Macintosh Metric2 TrueType Metric
ascender Ascender
descender Descender
leading LineGap

Suggested BTBD = ascender + descender + leading
If pixels extend above the ascent or below the descent, the character will be
squashed in the vertical direction so that all pixels fit within these limitations;
this is true for screen display only.

Making Them Match

If you perform some simple algebra, you will see that the suggested BTBD
across both Macintosh and Windows will be identical if and only if:
 LineGap >= (yMax - yMin) - (Ascender - Descender)

Style Bits

For backwards compatibility with previous versions of Windows, the
macStyle bits in the ‘head’ table will be used to determine whether or not a
font is regular, bold or italic (in the absence of an ‘OS/2’ table). This is
completely independent of the usWeightClass and PANOSE information in
the ‘OS/2’ table, the ItalicAngle in the ‘post’ table, and all other related
metrics. If the ‘OS/2’ table is present, then the fsSelection bits are used to
determine this information.

2 These metrics are returned by the Mac QuickDraw GetFontInfo() API.

Recommendations for Windows Fonts

Revision 1.66 Page 131
File Name: ttch03.doc

Drop-out Control

Drop-out control is needed if there is a difference in bitmaps with dropout
control on and off. Two cases where drop-out control is needed are when the
font is rotated or when the size of the font is at or below 8 ppem. Do not use
SCANCTRL unless needed. SCANCTRL or the drop-out control rasterizer
should be avoided for Roman fonts above 8 points per em (ppem) when the
font is not under rotation. SCANCTRL should not be used for “stretched”
fonts (e.g. fonts displayed at non-square aspect ratios, like that found on an
EGA).

Embedded bitmaps
Three new tables are used to embed bitmaps in TrueType fonts. They are the
‘EBLC’ table for embedded bitmap locators, the ‘EBDT’ table for embedded
bitmap data, and the ‘EBSC’ table for embedded bitmap scaling information.
TrueType embedded bitmaps are also called ‘sbits’.

The behavior of sbits within a TrueType font is essentially transparent to the
client. A client need not be aware whether the bitmap returned by the
rasterizer comes from an sbit or from a scan-converted outline.

The metrics in ‘sbit’ tables overrule the outline metrics at all sizes where sbits
are defined. Fonts with ‘hdmx’ tables should correct those tables with ‘sbit’
values.

‘Sbit only’ fonts, that is fonts with embedded bitmaps but without outline
data, are permitted. Care must be taken to ensure that all required TrueType
tables except ‘glyf’ and ‘loca’ are present in such a font. Obviously, such
fonts will only be able to return glyphs and sizes for which sbits are defined.

Recommendations for Windows Fonts

Page 132 Revision 1.66
 File Name: ttch03.doc

TrueType Collection (TTC) Files
A TrueType Collection (TTC) is a means of delivering multiple TrueType
fonts in a single file structure. TrueType Collections are most useful when the
fonts to be delivered together share many glyphs in common. By allowing
multiple fonts to share glyph sets, TTCs can result in a significant saving of
file space.

For example, a group of Japanese fonts may each have their own designs for
the kana glyphs, but share identical designs for the kanji. With ordinary
TrueType font files, the only way to include the common kanji glyphs is to
copy their glyph data into each font. Since the kanji represent much more data
than the kana, this results in a great deal of wasteful duplication of glyph data.
TTCs were defined to solve this problem.

TTC File Structure

A TrueType Collection file consists of a single TTC Header table, two or
more Table Directories, and a number of TrueType tables.

The TTC Header must be located at the beginning of the TTC file.

The TTC file must contain a complete Table Directory for each different font
design. A TTC file Table Directory has exactly the same format as a TTF file
Table Directory. The table offsets in all Table Directories within a TTC file
are measured from the beginning of the TTC file.

Each TrueType table in a TTC file is referenced through the Table Directories
of all fonts which use that table. Some of the TrueType tables must appear
multiple times, once for each font included in the TTC; while other tables
should be shared by all fonts in the TTC.

As an example, consider a TTC file which combines two Japanese fonts
(Font1 and Font2). The fonts have different kana designs (Kana1 and Kana2)
but use the same design for kanji. The TTC file contains a single ‘glyf’ table
which includes both designs of kana together with the kanji; both fonts’ Table
Directories point to this ‘glyf’ table. But each font’s Table Directory points to
a different ‘cmap’ table, which identifies the glyph set to use. Font1’s ‘cmap’
table points to the Kana1 region of the ‘loca’ and ‘glyf’ tables for kana glyphs,
and to the kanji region for the kanji. Font2’s ‘cmap’ table points to the Kana2
region of the ‘loca’ and ‘glyf’ tables for kana glyphs, and to the same kanji
region for the kanji.

Recommendations for Windows Fonts

Revision 1.66 Page 133
File Name: ttch03.doc

The tables that should have a unique copy per font are those that are used by
the system in identifying the font and its character mapping, including ‘cmap’,
‘name’, and ‘OS/2’. The tables that should be shared by all fonts in the TTC
are those that define glyph and instruction data or use glyph indices to access
data: ‘glyf’, ‘loca’, ‘hmtx’, ‘hdmx’, ‘LTSH’, ‘cvt ’, ‘fpgm’, ‘prep’, ‘EBLC’,
‘EBDT’, ‘EBSC’, ‘maxp’, and so on. In practice, any tables which have
identical data for two or more fonts may be shared.

Creating a TrueType Collection by combining existing TrueType font files is
a non-trivial process. It involves paying close attention the issue of glyph
renumbering in a font and the side effects that can result, in the ‘cmap’ table
and elsewhere. The fonts to be merged must also have compatible TrueType
instructions—that is, their preprograms, function definitions, and control
values must not conflict.

TrueType Collection files use the filename suffix .TTC.

TTC Header Table

The purpose of the TTC Header table is to locate the different Table
Directories within a TTC file.

The TTC Header is located at the beginning of the TTC file (offset = 0). It
consists of an identification tag, a version number, a count of the number of
TrueType fonts (Table Directories) in the file, and an array of offsets to each
Table Directory.

TTC Header Table
Type Name Description
TAG TTCTag TrueType Collection ID string: ‘ttcf’
FIXED32 Version Version of the TTC Header table (initially

0x00010000)
ULONG DirectoryCount Number of Table Directories in TTC
ULONG  TableDirectory

[DirectoryCount]
Array of offsets to Table Directories from file
begin

Note that the TTC Header is not a table within a TrueType font file.

 Empty page

Chapter 4

Revision 1.66 Page 135
File Name: ttch04.doc

Character Sets

This chapter contains a table comparing the character sets of WGL4 (the
Windows Glyph List defined for Windows 95), UGL, Window 3.1x (for the
U.S.), and the Macintosh (for the U.S.). The characters checked are required
in a font for compatibility with the respective platforms. Microsoft suggests
that at a minimum, the U.S. Windows 3.1x (ANSI) set and the
Macintosh/PostScript set be supported in all your fonts. For the character set
to properly support codepages under OS/2, the full UGL character set must
also be included.

The character set table in this chapter contains the following information:

Field Name Description
Min Minimum character set recommended
Unicode Unicode value of glyph
PostScript Name PostScript name of glyph
Descriptive Name Descriptive name of glyph
WGL4 Glyph in WGL4 character set
UGL Glyph in UGL character set
Win31 Glyph in US Win31 character set
MacChar US Macintosh character code for glyph
MacGlyph US Macintosh glyph index for glyph

Font files for Microsoft platforms must use Unicode indices (given here as
hexadecimal values).

Character Sets

Page 136 Revision 1.66
 File Name: ttch04.doc

Microsoft Platform Requirements
TrueType font files use the ‘cmap’ table to access glyphs. Thus, it is feasible
to map similar looking characters to single internal glyph (e.g. latin capital
letter eth and latin capital letter d with stroke). However, future international
extensions to TrueType may require a unique glyph for each character in the
font, so this practice is not recommended.

The ‘cmap’ table used for this list of characters will be implemented with the
format 4 as described in Chapter 2.

Note that space (U+0020) and no-break space (U+00a0) should be mapped to
a glyph with no contours and a positive advance width; this advance width
should be the same for the two glyphs.

Lining numbers (U+0030 through U+0039; i.e. the digits 0 - 9) should be
monospaced. Old style figures need not be monospaced.

White space should be evenly distributed between the left and right side
bearings of glyphs. Extra space should be placed on the right if grid-fitting
results in an odd number of pixels.

Character Sets

Revision 1.66 Page 137
File Name: ttch04.doc

Macintosh Platform Requirements
Since the Macintosh requires the use of ‘cmap’ subtable format 0 (which only
allows for BYTE glyph indices), the glyphs required by the Macintosh must
appear within the first 256 positions in the ‘glyf’ table. Apple recommends a
particular order for the glyphs; this glyph order is indicated in the final
column of the following table.

A list of Macintosh mapping requirements follows:
• Glyph 0 is the missing character glyph.
• Glyph 1 is the null glyph; it has no contours and zero advance width.
• All characters in the character set defined in the table must be present.

Certain specified characters, however, are mapped to glyph 0 (the missing
character glyph) as stated below.

• The following character codes must be mapped to glyph 0 (the missing
character glyph). Note that all character codes are given as decimal values.
001-031 Misc. ASCII control codes (note exceptions below)
127 DEL Delete

• The following characters must map to glyph 1 (the null glyph).
000 NUL Null
008 BS Backspace
029 GS Group Seperator

• The following characters must map to a glyph with no contours and
positive advance width:
009 HT Horiztontal Tabulation
032 space
202 figureSpace (No-Break Space)

• The following groups of characters must have the same width
009 (HT) and 032 (space)

• The mapping of the Carriage Return (CR, 13) depends on whether the font
is designed to be used left-to-right or right-to-left. For left-to-right (e.g.,
Roman), it must be mapped to a glyph with no contours and positive
advance. For right-to-left (e.g., Hebrew), it must be mapped to glyph 1
(null glyph).

Recommendations

In cursive fonts, glyphs should overlap to allow glyphs to join together in
device-independent text. A five per cent (5%) overlap is recommended.
Follow all recommendations for Microsoft platforms (listed above).

Min Unicode PostScript Name Descriptive Name WGL4 UGL Win31 MacChar MacIndex

Page 138 ♦ - Glyph in character set
Revision 1.66  - Glyph not accessible from
File Name: ttch04a.doc keyboard, only by PostScript name

♦ notdef ♦ 0
♦ .null ♦ 0x0 1
♦ CR ♦ 0xd 2
♦ U+0020 space space ♦ ♦ ♦ 0x20 3
♦ U+0021 exclam exclamation mark ♦ ♦ ♦ 0x21 4
♦ U+0022 quotedbl quotation mark ♦ ♦ ♦ 0x22 5
♦ U+0023 numbersign number sign ♦ ♦ ♦ 0x23 6
♦ U+0024 dollar dollar sign ♦ ♦ ♦ 0x24 7
♦ U+0025 percent percent sign ♦ ♦ ♦ 0x25 8
♦ U+0026 ampersand ampersand ♦ ♦ ♦ 0x26 9
♦ U+0027 quotesingle apostrophe ♦ ♦ ♦ 0x27 10
♦ U+0028 parenleft left parenthesis ♦ ♦ ♦ 0x28 11
♦ U+0029 parenright right parenthesis ♦ ♦ ♦ 0x29 12
♦ U+002a asterisk asterisk ♦ ♦ ♦ 0x2a 13
♦ U+002b plus plus sign ♦ ♦ ♦ 0x2b 14
♦ U+002c comma comma ♦ ♦ ♦ 0x2c 15
♦ U+002d hyphen hyphen-minus ♦ ♦ ♦ 0x2d 16
♦ U+002e period period ♦ ♦ ♦ 0x2e 17
♦ U+002f slash slash ♦ ♦ ♦ 0x2f 18
♦ U+0030 zero digit zero ♦ ♦ ♦ 0x30 19
♦ U+0031 one digit one ♦ ♦ ♦ 0x31 20
♦ U+0032 two digit two ♦ ♦ ♦ 0x32 21
♦ U+0033 three digit three ♦ ♦ ♦ 0x33 22
♦ U+0034 four digit four ♦ ♦ ♦ 0x34 23
♦ U+0035 five digit five ♦ ♦ ♦ 0x35 24
♦ U+0036 six digit six ♦ ♦ ♦ 0x36 25
♦ U+0037 seven digit seven ♦ ♦ ♦ 0x37 26
♦ U+0038 eight digit eight ♦ ♦ ♦ 0x38 27
♦ U+0039 nine digit nine ♦ ♦ ♦ 0x39 28
♦ U+003a colon colon ♦ ♦ ♦ 0x3a 29
♦ U+003b semicolon semicolon ♦ ♦ ♦ 0x3b 30
♦ U+003c less less-than sign ♦ ♦ ♦ 0x3c 31
♦ U+003d equal equals sign ♦ ♦ ♦ 0x3d 32
♦ U+003e greater greater-than sign ♦ ♦ ♦ 0x3e 33
♦ U+003f question question mark ♦ ♦ ♦ 0x3f 34
♦ U+0040 at commercial at ♦ ♦ ♦ 0x40 35
♦ U+0041 A latin capital letter a ♦ ♦ ♦ 0x41 36
♦ U+0042 B latin capital letter b ♦ ♦ ♦ 0x42 37
♦ U+0043 C latin capital letter c ♦ ♦ ♦ 0x43 38
♦ U+0044 D latin capital letter d ♦ ♦ ♦ 0x44 39
♦ U+0045 E latin capital letter e ♦ ♦ ♦ 0x45 40
♦ U+0046 F latin capital letter f ♦ ♦ ♦ 0x46 41
♦ U+0047 G latin capital letter g ♦ ♦ ♦ 0x47 42
♦ U+0048 H latin capital letter h ♦ ♦ ♦ 0x48 43
♦ U+0049 I latin capital letter i ♦ ♦ ♦ 0x49 44
♦ U+004a J latin capital letter j ♦ ♦ ♦ 0x4a 45
♦ U+004b K latin capital letter k ♦ ♦ ♦ 0x4b 46
♦ U+004c L latin capital letter l ♦ ♦ ♦ 0x4c 47
♦ U+004d M latin capital letter m ♦ ♦ ♦ 0x4d 48
♦ U+004e N latin capital letter n ♦ ♦ ♦ 0x4e 49
♦ U+004f O latin capital letter o ♦ ♦ ♦ 0x4f 50

Min Unicode PostScript Name Descriptive Name WGL4 UGL Win31 MacChar MacIndex

♦ - Glyph in character set Page 139
 - Glyph not accessible from Revision 1.66
 keyboard, only by PostScript name File Name: ttch04a.doc

♦ U+0050 P latin capital letter p ♦ ♦ ♦ 0x50 51
♦ U+0051 Q latin capital letter q ♦ ♦ ♦ 0x51 52
♦ U+0052 R latin capital letter r ♦ ♦ ♦ 0x52 53
♦ U+0053 S latin capital letter s ♦ ♦ ♦ 0x53 54
♦ U+0054 T latin capital letter t ♦ ♦ ♦ 0x54 55
♦ U+0055 U latin capital letter u ♦ ♦ ♦ 0x55 56
♦ U+0056 V latin capital letter v ♦ ♦ ♦ 0x56 57
♦ U+0057 W latin capital letter w ♦ ♦ ♦ 0x57 58
♦ U+0058 X latin capital letter x ♦ ♦ ♦ 0x58 59
♦ U+0059 Y latin capital letter y ♦ ♦ ♦ 0x59 60
♦ U+005a Z latin capital letter z ♦ ♦ ♦ 0x5a 61
♦ U+005b bracketleft left square bracket ♦ ♦ ♦ 0x5b 62
♦ U+005c backslash backslash ♦ ♦ ♦ 0x5c 63
♦ U+005d bracketright right square bracket ♦ ♦ ♦ 0x5d 64
♦ U+005e asciicircum circumflex accent ♦ ♦ ♦ 0x5e 65
♦ U+005f underscore underline ♦ ♦ ♦ 0x5f 66
♦ U+0060 grave grave accent ♦ ♦ ♦ 0x60 67
♦ U+0061 a latin small letter a ♦ ♦ ♦ 0x61 68
♦ U+0062 b latin small letter b ♦ ♦ ♦ 0x62 69
♦ U+0063 c latin small letter c ♦ ♦ ♦ 0x63 70
♦ U+0064 d latin small letter d ♦ ♦ ♦ 0x64 71
♦ U+0065 e latin small letter e ♦ ♦ ♦ 0x65 72
♦ U+0066 f latin small letter f ♦ ♦ ♦ 0x66 73
♦ U+0067 g latin small letter g ♦ ♦ ♦ 0x67 74
♦ U+0068 h latin small letter h ♦ ♦ ♦ 0x68 75
♦ U+0069 i latin small letter i ♦ ♦ ♦ 0x69 76
♦ U+006a j latin small letter j ♦ ♦ ♦ 0x6a 77
♦ U+006b k latin small letter k ♦ ♦ ♦ 0x6b 78
♦ U+006c l latin small letter l ♦ ♦ ♦ 0x6c 79
♦ U+006d m latin small letter m ♦ ♦ ♦ 0x6d 80
♦ U+006e n latin small letter n ♦ ♦ ♦ 0x6e 81
♦ U+006f o latin small letter o ♦ ♦ ♦ 0x6f 82
♦ U+0070 p latin small letter p ♦ ♦ ♦ 0x70 83
♦ U+0071 q latin small letter q ♦ ♦ ♦ 0x71 84
♦ U+0072 r latin small letter r ♦ ♦ ♦ 0x72 85
♦ U+0073 s latin small letter s ♦ ♦ ♦ 0x73 86
♦ U+0074 t latin small letter t ♦ ♦ ♦ 0x74 87
♦ U+0075 u latin small letter u ♦ ♦ ♦ 0x75 88
♦ U+0076 v latin small letter v ♦ ♦ ♦ 0x76 89
♦ U+0077 w latin small letter w ♦ ♦ ♦ 0x77 90
♦ U+0078 x latin small letter x ♦ ♦ ♦ 0x78 91
♦ U+0079 y latin small letter y ♦ ♦ ♦ 0x79 92
♦ U+007a z latin small letter z ♦ ♦ ♦ 0x7a 93
♦ U+007b braceleft left curly bracket ♦ ♦ ♦ 0x7b 94
♦ U+007c bar vertical line ♦ ♦ ♦ 0x7c 95
♦ U+007d braceright right curly bracket ♦ ♦ ♦ 0x7d 96
♦ U+007e asciitilde tilde ♦ ♦ ♦ 0x7e 97
♦ U+00a0 nbspace no-break space ♦ ♦ 0xca 172
♦ U+00a1 exclamdown inverted exclamation mark ♦ ♦ ♦ 0xc1 163
♦ U+00a2 cent cent sign ♦ ♦ ♦ 0xa2 132
♦ U+00a3 sterling pound sign ♦ ♦ ♦ 0xa3 133

Min Unicode PostScript Name Descriptive Name WGL4 UGL Win31 MacChar MacIndex

Page 140 ♦ - Glyph in character set
Revision 1.66  - Glyph not accessible from
File Name: ttch04a.doc keyboard, only by PostScript name

♦ U+00a4 currency currency sign ♦ ♦ ♦ 0xdb 189
♦ U+00a5 yen yen sign ♦ ♦ ♦ 0xb4 150
♦ U+00a6 brokenbar broken bar ♦ ♦ ♦  232
♦ U+00a7 section section sign ♦ ♦ ♦ 0xa4 134
♦ U+00a8 dieresis diaeresis ♦ ♦ ♦ 0xac 142
♦ U+00a9 copyright copyright sign ♦ ♦ ♦ 0xa9 139
♦ U+00aa ordfeminine feminine ordinal indicator ♦ ♦ ♦ 0xbb 157
♦ U+00ab guillemotleft left guillemet ♦ ♦ ♦ 0xc7 169
♦ U+00ac logicalnot not sign ♦ ♦ ♦ 0xc2 164
♦ U+00ad sfthyphen soft hyphen ♦ ♦
♦ U+00ae registered registered trade mark sign ♦ ♦ ♦ 0xa8 138
♦ U+00af overscore macron, overline ♦ ♦ ♦ 0xf8 218
♦ U+00b0 degree degree sign ♦ ♦ ♦ 0xa1 131
♦ U+00b1 plusminus plus-minus sign ♦ ♦ ♦ 0xb1 147
♦ U+00b2 twosuperior superscript two ♦ ♦ ♦  242
♦ U+00b3 threesuperior superscript three ♦ ♦ ♦  243
♦ U+00b4 acute acute accent ♦ ♦ ♦ 0xab 141
♦ U+00b5 mu1 micro sign ♦ ♦ ♦ 0xb5 151
♦ U+00b6 paragraph paragraph sign ♦ ♦ ♦ 0xa6 136
♦ U+00b7 middot middle dot, kana conjoctive ♦ ♦ ♦
♦ U+00b8 cedilla cedilla ♦ ♦ ♦ 0xfc 222
♦ U+00b9 onesuperior superscript one ♦ ♦ ♦  241
♦ U+00ba ordmasculine masculine ordinal indicator ♦ ♦ ♦ 0xbc 158
♦ U+00bb guillemotright right guillemet ♦ ♦ ♦ 0xc8 170
♦ U+00bc onequarter vulgar fraction one quarter ♦ ♦ ♦  245
♦ U+00bd onehalf vulgar fraction one half ♦ ♦ ♦  244
♦ U+00be threequarters vulgar fraction three

quarters
♦ ♦ ♦  246

♦ U+00bf questiondown inverted question mark ♦ ♦ ♦ 0xc0 162
♦ U+00c0 Agrave latin capital letter a with

grave accent
♦ ♦ ♦ 0xcb 173

♦ U+00c1 Aacute latin capital letter a with
acute accent

♦ ♦ ♦ 0xe7 201

♦ U+00c2 Acircumflex latin capital letter a with
circumflex accent

♦ ♦ ♦ 0xe5 199

♦ U+00c3 Atilde latin capital letter a with tilde ♦ ♦ ♦ 0xcc 174
♦ U+00c4 Adieresis latin capital letter a with

diaeresis
♦ ♦ ♦ 0x80 98

♦ U+00c5 Aring latin capital letter a with ring
above

♦ ♦ ♦ 0x81 99

♦ U+00c6 AE latin capital letter a with e ♦ ♦ ♦ 0xae 144
♦ U+00c7 Ccedilla latin capital letter c with

cedilla
♦ ♦ ♦ 0x82 100

♦ U+00c8 Egrave latin capital letter e with
grave accent

♦ ♦ ♦ 0xe9 203

♦ U+00c9 Eacute latin capital letter e with
acute accent

♦ ♦ ♦ 0x83 101

♦ U+00ca Ecircumflex latin capital letter e with
circumflex accent

♦ ♦ ♦ 0xe6 200

♦ U+00cb Edieresis latin capital letter e with
diaeresis

♦ ♦ ♦ 0xe8 202

♦ U+00cc Igrave latin capital letter i with
grave accent

♦ ♦ ♦ 0xed 207

Min Unicode PostScript Name Descriptive Name WGL4 UGL Win31 MacChar MacIndex

♦ - Glyph in character set Page 141
 - Glyph not accessible from Revision 1.66
 keyboard, only by PostScript name File Name: ttch04a.doc

♦ U+00cd Iacute latin capital letter i with
acute accent

♦ ♦ ♦ 0xea 204

♦ U+00ce Icircumflex latin capital letter i with
circumflex accent

♦ ♦ ♦ 0xeb 205

♦ U+00cf Idieresis latin capital letter i with
diaeresis

♦ ♦ ♦ 0xec 206

♦ U+00d0 Eth latin capital letter eth ♦ ♦ ♦  233
♦ U+00d1 Ntilde latin capital letter n with tilde ♦ ♦ ♦ 0x84 102
♦ U+00d2 Ograve latin capital letter o with

grave accent
♦ ♦ ♦ 0xf1 211

♦ U+00d3 Oacute latin capital letter o with
acute accent

♦ ♦ ♦ 0xee 208

♦ U+00d4 Ocircumflex latin capital letter o with
circumflex accent

♦ ♦ ♦ 0xef 209

♦ U+00d5 Otilde latin capital letter o with tilde ♦ ♦ ♦ 0xcd 175
♦ U+00d6 Odieresis latin capital letter o with

diaeresis
♦ ♦ ♦ 0x85 103

♦ U+00d7 multiply multiplication sign ♦ ♦ ♦  240
♦ U+00d8 Oslash latin capital letter o with

oblique stroke
♦ ♦ ♦ 0xaf 145

♦ U+00d9 Ugrave latin capital letter u with
grave accent

♦ ♦ ♦ 0xf4 214

♦ U+00da Uacute latin capital letter u with
acute accent

♦ ♦ ♦ 0xf2 212

♦ U+00db Ucircumflex latin capital letter u with
circumflex accent

♦ ♦ ♦ 0xf3 213

♦ U+00dc Udieresis latin capital letter u with
diaeresis

♦ ♦ ♦ 0x86 104

♦ U+00dd Yacute latin capital letter y with
acute accent

♦ ♦ ♦  235

♦ U+00de Thorn latin capital letter thorn ♦ ♦ ♦  237
♦ U+00df germandbls latin small letter sharp s ♦ ♦ ♦ 0xa7 137
♦ U+00e0 agrave latin small letter a with grave

accent
♦ ♦ ♦ 0x88 106

♦ U+00e1 aacute latin small letter a with acute
accent

♦ ♦ ♦ 0x87 105

♦ U+00e2 acircumflex latin small letter a with
circumflex accent

♦ ♦ ♦ 0x89 107

♦ U+00e3 atilde latin small letter a with tilde ♦ ♦ ♦ 0x8b 109
♦ U+00e4 adieresis latin small letter a with

diaeresis
♦ ♦ ♦ 0x8a 108

♦ U+00e5 aring latin small letter a with ring
above

♦ ♦ ♦ 0x8c 110

♦ U+00e6 ae latin small letter a with e ♦ ♦ ♦ 0xbe 160
♦ U+00e7 ccedilla latin small letter c with

cedilla
♦ ♦ ♦ 0x8d 111

♦ U+00e8 egrave latin small letter e with grave
accent

♦ ♦ ♦ 0x8f 113

♦ U+00e9 eacute latin small letter e with acute
accent

♦ ♦ ♦ 0x8e 112

♦ U+00ea ecircumflex latin small letter e with
circumflex accent

♦ ♦ ♦ 0x90 114

♦ U+00eb edieresis latin small letter e with
diaeresis

♦ ♦ ♦ 0x91 115

♦ U+00ec igrave latin small letter i with grave ♦ ♦ ♦ 0x93 117

Min Unicode PostScript Name Descriptive Name WGL4 UGL Win31 MacChar MacIndex

Page 142 ♦ - Glyph in character set
Revision 1.66  - Glyph not accessible from
File Name: ttch04a.doc keyboard, only by PostScript name

accent
♦ U+00ed iacute latin small letter i with acute

accent
♦ ♦ ♦ 0x92 116

♦ U+00ee icircumflex latin small letter i with
circumflex accent

♦ ♦ ♦ 0x94 118

♦ U+00ef idieresis latin small letter i with
diaeresis

♦ ♦ ♦ 0x95 119

♦ U+00f0 eth latin small letter eth ♦ ♦ ♦  234
♦ U+00f1 ntilde latin small letter n with tilde ♦ ♦ ♦ 0x96 120
♦ U+00f2 ograve latin small letter o with grave

accent
♦ ♦ ♦ 0x98 122

♦ U+00f3 oacute latin small letter o with acute
accent

♦ ♦ ♦ 0x97 121

♦ U+00f4 ocircumflex latin small letter o with
circumflex accent

♦ ♦ ♦ 0x99 123

♦ U+00f5 otilde latin small letter o with tilde ♦ ♦ ♦ 0x9b 125
♦ U+00f6 odieresis latin small letter o with

diaeresis
♦ ♦ ♦ 0x9a 124

♦ U+00f7 divide division sign ♦ ♦ ♦ 0xd6 184
♦ U+00f8 oslash latin small letter o with

oblique stroke
♦ ♦ ♦ 0xbf 161

♦ U+00f9 ugrave latin small letter u with grave
accent

♦ ♦ ♦ 0x9d 127

♦ U+00fa uacute latin small letter u with acute
accent

♦ ♦ ♦ 0x9c 126

♦ U+00fb ucircumflex latin small letter u with
circumflex accent

♦ ♦ ♦ 0x9e 128

♦ U+00fc udieresis latin small letter u with
diaeresis

♦ ♦ ♦ 0x9f 129

♦ U+00fd yacute latin small letter y with acute
accent

♦ ♦ ♦  236

♦ U+00fe thorn latin small letter thorn ♦ ♦ ♦  238
♦ U+00ff ydieresis latin small letter y with

diaeresis
♦ ♦ ♦ 0xd8 186

 U+0100 Amacron latin capital letter a with
macron

♦

 U+0101 amacron latin small letter a with
macron

♦

 U+0102 Abreve latin capital letter a with
breve

♦ ♦

 U+0103 abreve latin small letter a with breve ♦ ♦
 U+0104 Aogonek latin capital letter a with

ogonek
♦ ♦

 U+0105 aogonek latin small letter a with
ogonek

♦ ♦

♦ U+0106 Cacute latin capital letter c with
acute accent

♦ ♦  253

♦ U+0107 cacute latin small letter c with acute
accent

♦ ♦  254

 U+0108 Ccircumflex latin capital letter c with
hacek

♦

 U+0109 ccircumflex latin small letter c with hacek ♦
 U+010a Cdot latin capital letter c with dot

above
♦

 U+010b cdot latin small letter c with dot ♦

Min Unicode PostScript Name Descriptive Name WGL4 UGL Win31 MacChar MacIndex

♦ - Glyph in character set Page 143
 - Glyph not accessible from Revision 1.66
 keyboard, only by PostScript name File Name: ttch04a.doc

above
♦ U+010c Ccaron latin capital letter c with

caron
♦ ♦  255

♦ U+010d ccaron latin small letter c with caron ♦ ♦  256
 U+010e Dcaron latin capital letter d with

hacek
♦ ♦

 U+010f dcaron latin small letter d with
hacek

♦ ♦

 U+0110 Dslash latin capital letter d with
stroke

♦ ♦

♦ U+0111 dmacron latin small letter d with
stroke

♦ ♦  257

 U+0112 Emacron latin capital letter e with
macron

♦

 U+0113 emacron latin small letter e with
macron

♦

 U+0114 Ebreve latin capital letter e with
breve

♦

 U+0115 ebreve latin small letter e with breve ♦
 U+0116 Edot latin capital letter e with dot

above
♦

 U+0117 edot latin small letter e with dot
above

♦

 U+0118 Eogonek latin capital letter e with
ogenek

♦ ♦

 U+0119 eogonek latin small letter e with
ogenek

♦ ♦

 U+011a Ecaron latin capital letter e with
hacek

♦ ♦

 U+011b ecaron latin small letter e with
hacek

♦ ♦

 U+011c Gcircumflex latin capital letter g with
circumflex

♦

 U+011d gcircumflex latin small letter g with
circumflex

♦

♦ U+011e Gbreve latin capital letter g with
breve

♦ ♦  248

♦ U+011f gbreve latin small letter g with breve ♦ ♦  249
 U+0120 Gdot latin capital letter g with dot

above
♦

 U+0121 gdot latin small letter g with dot
above

♦

 U+0122 Gcedilla latin capital letter g with
cedilla

♦

 U+0123 gcedilla latin small letter g with
cedilla

♦

 U+0124 Hcircumflex latin capital letter h with
circumflex

♦

 U+0125 hcircumflex latin small letter h with
circumflex

♦

 U+0126 Hbar latin capital letter h with
stroke

♦

 U+0127 hbar latin small letter h with
stroke

♦

 U+0128 Itilde latin capital letter i with tilde ♦

Min Unicode PostScript Name Descriptive Name WGL4 UGL Win31 MacChar MacIndex

Page 144 ♦ - Glyph in character set
Revision 1.66  - Glyph not accessible from
File Name: ttch04a.doc keyboard, only by PostScript name

 U+0129 itilde latin small letter i with tilde ♦
 U+012a Imacron latin capital letter i with

macron
♦

 U+012b imacron latin small letter i with
macron

♦

 U+012c Ibreve latin capital letter i with
breve

♦

 U+012d ibreve latin small letter i with breve ♦
 U+012e Iogonek latin capital letter i with

ogonek
♦

 U+012f iogonek latin small letter i with
ogonek

♦

♦ U+0130 Idot latin capital letter i with dot
above

♦ ♦  250

♦ U+0131 dotlessi latin small letter i without dot
above

♦ ♦ 0xf5 215

 U+0132 IJ latin capital ligature ij ♦
 U+0133 ij latin small ligature ij ♦
 U+0134 Jcircumflex latin capital letter j with

circumflex
♦

 U+0135 jcircumflex latin small letter j with
circumflex

♦

 U+0136 Kcedilla latin capital letter k with
cedilla

♦

 U+0137 kcedilla latin small letter k with
cedilla

♦

 U+0138 kgreenlandic latin small letter kra ♦
 U+0139 Lacute latin capital letter l with

acute accent
♦ ♦

 U+013a lacute latin small letter l with acute
accent

♦ ♦

 U+013b Lcedilla latin capital letter l with
cedilla

♦

 U+013c lcedilla latin small letter l with cedilla ♦
 U+013d Lcaron latin capital letter l with

hacek
♦ ♦

 U+013e lcaron latin small letter l with hacek ♦ ♦
 U+013f Ldot latin capital letter l with

middle dot
♦ ♦

 U+0140 ldot latin small letter l with middle
dot

♦ ♦

♦ U+0141 Lslash latin capital letter l with
stroke

♦ ♦  226

♦ U+0142 lslash latin small letter l with stroke ♦ ♦  227
 U+0143 Nacute latin capital letter n with

acute accent
♦ ♦

 U+0144 nacute latin small letter n with acute
accent

♦ ♦

 U+0145 Ncedilla latin capital letter n with
cedilla

♦

 U+0146 ncedilla latin small letter n with
cedilla

♦

 U+0147 Ncaron latin capital letter n with
hacek

♦ ♦

 U+0148 ncaron latin small letter n with ♦ ♦

Min Unicode PostScript Name Descriptive Name WGL4 UGL Win31 MacChar MacIndex

♦ - Glyph in character set Page 145
 - Glyph not accessible from Revision 1.66
 keyboard, only by PostScript name File Name: ttch04a.doc

hacek
 U+0149 napostrophe latin small letter n preceded

by apostrophe
♦

 U+014a Eng latin capital letter eng ♦
 U+014b eng latin small letter eng ♦
 U+014c Omacron latin capital letter o with

macron
♦

 U+014d omacron latin small letter o with
macron

♦

 U+014e Obreve latin capital letter o with
breve

♦

 U+014f obreve latin small letter o with breve ♦
 U+0150 Odblacute latin capital letter o with

double acute accent
♦ ♦

 U+0151 odblacute latin small letter o with
double acute accent

♦ ♦

♦ U+0152 OE latin capital ligature o with e ♦ ♦ ♦ 0xce 176
♦ U+0153 oe latin small ligature o with e ♦ ♦ ♦ 0xcf 177
 U+0154 Racute latin capital letter r with

acute accent
♦ ♦

 U+0155 racute latin small letter r with acute
accent

♦ ♦

 U+0156 Rcedilla latin capital letter r with
cedilla

♦

 U+0157 rcedilla latin small letter r with cedilla ♦
 U+0158 Rcaron latin capital letter r with

hacek
♦ ♦

 U+0159 rcaron latin small letter r with hacek ♦ ♦
 U+015a Sacute latin capital letter s with

acute accent
♦ ♦

 U+015b sacute latin small letter s with acute
accent

♦ ♦

 U+015c Scircumflex latin capital letter s with
circumflex

♦

 U+015d scircumflex latin small letter s with
circumflex

♦

♦ U+015e Scedilla latin capital letter s with
cedilla

♦ ♦  251

♦ U+015f scedilla latin small letter s with
cedilla

♦ ♦  252

♦ U+0160 Scaron latin capital letter s with
hacek

♦ ♦ ♦  228

♦ U+0161 scaron latin small letter s with hacek ♦ ♦ ♦  229
 U+0162 Tcedilla latin capital letter t with

cedilla
♦ ♦

 U+0163 tcedilla latin small letter t with cedilla ♦ ♦
 U+0164 Tcaron latin capital letter t with

hacek
♦ ♦

 U+0165 tcaron latin small letter t with hacek ♦ ♦
 U+0166 Tbar latin capital letter t with

stroke
♦

 U+0167 tbar latin small letter t with stroke ♦
 U+0168 Utilde latin capital letter u with tilde ♦
 U+0169 utilde latin small letter u with tilde ♦
 U+016a Umacron latin capital letter u with ♦

Min Unicode PostScript Name Descriptive Name WGL4 UGL Win31 MacChar MacIndex

Page 146 ♦ - Glyph in character set
Revision 1.66  - Glyph not accessible from
File Name: ttch04a.doc keyboard, only by PostScript name

macron
 U+016b umacron latin small letter u with

macron
♦

 U+016c Ubreve latin capital letter u with
breve

♦

 U+016d ubreve latin small letter u with breve ♦
 U+016e Uring latin capital letter u with ring

above
♦ ♦

 U+016f uring latin small letter u with ring
above

♦ ♦

 U+0170 Udblacute latin capital letter u with
double acute accent

♦ ♦

 U+0171 udblacute latin small letter u with
double acute accent

♦ ♦

 U+0172 Uogonek latin capital letter u with
ogonek

♦

 U+0173 uogonek latin small letter u with
ogonek

♦

 U+0174 Wcircumflex latin capital letter w with
circumflex

♦

 U+0175 wcircumflex latin cmall letter w with
circumflex

♦

 U+0176 Ycircumflex latin capital letter y with
circumflex

♦

 U+0177 ycircumflex latin small letter y with
circumflex

♦

♦ U+0178 Ydieresis latin capital letter y with
diaeresis

♦ ♦ ♦ 0xd9 187

 U+0179 Zacute latin capital letter z with
acute accent

♦ ♦

 U+017a zacute latin small letter z with acute
accent

♦ ♦

 U+017b Zdot latin capital letter z with dot
above

♦ ♦

 U+017c zdot latin small letter z with dot
above

♦ ♦

♦ U+017d Zcaron latin capital letter z with
hacek

♦ ♦  230

♦ U+017e zcaron latin small letter z with hacek ♦ ♦  231
 U+017f longs latin small letter long s ♦

♦ U+0192 florin latin small letter script f,florin
sign

♦ ♦ 0xc4 166

 U+01fa Aringacute latin capital letter a with ring
above and acute

♦

 U+01fb aringacute latin small letter a with ring
above and acute

♦

 U+01fc AEacute latin capital ligature ae with
acute

♦

 U+01fd aeacute latin small ligature ae with
acute

♦

 U+01fe Oslashacute latin capital letter o with
stroke and acute

♦

 U+01ff oslashacute latin small letter o with
stroke and acute

♦

♦ U+02c6 circumflex nonspacing circumflex
accent

♦ ♦ 0xf6 216

Min Unicode PostScript Name Descriptive Name WGL4 UGL Win31 MacChar MacIndex

♦ - Glyph in character set Page 147
 - Glyph not accessible from Revision 1.66
 keyboard, only by PostScript name File Name: ttch04a.doc

♦ U+02c7 caron modifier letter hacek ♦ ♦ 0xff 225
 U+02c9 macron modifier letter macron ♦ ♦
 U+02d6 tilde nonspacing tilde 0xf7 217

♦ U+02d8 breve breve ♦ ♦ 0xf9 219
♦ U+02d9 dotaccent dot above ♦ ♦ 0xfa 220
♦ U+02da ring ring above ♦ ♦ 0xfb 221
♦ U+02db ogonek ogonek ♦ ♦ 0xfe 224
♦ U+02dc tilde nonspacing tilde ♦ ♦ ♦
♦ U+02dd hungarumlaut modifier letter double prime ♦ ♦ 0xfd 223
 U+0384 tonos greek tonos ♦
 U+0385 dieresistonos greek dialytika tonos ♦
 U+0386 Alphatonos greek capital letter alpha

with tonos
♦

 U+0387 anoteleia greek ano teleia ♦
 U+0388 Epsilontonos greek capital letter epsilon

with tonos
♦

 U+0389 Etatonos greek capital letter eta with
tonos

♦

 U+038a Iotatonos greek capital letter iota with
tonos

♦

 U+038c Omicrontonos greek capital letter omicron
with tonos

♦

 U+038e Upsilontonos greek capital letter upsilon
with tonos

♦

 U+038f Omegatonos greek capital letter omega
with tonos

♦

 U+0390
iotadieresistonos

greek small letter iota with
dialytika and tonos

♦

 U+0391 Alpha greek capital letter alpha ♦
 U+0392 Beta greek capital letter beta ♦
 U+0393 Gamma greek capital letter gamma ♦ ♦
 U+0394 Delta greek capital letter delta ♦
 U+0395 Epsilon greek capital letter epsilon ♦
 U+0396 Zeta greek capital letter zeta ♦
 U+0397 Eta greek capital letter eta ♦
 U+0398 Theta greek capital letter theta ♦ ♦
 U+0399 Iota greek capital letter iota ♦
 U+039a Kappa greek capital letter kappa ♦
 U+039b Lambda greek capital letter lamda ♦
 U+039c Mu greek capital letter mu ♦
 U+039d Nu greek capital letter nu ♦
 U+039e Xi greek capital letter xi ♦
 U+039f Omicron greek capital letter omicron ♦
 U+03a0 Pi greek capital letter pi ♦
 U+03a1 Rho greek capital letter rho ♦
 U+03a3 Sigma greek capital letter sigma ♦
 U+03a4 Tau greek capital letter tau ♦
 U+03a5 Upsilon greek capital letter upsilon ♦
 U+03a6 Phi greek capital letter phi ♦ ♦
 U+03a7 Chi greek capital letter chi ♦
 U+03a8 Psi greek capital letter psi ♦
 U+03a9 Omega greek capital letter omega ♦
 U+03aa Iotadieresis greek capital letter iota with ♦

Min Unicode PostScript Name Descriptive Name WGL4 UGL Win31 MacChar MacIndex

Page 148 ♦ - Glyph in character set
Revision 1.66  - Glyph not accessible from
File Name: ttch04a.doc keyboard, only by PostScript name

dialytika
 U+03ab Upsilondieresis greek capital letter upsilon

with dialytika
♦

 U+03ac alphatonos greek small letter alpha with
tonos

♦

 U+03ad epsilontonos greek small letter epsilon
with tonos

♦

 U+03ae etatonos greek small letter eta with
tonos

♦

 U+03af iotatonos greek small letter iota with
tonos

♦

 U+03b0 upsilon-
dieresistonos

greek small letter upsilon
with dialytika and tonos

♦

 U+03b1 alpha greek small letter alpha ♦ ♦
 U+03b2 beta greek small letter beta ♦
 U+03b3 gamma greek small letter gamma ♦
 U+03b4 delta greek small letter delta ♦ ♦
 U+03b5 epsilon greek small letter epsilon ♦ ♦
 U+03b6 zeta greek small letter zeta ♦
 U+03b7 eta greek small letter eta ♦
 U+03b8 theta greek small letter theta ♦
 U+03b9 iota greek small letter iota ♦
 U+03ba kappa greek small letter kappa ♦
 U+03bb lambda greek small letter lamda ♦
 U+03bc mu greek small letter mu ♦
 U+03bd nu greek small letter nu ♦
 U+03be xi greek small letter xi ♦
 U+03bf omicron greek small letter omicron ♦

♦ U+03c0 pi greek small letter pi ♦ ♦ 0xb9 155
 U+03c1 rho greek small letter rho ♦
 U+03c2 sigma1 greek small letter final sigma ♦
 U+03c3 sigma greek small letter sigma ♦ ♦
 U+03c4 tau greek small letter tau ♦ ♦
 U+03c5 upsilon greek small letter upsilon ♦
 U+03c6 phi greek small letter phi ♦ ♦
 U+03c7 chi greek small letter chi ♦
 U+03c8 psi greek small letter psi ♦
 U+03c9 omega greek small letter omega ♦
 U+03ca iotadieresis greek small letter iota with

dialytika
♦

 U+03cb upsilondieresis greek small letter upsilon
with dialytika

♦

 U+03cc omicrontonos greek small letter omicron
with tonos

♦

 U+03cd upsilontonos greek small letter upsilon
with tonos

♦

 U+03ce omegatonos greek small letter omega
with tonos

♦

 U+0401 afii10023 cyrillic capital letter io ♦
 U+0402 afii10051 cyrillic capital letter dje ♦
 U+0403 afii10052 cyrillic capital letter gje ♦
 U+0404 afii10053 cyrillic capital letter ukrainian

ie
♦

Min Unicode PostScript Name Descriptive Name WGL4 UGL Win31 MacChar MacIndex

♦ - Glyph in character set Page 149
 - Glyph not accessible from Revision 1.66
 keyboard, only by PostScript name File Name: ttch04a.doc

 U+0405 afii10054 cyrillic capital letter dze ♦
 U+0406 afii10055 cyrillic capital letter

byelorussian-ukrainian i
♦

 U+0407 afii10056 cyrillic capital letter yi ♦
 U+0408 afii10057 cyrillic capital letter je ♦
 U+0409 afii10058 cyrillic capital letter lje ♦
 U+040a afii10059 cyrillic capital letter nje ♦
 U+040b afii10060 cyrillic capital letter tshe ♦
 U+040c afii10061 cyrillic capital letter kje ♦
 U+040e afii10062 cyrillic capital letter short u ♦
 U+040f afii10145 cyrillic capital letter dzhe ♦
 U+0410 afii10017 cyrillic capital letter a ♦
 U+0411 afii10018 cyrillic capital letter be ♦
 U+0412 afii10019 cyrillic capital letter ve ♦
 U+0413 afii10020 cyrillic capital letter ghe ♦
 U+0414 afii10021 cyrillic capital letter de ♦
 U+0415 afii10022 cyrillic capital letter ie ♦
 U+0416 afii10024 cyrillic capital letter zhe ♦
 U+0417 afii10025 cyrillic capital letter ze ♦
 U+0418 afii10026 cyrillic capital letter i ♦
 U+0419 afii10027 cyrillic capital letter short i ♦
 U+041a afii10028 cyrillic capital letter ka ♦
 U+041b afii10029 cyrillic capital letter el ♦
 U+041c afii10030 cyrillic capital letter em ♦
 U+041d afii10031 cyrillic capital letter en ♦
 U+041e afii10032 cyrillic capital letter o ♦
 U+041f afii10033 cyrillic capital letter pe ♦
 U+0420 afii10034 cyrillic capital letter er ♦
 U+0421 afii10035 cyrillic capital letter es ♦
 U+0422 afii10036 cyrillic capital letter te ♦
 U+0423 afii10037 cyrillic capital letter u ♦
 U+0424 afii10038 cyrillic capital letter ef ♦
 U+0425 afii10039 cyrillic capital letter ha ♦
 U+0426 afii10040 cyrillic capital letter tse ♦
 U+0427 afii10041 cyrillic capital letter che ♦
 U+0428 afii10042 cyrillic capital letter sha ♦
 U+0429 afii10043 cyrillic capital letter shcha ♦
 U+042a afii10044 cyrillic capital letter hard

sign
♦

 U+042b afii10045 cyrillic capital letter yeru ♦
 U+042c afii10046 cyrillic capital letter soft sign ♦
 U+042d afii10047 cyrillic capital letter e ♦
 U+042e afii10048 cyrillic capital letter yu ♦
 U+042f afii10049 cyrillic capital letter ya ♦
 U+0430 afii10065 cyrillic small letter a ♦
 U+0431 afii10066 cyrillic small letter be ♦
 U+0432 afii10067 cyrillic small letter ve ♦
 U+0433 afii10068 cyrillic small letter ghe ♦
 U+0434 afii10069 cyrillic small letter de ♦
 U+0435 afii10070 cyrillic small letter ie ♦
 U+0436 afii10072 cyrillic small letter zhe ♦
 U+0437 afii10073 cyrillic small letter ze ♦

Min Unicode PostScript Name Descriptive Name WGL4 UGL Win31 MacChar MacIndex

Page 150 ♦ - Glyph in character set
Revision 1.66  - Glyph not accessible from
File Name: ttch04a.doc keyboard, only by PostScript name

 U+0438 afii10074 cyrillic small letter i ♦
 U+0439 afii10075 cyrillic small letter short i ♦
 U+043a afii10076 cyrillic small letter ka ♦
 U+043b afii10077 cyrillic small letter el ♦
 U+043c afii10078 cyrillic small letter em ♦
 U+043d afii10079 cyrillic small letter en ♦
 U+043e afii10080 cyrillic small letter o ♦
 U+043f afii10081 cyrillic small letter pe ♦
 U+0440 afii10082 cyrillic small letter er ♦
 U+0441 afii10083 cyrillic small letter es ♦
 U+0442 afii10084 cyrillic small letter te ♦
 U+0443 afii10085 cyrillic small letter u ♦
 U+0444 afii10086 cyrillic small letter ef ♦
 U+0445 afii10087 cyrillic small letter ha ♦
 U+0446 afii10088 cyrillic small letter tse ♦
 U+0447 afii10089 cyrillic small letter che ♦
 U+0448 afii10090 cyrillic small letter sha ♦
 U+0449 afii10091 cyrillic small letter shcha ♦
 U+044a afii10092 cyrillic small letter hard sign ♦
 U+044b afii10093 cyrillic small letter yeru ♦
 U+044c afii10094 cyrillic small letter soft sign ♦
 U+044d afii10095 cyrillic small letter e ♦
 U+044e afii10096 cyrillic small letter yu ♦
 U+044f afii10097 cyrillic small letter ya ♦
 U+0451 afii10071 cyrillic small letter io ♦
 U+0452 afii10099 cyrillic small letter dje ♦
 U+0453 afii10100 cyrillic small letter gje ♦
 U+0454 afii10101 cyrillic small letter ukrainian

ie
♦

 U+0455 afii10102 cyrillic small letter dze ♦
 U+0456 afii10103 cyrillic small letter

byelorussian-ukrainian i
♦

 U+0457 afii10104 cyrillic small letter yi ♦
 U+0458 afii10105 cyrillic small letter je ♦
 U+0459 afii10106 cyrillic small letter lje ♦
 U+045a afii10107 cyrillic small letter nje ♦
 U+045b afii10108 cyrillic small letter tshe ♦
 U+045c afii10109 cyrillic small letter kje ♦
 U+045e afii10110 cyrillic small letter short u ♦
 U+045f afii10193 cyrillic small letter dzhe ♦
 U+0490 afii10050 cyrillic capital letter ghe with

upturn
♦

 U+0491 afii10098 cyrillic small letter ghe with
upturn

♦

 U+1e80 Wgrave latin capital letter w with
grave

♦

 U+1e81 wgrave latin small letter w with
grave

♦

 U+1e82 Wacute latin capital letter w with
acute

♦

 U+1e83 wacute latin small letter w with acute ♦
 U+1e84 Wdieresis latin capital letter w with

diaeresis
♦

Min Unicode PostScript Name Descriptive Name WGL4 UGL Win31 MacChar MacIndex

♦ - Glyph in character set Page 151
 - Glyph not accessible from Revision 1.66
 keyboard, only by PostScript name File Name: ttch04a.doc

 U+1e85 wdieresis latin small letter w with
diaeresis

♦

 U+1ef2 Ygrave latin capital letter y with
grave

♦

 U+1ef3 ygrave latin small letter y with grave ♦
♦ U+2013 endash en dash ♦ ♦ ♦ 0xd0 178
♦ U+2014 emdash em dash ♦ ♦ ♦ 0xd1 179
 U+2015 afii00208 horizontal bar ♦
 U+2017 underscoredbl double low line ♦ ♦

♦ U+2018 quoteleft left single quotation mark ♦ ♦ ♦ 0xd4 182
♦ U+2019 quoteright right single quotation mark ♦ ♦ ♦ 0xd5 183
♦ U+201a quotesinglbase single low-9 quotation mark ♦ ♦ ♦ 0xe2 196
 U+201b quotereversed single high-reversed-9

quotation mark
♦

♦ U+201c quotedblleft left double quotation mark ♦ ♦ ♦ 0xd2 180
♦ U+201d quotedblright right double quotation mark ♦ ♦ ♦ 0xd3 181
♦ U+201e quotedblbase double low-9 quotation mark ♦ ♦ ♦ 0xe3 197
♦ U+2020 dagger dagger ♦ ♦ ♦ 0xa0 130
♦ U+2021 daggerdbl double dagger ♦ ♦ ♦ 0xe0 194
♦ U+2022 bullet bullet ♦ ♦ ♦ 0xa5 135
♦ U+2026 ellipsis horizontal ellipsis ♦ ♦ ♦ 0xc9 171
♦ U+2030 perthousand per mille sign ♦ ♦ ♦ 0xe4 198
 U+2032 minute prime ♦
 U+2033 second double prime ♦

♦ U+2039 guilsinglleft single left-pointing angle
quotation mark

♦ ♦ ♦ 0xdc 190

♦ U+203a guilsinglright single right-pointing angle
quotation mark

♦ ♦ ♦ 0xdd 191

 U+203c exclamdbl double exclamation mark ♦ ♦
 U+203e radicalex overline ♦
 U+2044 fraction fraction slash ♦
 U+207f nsuperior superscript latin small letter

n
♦ ♦

♦ U+20a3 franc french franc sign ♦ ♦  247
 U+20a4 afii08941 lira sign ♦
 U+20a7 peseta peseta sign ♦ ♦
 U+2105 afii61248 care of ♦
 U+2113 afii61289 script small l ♦
 U+2116 afii61352 numero sign ♦

♦ U+2122 trademark trademark sign ♦ ♦ ♦ 0xaa 140
♦ U+2126 Ohm ohm sign ♦ ♦ 0xbd 159
 U+212e estimated estimated symbol ♦
 U+215b oneeighth vulgar fraction one eighth ♦
 U+215c threeeighths vulgar fraction three eighths ♦
 U+215d fiveeighths vulgar fraction five eighths ♦
 U+215e seveneighths vulgar fraction seven eighths ♦
 U+2190 arrowleft leftwards arrow ♦ ♦
 U+2191 arrowup upwards arrow ♦ ♦
 U+2192 arrowright rightwards arrow ♦ ♦
 U+2193 arrowdown downwards arrow ♦ ♦
 U+2194 arrowboth left right arrow ♦ ♦
 U+2195 arrowupdn up down arrow ♦ ♦

Min Unicode PostScript Name Descriptive Name WGL4 UGL Win31 MacChar MacIndex

Page 152 ♦ - Glyph in character set
Revision 1.66  - Glyph not accessible from
File Name: ttch04a.doc keyboard, only by PostScript name

 U+21a8 arrowupdnbse up down arrow with base ♦ ♦
♦ U+2202 partialdiff partial differential ♦ ♦ 0xb6 152
♦ U+2206 increment increment ♦ ♦ 0xc6 168
♦ U+220f product n-ary product ♦ ♦ 0xb8 154
♦ U+2211 summation n-ary summation ♦ ♦ 0xb7 153
♦ U+2212 minus minus sign ♦ ♦  239
♦ U+2215 fraction division slash ♦ 0xda 188
♦ U+2219 periodcentered bullet operator ♦ ♦ 0xe1 195
♦ U+221a radical square root ♦ ♦ 0xc3 165
♦ U+221e infinity infinity ♦ ♦ 0xb0 146
 U+221f orthogonal right angle ♦ ♦
 U+2229 intersection intersection ♦ ♦

♦ U+222b integral integral ♦ ♦ 0xba 156
♦ U+2248 approxequal almost equal to ♦ ♦ 0xc5 167
♦ U+2260 notequal not equal to ♦ ♦ 0xad 143
 U+2261 equivalence identical to ♦ ♦

♦ U+2264 lessequal less-than or equal to ♦ ♦ 0xb2 148
♦ U+2265 greaterequal greater-than or equal to ♦ ♦ 0xb3 149
 U+2302 house house ♦ ♦
 U+2310 revlogicalnot reversed not sign ♦ ♦
 U+2320 integraltp top half integral ♦ ♦
 U+2321 integralbt bottom half integral ♦ ♦
 U+2500 SF100000 box drawings light horizontal ♦ ♦
 U+2502 SF110000 box drawings light vertical ♦ ♦
 U+250c SF010000 box drawings light down and

right
♦ ♦

 U+2510 SF030000 box drawings light down and
left

♦ ♦

 U+2514 SF020000 box drawings light up and
right

♦ ♦

 U+2518 SF040000 box drawings light up and
left

♦ ♦

 U+251c SF080000 box drawings light vertical
and right

♦ ♦

 U+2524 SF090000 box drawings light vertical
and left

♦ ♦

 U+252c SF060000 box drawings light down and
horizontal

♦ ♦

 U+2534 SF070000 box drawings light up and
horizontal

♦ ♦

 U+253c SF050000 box drawings light vertical
and horizontal

♦ ♦

 U+2550 SF430000 box drawings double
horizontal

♦ ♦

 U+2551 SF240000 box drawings double vertical ♦ ♦
 U+2552 SF510000 box drawings down single

and right double
♦ ♦

 U+2553 SF520000 box drawings down double
and right single

♦ ♦

 U+2554 SF390000 box drawings double down
and right

♦ ♦

 U+2555 SF220000 box drawings down single
and left double

♦ ♦

 U+2556 SF210000 box drawings down double ♦ ♦

Min Unicode PostScript Name Descriptive Name WGL4 UGL Win31 MacChar MacIndex

♦ - Glyph in character set Page 153
 - Glyph not accessible from Revision 1.66
 keyboard, only by PostScript name File Name: ttch04a.doc

and left single
 U+2557 SF250000 box drawings double down

and left
♦ ♦

 U+2558 SF500000 box drawings up single and
right double

♦ ♦

 U+2559 SF490000 box drawings up double and
right single

♦ ♦

 U+255a SF380000 box drawings double up and
right

♦ ♦

 U+255b SF280000 box drawings up single and
left double

♦ ♦

 U+255c SF270000 box drawings up double and
left single

♦ ♦

 U+255d SF260000 box drawings double up and
left

♦ ♦

 U+255e SF360000 box drawings vertical single
and right double

♦ ♦

 U+255f SF370000 box drawings vertical double
and right single

♦ ♦

 U+2560 SF420000 box drawings double vertical
and right

♦ ♦

 U+2561 SF190000 box drawings vertical single
and left double

♦ ♦

 U+2562 SF200000 box drawings vertical double
and left single

♦ ♦

 U+2563 SF230000 box drawings double vertical
and left

♦ ♦

 U+2564 SF470000 box drawings down single
and horizontal double

♦ ♦

 U+2565 SF480000 box drawings down double
and horizontal single

♦ ♦

 U+2566 SF410000 box drawings double down
and horizontal

♦ ♦

 U+2567 SF450000 box drawings up single and
horizontal double

♦ ♦

 U+2568 SF460000 box drawings up double and
horizontal single

♦ ♦

 U+2569 SF400000 box drawings double up and
horizontal

♦ ♦

 U+256a SF540000 box drawings vertical single
and horizontal double

♦ ♦

 U+256b SF530000 box drawings vertical double
and horizontal single

♦ ♦

 U+256c SF440000 box drawings double vertical
and horizontal

♦ ♦

 U+2580 upblock upper half block ♦
 U+2584 dnblock lower half block ♦
 U+2588 block full block ♦
 U+258c lfblock left half block ♦
 U+2590 rtblock right half block ♦
 U+2591 ltshade light shade ♦
 U+2592 shade medium shade ♦
 U+2593 dkshade dark shade ♦
 U+25a0 filledbox black square ♦
 U+25a1 H22073 white square ♦

Min Unicode PostScript Name Descriptive Name WGL4 UGL Win31 MacChar MacIndex

Page 154 ♦ - Glyph in character set
Revision 1.66  - Glyph not accessible from
File Name: ttch04a.doc keyboard, only by PostScript name

 U+25aa H18543 black small square ♦
 U+25ab H18551 white small square ♦
 U+25ac filledrect black rectangle ♦
 U+25b2 triagup black up-pointing triangle ♦
 U+25ba triagrt black right-pointing pointer ♦
 U+25bc triagdn black down-pointing triangle ♦
 U+25c4 triaglf black left-pointing pointer ♦

♦ U+25ca lozenge lozenge ♦ 0xd7 185
 U+25cb circle white circle ♦
 U+25cf H18533 black circle ♦
 U+25d8 invbullet inverse bullet ♦
 U+25d9 invcircle inverse white circle ♦
 U+25e6 openbullet white bullet ♦
 U+263a smileface white smiling face ♦
 U+263b invsmileface black smiling face ♦
 U+263c sun white sun with rays ♦
 U+2640 female female sign ♦
 U+2642 male male sign ♦
 U+2660 spade black spade suit ♦
 U+2663 club black club suit ♦
 U+2665 heart black heart suit ♦
 U+2666 diamond black diamond suit ♦
 U+266a musicalnote eighth note ♦
 U+266b musicalnotedbl beamed eighth notes ♦

♦ U+f000 applelogo apple logo 0xf0 210
♦ U+f001 fi fi ligature 1 ♦ 0xde 192
♦ U+f002 fl fl ligature ♦ 2 0xdf 193
♦ U+fb01 fi fi ligature ♦ 0xde 192
♦ U+fb02 fl fl ligature ♦ 0xdf 193

1 In order to preserve compatibility with HP printers, the fi ligature has two different unicode values associated with
it, yet references a single glyph.
2 In order to preserve compatibility with HP printers, the fl ligature has two different unicode values associated with
it, yet references a single glyph.

Chapter 5

Revision 1.66 Page 163
File Name: ttch05.doc

Instructing Glyphs

This chapter gives an overview of the fundamental tasks involved in
instructing a glyph.

Choosing a scan conversion setting
One of the key decisions to be made in instructing a TrueType font is the
choice of scan conversion mode. Font designers can choose between a fast
scan conversion mode and a dropout control scan conversion mode. This
choice is made by setting the value of the Graphics State variable
scan_control. The interpreter considers each of three conditions in
determining whether dropout control mode will be used:
• Is the glyph rotated?
• Is the glyph stretched?
• Is the current setting for ppem less than a specified ppem value?

It is also possible to turn dropout control off completely.

Controlling rounding
The TrueType interpreter uses the round_state to determine the manner in
which values will be rounded. Instructions are used to set the value of the
round_state, a Graphics State variable. The setting of round_state determines
how values will be rounded by the interpreter.

The instruction set makes it easy to set a number of predefined round states
that will round values to the grid, pixel centers (half grid), or to either the grid
or pixel centers. It is also possible to specify that values should be rounded
down or rounded up. If none of the predefined rounding options suffices, the
SROUND instructions provide very fine control of the rounding of values,
making it possible to choose a phase, threshold, and period for the rounding
function. The S45ROUND allows the same fine control as SROUND but is
used when movement is along a 45 degree axis with the x-y plane.

A number of instructions round the value they obtain before moving any
points. The effect of using any of the MDRP, MIRP, MIAP, MDAP, or
ROUND instructions depends on the value of the round_state graphics state
variable along with that of the control_value_cut_in.

Instructing Glyphs

Page 164 Revision 1.66
 File Name: ttch05.doc

The ROFF instruction turns off rounding but allows the instruction to continue
looking at the cut-in value.

Points
Outline points are specified by their location in the coordinate grid and by
whether they are on or off curve points. Managing a point means managing its
position in space and its status as an on or off curve point. The interpreter uses
zones and reference points to manage the set of points that comprise the
current glyph and to refer to specific points within that set.

Zones

Any point the font scaler interpreter references is in one of two zones, that is
one of two sets of points that potentially make up a glyph description. The
first of these referenced zones is zone 1 (Z1) and always contains the glyph
currently being interpreted.

The second, zone 0 (Z0), is used for temporary storage of point coordinates
that do not correspond to any actual points in the glyph in zone 1. Zone 0 is
useful when there is a need to manipulate a point that does not exist on the
glyph or if you need to remember an intermediate point position. (This is the
twilight zone.)

The profile table establishes the maximum number of twilight points. These
are numbers 0 through maxTwilightPoints -1 and are all set to the origin.
These points can be moved in the same manner as any of the points in zone 1.

Points in zone 0 are moved to useful positions by using the MIAP and MIRP
instructions and setting gep0 to point to Z0. Frequently, it is useful to set
points in Z0 to key metric positions for the font.

Zone pointers

Three zone pointers, gep0, gep1 and gep2 are used to reference either of zone
0 or zone 1. Initially, all three zone pointers will point to zone 1.

Instructing Glyphs

Revision 1.66 Page 165
File Name: ttch05.doc

Figure 2–1 gep0 and gep1 point to zone 1 (the current glyph), gep2 points
to zone 0 (the twilight zone)

gep0

gep1

gep2 0

1

Graphics State

1

Z1 - the current glyph

0

Z0 - the twlight zone

1

Reference points

Zone pointers provide access to a group of points. Reference points provide
access to specific points within the group. The interpreter uses three numbered
reference points: rp0, rp1, and rp2. Each can be set to a number corresponding
to any of the outline points in the glyph in zone 1 or any of the points in zone
0.

As shown in the following figure, two different reference points can refer to
the same outline point.

Instructing Glyphs

Page 166 Revision 1.66
 File Name: ttch05.doc

Figure 2–2 A glyph pointed to by all three reference points

rp1

rp2

rp0

rp1

rp2

7

7

10

Graphics State

rp0

Collectively the zone pointers and reference points belong to the Graphics
State. Their values can be altered using instructions. Many TrueType
instructions rely on the graphics zone pointers and the reference points to fully
specify their actions.

Instructing Glyphs

Revision 1.66 Page 167
File Name: ttch05.doc

Phantom points

The font scaler will always add two “phantom points” to the end of every
outline. If the entire set of contours for a glyph requires “n” points (i.e.,
contour points numbered from 0 to n-1), then the scaler will add points n and
n+1. These points will be placed on the character baseline. Point “n” will
appear at the character origin, while “n+1” will be placed at the advance width
point.

Both points (n and n+1) may be controlled by TrueType instructions, with
corresponding effects on the sidebearings and advance width of the instructed
glyph. The side bearings and advance width that are computed using these
phantom points are called the device-specific widths (since they reflect the
results of grid fitting the width along with the glyph to the characteristics of
the device). The device-specific widths can be different from or identical to
the linearly scaled widths (obtained by simple scaling operations), depending
on the instructions applied to the phantom points.

Instructing Glyphs

Page 168 Revision 1.66
 File Name: ttch05.doc

Determining distances
At the lowest level, instructing a glyph means managing the distances between
points. The first step in managing a distance is often one of determining its
magnitude. For example, the first step in setting up the Control Value Table
involves measuring the distances between key points in a font. Measuring the
distance between two points in a glyph outline, while not difficult, must take
into account certain factors.

All distance measurements are made parallel to the projection_vector, a unit
vector whose direction will be indicated by a radius of a circle. Distances are
projected onto this vector and measured along it. Distances have a direction
that reflects the direction of the vector.

Measurements can refer to the distance between points in the original
character outline or between points in the grid-fitted outline. The instruction
that measures distances (MD) takes a Boolean value which determines
whether distances will be measured on the original outline or in the grid-fitted
outline.

Additionally, the TrueType interpreter distinguishes between three different
types of distances: black, white, and grey. Certain instructions (MDRP, MIRP,
ROUND) require that you specify a distance type.

Black distances cross only black areas; white distances, white areas; and grey
distances a combination of the two. In the following illustration, examples of
black, white, and grey distances are shown. The distance [2,1] is black; [3,0]
is grey and [4,6] is white.

Instructing Glyphs

Revision 1.66 Page 169
File Name: ttch05.doc

Figure 2–3 White, black and grey distances

W

G

B

The distance type is used in determining how the ROUND and instructions
that use the round_state will work with different output devices. For gray
distances, rounding is unaffected. Black or white distances, however, require a
compensation term be added or subtracted before rounding takes place. The
amount of compensation needed will be set by the device driver. For example,
if a printing engine has large pixels, the interpreter will compensate by
shrinking black distances and growing white distances. Gray distances,
because they combine black and white distances, will not change.

When the distance between two points is determined, the distance is always
measured in the direction specified by the projection_vector. Similarly, when
a point is moved, the distance it is moved will be measured along the
projection_vector. When thinking about how the interpreter will project a
distance, you may find it convenient to imagine that distances are projected
onto a ruled line that is parallel to the projection vector.

In the example shown, distances are measured along a line that is parallel to
the projection_vector. The distance from point 1 to point 2 must be projected
onto the projection_vector (that is a line parallel to the projection_vector)
before being measured. Since the line from point 1 to point 3 is parallel to the
vector, the projection of the distance can be thought of as simply the line from
1 to 3. Since the projection of the line from point 4 to point 1 is perpendicular
to the vector, the distance from point 4 to point 1 is zero despite the fact that
the points do not coincide.

Instructing Glyphs

Page 170 Revision 1.66
 File Name: ttch05.doc

4

1

2

3

P

d[1,2]
d[1,3]

The vector can be set in any direction desired. In a simple case, the projection
vector might be set to measure distance in the x-direction. In such a case, the
vector is parallel to the x-axis. Similarly to measure distance in the y-direction,
the projection_vector must be parallel to the y-axis.

To determine the distance between two points when the projection_vector
points in the positive x-direction, one need only take the difference between
their x coordinates. For example, the distance between the points (2, 1) and (7,
5) will be 5 units. Similarly, if the projection_vector pointed in the positive y-
direction, the distance between the points would be 4 units.

Note that because the projection_vector has a direction, distances have a sign.
Positive distances are those that are measured with the projection_vector.
Negative distances are those that are measured against the projection_vector.

In the following example, the projection_vector points east (in the direction of
the positive x-axis). The distance between points 1 and 2 is positive when
measured from west to east (from point 1 to point 2). It is negative when
measured from east to west (from point 2 to point 1).

Instructing Glyphs

Revision 1.66 Page 171
File Name: ttch05.doc

Figure 2–4 Measuring the distance between two points

1 P

2

+d

-d

In many cases, it is convenient to disregard the sign associated with a
distance. When the auto_flip Graphics State variable is set to TRUE, the sign
of CVT entries will be changed when needed to match the sign of the actual
measurement. This makes it possible to control distances measured with or
against the projection_vector with a single CVT entry.

Controlling movement
The direction in which points can move is established by the Graphics State
variable freedom_vector.

When a point is moved, its movement is constrained to be in a direction
parallel to that of the freedom_vector. Assuming the freedom_vector is
pointing in the direction of the positive x-axis (points east), movement in the
positive x-direction (from west to east) will have a positive magnitude.
Movement in the negative x-direction (from east to west) will have a negative
magnitude.

Moving points

WARNING: When moving points, it is illegal for the freedom_vector and
the projection_vector to be orthogonal.

There are several instructions that move outline points. These instructions
either move points relative to a reference point (the relative instructions) or
move points to a specified location in the coordinate system (the absolute
instructions).

The following figure illustrates a relative move. The point p is moved so that
it is at distance d from the reference point rp.

Instructing Glyphs

Page 172 Revision 1.66
 File Name: ttch05.doc

Figure 2–5 A relative move

F P

rp p p

d

The figure below illustrates an absolute move. Here the point p is moved a
distance d from its current position to a new position. The distance is
measured along the projection_vector. Movement is along the
freedom_vector.

Figure 2–6 An absolute move

F P

p p

d

In specifying a move, some move instructions use the outline distance (direct
instructions). Other instructions specify the value of d only indirectly by
referring to a value in the CVT or to a value on the stack (indirect
instructions).

In attempting to move a point you must first decide on the direction and
distance. Beyond this, decide whether you want to move that point an absolute
distance or relative to another point. If the move is relative be sure you know
which reference point will be used by the instruction. In some cases, you may
need to change the value of that reference point to the one you desire. Finally
decide whether you will use the original outline distance or will refer to a
distance in the CVT or the stack.

By choosing to use the original outline distance you can preserve the original
design distance between two points. In contrast, if you choose an indirect
method of specifying a distance, that is you use the CVT, you allow that
distance to be matched to some important value for that font or glyph.

Instructing Glyphs

Revision 1.66 Page 173
File Name: ttch05.doc

All of the move instructions with the sole exception of MSIRP are affected by
the round_state. The instructions allow you to choose whether they should
take into account the setting of the round_state variable. In effect this means
that, if rounding is turned on, the distance a point is actually moved will be
affected by the type of rounding that is performed.

In the example below, point p is moved distance d to a new location p' and
then rounded to the nearest grid boundary.

Figure 2–7 An absolute move with round_state set to round to grid

F P

p p'

d

Managing the direction of distances
The auto_flip variable owes its existence to the fact that the TrueType
interpreter distinguishes between distances measured in the direction of the
projection_vector (positive distances) and those that are measured in the
direction opposite to the projection_vector (negative distances).

The setting of the auto_flip Boolean determines whether the sign of values in
the Control Value Table is significant. If auto_flip is set to TRUE, the values
of CVT entries will be changed when necessary to match the sign of the actual
measurement. This makes it possible to control distances measured with or
against the projection vector.

Instructing Glyphs

Page 174 Revision 1.66
 File Name: ttch05.doc

For example, the CVT might contain an entry for uppercase stem widths. At
times it may be convenient to control widths from left to right while at other
times it may be convenient to control them from right to left. One case will
produce a positive distance, the other a negative distance. Without auto_flip it
would be necessary to have two CVT entries (+UC_Stem and –UC_Stem)
instead of just one. Setting auto_flip to TRUE makes the sign of the value
read from the CVT the same as the sign of the distance between the points we
are controlling in the original unmodified domain.

Generally, auto_flip is set to TRUE, but if it becomes necessary to distinguish
between a positive or negative distance, the variable must be set to FALSE.

Interpolating points
When instructions are used to change the position of a few of the points in a
character outline, the curves that make up the character may become kinked or
otherwise distorted. It may be desirable to smooth out the resulting curve. This
smoothing out process is actually a redistribution of all points that have not
been moved so that their positions relative to the moved points remain
consistent.

To assist in managing the shape of outlines, the interpreter uses the concept of
touching a point. Whenever an instruction has the effect of moving a point,
that point is marked as touched in the x-direction or y-direction or both. The
IUP instruction will affect only untouched points. It is possible to explicitly
untouch a point so that it will be affected by an interpolation instruction.

Maintaining minimum_distance
When the width of a glyph feature decreases below a certain size, rounded
values may become zero. Allowing values to round to zero can result in
certain glyph features disappearing. For example, a stem might disappear
entirely at small point sizes. By setting a minimum_distance of one pixel you
can assure that even at small sizes those features will not disappear.

In the example shown below, the minimum_distance value is used to ensure
that the stem of the r does not disappear at small sizes. By ensuring that the
distance from point 9 to point 10 is always at least one pixel, this goal is
accomplished.

Instructing Glyphs

Revision 1.66 Page 175
File Name: ttch05.doc

P

Controlling regularization using the cut_in
The TrueType language offers several means of coordinating values for glyph
features across a font. Such coordination results in a uniformity of appearance
known as regularization. Regularization is useful when the number of pixels
available for a feature or glyph are few in number. It prevents small
differences in the size of features from becoming vastly exaggerated by the
change in the placement of pixel centers within a glyph outline.
Regularization becomes a liability when small differences in the size or
placement of features can be effectively represented by the number of
available pixels.

TrueType allows you the best of two worlds in making it possible to
regularize features at small numbers of pixels per em while allowing the
outline to revert to the original design once a sufficient number of pixels is
available. There are two different ways to accomplish this goal. Each one uses
a cut_in value. The first method uses the Control Value Table and the
control_value_cut_in and allows you to coordinate values using entries in the
CVT. This method allows for a variety of values to be coordinated. The
second method takes regularization a step further and forces all values to
revert to a single value. It relies on the single_width_cut_in and the
single_width_value.

Instructing Glyphs

Page 176 Revision 1.66
 File Name: ttch05.doc

Control_value_cut_in

The control_value_cut_in makes it possible to limit the regularizing effects of
the CVT to cases where the difference between the table value and the
measurement taken from the original outline is sufficiently small. It allows the
interpreter to choose, at some sizes, to use the CVT value while, at other sizes,
to revert to the original outline. When the absolute difference between the
value in the table and the measurement directly from the outline is greater
than the cut_in value, the outline measurement is used.

The effect of the control_value_cut_in is to allow regularization below a
certain cut off point while allowing the subtlety of the design to take over at
larger sizes.

The cut_in value affects only instructions that refer to values in the CVT, the
so called indirect instructions, MIRP and MIAP, and only if the third Boolean
is set to TRUE.

CVT Value
Original
Outline
Value

|Diff|

cut_in1

|Diff| >
cut_in

use outline

|Diff| _
cut_in

use CVT
93 80 13 17/16 80 –
100 99 5/16 11/16 17/16 – 100
97 95 15/16 17/16 17/16 97

117/16 is the default value for the control_value_cut_in

Instructing Glyphs

Revision 1.66 Page 177
File Name: ttch05.doc

In the example shown, the capital J dips below the base line in the original
design. When the character is grid-fitted, however, the curve is held to the
baseline by an indirect instruction. That instruction references the CVT,
subject to the default cut_in value of 17/16. At this value the curve is held to
the base line through 81 pixels per em but reverts to its original design at 82
pixels per em as shown.

Figure 2–8 81 pixels per em (left) and 82 pixels per em (right)

The effect of the cut_in varies with its value. Decreasing the value of the
cut_in will have the effect of causing the outline to revert to the original
design at a smaller ppem value. Increasing the value of the cut_in will cause
the outline to revert to the original design at a higher ppem value.

The single_width_cut_in

The single_width_cut_in is the distance difference at which the interpreter
will ignore the values in the Control Value Table and in the outline in favor of
a single-width value. It allows features to revert to a single predetermined size
for small numbers of pixels per em.

Having all controlled glyph features assume the same dimensions might be an
advantage for certain fonts at very small grid sizes. The single_width_value is
used when the absolute difference between the single_width_value and the
original value is smaller than this single_width_cut_in.

Instructing Glyphs

Page 178 Revision 1.66
 File Name: ttch05.doc

The default value for the single_width_cut_in is zero. In effect, this means
that the default is ignore this cut_in value. Like the control_value_cut_in, the
single_width_cut_in only applies to the indirect instructions.

The single_width_value

The single_width_value is used when the difference between the Control
Value Table and the single_width_value is less than the single_width_cut_in.
For example, if the single_width_value were set to 2 pixels, features meeting
the single_width_cut_in test would be regularized to be 2 pixels wide.

Managing at specific sizes
Most TrueType instructions are independent of size. They are used to control
a feature over the full range of sizes. Occasionally, it is necessary to alter a
glyph outline at a specific size to include or exclude certain pixels. In other
words, occasionally it is desirable to make an exception to the outline that
would otherwise be produced by the other instructions. Such exceptions are
made using the DELTA instructions.

There are two types of DELTA instructions. The DELTAP instructions work
by moving points. The DELTAC instructions work by changing values in the
CVT.

For example, without a DELTA instruction the circumflex accent shrinks to a
single pixel at 9 ppem. Using DELTAs, the appearance is improved by
lowering points 5, 2 and 1 by one pixel at 9 ppem.

Note: DELTA instructions should be used sparingly, since they are associated with a
relatively high storage overhead. They can be useful for solving otherwise “impossible”
cases.

Instructing Glyphs

Revision 1.66 Page 179
File Name: ttch05.doc

The delta_base

The delta_base is the base value used to calculate the range of point sizes to
which a delta instruction will apply. Changing the delta_base allows you to
change the range of ppem sizes affected by each of the DELTA instructions.

The three pairs of DELTA instructions are grouped according to the range of
pixels they potentially affect, with each group beginning at 16 pixels per em
larger than the previous group. All DELTAC1 and DELTAP1 instructions
potentially can affect glyphs at sizes beginning at delta_base pixels per em
through delta_base plus 15 pixels per em. The DELTAP2 and DELTAC2
instructions affect the range beginning at delta_base plus 16 pixels per em.
The DELTAP3 and DELTAC3 instructions affect delta_base plus 32 pixels
per em.

The delta_shift

The delta_shift value is the power to which an exception is raised. By varying
the value of the delta_shift, you trade off fine control of outline movement
as opposed to total range of movement. A low delta_shift favors range of
movement over fine control. A high delta_shift favors fine control over range
of movement.

Points can be moved by multiples of a fixed amount called a step. The size of
the step is 1 divided by 2 to the power delta_shift.

Chapter 6

Revision 1.66 Page 181
File Name: ttch06a.doc

The TrueType Instruction Set

TrueType provides instructions for each of the following tasks and a set of
general purpose instructions. This chapter describes the TrueType instruction
set. Instruction descriptions are organized by category based on their function.
• Pushing data onto the interpreter stack
• Managing the Storage Area
• Managing the Control Value Table
• Modifying Graphics State settings
• Managing outlines
• General purpose instructions

Anatomy of a TrueType Instruction
TrueType instructions are uniquely specified by their opcodes. For
convenience, this book will refer to instructions by their names. Each
instruction name is a mnemonic intended to aid in remembering that
instruction’s function. For example, the MDAP instruction stands for Move
Direct Absolute Point. Similarly, RUTG is short for Round Up To Grid. A
brief description of each instruction clarifying the mnemonic marks the start
of a new instruction.

One name may actually refer to several different but closely related
instructions. A bracketed list of Boolean values follows each name to uniquely
specify a particular variant of a given instruction. The Boolean list can be
converted to a binary number and that number added to the base opcode for
the instruction to obtain the opcode for any instruction variant.

To obtain the opcode for any instruction, take the lower of the two opcode
values given in the code range and add the unsigned binary number
represented by the list of binary digits. The left most bit is the most
significant. For example, given an instruction with the opcode range 0xCO–
0xDF and five Boolean flags (a through e) the opcode for a given instruction
base can be computed as shown:
Opcode = 0xC0 + a · 24 + b · 23 + c · 22 + d · 21 + e · 20

The TrueType Instruction Set

Page 182 Revision 1.66
 File Name: ttch06a.doc

If these flags were set to 11101 the code would be computed as follows:
0xC0 + 1 · 24 + 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20

= 0xC0 + 0x10 + 0x8 + 0x4 + 0x1
= 0xC0 + 0x1D= 0xDD

Instruction opcodes are part of the instruction stream, a sequence of opcodes
and data. The instruction stream is not a stack. While the stream of opcodes
and data on the instruction stream is gradually used up, no new data is added
to the instruction stream by the execution of another instruction (i.e. there is
no equivalent of a push instruction that adds data to the instruction stream). It
is possible to alter the flow of control through the instruction stream using one
of the jump instructions described in a later section.

The instruction stream is shown as a sequence of opcodes and data. Since the
instruction stream is 1-byte wide, words will be broken up into high bytes and
low bytes with high bytes appearing first in the stream. For added readability,
instruction names are used in illustrations instead of opcodes. An arrow will
point to the next instruction awaiting execution.

Figure 3–1 The instruction stream with a push byte instruction (left) and a
push word instruction (right)

NPUSHW[]

1

FF

5A

NPUSHB[]

3

FF

5A

AD

SPVTL[]

SPVTL[]

 

A few instructions known collectively as push instructions move data from the
instruction stream to the interpreter stack. These instructions are unique in
taking their arguments from the instruction stream. All other TrueType
instructions take any data needed from the stack at the time they are executed.
Any results produced by a TrueType instruction are pushed onto the
interpreter stack.

An instruction that expects two arguments and pushes a third would expect the
two arguments to be at the top of the stack. Any result pushed by that
instruction appears at the top of the stack.

The TrueType Instruction Set

Revision 1.66 Page 183
File Name: ttch06a.doc

The listing a b c denotes a stack consisting of three elements with a being at
the top of the stack, b being in the middle, and c at the bottom as shown.

b

a

c

To easily remember the order in which stack values are handled during
arithmetic or logical operations, imagine writing the stack values from left to
right, starting with the bottom value. Then insert the operator between the two
furthest right elements. For example, subtract a,b would be interpreted as (b-
a):

c b - a

GT a,b would be interpreted as (b>a):

c b > a

The statement push d, e means push d then push e adding two elements to the
stack as shown.

a

b

c

d

e

The TrueType Instruction Set

Page 184 Revision 1.66
 File Name: ttch06a.doc

To indicate that the top two stack elements are to be removed the statement
would be pop e, d.

a

b

c

d

e

It has already been noted that the bracketed list of binary digits that follows
the instruction name uniquely identifies an instruction variant. This is done by
having the bits represent a list of Boolean flags that can be set to TRUE with a
value of 1 or to FALSE with a value of 0. Binary digits that follow the name
can also be grouped to form a larger binary number. In such cases, the
documentation specifies the meaning associated with each possible numerical
combination.

An instruction specification consists of the instruction name followed by its
bracketed Boolean flags. Additional information describing the flags and
explaining the stack interaction and any Graphics State dependencies is
provided in tabular form:

Code Range the range of hexadecimal codes identifying this instruction and its
 variants

Flags an explanation of the meaning of a bracketed binary number

From IS any arguments taken from the instruction stream by push instructions

Pops any arguments popped from the stack

Pushes any arguments pushed onto the stack

Uses any state variables whose value this instruction depends upon

Sets any state variables set by this instruction

Instruction descriptions include illustrations intended to clarify stack
interactions, Graphics State effects, and changes to interpreter tables.

The TrueType Instruction Set

Revision 1.66 Page 185
File Name: ttch06a.doc

In the case of instructions that move points, an illustration will be provided to
clarify the direction and magnitude of the movement. In these illustrations,
shades of gray will be used to indicate the sequence in which points have been
moved. The darker the fill, the more recently a point has been moved.

The TrueType Instruction Set

Page 186 Revision 1.66
 File Name: ttch06a.doc

Data types

The instruction stream

Instruction opcodes are always bytes. Values in the instruction stream are
bytes.

The stack

Values pushed onto the stack or popped from the stack are always 32 bit
quantities (LONG or ULONG). When values that are less than 32 bits are
pushed onto the stack, bytes are expanded to 32 bit quantities by padding the
upper bits with zeroes and words are sign extended to 32 bits. In cases where
two instruction stream bytes are combined to form a word, the high order bits
appear first in the instruction stream.

NOTE: On a 16-bit system, such as Windows, all stack operations are on 16-
bit values (SHORT or USHORT). Care must be taken to avoid overflow. It is
also important to note that F26dot6 values (used for internal scalar math) are
represented instead as 10 dot 6 values (i.e. the upper 16 bits are not
supported).

Figure 3–2 A byte padded to a 32 bit long word (ULONG)

FF 0000 00FF

Figure 3–3 A word sign extended to a 32 bit long word (ULONG)

FF

D2 FFFF FFD2

The TrueType Instruction Set

Revision 1.66 Page 187
File Name: ttch06a.doc

 All values on the stack are signed. Instructions, however, interpret these 32-
bit quantities in a variety of ways. The interpreter variously understands
quantities as integers and as fixed point numbers.

Values such as pixel coordinates are represented as 32-bit quantities
consisting of 26 bits of whole number and 6 bits of fraction. These are fixed
point numbers with the data type name F26Dot6.

The setting of the freedom_vector and projection_vector are represented as
2.14 fixed point numbers. The upper 16 bits of the 32 bit quantity are ignored.

A given set of 32 bits will have a different value depending upon how it is
interpreted. The following 32 bit value interpreted as an integer has the
value 264.

0000 0000 0000 0000 0000 0001 0000 1000

The same 32 bit quantity interpreted as a F26Dot6 fixed point number has the
value 4.125.

00 0000 0000 0000 0000 0000 0100 .00 1000

The figure below gives several examples of expressing pixel values as 26.6
words.

00000000000000000000000000 000001

00000000000000000000000000 100000

00000000000000000000000001 000000

00000000000000000000000001 100000

one-sixty fourth of a pixel

one-half pixel

one pixel

one and one half pixels

The TrueType Instruction Set

Page 188 Revision 1.66
 File Name: ttch06a.doc

Pushing data onto the interpreter stack
Most TrueType instructions take their arguments from the interpreter stack. A
few instructions, however, take their arguments from the instruction stream.
Their purpose is to move data from the instruction stream to the interpreter
stack. Collectively these instructions are known as the push instructions.

The TrueType Instruction Set

Revision 1.66 Page 189
File Name: ttch06a.doc

PUSH N Bytes

NPUSHB[]

Code Range 0x40

From IS n: number of bytes to push (1 byte interpreted as an integer)
 b1, b2,...bn: sequence of n bytes

Pushes b1, b2,...bn: sequence of n bytes each padded to 32 bits (ULONG)

Takes n unsigned bytes from the instruction stream, where n is an unsigned integer in the
range (0..255), and pushes them onto the stack. n itself is not pushed onto the stack.

NPUSHB
n

b1

b2

bn

padded byte 1

padded byte n

…


The TrueType Instruction Set

Page 190 Revision 1.66
 File Name: ttch06a.doc

PUSH N Words

NPUSHW[]

Code Range 0x41

From IS n: number of words to push (one byte interpreted as an integer)
 w1, w2,...wn: sequence of n words formed from pairs of bytes,
 the high byte appearing first

Pushes w1, w2,...wn: sequence of n words each sign extended to 32 bits (LONG)

Takes n 16-bit signed words from the instruction stream, where n is an unsigned integer in the
range (0..255), and pushes them onto the stack. n itself is not pushed onto the stack.

NPUSHW
n

b1

b2

bn

padded word 1

padded word n

…


The TrueType Instruction Set

Revision 1.66 Page 191
File Name: ttch06a.doc

PUSH Bytes

PUSHB[abc]

Code Range 0xB0 – 0xB7

abc number of bytes to be pushed – 1

From IS b0, b1,..bn: sequence of n + 1 bytes

Pushes b0, b1, ...,bn: sequence of n + 1 bytes each padded to 32 bits (ULONG)

Takes the specified number of bytes from the instruction stream and pushes them onto the
interpreter stack.

The variables a, b, and c are binary digits representing numbers from 000 to
111 (0-7 in binary). Because the actual number of bytes (n) is from 1 to 8, 1 is
automatically added to the abc figure to obtain the actual number of bytes
pushed.

PUSHB[abc]
b1

b2

bn padded byte 1

padded byte n

…


Example:

PUSHB[010]

0x56

0xA4

0x11
0x0000 0056

0x0000 00A4

0x0000 0011


The TrueType Instruction Set

Page 192 Revision 1.66
 File Name: ttch06a.doc

PUSH Words

PUSHW[abc]

Code Range 0xB8 - 0xBF

abc number of words to be pushed – 1.

From IS w0,w1,..wn: sequence of n+1 words formed from pairs of bytes,
 the high byte appearing first

Pushes w0 ,w1,...wn: sequence of n+1 words each sign extended to 32 bits
 (LONG)

Takes the specified number of words from the instruction stream and pushes them onto the
interpreter stack.

The variables a, b, and c are binary digits representing numbers from 000 to 111 (0-7 binary).
Because the actual number of bytes (n) is from 1 to 8, 1 is automatically added to the abc
figure to obtain the actual number of bytes pushed.

PUSHW[abc]

high byte1

low byte 1

high byte n
padded word 1

padded word n

low byte n

…


Example:

PUSHW[001]

0x10

0x 24

0x0000 1056

0x0000 FA24

0x56

0xFA



The TrueType Instruction Set

Revision 1.66 Page 193
File Name: ttch06a.doc

Managing the Storage Area
The interpreter Storage Area is a block of memory that can be used to store
and later access 32 bit values. Instructions exist for writing values to the
Storage Area and retrieving values from the Storage Area. Attempting to read
a value from a storage location that has not previously had a value written to it
will yield unpredictable results.

The TrueType Instruction Set

Page 194 Revision 1.66
 File Name: ttch06a.doc

Read Store

RS[]

Code Range 0x43

Pops location: Storage Area location (ULONG)

Pushes value: Storage Area value (ULONG)

Gets Storage Area value

This instruction reads a 32 bit value from the Storage Area location popped from the stack
and pushes the value read onto the stack. It pops an address from the stack and pushes the
value found in that Storage Area location to the top of the stack. The number of available
storage locations is specified in the maxProfile table in the font file.

value location

Example:

...
RS[]

0x0000 001B
location value

0

1

2

...

0x0000 001B

0x0000 0002

Storage Area



The effect of the RS instruction is to push the value 0x1B of the Storage Area onto the Stack.

The TrueType Instruction Set

Revision 1.66 Page 195
File Name: ttch06a.doc

Write Store

WS[]

Code Range 0x42

Pops value: Storage Area value (ULONG)

 location: Storage Area location (ULONG)

Pushes –

Sets Storage Area value

This instruction writes a 32 bit value into the storage location indexed by locations. It works
by popping a value and then a location from the stack. The value is placed in the Storage Area
location specified by that address. The number of storage locations is specified in the
maxProfile table in the font file.

Storage
Area

value

location
location value

Example:

Write the value 0x0000 0118 to location 3A in the Storage Area.

WS[]

0x0000 003A

3A 0x0000 0118

0x0000 0118

Storage Area



The TrueType Instruction Set

Page 196 Revision 1.66
 File Name: ttch06a.doc

Managing the Control Value Table
The Control Value Table stores information that is accessed by the indirect
instructions. Values can be written to the CVT in FUnits or pixel units as
proves convenient. Values read from the CVT are always in pixels
(F26Dot6). This table, unlike the Storage Area, is initialized by the font and
is automatically scaled.

The TrueType Instruction Set

Revision 1.66 Page 197
File Name: ttch06a.doc

Write Control Value Table in Pixel units

WCVTP[]

Code Range 0x44

Pops value: number in pixels (F26Dot6 fixed point number)

 location: Control Value Table location (ULONG)

Pushes –

Sets Control Value Table entry

Pops a location and a value from the stack and puts that value in the specified location in the
Control Value Table. This instruction assumes the value is in pixels and not in FUnits.

location value location

value

The TrueType Instruction Set

Page 198 Revision 1.66
 File Name: ttch06a.doc

Write Control Value Table in FUnits

WCVTF[]

Code Range 0x70

Pops value: number in FUnits (ULONG)

 location: Control Value Table location (ULONG)

 Pushes –

Sets Control Value Table entry

Pops a location and a value from the stack and puts the specified value in the specified
address in the Control Value Table. This instruction assumes the value is expressed in FUnits
and not pixels. The value is scaled before being written to the table.

location value location

value

The TrueType Instruction Set

Revision 1.66 Page 199
File Name: ttch06a.doc

Read Control Value Table

RCVT[]

Code Range 0x45

Pops location: CVT entry number (ULONG)

Pushes value: CVT value (F26Dot6)

Gets Control Value Table entry

Pops a location from the stack and pushes the value in the location specified in the Control
Value Table onto the stack.

location

location value value

The TrueType Instruction Set

Page 200 Revision 1.66
 File Name: ttch06a.doc

Managing the Graphics State
Instructions can be used to set the value of Graphics State variables and, in
some cases, to retrieve their current value.

Getting a value

Instructions that retrieve the value of a state variable have names that begin
with the word get. Get instructions will return the value of the state variable in
question by placing that value on the top of the stack.

The illustration shows the effect of a GPV or get projection_vector
instruction. It takes the x and y components of the projection_vector from the
Graphics State and places them on the stack.

projection_vector (1,0)

0

1

The TrueType Instruction Set

Revision 1.66 Page 201
File Name: ttch06a.doc

Setting a value

Instructions that change the value of a Graphics State variable have a name
that begins with the word set. Set instructions expect their arguments to be at
the top of the interpreter stack.

Figure 3–4 Setting the value of the Graphics State variable
projection_vector

projection_vector 0

1

(1,0)

In addition to simple sets and gets, some instructions exist to simplify
management of the values of state variables. For example, a number of
instructions exist to set the direction of the freedom_vector and the
projection_vector. In setting a vector, it is possible to set it to either of the
coordinate axes, to the direction specified by a line, or to a direction specified
by values taken from the stack. An instruction exists that directly sets the
freedom_vector to the same value as the projection_vector.

The TrueType Instruction Set

Page 202 Revision 1.66
 File Name: ttch06a.doc

Set freedom and projection Vectors To Coordinate Axis

SVTCA[a]

Code range 0x00 - 0x01

a 0: set vectors to the y-axis
 1: set vectors to the x-axis

Pops –

Pushes –

Sets projection_vector
 freedom_vector

Sets both the projection_vector and freedom_vector to the same one of the coordinate axes.

The SVTCA is a shortcut for using both the SFVTCA and SPVTCA instructions. SVTCA[1]
is equivalent to SFVTCA[1] followed by SPVTCA[1]. This instruction ensures that both
movement and measurement are along the same coordinate axis.

Example:

SVTCA[1]

P F

Sets both measurement and movement to the x-direction.

SVTCA[0]

P F

Sets both measurement and movement to the y-direction.

The TrueType Instruction Set

Revision 1.66 Page 203
File Name: ttch06a.doc

Set Projection_Vector To Coordinate Axis

SPVTCA[a]

Code range 0x02 - 0x03

a 0: set the projection_vector to the y-axis
 1: set the projection_vector to the x-axis

Pops –

Pushes –

Sets projection_vector

Sets the projection_vector to one of the coordinate axes depending on the value of the flag a.

Example:

SPVTCA[0]

P

Sets the projection_vector to the y-axis assuring the measurement will be in that direction.

The TrueType Instruction Set

Page 204 Revision 1.66
 File Name: ttch06a.doc

Set Freedom_Vector to Coordinate Axis

SFVTCA[a]

Code range 0x04 - 0x05

a 0: set the freedom_vector to the y-axis
 1: set the freedom_vector to the x-axis

Pops –

Pushes –

Sets freedom_vector

Sets the freedom_vector to one of the coordinate axes depending upon the value of the flag a.

Example:

SFVTCA[0]

F

Sets the freedom_vector to the y-axis ensuring that movement will be along that axis.

The TrueType Instruction Set

Revision 1.66 Page 205
File Name: ttch06a.doc

Set Projection_Vector To Line

SPVTL[a]

Code Range 0x06 - 0x07

a 0: sets projection_vector to be parallel to line segment from p1 to p2
 1: sets projection_vector to be perpendicular to line segment from p1 to
 p2; the vector is rotated counter clockwise 90 degrees

Pops p1: point number (ULONG)

 p2: point number (ULONG)

Pushes –

Uses point p1 in the zone pointed at by zp2
 point p2 in the zone pointed at by zp1

Sets projection_vector

Sets the projection_vector to a unit vector parallel or perpendicular to the line segment from
point p1 to point p2.

p2

p1

SPVTL[a]

p1

p2

 P

If parallel, the projection_vector points from p1 toward p2 as shown.

If perpendicular the projection_vector is obtained by rotating the parallel vector in a counter
clockwise manner as shown.

 P

The TrueType Instruction Set

Page 206 Revision 1.66
 File Name: ttch06a.doc

case 1:

SPVTL[1]

14

7

SPVTL[0]

14

7

P

Sets the projection_vector to be parallel to the line from point 7 to point 14.

case 2:

SPVTL[1]

14

7

14

7

SPVTL[1]

P

Sets the projection_vector to be perpendicular to the line from point 7 to point 14.

The TrueType Instruction Set

Revision 1.66 Page 207
File Name: ttch06a.doc

case 3:

SPVTL[1]

14

7

7

14

SPVTL[1]

P

The order in which the points are specified matters. This instruction sets the
projection_vector to be perpendicular to the line from point 14 to point 7.

The TrueType Instruction Set

Page 208 Revision 1.66
 File Name: ttch06a.doc

Set Freedom_Vector To Line

SFVTL[a]

Code Range 0x08 - 0x09

a 0: set freedom_vector to be parallel to the line segment defined by points
 p1 and p2

 1: set freedom_vector perpendicular to the line segment defined by points
 p1 and p2; the vector is rotated counter clockwise 90 degrees

Pops p1: point number (ULONG)

 p2: point number (ULONG)

Pushes –

Sets freedom_vector

Uses point p1 in the zone pointed at by zp2
 point p2 in the zone pointed at by zp1

Sets the freedom_vector to a unit vector parallel or perpendicular to the line segment defined
by points p1 and p2.

p2

p1

p1

p2

If parallel the freedom_vector points from p1 toward p2 as shown.

F

The TrueType Instruction Set

Revision 1.66 Page 209
File Name: ttch06a.doc

If perpendicular the freedom_vector is obtained by rotating the parallel vector in a counter clockwise
manner as shown.

 F

The TrueType Instruction Set

Page 210 Revision 1.66
 File Name: ttch06a.doc

Set Freedom_Vector To Projection Vector

SFVTPV[]

Code 0x0E

Pops –

Pushes –

Sets freedom_vector

Sets the freedom_vector to be the same as the projection_vector.

Before

P F

After

P F

The TrueType Instruction Set

Revision 1.66 Page 211
File Name: ttch06a.doc

Set Dual Projection_Vector To Line

SDPVTL[a]

Code Range 0x86 - 0x87

a 0: Vectors are parallel to line
 1: Vectors are perpendicular to line

Pops p1: first point number (ULONG)

 p2: second point number (ULONG)

Pushes –

Sets dual_projection_vector and projection_vector

Uses point p1 in the zone pointed at by zp2
 point p2 in the zone pointed at by zp1

Pops two point numbers from the stack and uses them to specify a line that defines a second,
dual_projection_vector. This dual_projection_vector uses coordinates from the scaled outline
before any grid-fitting took place. It is used only with the IP, GC, MD, MDRP and MIRP
instructions. Those instructions will use the dual_projection_vector when they measure
distances between ungrid-fitted points. The dual_projection_vector will disappear when any
other instruction that sets the projection_vector is used.

p2

p1

SDPVTL[a] 

p1

p2

p2

p1

D P

NOTE: The dual_projection_vector is set parallel to the points as they appeared in the
original outline before any grid-fitting took place.

The TrueType Instruction Set

Page 212 Revision 1.66
 File Name: ttch06a.doc

Set Projection_Vector From Stack

SPVFS[]

Code Range 0x0A

Pops y: y component of projection_vector (2.14 fixed point number padded
 with zeroes)

 x: x component of projection_vector (2.14 fixed point number padded
 with zeroes)

Pushes –

Sets projection_vector

Sets the direction of the projection_vector, using values x and y taken from the stack, so that
its projections onto the x and y-axes are x and y, which are specified as signed (two’s
complement) fixed-point (2.14) numbers. The square root of (x2 + y2) must be equal to
0x4000 (hex).

If values are to be saved and used by a glyph program, font program or preprogram across
different resolutions, extreme care must be used. The values taken from or put on the stack are
2.14 fixed-point values for the x and y components of the vector in question. The values are
based on the normalized vector lengths. More simply, the values must always be set such that
(X**2 + Y**2) is 1.

If a TrueType program uses specific values for X and Y to set the vectors to certain angles,
these values will not produce identical results across different aspect ratios. Values that work
correctly at 1:1 aspect ratios (such as VGA and 8514) will not necessarily yield the desired
results at a ratio of 1.33:1 (e.g. the EGA).

By the same token, if a TrueType program is making use of the values returned by GPV and
GFV, the values returned for a specific angle will vary with the aspect ratio in use at the time.

x

y

SPVFS[]

The TrueType Instruction Set

Revision 1.66 Page 213
File Name: ttch06a.doc

Example:

SPVFS[]

0x0000 00000

0x0000 4000

P

Sets the projection_vector to a unit vector that points in the direction of the x-axis

The TrueType Instruction Set

Page 214 Revision 1.66
 File Name: ttch06a.doc

Set Freedom_Vector From Stack

SFVFS[]

Code 0x0B

Pops y: y component of freedom_vector (2.14 fixed point number padded
 with zeroes)

 x: x component of freedom_vector (2.14 fixed point number padded
 with zeroes)

Pushes –

Sets freedom_vector

Sets the direction of the freedom_vector using the values x and y taken from the stack. The
vector is set so that its projections onto the x and y -axes are x and y, which are specified as
signed (two’s complement) fixed-point (2.14) numbers. The square root of (x2 + y2) must be
equal to 0x4000 (hex).

If values are to be saved and used by a glyph program, font program or preprogram across
different resolutions, extreme care must be used. The values taken from or put on the stack are
2.14 fixed-point values for the x and y components of the vector in question. The values are
based on the normalized vector lengths. More simply, the values must always be set such that
(X**2 + Y**2) is 1.

If a TrueType program uses specific values for X and Y to set the vectors to certain angles,
these values will not produce identical results across different aspect ratios. Values that work
correctly at 1:1 aspect ratios (such as VGA and 8514) will not necessarily yield the desired
results at a ratio of 1.33:1 (e.g. the EGA).

By the same token, if a TrueType program is making use of the values returned by GPV and
GFV, the values returned for a specific angle will vary with the aspect ratio in use at the time.

x

y

SFVFS[] 

The TrueType Instruction Set

Revision 1.66 Page 215
File Name: ttch06a.doc

Example:

0x0000 40000

0x0000 0000

 F

Sets the freedom_vector to a unit vector that points in the direction of the y-axis.

The TrueType Instruction Set

Page 216 Revision 1.66
 File Name: ttch06a.doc

Get Projection_Vector

GPV[]

Code Range 0x0C

Pops –

Pushes x: x component of projection_vector (2.14 fixed point number padded
 with zeroes)

 y : y component of projection_vector (2.14 fixed point number padded
 with zeroes)

Gets projection_vector

Pushes the x and y components of the projection_vector onto the stack as two 2.14 numbers.

If values are to be saved and used by a glyph program, font program or preprogram across
different resolutions, extreme care must be used. The values taken from or put on the stack are
2.14 fixed-point values for the x and y components of the vector in question. The values are
based on the normalized vector lengths. More simply, the values must always be set such that
(X**2 + Y**2) is 1.

If a TrueType program uses specific values for X and Y to set the vectors to certain angles,
these values will not produce identical results across different aspect ratios. Values that work
correctly at 1:1 aspect ratios (such as VGA and 8514) will not necessarily yield the desired
results at a ratio of 1.33:1 (e.g. the EGA).

By the same token, if a TrueType program is making use of the values returned by GPV and
GFV, the values returned for a specific angle will vary with the aspect ratio in use at the time.

v=(x,y)

y

projection_vector GPV[]

x



Example:

case 1:

P

The stack entry 0x4000 which when interpreted as a 2.14 number is simply 1. This command
reveals that, in this case, the projection_vector is a unit vector that points in the x-direction.

The TrueType Instruction Set

Revision 1.66 Page 217
File Name: ttch06a.doc

case 2:

P

0x0000 4000

0x0000 0000

GPV[]

Here the projection_vector is a unit vector that points in the direction of the y-axis.

case 3:

P

GPV[]
0x0000 2D41

0x0000 2D41



 NOTE: 0x2D41 is the hex equivalent of
sqrt(2)

2 . As a result of this instruction, the

projection_vector is set to a 45 degree angle relative to the x-axis.

The TrueType Instruction Set

Page 218 Revision 1.66
 File Name: ttch06a.doc

Get Freedom_Vector

GFV[]

Code Range 0x0D

Pops –

Pushes x: x-component of freedom_vector (2.14 number padded with zeroes)

 y: y component of freedom_vector (2.14 number padded with zeroes)

Gets freedom_vector

Puts the x and y components of the freedom_vector on the stack. The freedom_vector is put
onto the stack as two 2.14 coordinates.

If values are to be saved and used by a glyph program, font program or preprogram across
different resolutions, extreme care must be used. The values taken from or put on the stack are
2.14 fixed-point values for the x and y components of the vector in question. The values are
based on the normalized vector lengths. More simply, the values must always be set such that
(X**2 + Y**2) is 1.

If a TrueType program uses specific values for X and Y to set the vectors to certain angles,
these values will not produce identical results across different aspect ratios. Values that work
correctly at 1:1 aspect ratios (such as VGA and 8514) will not necessarily yield the desired
results at a ratio of 1.33:1 (e.g. the EGA).

By the same token, if a TrueType program is making use of the values returned by GPV and
GFV, the values returned for a specific angle will vary with the aspect ratio in use at the time.

v=(x,y) freedom_vector
GFV[]

y

x


The TrueType Instruction Set

Revision 1.66 Page 219
File Name: ttch06a.doc

Example

GFV[]

F

11575

-11596

The TrueType Instruction Set

Page 220 Revision 1.66
 File Name: ttch06a.doc

Set Reference Point 0

SRP0[]

Code Range 0x10

Pops p: point number (ULONG)

Pushes –

Sets rp0

Affects IP, MDAP, MIAP, MIRP, MSIRP, SHC, SHE, SHP

Pops a point number from the stack and sets rp0 to that point number.

rp0 p
p

The TrueType Instruction Set

Revision 1.66 Page 221
File Name: ttch06a.doc

Set Reference Point 1

SRP1[]

Code Range 0x11

Pops p: point number (ULONG)

Pushes –

Sets rp1

Affects IP, MDAP, MDRP, MIAP, MSIRP, SHC, SHE, SHP

Pops a point number from the stack and sets rp1 to that point number.

rp1 p
p

The TrueType Instruction Set

Page 222 Revision 1.66
 File Name: ttch06a.doc

Set Reference Point 2

SRP2[]

Code Range 0x12

Pops p:point number (ULONG)

Pushes –

Sets rp2

Pops a point number from the stack and sets rp2 to that point number.

rp2 p
p

The TrueType Instruction Set

Revision 1.66 Page 223
File Name: ttch06a.doc

Set Zone Pointer 0

SZP0[]

Code Range 0x13

Pops n: zone number (ULONG)

Pushes –

Sets zp0

Affects ALIGNPTS, ALIGNRP, DELTAP1, DELTAP2, DELTAP3, IP,
 ISECT, MD, MDAP, MIAP, MIRP, MSIRP, SHC, SHE, SHP, UTP

Pops a zone number, n, from the stack and sets zp0 to the zone with that number. If n is 0, zp0
points to zone 0. If n is 1, zp0 points to zone 1. Any other value for n is an error.

zp0 En
n

Example:

1

SZP0[]

E1

zp0

E0



The TrueType Instruction Set

Page 224 Revision 1.66
 File Name: ttch06a.doc

Set Zone Pointer 1

SZP1[]

Code Range 0x14

Pops n: zone number (ULONG)

Pushes –

Sets zp1

Affects ALIGNRPTS, ALIGNRP, IP, MD, MDRP, MSIRP, SHC, SHE, SHP,
 SFVTL, SPVTL

Pops a zone number, n, from the stack and sets zp1 to the zone with that number. If n is 0, zp1
points to zone 0. If n is 1, zp1 points to zone 1. Any other value for n is an error.

zp1 En
n

Example

0

ZP0[]

0 1 E E

zp0



The TrueType Instruction Set

Revision 1.66 Page 225
File Name: ttch06a.doc

Set Zone Pointer 2

SZP2[]

Code Range 0x15

Pops n: zone number (ULONG)

Pushes –

Sets zp2

Affects ISECT, IUP, GC, SHC, SHP, SFVTL, SHPIX, SPVTL, SC

Pops a zone number, n, from the stack and sets zp2 to the zone with that number. If n is 0, zp2
points to zone 0. If n is 1, zp2 points to zone 1. Any other value for n is an error.

En
n

zp2

The TrueType Instruction Set

Page 226 Revision 1.66
 File Name: ttch06a.doc

Set Zone PointerS

SZPS[]

Code Range 0x16

Pops n: zone number (ULONG)

Pushes –

Sets zp0, zp1, zp2

Affects ALIGNPTS, ALIGNRP, DELTAP1, DELTAP2, DELTAP3, GC, IP,
 ISECT, IUP, MD, MDAP, MDRP, MIAP, MIRP, MSIRP, SC, SFVTL,
 SHPIX, SPVTL, SHC, SHE, SHP, SPVTL, UTP

Pops a zone number from the stack and sets all of the zone pointers to point to the zone with
that number. If n is 0, all three zone pointers will point to zone 0. If n is 1, all three zone
pointers will point to zone 1. Any other value for n is an error.

En
n

En
En

zp0
zp1
zp2

The TrueType Instruction Set

Revision 1.66 Page 227
File Name: ttch06a.doc

Round To Half Grid

RTHG[]

Code Range 0x19

Pops –

Pushes –

Sets round_state

Affects MDAP, MDRP, MIAP, MIRP, ROUND

Uses freedom_vector, projection_vector

Sets the round_state variable to state 0 (hg). In this state, the coordinates of a point are
rounded to the nearest half grid line.

Example:

P F

RTHG[] Grid
Line

n n'

Half Grid
Line

The TrueType Instruction Set

Page 228 Revision 1.66
 File Name: ttch06a.doc

Round To Grid

RTG[]

Code Range 0x18

Pops –

Pushes –

Sets round_state

Affects MDAP, MDRP, MIAP, MIRP, ROUND

Uses freedom_vector, projection_vector

Sets the round_state variable to state 1 (g). In this state, distances are rounded to the closest
grid line.

Example:

Half Grid
Line

Grid Line

n n'P F

RTG[]

The TrueType Instruction Set

Revision 1.66 Page 229
File Name: ttch06a.doc

Round To Double Grid

RTDG[]

Code Range 0x3D

Pops –

Pushes –

Sets round_state

Affects MDAP, MDRP, MIAP, MIRP, ROUND

Uses freedom_vector, projection_vector

Sets the round_state variable to state 2 (dg). In this state, distances are rounded to the closest
half or integer pixel.

Example:

Grid Line
n n'

P F

RTDG[]
(case 1 rounds to half grid)

P F

RTDG[]
(case 2 rounds to grid) Grid Line

n n'

Half Grid
Line

Half Grid
Line

The TrueType Instruction Set

Page 230 Revision 1.66
 File Name: ttch06a.doc

Round Down To Grid

RDTG[]

Code Range 0x7D

Pops –

Pushes –

Sets round_state

Affects MDAP, MDRP, MIAP, MIRP, ROUND

Uses freedom_vector, projection_vector

Sets the round_state variable to state 3 (dtg). In this state, distances are rounded down to the
closest integer grid line.

Example:

Half Grid
Line

Grid
Line

n'P F

RDTG[]

n

The TrueType Instruction Set

Revision 1.66 Page 231
File Name: ttch06a.doc

Round Up To Grid

RUTG[]

Code Range 0x7C

Pops –

Pushes –

Sets round_state

Affects MDAP, MDRP, MIAP, MIRP, ROUND

Uses freedom_vector, projection_vector

Sets the round_state variable to state 4 (utg). In this state distances are rounded up to the
closest integer pixel boundary.

Example:

Half Grid
Line

Grid
Line

n'

P F

RUTG[]

n

The TrueType Instruction Set

Page 232 Revision 1.66
 File Name: ttch06a.doc

Round OFF

ROFF[]

Code Range 0x7A

Pop –

Pushes –

Sets round_state

Affects MDAP, MDRP, MIAP, MIRP, ROUND

Uses freedom_vector, projection_vector

Sets the round_state variable to state 5 (off). In this state rounding is turned off.

Example:

Grid Line

P F

ROFF[]
(point does not
round) n

Half Grid
Line

The TrueType Instruction Set

Revision 1.66 Page 233
File Name: ttch06a.doc

Super ROUND

SROUND[]

Code Range 0x76

Pops n: number decomposed to obtain period, phase, threshold

Pushes –

Sets round_state

Affects MDAP, MDRP, MIAP, MIRP, ROUND

SROUND allows you fine control over the effects of the round_state variable by allowing you
to set the values of three components of the round_state: period, phase, and threshold.

More formally, SROUND maps the domain of 26.6 fixed point numbers into a set of discrete
values that are separated by equal distances. SROUND takes one argument from the stack, n,
which is decomposed into a period, phase and threshold.

The period specifies the length of the separation or space between rounded values in terms of
grid spacing.

0 2 1 0.5 1.5

period = 0.5

0 2 1

period =1.0

0 2

period =2.0

The TrueType Instruction Set

Page 234 Revision 1.66
 File Name: ttch06a.doc

The phase specifies the offset of the values from multiples of the period.

0 2 1

phase = 0

0

phase = 0.25

0.25 1.25 2.25

The TrueType Instruction Set

Revision 1.66 Page 235
File Name: ttch06a.doc

The threshold specifies the part of the domain that is mapped onto each value. More
intuitively, the threshold tells a value when to “fall forward” to the next largest integer.

1

period

0

threshold = period/2 = 0.5

0.5 -0.5
RTG

1

period

0

threshold = period - 1 = 0

RUTG

Only the lower 8 bits of the argument n are used. For SROUND gridPeriod is equal to 1.0
pixels. The byte is encoded as follows: bits 7 and 6 encode the period, bits 5 and 4 encode the
phase and bits 3, 2, 1 and 0 encode the threshold as shown here.

period

0 period = gridPeriod/2

1 period = gridPeriod

2 period = gridPeriod*2

3 Reserved

(continued...)

The TrueType Instruction Set

Page 236 Revision 1.66
 File Name: ttch06a.doc

phase

0 phase = 0

1 phase= period/4

2 phase = period/2

3 phase = gridPeriod*3/4

threshold

0 threshold = period -1

1 threshold = -3/8 * period

2 threshold = -2/8 * period

3 threshold = -1/8 * period

4 threshold = 0/8 * period

5 threshold = 1/8 * period

6 threshold = 2/8 * period

7 threshold =3/8 * period

8 threshold = 4/8 * period

9 threshold = 5/8 * period

10 threshold = 6/8 period

11 threshold = 7/8 * period

12 threshold = 8/8 * period

13 threshold = 9/8 * period

14 threshold = 10/8 * period

15 threshold = 11/8 * period

For example, SROUND(01:01:1000) maps numbers into the values 0.25, 1.25, 2.25, The
numbers from -0.25 to 0.75 are mapped into 0.25. The range of numbers [0.75, 1.75) map
into 1.25. Similarly, the numbers from [1.75, 2.75) map into the number 2.25 and so on.

The TrueType Instruction Set

Revision 1.66 Page 237
File Name: ttch06a.doc

-0.25 0.25 1.25

period

0

phase

0.75

threshold

Rounding occurs after compensation for engine characteristics, so the steps in the rounding of
a number n are:

• add engine compensation to n.

• subtract the phase from n.

• add the threshold to n.

• truncate n to the next lowest periodic value (ignore the phase).

• add the phase back to n.

• if rounding caused a positive number to become negative, set n to the positive round
value closest to 0.

• if rounding caused a negative number of become positive, set n to the negative round
value closest to 0.

• the period parameters can have values of 1/2 pixel, 1 pixel, or 2 pixels.

• the phase parameters can have values of 0 pixels, 1/4 pixel, 1/2 pixel, or 3/4 pixel.

• the threshold parameters can have values of -3/8 period, -2/8 period,... 11/8 period. It
can also have the special value largest-number-smaller-than-period which causes
rounding equivalent to CEILING.

The TrueType Instruction Set

Page 238 Revision 1.66
 File Name: ttch06a.doc

Super ROUND 45 degrees

S45ROUND[]

Code Range 0x77

Pops n: ULONG decomposed to obtain period, phase, threshold (ULONG)

Pushes –

Sets round_state

Affects MDAP, MDRP, MIAP, MIRP, ROUND

S45ROUND is analogous to SROUND. The gridPeriod is SQRT(2)/2 pixels rather than 1
pixel. It is useful for measuring at a 45 degree angle with the coordinate axes.

The TrueType Instruction Set

Revision 1.66 Page 239
File Name: ttch06a.doc

Set LOOP variable

SLOOP[]

Code Range 0x17

Pops n: value for loop Graphics State variable (integer)

Pushes –

Sets loop

Affects ALIGNRP, FLIPPT, IP, SHP, SHPIX

Pops a value, n, from the stack and sets the loop variable count to that value. The loop
variable works with the SHP[a], SHPIX[a], IP[], FLIPPT[], and ALIGNRP[]. The value n
indicates the number of times the instruction is to be repeated. After the instruction executes,
the loop variable is reset to 1.

loop n
n

The TrueType Instruction Set

Page 240 Revision 1.66
 File Name: ttch06a.doc

Set Minimum_ Distance

SMD[]

Code Range 0x1A

Pops distance: value for minimum_distance (F26Dot6)

Pushes –

Sets minimum_distance

Pops a value from the stack and sets the minimum_distance variable to that value. The
distance is assumed to be expressed in sixty-fourths of a pixel.

minimum_distance n
distance

The TrueType Instruction Set

Revision 1.66 Page 241
File Name: ttch06a.doc

INSTRuction execution ConTRoL

INSTCTRL[]

Code Range 0x8E
Pops s: selector flag (int32)

 value: USHORT (padded to 32 bits) used to set value of
 instruction_control.

Pushes –
Sets instruction_control

Sets the instruction control state variable making it possible to turn on or off the execution of
instructions and to regulate use of parameters set in the CVT program. INSTCTRL[] can only
be executed in the CVT program.

This instruction clears and sets various control flags in the rasterizer. The selector flag
determines valid values for the value argument. The value determines the new setting of the
raterizer control flag. In version 1.0 there are only two flags in use:

Selector flag 1 is used to inhibit grid-fitting. If s=1, valid values for the value
argument are 0 (FALSE) and 1 (TRUE). If the value argument is set to TRUE (v=1),
any instructions associated with glyphs will not be executed. For example, to inhibit
grid-fitting when a glyph is being rotated or stretched, use the following sequence on
the preprogram:

PUSHB[000] 6 /* ask GETINFO to check for stretching or rotation */
GETINFO[] /* will push TRUE if glyph is stretched or rotated */
IF[] /* tests value at top of stack */
PUSHB[000] 1 /* value for INSTCTRL */
PUSHB[000] 1 /* selector for INSTCTRL */
INSTRCTRL[] /* based on selector and value will turn grid-fitting off */
EIF[]

Selector flag 2 is used to establish that any parameters set in the CVT program
should be ignored when instructions associated with glyphs are executed. These
include, for example, the values for scantype and the CVT cut-in. If s=1, valid values
for the value argument are 0 (FALSE) and 2 (TRUE). If the value argument is set to
TRUE (v=2), the default values of those parameters will be used regardless of any
changes that may have been made in those values by the preprogram. If the value
argument is set to FALSE (v=0), parameter values changed by the CVT program will
be used in glyph instructions.

The TrueType Instruction Set

Page 242 Revision 1.66
 File Name: ttch06a.doc

SCAN conversion ConTRoL

SCANCTRL[]

Code Range 0x85

Pops n: flags indicating when to turn on dropout control mode
 (16 bit word padded to 32 bits)

Pushes –

Sets scan_control

SCANCTRL is used to set the value of the Graphics State variable scan_control which in turn
determines whether the scan converter will activate dropout control for this glyph. Use of the
dropout control mode is determined by three conditions:

1. Is the glyph rotated?

2. Is the glyph stretched?

3. Is the current setting for ppem less than a specified threshold?

The interpreter pops a word from the stack and looks at the lower 16 bits.

Bits 0-7 represent the threshold value for ppem. A value of FF in bits 0-7 means invoke
dropout_control for all sizes. A value of 0 in bits 0-7 means never invoke dropout_control.

Bits 8-13 are used to turn on dropout_control in cases where the specified conditions are met.
Bits 8, 9 and 10 are used to turn on the dropout_control mode (assuming other conditions do
not block it). Bits 11, 12, and 13 are used to turn off the dropout mode unless other conditions
force it. Bits 14 and 15 are reserved for future use.

Bit Meaning if set

8 Set dropout_control to TRUE if other conditions do not block and ppem is
 less than or equal to the threshold value.

9 Set dropout_control to TRUE if other conditions do not block and the
 glyph is rotated.

10 Set dropout_control to TRUE if other conditions do not block and the
 glyph is stretched.

11 Set dropout_control to FALSE unless ppem is less than or equal to the
 threshold value.

12 Set dropout_control to FALSE unless the glyph is rotated.

13 Set dropout_control to FALSE unless the glyph is stretched.

14 Reserved for future use.

15 Reserved for future use.

The TrueType Instruction Set

Revision 1.66 Page 243
File Name: ttch06a.doc

For example

0x0000 No dropout control is invoked

0x01FF Always do dropout control

0x0A10 Do dropout control if the glyph is rotated and has less than 16 pixels per-
 em

The scan converter can operate in either a “normal” mode or in a “fix dropout” mode
depending on the value of a set of enabling and disabling flags.

The TrueType Instruction Set

Page 244 Revision 1.66
 File Name: ttch06a.doc

SCANTYPE

SCANTYPE[]

Code Range 0x8D

Pops n: 16 bit integer

Pushes –

Sets scan_control

Pops a 16-bit integer whose value is used to determine which rules the scan converter will use. If
the value of the argument is 0, the fast scan converter will be used. If the value of the integer is 1
or 2, simple dropout control will be used. If the value of the integer is 4 or 5, smart dropout control
will be used. More specifically,

if n=0 rules 1, 2, and 3 are invoked (simple dropout control scan conversion including stubs)

if n=1 rules 1, 2, and 4 are invoked (simple dropout control scan conversion excluding stubs)

if n=2 rules 1 and 2 only are invoked (fast scan conversion; dropout control turned off)

if n=3 same as n = 2

if n = 4 rules 1, 2, and 5 are invoked (smart dropout control scan conversion including stubs)

if n = 5 rules 1, 2, and 6 are invoked (smart dropout control scan conversion excluding stubs)

if n = 6 same as n = 2

if n = 7 same as n = 2

The scan conversion rules are shown here:

Rule 1 If a pixel’s center falls within the glyph outline, that pixel is turned on.

Rule 2 If a contour falls exactly on a pixel’s center, that pixel is turned on.

Rule 3 If a scan line between two adjacent pixel centers (either vertical or horizontal) is intersected
by both an on-Transition contour and an off-Transition contour and neither of the pixels was
already turned on by rules 1 and 2, turn on the left-most pixel (horizontal scan line) or the
bottom-most pixel (vertical scan line). This is “Simple” dropout control.

Rule 4 Apply Rule 3 only if the two contours continue to intersect other scan lines in both directions.
That is, do not turn on pixels for ‘stubs.’ The scanline segments that form a square with the
intersected scan line segment are examined to verify that they are intersected by two contours.
It is possible that these could be different contours than the ones intersecting the dropout scan
line segment. This is very unlikely but may have to be controlled with grid-fitting in some
exotic glyphs.

Rule 5 If a scan line between two adjacent pixel centers (either vertical or horizontal) is intersected
by both an on-Transition contour and an off-Transition contour and neither of the pixels was
already turned on by rules 1 and 2, turn on the pixel which is closer to the midpoint between
the on-Transition contour and off-Transition contour. This is “Smart” dropout control.

Rule 6 Apply Rule 5 only if the two contours continue to intersect other scan lines in both directions.
That is, do not turn on pixels for ‘stubs.’

The TrueType Instruction Set

Revision 1.66 Page 245
File Name: ttch06a.doc

New fonts wishing to use the new modes of the ScanType instruction, but still wishing to
work correctly on old rasterizers that don’t recognize the new modes should:

1. First execute a ScanType instruction using an old mode which will give the best
approximation to the desired new mode (e.g. Simple Stubs for Smart Stubs), and then

2. Immediately execute another ScanType instruction with the desired new mode.

The TrueType Instruction Set

Page 246 Revision 1.66
 File Name: ttch06a.doc

Set Control Value Table Cut In

SCVTCI[]

Code Range 0x1D

Pops n: value for cut_in (F26Dot6)

Pushes –

Sets control_value_cut_in

Affects MIAP, MIRP

Sets the control_value_cut_in in the Graphics State. The value n is expressed in sixty-fourths
of a pixel.

n cut_in
n

Increasing the value of the cut_in will increase the range of sizes for which CVT values will
be used instead of the original outline value.

The TrueType Instruction Set

Revision 1.66 Page 247
File Name: ttch06a.doc

Set Single_Width_Cut_In

SSWCI[]

Code Range 0x1E

Pops n: value for single_width_cut_in (F26dot6)
Pushes –

Sets single_width_cut_in

Affects MIAP, MIRP

Sets the single_width_cut_in in the Graphics State. The value n is expressed in sixty-fourths
of a pixel.

single_width_cut_in n
n

The TrueType Instruction Set

Page 248 Revision 1.66
 File Name: ttch06a.doc

Set Single-width

SSW[]

Code Range 0x1F

Pops n: value for single_width_value (FUnits)

Pushes –

Sets single_width_value

Sets the single_width_value in the Graphics State. The single_width_value is expressed in
FUnits.

single_width_value n
n

The TrueType Instruction Set

Revision 1.66 Page 249
File Name: ttch06a.doc

Set the auto_flip Boolean to ON

FLIPON[]

Code Range 0x4D

Pops –

Pushes –

Sets auto_flip

Affects MIRP

Sets the auto_flip Boolean in the Graphics State to TRUE causing the MIRP instructions to
ignore the sign of Control Value Table entries. The default auto_flip Boolean value is TRUE.

auto_flip 1

The TrueType Instruction Set

Page 250 Revision 1.66
 File Name: ttch06a.doc

Set the auto_flip Boolean to OFF

FLIPOFF[]

Code Range 0x4E

Pops –

Pushes –

Sets auto_flip

Affects MIRP

Set the auto_flip Boolean in the Graphics State to FALSE causing the MIRP instructions to
use the sign of Control Value Table entries. The default auto_flip Boolean value is TRUE.

auto_flip 0

The TrueType Instruction Set

Revision 1.66 Page 251
File Name: ttch06a.doc

Set Angle _Weight

SANGW[]

Code Range 0x7E

Pops weight: value for angle_weight

Pushes –

Sets angle_weight

SANGW is no longer needed because of dropped support to the AA (Adjust Angle)
instruction. AA was the only instruction that used angle_weight in the global graphics state.

Pops a weight value from the stack and sets the value of the angle_weight state variable
accordingly.

angle_weight weight
weight

The TrueType Instruction Set

Page 252 Revision 1.66
 File Name: ttch06a.doc

Set Delta_Base in the graphics state

SDB[]

Code Range 0x5E

Pops n: value for the delta_base (ULONG)

Pushes –

Sets delta_base

Affects DELTAP1, DELTAP2, DELTAP3, DELTAC1, DELTAC2, DELTAC3

Pops a number, n, and sets delta_base to the value n. The default for delta_base is 9.

delta_base
n

n

The TrueType Instruction Set

Revision 1.66 Page 253
File Name: ttch06a.doc

Set Delta_Shift in the graphics state

SDS[]

Code Range 0x5F

Pops n: value for the delta_shift (ULONG)

Pushes –

Sets delta_shift

Affects DELTAP1, DELTAP2, DELTAP3, DELTAC1, DELTAC2, DELTAC3

Sets delta_shift to the value n. The default for delta_shift is 3.

delta_shift
n

n

The TrueType Instruction Set

Page 254 Revision 1.66
 File Name: ttch06a.doc

Reading and writing data
The following instructions make it possible to get and to set a point
coordinate, to measure the distance between two points, and to determine the
current settings for pixels per em and point size.

The TrueType Instruction Set

Revision 1.66 Page 255
File Name: ttch06a.doc

Get Coordinate projected onto the projection_vector

GC[a]

Code Range 0x46 - 0x47

a 0: use current position of point p

 1: use the position of point p in the original outline

Pops p: point number (ULONG)

Pushes value: coordinate location (F26Dot6)

Uses zp2, projection_vector

Measures the coordinate value of point p on the current projection_vector and pushes the
value onto the stack.

Example

The following example shows that the value returned by GC is dependent upon the current
position of the projection_vector. Note that point p is at the position (300,420) in the
coordinate grid.

y

x

p

GC[1] 9

P

300

P

420

The TrueType Instruction Set

Page 256 Revision 1.66
 File Name: ttch06a.doc

P

-516

The projection_vector is parallel to the line from (0,0) to (300,420)

The TrueType Instruction Set

Revision 1.66 Page 257
File Name: ttch06a.doc

Sets Coordinate From the Stack using projection_vector and
freedom_vector

SCFS[]

Code Range 0x48

Pops value: distance from origin to move point (F26Dot6)

 p: point number (ULONG)

Pushes –

Uses zp2, freedom_vector, projection_vector

Moves point p from its current position along the freedom_vector so that its component along
the projection_vector becomes the value popped off the stack.

p

value

The TrueType Instruction Set

Page 258 Revision 1.66
 File Name: ttch06a.doc

Measure Distance

MD[a]

Code Range 0x49 - 0x4A

a 0: measure distance in grid-fitted outline

 1: measure distance in original outline

Pops p1: point number (ULONG)
 p2: point number (ULONG)

Pushes distance (F26Dot6)

Uses zp1 with point p1, zp0 with point p2, projection_vector

Measures the distance between outline point p1 and outline point p2. The value returned is in
pixels (F26Dot6) If distance is negative, it was measured against the projection vector.
Reversing the order in which the points are listed will change the sign of the result.

MD[1] p1,p2

MD[0] p1,p2

distance

p1

p2

The TrueType Instruction Set

Revision 1.66 Page 259
File Name: ttch06a.doc

Example:

In the illustration below MD[1] between points 25 and 31 will return a smaller value than
MD[0] at 10 pixels per em on a 72 dpi device. The difference is due to the effects of grid-
fitting which, at this size, stretches out the counter.

P

The TrueType Instruction Set

Page 260 Revision 1.66
 File Name: ttch06a.doc

Measure Pixels Per EM

MPPEM[]

Code Range 0x4B

Pops –

Pushes ppem: pixels per em (ULONG)

This instruction pushes the number of pixels per em onto the stack. Pixels per em is a function
of the resolution of the rendering device and the current point size and the current
transformation matrix. This instruction looks at the projection_vector and returns the number
of pixels per em in that direction.

ppem

The TrueType Instruction Set

Revision 1.66 Page 261
File Name: ttch06a.doc

Measure Point Size

MPS[]

Code Range 0x4C

Pops –

Pushes pointSize: the size in points of the current glyph (F26Dot6)

Pushes the current point size onto the stack.

Measure point size can be used to obtain a value which serves as the basis for choosing
whether to branch to an alternative path through the instruction stream. It makes it possible to
treat point sizes below or above a certain threshold differently.

pointSize

12, 18, and 36 point Helvetica g at 72 dpi

The TrueType Instruction Set

Revision 1.66 Page 261
File Name: ttch06b.doc

Blank

The TrueType Instruction Set

Page 262 Revision 1.66
 File Name: ttch06b.doc

Managing outlines
The following set of instructions make it possible to move the points that make
up a glyph outline. They are the instructions that accomplish the actual work of
grid-fitting. They include instructions to move points, shift points or groups of
points, flip points from off to on the curve or vice versa, and to interpolate
points.

The TrueType Instruction Set

Revision 1.66 Page 263
File Name: ttch06b.doc

FLIP PoinT

FLIPPT[]

Code Range 0x80

Pops p: point number (ULONG)

Pushes –

Uses loop, p is referenced in zp0

Flips points that are off the curve so that they are on the curve and points that are on the curve
so that they are off the curve. The point is not marked as touched. The result of a FLIPPT
instruction is that the contour describing part of a glyph outline is redefined.

p

Before:

After

The TrueType Instruction Set

Page 264 Revision 1.66
 File Name: ttch06b.doc

FLIP RanGe ON

FLIPRGON[]

Code Range 0x81

Pops highpoint: highest point number in range of points to be flipped (ULONG)

 lowpoint: lowest point number in range of points to be flipped (ULONG)

Pushes –

Flips a range of points beginning with lowpoint and ending with highpoint so that any off the
curve points become on the curve points. The points are not marked as touched.

highpoint

lowpoint

Example:

FLIPRGON[] 1 5

Before:

1

2

3 4
5

After:

1

2

3
4 5

Will make all off curve points between point 0 and point 5 into on curve points as shown

The TrueType Instruction Set

Revision 1.66 Page 265
File Name: ttch06b.doc

FLIP RanGe OFF

FLIPRGOFF[]

Code Range 0x82

Pops highpoint: highest point number in range of points to be flipped (ULONG)

 lowpoint: lowest point number in range of points to be flipped (ULONG)

Pushes –

Flips a range of points beginning with lowpoint and ending with highpoint so that any on curve
points become off the curve points. The points are not marked as touched.

NOTE: This instruction changes the curve but the position of the points is unaffected.
Accordingly, points affected by this instruction are not marked as touched.

highpoint

lowpoint

Example:

FLIPRGOFF[] 8 6

Before :
5 6

7 8

9

After:

7

6

8

9

The TrueType Instruction Set

Page 266 Revision 1.66
 File Name: ttch06b.doc

SHift Point by the last point

SHP[a]

Code Range 0x32 - 0x33

a 0: uses rp2 in the zone pointed to by zp1

 1: uses rp1 in the zone pointed to by zp0

Pops p: point to be shifted (ULONG)

Pushes –

Uses zp0 with rp1 or zp1 with rp2 depending on flag
 zp2 with point p
 loop, freedom_vector, projection_vector

Shift point p by the same amount that the reference point has been shifted. Point p is shifted
along the freedom_vector so that the distance between the new position of point p and the
current position of point p is the same as the distance between the current position of the
reference point and the original position of the reference point.

NOTE: Point p is shifted from its current position, not its original position. The distance that
the reference point has shifted is measured between its current position and the original
position.

In the illustration below rp is the original position of the reference point, rp' is the current
position of the reference point, p is the original position of point p, p' is the current position, p"
the position after it is shifted by the SHP instruction. (White indicates original position, gray
is current position, black is position to which this instruction moves a point).

rp rp' d

p
p' p"d

F P

The TrueType Instruction Set

Revision 1.66 Page 267
File Name: ttch06b.doc

SHift Contour by the last point

SHC[a]

Code Range 0x34 - 0x35

a 0: uses rp2 in the zone pointed to by zp1

 1: uses rp1 in the zone pointed to by zp0

Pops c: contour to be shifted (ULONG)

Pushes –

Uses zp0 with rp1 or zp1 with rp2 depending on flag
 zp2 with contour c
 freedom_vector, projection_vector

Shifts every point on contour c by the same amount that the reference point has been shifted.
Each point is shifted along the freedom_vector so that the distance between the new position of
the point and the old position of that point is the same as the distance between the current
position of the reference point and the original position of the reference point. The distance is
measured along the projection_vector. If the reference point is one of the points defining the
contour, the reference point is not moved by this instruction.

This instruction is similar to SHP, but every point on the contour is shifted.

The TrueType Instruction Set

Page 268 Revision 1.66
 File Name: ttch06b.doc

SHift Zone by the last pt

SHZ[a]

Code Range 0x36 - 0x37

a 0: the reference point rp2 is in the zone pointed to by zp1

 1: the reference point rp1 is in the zone pointed to by zp0

Pops e: zone to be shifted (ULONG)

Pushes –

Uses zp0 with rp1 or zp1 with rp2 depending on flag
 freedom_vector, projection_vector

Shift the points in the specified zone (Z1 or Z0) by the same amount that the reference point
has been shifted. The points in the zone are shifted along the freedom_vector so that the
distance between the new position of the shifted points and their old position is the same as the
distance between the current position of the reference point and the original position of the
reference point.

SHZ[a] uses zp0 with rp1 or zp1 with rp2. This instruction is similar to SHC, but all points in
the zone are shifted, not just the points on a single contour.

The TrueType Instruction Set

Revision 1.66 Page 269
File Name: ttch06b.doc

SHift point by a PIXel amount

SHPIX[]

Code Range 0x38

Pops amount: magnitude of the shift (F26Dot6)

 p1, p2,...pn: points to be shifted (ULONG)

Pushes –

Uses zp2, loop, freedom_vector

Shifts the points specified by the amount stated. When the loop variable is used, the amount to
be shifted is put onto the stack only once. That is, if loop = 3, then the contents of the top of the
stack should be point p1, point p2, point p3, amount. The value amount is expressed in sixty-
fourths of a pixel.

SHPIX is unique in relying solely on the direction of the freedom_vector. It makes no use of
the projection_vector. Measurement is made in the direction of the freedom_vector.

Example

The instruction shifts points 27, 28, and 29 by 80/64 or 1.25 pixels in the direction of the
freedom vector. The distance is measured in the direction of the freedom_vector; the projection
vector is ignored.

SHPIX[]

27

28

29

1.25

1.25

1.25

F P

The TrueType Instruction Set

Page 270 Revision 1.66
 File Name: ttch06b.doc

Move Stack Indirect Relative Point

MSIRP[a]

Code Range 0x3A - 0x3B
a 0: Do not set rp0 to p
 1: Set rp0 to p

Pops d: distance (F26Dot6)

 p: point number (ULONG)

Pushes –

Uses zp1 with point p and zp0 with rp0, freedom_vector, projection_vector.

Sets After it has moved the point this instruction sets rp1 = rp0,
 rp2 = point p, and if a=1, rp0 is set to point p.

Makes the distance between a point p and rp0 equal to the value specified on the stack. The
distance on the stack is in fractional pixels (F26Dot6). An MSIRP has the same effect as a
MIRP instruction except that it takes its value from the stack rather than the Control Value
Table. As a result, the cut_in does not affect the results of a MSIRP. Additionally, MSIRP is
unaffected by the round_state.

p

d

y

x

p

d
rp0

F P

The TrueType Instruction Set

Revision 1.66 Page 271
File Name: ttch06b.doc

Move Direct Absolute Point

MDAP[a]

Code Range 0x2E - 0x2F

a: 0: do not round the value

 1: round the value

Pops p: point number (ULONG)

Pushes –

Sets rp0 = rp1 = point p

Uses zp0, round_state, projection_vector, freedom_vector.

Sets the reference points rp0 and rp1 equal to point p. If a=1, this instruction rounds point p to
the grid point specified by the state variable round_state. If a=0, it simply marks the point as
touched in the direction(s) specified by the current freedom_vector. This command is often
used to set points in the twilight zone.

p

Example:
MDAP[0]
When a=0, the point is simply marked as touched and the values of rp0 and rp1 set to point p.

F P
p

p

Graphics State

rp0
rp1 p

MDAP[1] assuming that the round_state is round to grid and the freedom_vector is a shown.

F P
p

Graphics State

rp0 p

rp1 p

The TrueType Instruction Set

Page 272 Revision 1.66
 File Name: ttch06b.doc

Move Indirect Absolute Point

MIAP[a]

Code Range 0x3E - 0x3F

a 0: don’t round the distance and don’t look at
 the control_value_cut_in

 1: round the distance and look at the
 control_value_cut_in

Pops n: CVT entry number (ULONG)

 p: point number (ULONG)

Pushes –

Sets rp0 = rp1 = point p

Uses zp0, round_state, control_value_cut_in, freedom_vector, projection_vector

Moves point p to the absolute coordinate position specified by the nth Control Value Table
entry. The coordinate is measured along the current projection_vector. If a=1, the position will
be rounded as specified by round_state. If a=1, and if the device space difference between the
CVT value and the original position is greater than the control_value_cut_in, then the original
position will be rounded (instead of the CVT value.)

Rounding is done as if the entire coordinate system has been rotated to be consistent with the
projection_vector. That is, if round_state is set to 1, and the projection_vector and
freedom_vector are at a 45_ angle to the x-axis, then a MIAP[1] of a point to 2.9 pixels will
round to 3.0 pixels along the projection_vector.

The a Boolean above controls both rounding and the use of the control_value_cut_in. If you
would like the meaning of this Boolean to specify only whether or not the MIAP[] instruction
should look at the control_value_cut_in value, use the ROFF[] instruction to turn off rounding.

The TrueType Instruction Set

Revision 1.66 Page 273
File Name: ttch06b.doc

This instruction can be used to create Twilight Zone points.

Example:

MIAP[1] 4 7

case 1:
rounding is OFF

F P

The point is moved to the position specified in the CVT.

y

x

13.6

location value
0

7

...
...

13.6

...

(continued...)

The TrueType Instruction Set

Page 274 Revision 1.66
 File Name: ttch06b.doc

case 2:
The cut_in test succeeds and rounding is RTG.

The value in the CVT is subjected to the rounding rule and then the point is moved to the
rounded position.

F P

y

x

14
13.6CVT location

rounded location

location value
0

7

...
...

13.6

...

case 3:
The cut_in test fails and rounding is OFF.

Here the point is not moved.

F P

y

x

location value
0

7

...
...

13.6

...

The TrueType Instruction Set

Revision 1.66 Page 275
File Name: ttch06b.doc

case 4:
The cut_in test fails and rounding is RTG.

In this case the point is moved to the nearest grid position.

F P

y

x

13.6CVT location

rounded location
location value

0

7

...
...

13.6

...

The TrueType Instruction Set

Page 276 Revision 1.66
 File Name: ttch06b.doc

Move Direct Relative Point

MDRP[abcde]

Code Range 0xC0 - 0xDF

a 0: do not set rp0 to point p after move

 1: do set rp0 to point p after move

b 0: do not keep distance greater than or equal
 to minimum_distance

 1: keep distance greater than or equal to
 minimum_distance

c 0: do not round distance

 1: round the distance

de distance type for engine characteristic compensation

Pops p: point number (ULONG)

Pushes –

Sets after point p is moved, rp1 is set equal to rp0, rp2 is set equal to point p;
 if the a flag is set to TRUE, rp0 is set equal to point p

Uses zp0 with rp0 and zp1 with point p, round_state, single_width_value,
 single_width_cut_in, freedom_vector, projection_vector.

MDRP moves point p along the freedom_vector so that the distance from its new position to
the current position of rp0 is the same as the distance between the two points in the original
uninstructed outline, and then adjusts it to be consistent with the Boolean settings. Note that it
is only the original positions of rp0 and point p and the current position of rp0 that determine
the new position of point p along the freedom_vector.

MDRP is typically used to control the width or height of a glyph feature using a value which
comes from the original outline. Since MDRP uses a direct measurement and does not
reference the control_value_cut_in, it is used to control measurements that are unique to the
glyph being instructed. Where there is a need to coordinate the control of a point with the
treatment of points in other glyphs in the font, a MIRP instruction is needed.

Though MDRP does not refer to the CVT, its effect does depend upon the single-width cut-in
value. If the device space distance between the measured value taken from the uninstructed
outline and the single_width_value is less than the single_width_cut_in, the single_width_value
will be used in preference to the outline distance. In other words, if the two distances are
sufficiently close (differ by less than the single_width_cut_in), the single_width_value will be
used.

The setting of the round_state Graphics State variable will determine whether and how the
distance of point p from point q is rounded. If the round bit is not set, the value will be
unrounded. If the round bit is set, the effect will depend upon the choice of rounding state. The
value of the minimum distance variable is the smallest possible value the distance between two
points can be rounded to.

The TrueType Instruction Set

Revision 1.66 Page 277
File Name: ttch06b.doc

Distances measured with the MDRP instruction must be either black, white or gray. Indicating
this value in Booleans de allows the interpreter to compensate for engine characteristics as
needed. The value de specifies the distance type as described in the chapter, “Instructing
Glyphs.” Three values are possible: Gray=0, Black=1, White=2.

Example 1:

Graphics State Settings

Before MDRP

F P

rp0 7
rp1 ?
rp2 ?

Case 1:
After MDRP[00001] 8

F P

rp0 7
rp1 7
rp2 8

Case 2:
After MDRP[10001] 8

F P

rp0 8
rp1 7
rp2 8

The TrueType Instruction Set

Page 278 Revision 1.66
 File Name: ttch06b.doc

Example 2:

Point p is moved so that its distance from rp1 is the same as it was in the original outline.

F P

rp1

y

x

p
d d

original position

position before this instruction

position after this instruction

The TrueType Instruction Set

Revision 1.66 Page 279
File Name: ttch06b.doc

Move Indirect Relative Point

MIRP[abcde]

Code Range 0xE0 - 0xFF
a 0: Do not set rp0 to p
 1: Set rp0 to p
b 0: Do not keep distance greater than or equal to

 minimum_distance
 1: Keep distance greater than or equal to

 minimum_distance
c 0: Do not round the distance and do not look at the

 control_value_cut_in
 1: Round the distance and look at the

 control_value_cut_in value
de: distance type for engine characteristic compensation

Pops n: CVT entry number (ULONG)
 p: point number (ULONG)

Pushes –

Uses zp0 with rp0 and zp1 with point p.
 round_state, control_value_cut_in, single_width_value,
 single_width_cut_in, freedom_vector, projection_vector

Sets After it has moved the point this instruction sets rp1 = rp0,
 rp2 = point p, and if a = 1, rp0 is set to point p.

A MIRP instruction makes it possible to preserve the distance between two points subject to a
number of qualifications. Depending upon the setting of Boolean flag b, the distance can be
kept greater than or equal to the value established by the minimum_distance state variable.
Similarly, the instruction can be set to round the distance according to the round_state graphics
state variable. The value of the minimum distance variable is the smallest possible value the
distance between two points can be rounded to. Additionally, if the c Boolean is set, the MIRP
instruction acts subject to the control_value_cut_in. If the difference between the actual
measurement and the value in the CVT is sufficiently small (less than the cut_in_value), the
CVT value will be used and not the actual value. If the device space difference between this
distance from the CVT and the single_width_value is smaller than the single_width_cut_in,
then use the single_width_value rather than the outline or Control Value Table distance.

The TrueType Instruction Set

Page 280 Revision 1.66
 File Name: ttch06b.doc

MIRP measures distance relative to point rp0. More formally, MIRP moves point p along the
freedom_vector so that the distance from p to rp0 is equal to the distance stated in the reference
CVT entry (assuming that the cut_in test succeeds)

The c Boolean above controls both rounding and the use of Control Value Table entries. If you
would like the meaning of this Boolean to specify only whether or not the MIRP[] instruction
should look at the control_value_cut_in, use the ROFF[] instruction to turn off rounding. In
this manner, it is possible to specify rounding off and no cut_in.

The value de specifies the distance type as described in th chapter, “Instructing Glyphs.” Three
values are possible: Gray=0, Black=1, White=2.

Example 1

MIRP[00110] 3 17

case 1:
The cut_in test succeeds and rounding is off.

The point is moved so that the distance from RP0 is equal to that given in CVT entry 17.

F P
y

x

20.7 pixels

RP0

location value
0

...
... ...

20.717

The TrueType Instruction Set

Revision 1.66 Page 281
File Name: ttch06b.doc

case 2:
The cut_in test succeeds and rounding is set to RTG.

The distance in the CVT is rounded and the point is moved by the rounded distance.

F P
y

x

20.7 pixels

RP0

original

per CVT

rounded to grid

21 pixels

location value
0

...
... ...

20.717

The TrueType Instruction Set

Page 282 Revision 1.66
 File Name: ttch06b.doc

case 3:
The cut_in test fails and the round_state is OFF.

The point is not moved.

F P

y

x

location value
0

...
... ...

13.617

The TrueType Instruction Set

Revision 1.66 Page 283
File Name: ttch06b.doc

case 4:
The cut_in test fails and the round_state is RTG.

The current position of the point is rounded to the grid.

F P

y

x

location value
0

...
... ...

13.617

The TrueType Instruction Set

Page 284 Revision 1.66
 File Name: ttch06b.doc

ALIGN Relative Point

ALIGNRP[]

Code Range 0x3C

Pops p: point number (ULONG)

Pushes –

Uses zp1 with point p, zp0 with rp0, loop, freedom_vector, projection_vector.

Reduces the distance between rp0 and point p to zero. Since distance is measured along the
projection_vector and movement is along the freedom_vector, the effect of the instruction is to
align points.

p

case 1:

P F

rp0

p

case 2:

P F

rp0

p

The TrueType Instruction Set

Revision 1.66 Page 285
File Name: ttch06b.doc

Adjust Angle (No Longer Supported)

The TrueType Instruction Set

Page 286 Revision 1.66
 File Name: ttch06b.doc

moves point p to the InterSECTion of two lines

ISECT[]

Code Range 0x0F

Pops b1: end point of line 2 (ULONG)
 b0: start point of line 2 (ULONG)
 a1: end point of line 1 (ULONG)
 a0: start point of line 1 (ULONG)
 p: point to move (ULONG)

Pushes –

Uses zp2 with point p, zp1 with line A, zp0 with line B

Puts point p at the intersection of the lines A and B. The points a0 and a1 define line A.
Similarly, b0 and b1 define line B. ISECT ignores the freedom_vector in moving point p.

p

a0

a1

b0

b1

Example:

ISECT[] 21 9 5 4 7

The TrueType Instruction Set

Revision 1.66 Page 287
File Name: ttch06b.doc

9

5

4

21

7

NOTE: If lines are parallel to each other, the point is put into the middle of the two lines.

Example:

ISECT[] 21 9 5 4 7

9

5

21

4

7

The TrueType Instruction Set

Page 288 Revision 1.66
 File Name: ttch06b.doc

ALIGN Points

ALIGNPTS[]

Code Range 0x27

Pops p1: point number (ULONG)
 p2: point number (ULONG)

Pushes –

Uses zp1 with point p1, zp0 with point p2, freedom_vector, projection_vector.

Makes the distance between point 1 and point 2 zero by moving both along the freedom_vector
to the average of both their projections along the projection_vector.

p1

p2

Example:

ALIGNPTS[] 3 7

F P

3

7

The TrueType Instruction Set

Revision 1.66 Page 289
File Name: ttch06b.doc

Interpolate Point by the last relative stretch

IP[]

Code Range 0x39

Pops p: point number (ULONG)

Pushes –

Uses zp0 with rp1, zp1 with rp2, zp2 with point p, loop, freedom_vector,
 projection_vector

Moves point p so that its relationship to rp1 and rp2 is the same as it was in the original
uninstructed outline. Measurements are made along the projection_vector, and movement to
satisfy the interpolation relationship is constrained to be along the freedom_vector. This
instruction is illegal if rp1 and rp2 have the same position on the projection_vector.

F P

p

p

rp2

rp1

y

x

In the example shown, assume that the points referenced by rp1 and rp2 are moved as shown.
An IP instruction is then used to preserve their relative relationship with point p. After the IP
the following should be true

D(p, rp1)/D(p',rp1') = D(p,rp2)/D(p', rp2')

In other words, the relative distance is preserved.

The TrueType Instruction Set

Page 290 Revision 1.66
 File Name: ttch06b.doc

UnTouch Point

UTP[]

Code Range 0x29

Pops p: point number (ULONG)

Pushes –

Uses zp0 with point p, freedom_vector

Marks point p as untouched. A point may be touched in the x-direction, the y-direction, both, or
neither. This instruction uses the current freedom_vector to determine whether to untouch the
point in the x-direction, the y-direction, or both. Points that are marked as untouched will be
moved by an IUP (interpolate untouched points) instruction. Using UTP you can ensure that a
point will be affected by IUP even if it was previously touched.

The TrueType Instruction Set

Revision 1.66 Page 291
File Name: ttch06b.doc

Interpolate Untouched Points through the outline

IUP[a]

Code Range 0x30 - 0x31

a 0: interpolate in the y-direction

 1: interpolate in the x-direction

Pops –

Pushes –

Uses zp2, freedom_vector, projection_vector

Considers a glyph contour by contour, moving any untouched points in each contour that are
between a pair of touched points. If the coordinates of an untouched point were originally
between those of the touched pair, it is linearly interpolated between the new coordinates,
otherwise the untouched point is shifted by the amount the nearest touched point is shifted.

This instruction operates on points in the glyph zone pointed to by zp2. This zone should
almost always be zone 1. Applying IUP to zone 0 is an error.

Consider three consecutive points all on the same contour. Two of the three points, p1 and p3
have been touched. Point p2 is untouched. The effect of an IUP in the x-direction is to move
point p2 so that is in the same relative position to points p1 and p3 before they were moved.

The IUP instruction does not touch the points it moves. Thus the untouched points affected by
an IUP instruction will be affected by subsequent IUP instructions unless they are touched by
an intervening instruction. In this case, the first interpolation is ignored and the point is moved
based on its original position.

p1

p2

p3

F P

The TrueType Instruction Set

Page 292 Revision 1.66
 File Name: ttch06b.doc

Managing exceptions
DELTA instructions can be used to alter the outline of a glyph at a particular
size. They are generally used to turn on or off specific pixels. Delta instructions
work by moving points (DELTAP’s) or by changing a value in the Control
Value Table (DELTAC’s).

More formally, the DELTA instructions take a variable number of arguments
from the stack and allow the use of an exception of the form: at size x apply the
movement d to point p (or at size x add or subtract an amount less than or equal
to the Control Value Table entry c). DELTAs take a list of exceptions of the
form: relative ppem value, the magnitude of the exception and the point
number to which the exception is to be applied.

Each DELTA instruction works on a range of sizes as specified below. As a
result, sizes are specified in relative pixels per em (ppem), that is relative to the
delta_base. The default value for delta_base is 9 ppem. To set delta_base to
another value, use the SDB instruction.

The DELTAP1 and DELTAC1 instructions allow values to be changed for
glyphs at 9 through 24 ppem, assuming the default value for delta_base.
Lowering the value for delta_base allows you to invoke exceptions at a smaller
number of ppem.

DELTAP2 and DELTAC2 are triggered at 16 ppem higher than the value set
for DELTAP1 and DELTAC1, and consequently the formula for the relative
ppem is
ppem - 16 - delta_base.

DELTAP3 and DELTAC3 are triggered at 16 ppem higher than the value set
for DELTAP2 and DELTAC2, or 32 ppem higher than the value set for
DELTAP1 and DELTAC1, and consequently the formula for the relative ppem
is:
ppem - 32 - delta_base.
DELTA*1 delta_base through delta_base + 15 ppem
DELTA*2 delta_base + 16 ppem through delta_base + 31 ppem
DELTA*3 delta_base + 32 ppem through delta_base + 47 ppem

In specifying a DELTA instruction, the high 4 bits of arg1 describe the relative
ppem value that will activate the exception.

The low 4 bits of arg1 describe the magnitude of the exception. The amount the
point moves is a function of the exception stated and the Graphics State
variable delta_shift. To set delta_shift, use the SDS instruction.

rel. ppem magnitude

The TrueType Instruction Set

Revision 1.66 Page 293
File Name: ttch06b.doc

NOTE: Always observe that DELTA instructions expect the argument list to
be sorted according to ppem. The lowest ppem should be deepest on the stack,
and the highest ppem should be topmost on the stack.

In the descriptions of the instructions that follow, pi is a point number, ci is a
Control Value Table entry number and argi is a byte composed of two parts: the
relative ppem (ppem – delta_base) and the magnitude of the exception.

Increasing the delta_shift will allow for more fine control over pixel movement
at the sacrifice of total range of movement. A step is the minimal amount that a
delta instruction can move a point. Points can be moved in integral multiples of
steps.

The size of a step is 1 divided by 2 to the power delta_shift. The range of
movement produced by a given delta_shift can be calculated by taking the
number of steps allowed (16) and dividing it by 2 to the power delta_shift. For
example, a delta_shift equal to 2 allows the smallest movement to be ± 1/4
pixel (because 22 equals 4) and the largest movement to be ± 2 pixels (16/4 = 4
pixels of movement). A delta_shift of 5 allows the smallest movement to be ±
1/32 pixel (because 25 equals 32), but the largest movement is limited to ± 1/4
pixel. (16/32 = 1/2 a pixel of movement).

The TrueType Instruction Set

Page 294 Revision 1.66
 File Name: ttch06b.doc

Internally, the value obtained for the exception is stored as a 4 bit binary
number. As a result, the desired output range must be converted to a number
between 0 and 15 before being converted to binary. Here is the internal
remapping table for the DELTA instructions.

NOTE: that zero is lacking in the output range.

Number of Steps  Exception
 -8 0
 -7 1
 -6 2
 -5 3
 -4 4
 -3 5
 -2 6
 -1 7
 1 8
 2 9
 3 10
 4 11
 5 12
 6 13
 7 14
 8 15

The TrueType Instruction Set

Revision 1.66 Page 295
File Name: ttch06b.doc

DELTA exception P1

DELTAP1[]

Code Range 0x5D

Pops n: number of pairs of exception specifications and points (ULONG)

 p1, arg1, p2, arg2, ..., pn, argn: n pairs of exception specifications and
 points (pairs of ULONGs)

Pushes –

Uses zp0, delta_base, delta_shift

DELTAP1 moves the specified points at the size and by the amount specified in the paired
argument. An arbitrary number of points and arguments can be specified.

The grouping [pi, argi] can be executed n times. The value of argi may vary between iterations.

The TrueType Instruction Set

Page 296 Revision 1.66
 File Name: ttch06b.doc

DELTA exception P2

DELTAP2[]

Code Range 0x71

Pops n: number of pairs of exception specifications and points (ULONG)

 p1, arg1, p2, arg2, ..., pn, argn: n pairs of exception specifications and
 points (pairs of ULONGs)

Pushes –

Uses zp0, delta_shift, delta_base

DELTAP2 moves the specified points at the size and by the amount specified in the paired
argument. An arbitrary number of points and arguments can be specified.

The grouping [pi, argi] can be executed n times. The value of argi may vary between iterations.

The TrueType Instruction Set

Revision 1.66 Page 297
File Name: ttch06b.doc

DELTA exception P3

DELTAP3[]

Code Range 0x72

Pops n: number of pairs of exception specifications and points (ULONG)

 p1, arg1, p2, arg2, ..., pn, argn: n pairs of exception specifications and
 points (pairs of ULONGs)

Pushes –

Uses zp0, delta_base, delta_shift

DELTAP3 moves the specified points at the size and by the amount specified in the paired
argument. An arbitrary number of point and arguments can be specified.

The grouping [pi, argi] can be executed n times. The value of argi may vary between
iterations.

The TrueType Instruction Set

Page 298 Revision 1.66
 File Name: ttch06b.doc

DELTA exception C1

DELTAC1[]

Code Range 0x73

Pops n: number of pairs of exception specifications and CVT entry
 numbers (ULONG)

 c1, arg1, c2, arg2,..., cn, argn: (pairs of ULONGs)

Pushes –

DELTAC1 changes the value in each CVT entry specified at the size and by the amount
specified in its paired argument.

The grouping [ci, argi] can be executed n times. The value of argi may vary between iterations.

The TrueType Instruction Set

Revision 1.66 Page 299
File Name: ttch06b.doc

DELTA exception C2

DELTAC2[]

Code Range 0x74

Pops n: number of pairs of exception specifications and CVT entry numbers
 (ULONG)

 c1, arg1, c2, arg2,..., cn, argn: (pairs of ULONGs)

Pushes –

DELTAC2 changes the value in each CVT entry specified at the size and by the amount
specified in its paired argument.

The grouping [ci, argi] can be executed n times. The value of argi may vary between iterations.

The TrueType Instruction Set

Page 300 Revision 1.66
 File Name: ttch06b.doc

DELTA exception C3

DELTAC3[]

Code Range 0x75

Pops n: number of pairs of CVT entry numbers and exception
 specifications (ULONG)

 c1, arg1, c2 arg2,..., cn, argn: pairs of CVT entry number and exception
 specifications (pairs of ULONGs)

Pushes –

DELTAC3 changes the value in each CVT entry specified at the size and by the amount
specified in its paired argument.

The grouping [ci, argi] can be executed n times. The value of argi may vary between iterations.

The TrueType Instruction Set

Revision 1.66 Page 301
File Name: ttch06b.doc

Example of DELTA exceptions

Assume that you want to move point 15 of your glyph 1/8 of a pixel along the freedom_vector
at 12 pixels per em. Assume that delta_base has the default value 9 and delta_shift the default
value 3.

To specify that the exception should be made at 12 ppem, you subtract the delta_base, which is
9, from 12 and store the result, which is 3, in the high nibble of argi.

To specify that the point is to be moved 1/8 of a pixel, multiply 1/8 by 2 raised to the power
delta_shift. In other words, you multiply 1/8 by 2 raised to the third power (or 8)yielding 1.
This value must be mapped to an internal value which using the table shown is 8.

Putting these two results together yields a 3 in the high nibble and an 8 in the low nibble or 56
(00111000, in binary).

To obtain this single exception, the top of the stack is: 56, 15, 1.
 (iteration)
 (point number)
 (arg1: ppem and magnitude)

Now if the interpreter executes

DELTAP1[]

then this instruction will move point 15 of the glyph (at 12 ppem) 1/8 of a pixel along the
freedom_vector.

The TrueType Instruction Set

Page 302 Revision 1.66
 File Name: ttch06b.doc

Managing the stack
The following set of instructions make it possible to manage elements on the
stack. They make it possible to duplicate the element at the top of the stack,
remove the top element from the stack, clear the stack, swap the top two stack
elements, determine the number of elements currently on the stack, copy a
specified element to the top of the stack, move a specified element to the top of
the stack, and rearrange the order of the top three elements on the stack.

The TrueType Instruction Set

Revision 1.66 Page 303
File Name: ttch06b.doc

Duplicate top stack element

DUP[]

Code Range 0x20

Pops e: stack element (ULONG)

Pushes e, e (two ULONGs)

Duplicates the element at the top of the stack.

e e

e

The TrueType Instruction Set

Page 304 Revision 1.66
 File Name: ttch06b.doc

POP top stack element

POP[]

Code Range 0x21

Pops e: stack element (ULONG)

Pushes –

Pops the top element of the stack.

e

The TrueType Instruction Set

Revision 1.66 Page 305
File Name: ttch06b.doc

Clear the entire stack

CLEAR[]

Code Range 0x22

Pops all the items on the stack (ULONGs)

Pushes –

Clears all elements from the stack.

e1

en

 …

The TrueType Instruction Set

Page 306 Revision 1.66
 File Name: ttch06b.doc

SWAP the top two elements on the stack

SWAP[]

Code Range 0x23

Pops e2: stack element (ULONG)
 e1: stack element (ULONG)

Pushes e1, e2 (pair of ULONGs)

Swaps the top two elements of the stack making the old top element the second from the top
and the old second element the top element.

e1

e2

e2

e1

The TrueType Instruction Set

Revision 1.66 Page 307
File Name: ttch06b.doc

Returns the DEPTH of the stack

DEPTH[]

Code Range 0x24

Pops –

Pushes n: number of elements (ULONG)

Pushes n, the number of elements currently in the stack onto the stack.

n

Example:

e1
e2

e3

3

The TrueType Instruction Set

Page 308 Revision 1.66
 File Name: ttch06b.doc

Copy the INDEXed element to the top of the stack

CINDEX[]

Code Range 0x25

Pops k : stack element number

Pushes ek: indexed element (ULONG)

Puts a copy of the kth stack element on the top of the stack.

e k k

Example:

CINDEX[]

e1

e2

e3

e4

e1

e2

e3

e4

e33

The TrueType Instruction Set

Revision 1.66 Page 309
File Name: ttch06b.doc

Move the INDEXed element to the top of the stack

MINDEX[]

Code Range 0x26

Pops k: stack element number

Pushes ek: indexed element

Moves the indexed element to the top of the stack.

e k k

MINDEX[]

3

e1

e2

e3

e4 e4

e1

e2

e3

The TrueType Instruction Set

Page 310 Revision 1.66
 File Name: ttch06b.doc

ROLL the top three stack elements

ROLL[]

Code Range 0x8a

Pops a, b, c (top three stack elements)

Pushes b, a, c (elements reordered)

Performs a circular shift of the top three objects on the stack with the effect being to move the
third element to the top of the stack and to move the first two elements down one position.
ROLL is equivalent to MINDEX[] 3.

c

b

a

b

a

c

The TrueType Instruction Set

Revision 1.66 Page 311
File Name: ttch06b.doc

Managing the flow of control
This section describes those instructions that make it possible to alter the
sequence in which items in the instruction stream are executed. The IF and JMP
instructions and their variants work by testing the value of an element on the
stack and changing the value of the instruction pointer accordingly.

The TrueType Instruction Set

Page 312 Revision 1.66
 File Name: ttch06b.doc

IF test

IF[]

Code Range 0x58

Pops e: stack element (ULONG)

Pushes –

Tests the element popped off the stack: if it is zero (FALSE), the instruction pointer is jumped
to the next ELSE or EIF instruction in the instruction stream. If the element at the top of the
stack is nonzero (TRUE), the next instruction in the instruction stream is executed. Execution
continues until an ELSE instruction is encountered or an EIF instruction ends the IF. If an else
statement is found before the EIF, the instruction pointer is moved to the EIF statement.

case 1:
Element at top of stack is TRUE; instruction pointer is unaffected. IF terminates with EIF.

IF[]

EIF[]

1 

The TrueType Instruction Set

Revision 1.66 Page 313
File Name: ttch06b.doc

case 2:
Element at top of stack is TRUE. The instruction stream is sequentially executed until ELSE is
encountered whereupon the instruction pointer jumps to the EIF statement that terminates the
IF.

IF[]

EIF[]

1

ELSE[]









case 3:
Element at the top of the stack is FALSE; instruction pointer is moved to the ELSE statement;
instructions are then executed sequentially; EIF ends the IF statement.

IF[]

EIF[]

0

ELSE[] 





The TrueType Instruction Set

Page 314 Revision 1.66
 File Name: ttch06b.doc

ELSE

ELSE[]

Code Range 0x1B

Pops –

Pushes –

Marks the start of the sequence of instructions that are to be executed if an IF instruction
encounters a FALSE value on the stack. This sequence of instructions is terminated with an EIF
instruction.

The TrueType Instruction Set

Revision 1.66 Page 315
File Name: ttch06b.doc

End IF

EIF[]

Code Range 0x59

Pops –

Pushes –

Marks the end of an IF[] instruction.

The TrueType Instruction Set

Page 316 Revision 1.66
 File Name: ttch06b.doc

Jump Relative On True

JROT[]

Code Range 0x78
Pops b: Boolean (ULONG)

 offset: number of bytes to move instruction pointer (LONG)

Pushes –

Obtains an offset and tests a Boolean value. If the Boolean is TRUE, the signed offset will be
added to the instruction pointer and execution will be resumed at the address obtained.
Otherwise, the jump is not taken. The jump is relative to the position of the instruction itself.
That is, the instruction pointer is still pointing at the JROT[] instruction when offset is added to
obtain the new address.

offset

b

Example:

case 1:
Boolean is FALSE.

JROT[]
0

4



The TrueType Instruction Set

Revision 1.66 Page 317
File Name: ttch06b.doc

case 2:
Boolean is TRUE.

JROT[]
1

4


The TrueType Instruction Set

Page 318 Revision 1.66
 File Name: ttch06b.doc

JuMP

JMPR[]

Code Range 0x1C

Pops offset: number of bytes to move instruction pointer (LONG)

Pushes –

The signed offset is added to the instruction pointer and execution is resumed at the new
location in the instruction steam. The jump is relative to the position of the instruction itself.
That is, the instruction pointer is still pointing at the JROT[] instruction when offset is added to
obtain the new address.

offset

The TrueType Instruction Set

Revision 1.66 Page 319
File Name: ttch06b.doc

Jump Relative On False

JROF[]

Code Range 0x79

Pops e: stack element (ULONG)
 offset: number of bytes to move instruction pointer (LONG)

Pushes –

In the case where the Boolean is FALSE, the signed offset will be added to the instruction
pointer and execution will be resumed there; otherwise, the jump is not taken. The jump is
relative to the position of the instruction itself. That is, the instruction pointer is still pointing at
the JROT[] instruction when offset is added to obtain the new address.

e

offset

case 1:
element is FALSE.

JROF[]

0

4



(continued...)

The TrueType Instruction Set

Page 320 Revision 1.66
 File Name: ttch06b.doc

case 2:
element is TRUE.

JROF[]

1

4


The TrueType Instruction Set

Revision 1.66 Page 321
File Name: ttch06b.doc

Logical functions
The TrueType instruction set includes a set of logical functions that can be used
to test the value of a stack element or to compare the values of two stack
elements. The logical functions compare 32 bit values (ULONG) and return a
Boolean value to the top of the stack.

To easily remember the order in which stack values are handled during logical
operations, imagine writing the stack values from left to right, starting with the
bottom value. Then insert the operator between the two furthest right elements.
For example:

b

a

c

GT a,b would be interpreted as (b>a):

c b > a

The TrueType Instruction Set

Page 322 Revision 1.66
 File Name: ttch06b.doc

Less Than

LT[]

Code Range 0x50

Pops e2: stack element (ULONG)
 e1: stack element (ULONG)

Pushes Boolean value (ULONG in the range [0,1])

Pops e2 and e1 off the stack and compares them: if e1 is less than e2, 1, signifying TRUE, is
pushed onto the stack. If e1 is not less than e2, 0, signifying FALSE, is placed onto the stack.

Boolean e1

e2

Example:

LT[]

15

20 0

The TrueType Instruction Set

Revision 1.66 Page 323
File Name: ttch06b.doc

Less Than or Equal

LTEQ[]

Code Range 0x51

Pops e2: stack element (ULONG)
 e1: stack element (ULONG)

Pushes Boolean value (ULONG in the range [0,1])

Pops e2 and e1 off the stack and compares them. If e1 is less than or equal to e2, 1, signifying
TRUE, is pushed onto the stack. If e1 is not less than or equal to e2, 0, signifying FALSE, is
placed onto the stack.

Boolean e1

e2

Example:

LTEQ[]

20

20 1

The TrueType Instruction Set

Page 324 Revision 1.66
 File Name: ttch06b.doc

Greater Than

GT[]

Code Range 0x52

Pops e2: stack element (ULONG)
 e1: stack element (ULONG)

Pushes Boolean value (ULONG in the range [0,1])

Pops e1 and e2 off the stack and compares them. If e1 is greater than e2, 1, signifying TRUE, is
pushed onto the stack. If e1 is not greater than e2, 0, signifying FALSE, is placed onto the
stack.

Boolean e1

e2

Example:

GT[]

20

20 0

The TrueType Instruction Set

Revision 1.66 Page 325
File Name: ttch06b.doc

Greater Than or Equal

GTEQ[]

Code Range 0x53

Pops e2: stack element (ULONG)
 e1: stack element (ULONG)

Pushes Boolean value (ULONG in the range [0,1])

Pops e1 and e2 off the stack and compares them. If e1 is greater than or equal to e2, 1,
signifying TRUE, is pushed onto the stack. If e1 is not greater than or equal to e2, 0, signifying
FALSE, is placed onto the stack.

Boolean e1

e2

Example:

GTEQ[]

15

20 1

The TrueType Instruction Set

Page 326 Revision 1.66
 File Name: ttch06b.doc

EQual

EQ[]

Code Range 0x54

Pops e1: stack element (ULONG)
 e2: stack element (ULONG)

Pushes Boolean value (ULONG in the range [0,1])

Pops e1 and e2 off the stack and compares them. If they are equal, 1, signifying TRUE is
pushed onto the stack. If they are not equal, 0, signifying FALSE is placed onto the stack.

Boolean e2

e1

Example:

EQ[]

20

-12 0

The TrueType Instruction Set

Revision 1.66 Page 327
File Name: ttch06b.doc

Not EQual

NEQ[]

Code Range 0x55

Pops e1:stack element (ULONG)
 e2: stack element (ULONG)

Pushes Boolean value (ULONG in the range [0,1])

Pops e1 and e2 from the stack and compares them. If they are not equal, 1, signifying TRUE, is
pushed onto the stack. If they are equal, 0, signifying FALSE, is placed on the stack.

Boolean e2

e1

Example:

20

-12 1

The TrueType Instruction Set

Page 328 Revision 1.66
 File Name: ttch06b.doc

ODD

ODD[]

Code Range 0x56

Pops e1: stack element (F26Dot6)

Pushes Boolean value

Uses round_state

Tests whether the number at the top of the stack is odd. Pops e1 from the stack and rounds it as
specified by the round_state before testing it. After the value is rounded, it is shifted from a
fixed point value to an integer value (any fractional values are ignored). If the integer value is
odd, one, signifying TRUE, is pushed onto the stack. If it is even, zero, signifying FALSE is
placed onto the stack.

Boolean e1

Example:

ODD[]

This example assumes that round_state is RTG.

22.7 1

The TrueType Instruction Set

Revision 1.66 Page 329
File Name: ttch06b.doc

EVEN

EVEN[]

Code Range 0x57

Pops e1: stack element (F26Dot6)

Pushes Boolean value (ULONG in the range [0,1])

Uses round_state

Tests whether the number at the top of the stack is even. Pops e1 off the stack and rounds it as
specified by the round_state before testing it. If the rounded number is even, one, signifying
TRUE, is pushed onto the stack if it is odd, zero, signifying FALSE, is placed onto the stack.

Boolean e1

Example:

EVEN[]

This example assumes that round_state is RTG.

22.7 0

The TrueType Instruction Set

Page 330 Revision 1.66
 File Name: ttch06b.doc

logical AND

AND[]

Code Range 0x5A

Pops e1: stack element (ULONG)
 e2: stack element (ULONG)

Pushes (e1 and e2): logical and of e1 and e2 (ULONG)

Pops e1 and e2 off the stack and pushes onto the stack the result of a logical and of the two
elements. Zero is returned if either or both of the elements are FALSE (have the value zero).
One is returned if both elements are TRUE (have a non zero value).

e1 and e2 e2

e1

case 1:
AND[]

33 1

1

(continued...)

The TrueType Instruction Set

Revision 1.66 Page 331
File Name: ttch06b.doc

case 2:
AND[]

0 0

1

The TrueType Instruction Set

Page 332 Revision 1.66
 File Name: ttch06b.doc

logical OR

OR[]

Code Range 0x5B

Pops e1: stack element (ULONG)
 e2: stack element (ULONG)

Pushes (e1 or e2): logical or of e1 and e2 (ULONG)

Pops e1 and e2 off the stack and pushes onto the stack the result of a logical or operation
between the two elements. Zero is returned if both of the elements are FALSE. One is returned
if either both of the elements are TRUE.

e1 or e2e2

e1

Example:

case 1:
OR[]

0 1

44

(continued...)

The TrueType Instruction Set

Revision 1.66 Page 333
File Name: ttch06b.doc

case 2:
OR[]

0 0

0

The TrueType Instruction Set

Page 334 Revision 1.66
 File Name: ttch06b.doc

logical NOT

NOT[]

Code Range 0x5C

Pops e: stack element (ULONG)

Pushes (not e): logical negation of e (ULONG)

Pops e off the stack and returns the result of a logical NOT operation performed on e. If
originally zero, one is pushed onto the stack if originally nonzero, zero is pushed onto the stack.

not e e

Example:

case 1:

42.1 0

case 2:

0 1

The TrueType Instruction Set

Revision 1.66 Page 335
File Name: ttch06b.doc

Arithmetic and math instructions
These instructions perform arithmetic on stack values. Values are treated as
signed (two’s complement) 26.6 fixed-point numbers (F26Dot6) and give
results in the same form. There is no overflow or underflow protection for these
instructions.

To easily remember the order in which stack values are handled during
arithmetic operations, imagine writing the stack values from left to right,
starting with the bottom value. Then insert the operator between the two
furthest right elements. For example:

b

a

c

subtract a,b would be interpreted as (b-a):

c b - a

The TrueType Instruction Set

Page 336 Revision 1.66
 File Name: ttch06b.doc

ADD

ADD[]

Code Range 0x60

Pops n1, n2 (F26Dot6)

Pushes (n2 + n1)

Pops n1 and n2 off the stack and pushes the sum of the two elements onto the stack.

n1

n2 n2 + n1

The TrueType Instruction Set

Revision 1.66 Page 337
File Name: ttch06b.doc

SUBtract

SUB[]

Code Range 0x61

Pops n1, n2 (F26Dot6)

Pushes (n2 - n1): difference

Pops n1 and n2 off the stack and pushes the difference between the two elements onto the
stack.

n1

n2 n2 - n1

The TrueType Instruction Set

Page 338 Revision 1.66
 File Name: ttch06b.doc

DIVide

DIV[]

Code Range 0x62

Pops n1: divisor (F26Dot6)

 n2: dividend (F26Dot6)

Pushes
n2

n1
 (F26Dot6)

Pops n1 and n2 off the stack and pushes onto the stack the quotient obtained by dividing n2 by
n1. Note that this truncates rather than rounds the value.

n2

n1

n2/n1

The TrueType Instruction Set

Revision 1.66 Page 339
File Name: ttch06b.doc

MULtiply

MUL[]

Code Range 0x63

Pops n1, n2: multiplier and multiplicand (F26Dot6)

Pushes n1 * n2 (F26Dot6)

Pops n1 and n2 off the stack and pushes onto the stack the product of the two elements.

n2

n1

n1 * n2

The TrueType Instruction Set

Page 340 Revision 1.66
 File Name: ttch06b.doc

ABSolute value

ABS[]

Code Range 0x64

Pops n

Pushes |n|: absolute value of n (F26Dot6)

Pops n off the stack and pushes onto the stack the absolute value of n.

n |n|

Example:

case 1:

-21.1 21.1

case 2:

14.0 14.0

The TrueType Instruction Set

Revision 1.66 Page 341
File Name: ttch06b.doc

NEGate

NEG[]

Code Range 0x65

Pops n1

Pushes –n1: negation of n1 (F26Dot6)

This instruction pops n1 off the stack and pushes onto the stack the negated value of n1.

n -n

NEG[]

44.66 -44.66

The TrueType Instruction Set

Page 342 Revision 1.66
 File Name: ttch06b.doc

FLOOR

FLOOR[]

Code Range 0x66

Pops n1: number whose floor is desired (F26Dot6)

Pushes n : floor of n1 (F26Dot6)

Pops n1 and returns n, the greatest integer value less than or equal to n1.

n1 n

Example:

FLOOR[]

case 1:

15.8 15

case 2:

15.3 15

case 3:

-0.8 -1

The TrueType Instruction Set

Revision 1.66 Page 343
File Name: ttch06b.doc

CEILING

CEILING[]

Code Range 0x67

Pops n1: number whose ceiling is desired (F26Dot6)

Pushes n: ceiling of n1 (F26Dot6)

Pops n1 and returns n, the least integer value greater than or equal to n1. For instance, the
ceiling of 15 is 15, but the ceiling of 15.3 is 16. The ceiling of -0.8 is 0. (n is the least integer
value greater than or equal to n1)

n1 n

Example:

CEILING[]

case 1:

223.0 223.0

case 2:

223.3 224.0

The TrueType Instruction Set

Page 344 Revision 1.66
 File Name: ttch06b.doc

MAXimum of top two stack elements

MAX[]

Code Range 0x8B

Pops e1: stack element (ULONG)
 e2: stack element (ULONG)

Pushes maximum of e1 and e2

Pops two elements, e1 and e2, from the stack and pushes the larger of these two quantities onto
the stack.

max[e1,e2]e2

e1

The TrueType Instruction Set

Revision 1.66 Page 345
File Name: ttch06b.doc

MINimum of top two stack elements

MIN[]

Code Range 0x8C

Pops e1: stack element (ULONG)
 e2: stack element (ULONG)

Pushes minimum of e1 and e2

Pops two elements, e1 and e2, from the stack and pushes the smaller of these two quantities
onto the stack.

min[e1, e2] e2

e1

The TrueType Instruction Set

Page 346 Revision 1.66
 File Name: ttch06b.doc

Compensating for the engine characteristics
The following two functions make it possible to compensate for the engine
characteristic. Each takes value and make the compensation. In addition to the
engine compensation, ROUND, rounds the value according to the round_state.
NROUND only compensates for the engine.

The TrueType Instruction Set

Revision 1.66 Page 347
File Name: ttch06b.doc

ROUND value

ROUND[ab]

Flags ab: distance type for engine characteristic compensation

Pops n1

Pushes n2

Code 0x68 - 0x6B

Rounds a value according to the state variable round_state while compensating for the engine.
n1 is popped off the stack and, depending on the engine characteristics, is increased or
decreased by a set amount. The number obtained is then rounded and pushed back onto the
stack as n2.

The value ab specifies the distance type as described in the chapter, “Instructing Glyphs.”
Three values are possible: Gray=0, Black=1, White=2.

The TrueType Instruction Set

Page 348 Revision 1.66
 File Name: ttch06b.doc

No ROUNDing of value

NROUND[ab]

Flags ab: distance type for engine characteristic compensation

Pops n1

Pushes n2

Code 0x6C - 0x6F

NROUND[ab] does the same operation as ROUND[ab] (above), except that it does not round
the result obtained after compensating for the engine characteristics. n1 is popped off the stack
and, depending on the engine characteristics, increases or decreases by a set amount. This
figure is then pushed back onto the stack as n2.

The value ab specifies the distance type as described in the chapter, “Instructing Glyphs.”
Three values are possible: Gray=0, Black=1, White=2.

The TrueType Instruction Set

Revision 1.66 Page 349
File Name: ttch06b.doc

Defining and using functions and instructions
The following instructions make it possible to define and use both functions
and new instructions.

 In addition to a simple call function, there is a loop and call function.

An IDEF or instruction definition call makes it possible to patch old scalers in
order to add newly defined instructions.

The TrueType Instruction Set

Page 350 Revision 1.66
 File Name: ttch06b.doc

Function DEFinition

FDEF[]

Code Range 0x2C

Pops f: function identifier number (integer in the range 0 to n-1 where n is
 specified in the ‘maxp’ table)

Pushes –

Marks the start of a function definition. The argument f is a number that uniquely identifies
this function. A function definition can appear only in the Font Program or the CVT program.
Functions may not exceed 64K in size.

f

The TrueType Instruction Set

Revision 1.66 Page 351
File Name: ttch06b.doc

END Function definition

ENDF[]

Code Range 0x2D

Pops –

Pushes –

Marks the end of a function definition or an instruction definition.

The TrueType Instruction Set

Page 352 Revision 1.66
 File Name: ttch06b.doc

CALL function

CALL[]

Code Range 0x2B

Pops f: function identifier number (integer in the range 0 to n-1 where n is
 specified in the ‘maxp’ table)

Pushes –

Calls the function identified by the number f.

f

The TrueType Instruction Set

Revision 1.66 Page 353
File Name: ttch06b.doc

LOOP and CALL function

LOOPCALL[]

Code Range 0x2A

Pops f: function number integer in the range 0 to n-1 where n
 is specified in the ‘maxp’ table
 count: number of times to call the function (signed word)
Pushes –

Calls the function f, count number of times.

f

count

Example:

Assume the Font Program contains this:
PUSHB(000), 17 push 17 onto the stack

FDEF[] start defining function 17
 ... contents of function

 ...

ENDF[] end the definition

PUSHB(000),17 push function number

PUSHB(000),5 push count

LOOPCALL[] call function17, 5 times

The TrueType Instruction Set

Page 354 Revision 1.66
 File Name: ttch06b.doc

Instruction DEFinition

IDEF[]

Code Range 0x89

Pops opcode (8 bit code padded with zeroes to ULONG)

Pushes –

Begins the definition of an instruction. The instruction definition terminates when at ENDF,
which is encountered in the instruction stream. Subsequent executions of the opcode popped
will be directed to the contents of this instruction definition (IDEF). IDEFs should be defined in
the Font Program or the CVT Program. An IDEF affects only undefined opcodes. If the opcode
in question is already defined, the interpreter will ignore the IDEF. This is to be used as a
patching mechanism for future instructions. Instructions may not exceed 64K in size.

The TrueType Instruction Set

Revision 1.66 Page 355
File Name: ttch06b.doc

Debugging
The TrueType instruction set provides the following instruction as an aid to
debugging.

DEBUG call

DEBUG[]

Code Range 0x4F

Pops number (ULONG)

Pushes –

This instruction is only for debugging purposes and should not be a part of a finished font.
Some implementations may not support this instruction.

number

The TrueType Instruction Set

Page 356 Revision 1.66
 File Name: ttch06b.doc

Miscellaneous instructions
The following instruction obtains information about the current glyph and the
scaler version.

GET INFOrmation

GETINFO[]

Code Range 0x88

Pops selector (integer)

Pushes result (integer)

GETINFO is used to obtain data about the font scaler version and the characteristics of the
current glyph. The instruction pops a selector used to determine the type of information desired
and pushes a result onto the stack.

A selector value of 1 indicates that the scaler version number is the desired information, a value
of 2 is a request for glyph rotation status, a value of 4 asks whether the glyph has been
stretched. (Looking at this another way, setting bit 0 asks for the scaler version number,
setting bit 1 asks for the rotation information, setting bit 2 ask for stretching information. To
request information on two or more of these set the appropriate bits.)

The result pushed onto the stack contains the requested information. More precisely, bits 0
through 7 comprise the Scaler version number. Version 1 is Macintosh System 6 INIT, version
2 is Macintosh System 7, and version 3 is Windows 3.1. Version numbers 0 and 4 through 255
are reserved.

Bit 8 is set to 1 if the current glyph has been rotated. It is 0 otherwise. Setting bit 9 to 1
indicates that the glyph has been stretched. It is 0 otherwise.

When the selector is set to request more than one piece of information, that information is
OR’d together and pushed onto the stack. For example, a selector value of 6 requests both
information on rotation and stretching and will result in the setting of both bits 8 and 9.

selector result

Chapter 7

Revision 1.66 Page 357
File Name: ttch07.doc

Graphics State Summary

The following tables summarize the variables that make up the Graphics State.
Nearly all of the Graphics State variables have a default value as shown
below. That value is reestablished for every glyph in a font. Instructions are
available for resetting the value of all Graphics State variables. Some state
variables can be reset in the CVT Program. In such cases the value set
becomes the new default and will be reestablished for each glyph. When value
of a state variable is changed by instructions associated with a particular
glyph, it will hold only for that glyph.

The setting of the Graphics State variables will affect the actions of certain
instructions. Affected instructions are listed for each variable.

Graphics State Variable Default Set With Affects

auto_flip TRUE FLIPOFF
FLIPON

MIAP
MIRP

control_value_cut_in 17/16 pixels SCVTCI MIAP

MIRP

delta_base 9 SDB DELTAP1
DELTAP2
DELTAP3
DELTAC1
DELTAC2
DELTAC3

delta_shift 3 SDS DELTAP1
DELTAP2
DELTAP3
DELTAC1
DELTAC2
DELTAC3

dual_projection_vectors — SDPVTL IP
GC
MD

MDRP
MIRP

Graphics State Summary

Page 358 Revision 1.66
 File Name: ttch07.doc

freedom_vector x-axis SFVTCA
SFVTL
SFTPV
SVTCA
SFVFS

GFV

gep0 1 SCE0
SCES

AA
ALIGNPTS
ALIGNRP
DELTAP1
DELTAP2
DELTAP3

IP
ISECT

MD
MDAP
MIAP
MIRP

MSIRP
SHC
SHE
SHP
UTP

gep1 1 SCE1
SCES

AA
ALIGNPTS
ALIGNRP

IP
MD

MDRP
MIRP

MSIRP
SHC
SHE
SHP

SFVTL
SPVTL

Graphics State Summary

Revision 1.66 Page 359
File Name: ttch07.doc

gep2 1 SCE3
SCES

ISECT
IUP
GC

SHC
SHP

SFVTL
SHPIX
SPVTL

SC

instruct_Control 0 INSTCTRL all instructions

loop 1 SLOOP ALIGNRP
FLIPPT

IP
SHP

SHPIX

minimum_distance 1 pixel LMD MDRP
MIRP

projection_vector x-axis SPVTCA
SPVTL
SVTCA
SPVFS

GPV

round_state 1 RDTG
ROFF
RTDG
RTG

RTHG
RUTG

SROUND
S45ROUND

MDAP
MIAP
MDRP
MIRP

ROUND

rp0 0 SRP0 IP
MDAP
MIAP
MIRP

MSIRP
SHC
SHE
SHP

Graphics State Summary

Page 360 Revision 1.66
 File Name: ttch07.doc

rp1 0 SRP1 IP
MDAP
MDRP
MIAP
MSIRP

SHC
SHE
SHP

rp2 0 SRP2 IP
MDRP
MIRP

MSIRP
SHC
SHE
SHP

scan_control FALSE SCANCTRL

SCANTYPE

singe_width_cut_in 0 pixels SSWCI MIAP
MIRP

single_width_value 0 pixels SSW MIAP
MIRP

Appendix A

Revision 1.66 Page 361
File Name: ttchaa.doc

IBM Font Class Parameters

This section defines the IBM Font Class and the IBM Font Subclass parameter
values to be used in the classification of font designs by the font designer or
supplier. This information is stored in the sFamilyClass field of a font’s OS/2
table.

sFamilyClass
Format: 2-byte signed short
Title: Font-family class and subclass. Also see section 3.4.
Description: This parameter is a classification of font-family design.
Comments: The font class and font subclass are registered values assigned by IBM to each font

family. This parameter is intended for use in selecting an alternate font when the
requested font is not available. The font class is the most general and the font subclass is
the most specific. The high byte of this field contains the family class, while the low
byte contains the family subclass.

These values classify a font design as to its appearance, but do not identify the
specific font family, typeface variation, designer, supplier, size, or metric table
differences. It should be noted that some font designs may be classified
equally well into more than IBM Font Class or Subclass. Such designs should
be matched to a classification for which substitution of another font design
from the same class or subclass would generally result in a similar appearance
of the presented document.

Class ID = 0 No Classification

This class ID is used to indicate that the associated font has no design
classification or that the design classification is not of significance to the
creator or user of the font resource.

Class ID = 1 Oldstyle Serifs

This style is generally based upon the Latin printing style of the 15th to 17th
century, with a mild diagonal contrast in stroke emphasis (lighter in upper left
to lower right, heavier in upper right to lower left) and bracketed serifs. This
IBM Class reflects the ISO Serif Class, Oldstyle and Legibility Subclasses as
documented in the 12/87 ISO/IEC 9541-5 draft standard.

IBM Font Class Parameters

Page 362 Revision 1.66
 File Name: ttchaa.doc

Subclass ID = 0 : No Classification

This subclass ID is used to indicate that the associated font has no design sub-
classification or that the design subclassification is not of significance to the
creator or user of the font resource.

Subclass ID = 1 : IBM Rounded Legibility

This style is generally characterized by a large x-height, with short ascenders
and descenders. Specifically, it is distinguished by a medium resolution,
hand tuned, bitmap rendition of the more general rounded legibility subclass.
An example of this font style is the IBM Sonoran Serif family. This IBM
Subclass reflects the ISO Serif Class, Legibility Subclass, and Rounded
Specific Group as documented in the 12/87 ISO/IEC 9541-5 draft standard.

Subclass ID = 2 : Garalde

This style is generally characterized by a medium x-height, with tall
ascenders. An example of this font style is the ITC Garamond family. This
IBM Subclass reflects the ISO Serif Class, Oldstyle Subclass, and Garalde
Specific Group as documented in the 12/87 ISO/IEC 9541-5 draft standard.

Subclass ID = 3 : Venetian

This style is generally characterized by a medium x-height, with a relatively
monotone appearance and sweeping tails based on the designs of the early
Venetian printers. An example of this font style is the Goudy family. This
IBM Subclass reflects the ISO Serif Class, Oldstyle Subclass, and Venetian
Specific Group as documented in the 12/87 ISO/IEC 9541-5 draft standard.

Subclass ID = 4 : Modified Venetian

This style is generally characterized by a large x-height, with a relatively
monotone appearance and sweeping tails based on the designs of the early
Venetian printers. An example of this font style is the Allied Linotype
Palatino family. This IBM Subclass reflects the ISO Serif Class,
Transitional Subclass, and Modified Specific Group as documented in the
12/87 ISO/IEC 9541-5 draft standard.

Subclass ID = 5 : Dutch Modern

This style is generally characterized by a large x-height, with wedge shaped
serifs and a circular appearance to the bowls similar to the Dutch Traditional
Subclass below, but with lighter stokes. An example of this font style is the
Monotype Times New Roman family. This IBM Subclass reflects the ISO
Serif Class, Oldstyle Subclass, and Dutch Specific Group as documented in
the 12/87 ISO/IEC 9541-5 draft standard.

Subclass ID = 6 : Dutch Traditional

IBM Font Class Parameters

Revision 1.66 Page 363
File Name: ttchaa.doc

This style is generally characterized by a large x-height, with wedge shaped
serifs and a circular appearance of the bowls. An example of this font style
is the IBM Press Roman family. This IBM Subclass reflects the ISO Serif
Class and Legibility Subclass as documented in the 12/87 ISO/IEC 9541-5
draft standard.

Subclass ID = 7 : Contemporary

This style is generally characterized by a small x-height, with light stokes and
serifs. An example of this font style is the University family. This IBM
Subclass reflects the ISO Serif Class and Contemporary Subclass as
documented in the 12/87 ISO/IEC 9541-5 draft standard.

Subclass ID = 8 : Calligraphic

This style is generally characterized by the fine hand writing style of
calligraphy, while retaining the characteristic Oldstyle appearance. This
IBM Subclass is not reflected in the 12/87 ISO/IEC 9541-5 draft standard.

Subclass ID = 9-14 : (reserved for future use)

These subclass IDs are reserved for future assignment, and shall not be used
without formal assignment by IBM.

Subclass ID = 15 : Miscellaneous

This subclass ID is used for miscellaneous designs of the associated design
class that are not covered by another Subclass.

Class ID = 2 Transitional Serifs

This style is generally based upon the Latin printing style of the 18th to 19th
century, with a pronounced vertical contrast in stroke emphasis (vertical
strokes being heavier than the horizontal strokes) and bracketed serifs. This
IBM Class reflects the ISO Serif Class, Transitional Subclass as documented
in the 12/87 ISO/IEC 9541-5 draft standard.

Subclass ID = 0 : No Classification

This subclass ID is used to indicate that the associated font has no design sub-
classification or that the design sub-classification is not of significance to the
creator or user of the font resource.

IBM Font Class Parameters

Page 364 Revision 1.66
 File Name: ttchaa.doc

Subclass ID = 1 : Direct Line

This style is generally characterized by a medium x-height, with fine serifs,
noticeable contrast, and capitol letters of approximately the same width. An
example of this font style is the Monotype Baskerville family. This IBM
Subclass reflects the ISO Serif Class, Transitional Subclass, and Direct Line
Specific Group as documented in the 12/87 ISO/IEC 9541-5 draft standard.

Subclass ID = 2 : Script

This style is generally characterized by a hand written script appearance while
retaining the Transitional Direct Line style. An example of this font style is
the IBM Nasseem (Arabic) family. This IBM Subclass is not specifically
reflected in the 12/87 ISO/IEC 9541-5 draft standard, though the ISO Serif
Class, Transitional Subclass, and Direct Line Specific Group would be a close
approximation.

Subclass ID = 3-14 : (reserved for future use)

These subclass IDs are reserved for future assignment, and shall not be used
without formal assignment by IBM.

Subclass ID = 15 : Miscellaneous

This subclass ID is used for miscellaneous designs of the associated design
class that are not covered by another Subclass.

Class ID = 3 Modern Serifs

This style is generally based upon the Latin printing style of the 20th century,
with an extreme contrast between the thick and thin portion of the strokes.
This IBM Class reflects the ISO Serif Class, Modern Subclass as documented
in the 12/87 ISO/IEC 9541-5 draft standard.

Subclass ID = 0 : No Classification

This subclass ID is used to indicate that the associated font has no design sub-
classification or that the design sub-classification is not of significance to the
creator or user of the font resource.

Subclass ID = 1 : Italian

This style is generally characterized by a medium x-height, with thin hairline
serifs. An example of this font style is the Monotype Bodoni family. This
IBM Subclass reflects the ISO Serif Class, Modern Subclass, and Italian
Specific Group as documented in the 12/87 ISO/IEC 9541-5 draft standard.

IBM Font Class Parameters

Revision 1.66 Page 365
File Name: ttchaa.doc

Subclass ID = 2 : Script

This style is generally characterized by a hand written script appearance while
retaining the Modern Italian style. An example of this font style is the IBM
Narkissim (Hebrew) family. This IBM Subclass is not specifically reflected
in the 12/87 ISO/IEC 9541-5 draft standard, though the ISO Serif Class,
Modern Subclass, and Italian Specific Group would be a close approximation.

Subclass ID = 3-14 : (reserved for future use)

These subclass IDs are reserved for future assignment, and shall not be used
without formal assignment by IBM.

Subclass ID = 15 : Miscellaneous

This subclass ID is used for miscellaneous designs of the associated design
class that are not covered by another Subclass.

Class ID = 4 Clarendon Serifs

This style is a variation of the Oldstyle Serifs and the Transitional Serifs, with
a mild vertical stroke contrast and bracketed serifs. This IBM Class reflects
the ISO Serif Class, Square Serif Subclass as documented in the 12/87
ISO/IEC 9541-5 draft standard.

Subclass ID = 0 : No Classification

This subclass ID is used to indicate that the associated font has no design sub-
classification or that the design sub-classification is not of significance to the
creator or user of the font resource.

IBM Font Class Parameters

Page 366 Revision 1.66
 File Name: ttchaa.doc

Subclass ID = 1 : Clarendon

This style is generally characterized by a large x-height, with serifs and
strokes of equal weight. An example of this font style is the Allied Linotype
Clarendon family. This IBM Subclass reflects the ISO Serif Class, Square
Serif Subclass, and Clarendon Specific Group as documented in the 12/87
ISO/IEC 9541-5 draft standard.

Subclass ID = 2 : Modern

This style is generally characterized by a large x-height, with serifs of a lighter
weight than the strokes and the strokes of a lighter weight than the Traditional.
An example of this font style is the Monotype Century Schoolbook family.
This IBM Subclass reflects the ISO Serif Class, Square Serif Subclass, and
Clarendon Specific Group as documented in the 12/87 ISO/IEC 9541-5 draft
standard.

Subclass ID = 3 : Traditional

This style is generally characterized by a large x-height, with serifs of a lighter
weight than the strokes. An example of this font style is the Monotype
Century family.This IBM Subclass reflects the ISO Serif Class, Square Serif
Subclass, and Clarendon Specific Group as documented in the 12/87 ISO/IEC
9541-5 draft standard.

Subclass ID = 4 : Newspaper

This style is generally characterized by a large x-height, with a simpler style
of design and serifs of a lighter weight than the strokes. An example of this
font style is the Allied Linotype Excelsior Family. This IBM Subclass
reflects the ISO Serif Class, Square Serif Subclass, and Clarendon Specific
Group as documented in the 12/87 ISO/IEC 9541-5 draft standard.

Subclass ID = 5 : Stub Serif

This style is generally characterized by a large x-height, with short stub serifs
and relatively bold stems. An example of this font style is the Cheltenham
Family. This IBM Subclass reflects the ISO Serif Class, Square Serif
Subclass, and Short Specific Group as documented in the 12/87 ISO/IEC
9541-5 draft standard.

Subclass ID = 6 : Monotone

This style is generally characterized by a large x-height, with monotone stems.
An example of this font style is the ITC Korinna Family. This IBM Subclass
reflects the ISO Serif Class, Square Serif Subclass, and Monotone Specific
Group as documented in the 12/87 ISO/IEC 9541-5 draft standard.

IBM Font Class Parameters

Revision 1.66 Page 367
File Name: ttchaa.doc

Subclass ID = 7 : Typewriter

This style is generally characterized by a large x-height, with moderate stroke
thickness characteristic of a typewriter. An example of this font style is the
Prestige Elite Family. This IBM Subclass reflects the ISO Serif Class,
Square Serif Subclass, and Typewriter Specific Group as documented in the
12/87 ISO/IEC 9541-5 draft standard.

Subclass ID = 8-14: (reserved for future use)

These subclass IDs are reserved for future assignment, and shall not be used
without formal assignment by IBM.

Subclass ID = 15 : Miscellaneous

This subclass ID is used for miscellaneous designs of the associated design
class that are not covered by another Subclass.

Class ID = 5 Slab Serifs

This style is characterized by serifs with a square transition between the
strokes and the serifs (no brackets). This IBM Class reflects the ISO Serif
Class, Square Serif Subclass (except the Clarendon Specific Group) as
documented in the 12/87 ISO/IEC 9541-5 draft standard.

Subclass ID = 0 : No Classification

This subclass ID is used to indicate that the associated font has no design sub-
classification or that the design sub-classification is not of significance to the
creator or user of the font resource.

Subclass ID = 1 : Monotone

This style is generally characterized by a large x-height, with serifs and
strokes of equal weight. An example of this font style is the ITC Lubalin
Family. This IBM Subclass reflects the ISO Serif Class, Square Serif
Subclass, and Monotone Specific Group as documented in the 12/87 ISO/IEC
9541-5 draft standard.

Subclass ID = 2 : Humanist

This style is generally characterized by a medium x-height, with serifs of
lighter weight that the strokes. An example of this font style is the Candida
Family. This IBM Subclass reflects the ISO Serif Class, Square Serif
Subclass, and Monotone Specific Group as documented in the 12/87 ISO/IEC
9541-5 draft standard.

IBM Font Class Parameters

Page 368 Revision 1.66
 File Name: ttchaa.doc

Subclass ID = 3 : Geometric

This style is generally characterized by a large x-height, with serifs and
strokes of equal weight and a geometric (circles and lines) design. An
example of this font style is the Monotype Rockwell Family. This IBM
Subclass reflects the ISO Serif Class, Square Serif Subclass, and Monotone
Specific Group as documented in the 12/87 ISO/IEC 9541-5 draft standard.

Subclass ID = 4 : Swiss

This style is generally characterized by a large x-height, with serifs and
strokes of equal weight and an emphasis on the white space of the characters.
An example of this font style is the Allied Linotype Serifa Family. This IBM
Subclass reflects the ISO Serif Class, Square Serif Subclass, and Monotone
Specific Group as documented in the 12/87 ISO/IEC 9541-5 draft standard.

Subclass ID = 5 : Typewriter

This style is generally characterized by a large x-height, with serifs and
strokes of equal but moderate thickness, and a geometric design. An
example of this font style is the IBM Courier Family. This IBM Subclass
reflects the ISO Serif Class, Square Serif Subclass, and Monotone Specific
Group as documented in the 12/87 ISO/IEC 9541-5 draft standard.

Subclass ID = 6-14 : (reserved for future use)

These subclass IDs are reserved for future assignment, and shall not be used
without formal assignment by IBM.

Subclass ID = 15 : Miscellaneous

This subclass ID is used for miscellaneous designs of the associated design
class that are not covered by another Subclass.

Class ID = 6 (reserved for future use)

This class ID is reserved for future assignment, and shall not be used without
formal assignment by IBM.

Class ID = 7 Freeform Serifs

This style includes serifs, but which expresses a design freedom that does not
generally fit within the other serif design classifications. This IBM Class
reflects the remaining ISO Serif Class subclasses as documented in the 12/87
ISO/IEC 9541-5 draft standard.

IBM Font Class Parameters

Revision 1.66 Page 369
File Name: ttchaa.doc

Subclass ID = 0 : No Classification

This subclass ID is used to indicate that the associated font has no design sub-
classification or that the design sub-classification is not of significance to the
creator or user of the font resource.

Subclass ID = 1 : Modern

This style is generally characterized by a medium x-height, with light contrast
in the strokes and a round full design. An example of this font style is the
ITC Souvenir Family. This IBM Subclass is not reflected in the 12/87
ISO/IEC 9541-5 draft standard.

Subclass ID = 2-14 : (reserved for future use)

These subclass IDs are reserved for future assignment, and shall not be used
without formal assignment by IBM.

Subclass ID = 15 : Miscellaneous

This subclass ID is used for miscellaneous designs of the associated design
class that are not covered by another Subclass.

Class ID = 8 Sans Serif

This style includes most basic letter forms (excluding Scripts and
Ornamentals) that do not have serifs on the strokes. This IBM Class reflects
the ISO Sans Serif Class as documented in the 12/87 ISO/IEC 9541-5 draft
standard.

Subclass ID = 0 : No Classification

This subclass ID is used to indicate that the associated font has no design sub-
classification or that the design sub-classification is not of significance to the
creator or user of the font resource.

Subclass ID = 1 : IBM Neo-grotesque Gothic

This style is generally characterized by a large x-height, with uniform stroke
width and a simple one story design distinguished by a medium resolution,
hand tuned, bitmap rendition of the more general Neo-grotesque Gothic
Subclass. An example of this font style is the IBM Sonoran Sans Serif
family. This IBM Subclass reflects the ISO Sans Serif Class, Gothic
Subclass, and Neo-grotesque Specific Group as documented in the 12/87
ISO/IEC 9541-5 draft standard.

IBM Font Class Parameters

Page 370 Revision 1.66
 File Name: ttchaa.doc

Subclass ID = 2 : Humanist

This style is generally characterized by a medium x-height, with light contrast
in the strokes and a classic Roman letterform. An example of this font style
is the Allied Linotype Optima family. This IBM Subclass reflects the ISO
Sans Serif Class, Humanist Subclass as documented in the 12/87 ISO/IEC
9541-5 draft standard.

Subclass ID = 3 : Low-x Round Geometric

This style is generally characterized by a low x-height, with monotone stroke
weight and a round geometric design. An example of this font style is the
Fundicion Tipograficia Neufville Futura family. This IBM Subclass reflects
the ISO Sans Serif Class, Geometric Subclass, Round Specific Group as
documented in the 12/87 ISO/IEC 9541-5 draft standard.

Subclass ID = 4 : High-x Round Geometric

This style is generally characterized by a high x-height, with uniform stroke
weight and a round geometric design. An example of this font style is the
ITC Avant Garde Gothic family. This IBM Subclass reflects the ISO Sans
Serif Class, Geometric Subclass, Round Specific Group as documented in the
12/87 ISO/IEC 9541-5 draft standard.

Subclass ID = 5 : Neo-grotesque Gothic

This style is generally characterized by a high x-height, with uniform stroke
width and a simple one story design. An example of this font style is the
Allied Linotype Helvetica family. This IBM Subclass reflects the ISO Sans
Serif Class, Gothic Subclass, Neo-grotesque Specific Group as documented in
the 12/87 ISO/IEC 9541-5 draft standard.

Subclass ID = 6 : Modified Neo-grotesque Gothic

This style is similar to the Neo-grotesque Gothic style, with design variations
to the G and Q. An example of this font style is the Allied Linotype Univers
family. This IBM Subclass reflects the ISO Sans Serif Class, Gothic
Subclass, Neo-grotesque Specific Group as documented in the 12/87 ISO/IEC
9541-5 draft standard.

Subclass ID = 7-8 : (reserved for future use)

These subclass IDs are reserved for future assignment, and shall not be used
without formal assignment by IBM.

IBM Font Class Parameters

Revision 1.66 Page 371
File Name: ttchaa.doc

Subclass ID = 9 : Typewriter Gothic

This style is similar to the Neo-grotesque Gothic style, with moderate stroke
thickness characteristic of a typewriter. An example of this font style is the
IBM Letter Gothic family. This IBM Subclass reflects the ISO Sans Serif
Class, Gothic Subclass, Typewriter Specific Group as documented in the
12/87 ISO/IEC 9541-5 draft standard.

Subclass ID = 10 : Matrix

This style is generally a simple design characteristic of a dot matrix printer.
An example of this font style is the IBM Matrix Gothic family. This IBM
Subclass is not reflected in the 12/87 ISO/IEC 9541-5 draft standard.

Subclass ID = 11-14 : (reserved for future use)

These subclass IDs are reserved for future assignment, and shall not be used
without formal assignment by IBM.

Subclass ID = 15 : Miscellaneous

This subclass ID is used for miscellaneous designs of the associated design
class that are not covered by another Subclass.

Class ID = 9 Ornamentals

This style includes highly decorated or stylized character shapes that are
typically used in headlines. This IBM Class reflects the ISO Ornamental
Class and the ISO Blackletter Class as documented in the 12/87 ISO/IEC
9541-5 draft standard.

Subclass ID = 0 : No Classification

This subclass ID is used to indicate that the associated font has no design sub-
classification or that the design sub-classification is not of significance to the
creator or user of the font resource.

Subclass ID = 1 : Engraver

This style is characterized by fine lines or lines engraved on the stems. An
example of this font style is the Copperplate family. This IBM Subclass
reflects the ISO Ornamental Class and Inline Subclass, or the Serif Class and
Engraving Subclass as documented in the 12/87 ISO/IEC 9541-5 draft
standard.

IBM Font Class Parameters

Page 372 Revision 1.66
 File Name: ttchaa.doc

Subclass ID = 2 : Black Letter

This style is generally based upon the printing style of the German
monasteries and printers of the 12th to 15th centuries. An example of this
font style is the Old English family. This IBM Subclass reflects the ISO
Blackletters Class as documented in the 12/87 ISO/IEC 9541-5 draft standard.

Subclass ID = 3 : Decorative

This style is characterized by ornamental designs (typically from nature, such
as leaves, flowers, animals, etc.) incorporated into the stems and strokes of the
characters. An example of this font style is the Saphire family. This IBM
Subclass reflects the ISO Ornamental Class and Decorative Subclass as
documented in the 12/87 ISO/IEC 9541-5 draft standard.

Subclass ID = 4 : Three Dimensional

This style is characterized by a three dimensional (raised) appearance of the
characters created by shading or geometric effects. An example of this font
style is the Thorne Shaded family. This IBM Subclass reflects the ISO
Ornamental Class and Three Dimensional Subclass as documented in the
12/87 ISO/IEC 9541-5 draft standard.

Subclass ID = 5-14 : (reserved for future use)

These subclass IDs are reserved for future assignment, and shall not be used
without formal assignment by IBM.

Subclass ID = 15 : Miscellaneous

This subclass ID is used for miscellaneous designs of the associated design
class that are not covered by another Subclass.

Class ID = 10 Scripts

This style includes those typefaces that are designed to simulate handwriting.
This IBM Class reflects the ISO Script Class and Uncial Class as documented
in the 12/87 ISO/IEC 9541-5 draft standard.

Subclass ID = 0 : No Classification

This subclass ID is used to indicate that the associated font has no design sub-
classification or that the design sub-classification is not of significance to the
creator or user of the font resource.

IBM Font Class Parameters

Revision 1.66 Page 373
File Name: ttchaa.doc

Subclass ID = 1 : Uncial

This style is characterized by unjoined (nonconnecting) characters that are
generally based on the hand writing style of Europe in the 6th to 9th centuries.
An example of this font style is the Libra family. This IBM Subclass reflects
the ISO Uncial Class as documented in the 12/87 ISO/IEC 9541-5 draft
standard.

Subclass ID = 2 : Brush Joined

This style is characterized by joined (connecting) characters that have the
appearance of being painted with a brush, with moderate contrast between
thick and thin strokes. An example of this font style is the Mistral family.
This IBM Subclass reflects the ISO Script Class, Joined Subclass, and
Informal Specific Group as documented in the 12/87 ISO/IEC 9541-5 draft
standard.

Subclass ID = 3 : Formal Joined

This style is characterized by joined (connecting) characters that have a
printed (or drawn with a stiff brush) appearance with extreme contrast
between the thick and thin strokes. An example of this font style is the
Coronet family. This IBM Subclass reflects the ISO Script Class, Joined
Subclass, and Formal Specific Group as documented in the 12/87 ISO/IEC
9541-5 draft standard.

Subclass ID = 4 : Monotone Joined

This style is characterized by joined (connecting) characters that have a
uniform appearance with little or no contrast in the strokes. An example of
this font style is the Kaufmann family. This IBM Subclass reflects the ISO
Script Class, Joined Subclass, and Monotone Specific Group as documented
in the 12/87 ISO/IEC 9541-5 draft standard.

Subclass ID = 5 : Calligraphic

This style is characterized by beautifully hand drawn, unjoined (non-
connecting) characters that have an appearance of being drawn with a broad
edge pen. An example of this font style is the Thompson Quillscript family.
This IBM Subclass reflects the ISO Script Class, Unjoined Subclass, and
Calligraphic Specific Group as documented in the 12/87 ISO/IEC 9541-5 draft
standard.

Subclass ID = 6 : Brush Unjoined

IBM Font Class Parameters

Page 374 Revision 1.66
 File Name: ttchaa.doc

This style is characterized by unjoined (non-connecting) characters that have
the appearance of being painted with a brush, with moderate contrast between
thick and thin strokes. An example of this font style is the Saltino family.
This IBM Subclass reflects the ISO Script Class, Unjoined Subclass, and
Brush Specific Group as documented in the 12/87 ISO/IEC 9541-5 draft
standard.

Subclass ID = 7 : Formal Unjoined

This style is characterized by unjoined (non-connecting) characters that have a
printed (or drawn with a stiff brush) appearance with extreme contrast
between the thick and thin strokes. An example of this font style is the
Virtuosa family. This IBM Subclass reflects the ISO Script Class, Unjoined
Subclass, and Formal Specific Group as documented in the 12/87 ISO/IEC
9541-5 draft standard.

Subclass ID = 8 : Monotone Unjoined

This style is characterized by unjoined (non-connecting) characters that have a
uniform appearance with little or no contrast in the strokes. An example of
this font style is the Gilles Gothic family. This IBM Subclass reflects the
ISO Script Class, Unjoined Subclass, and Monotone Specific Group as
documented in the 12/87 ISO/IEC 9541-5 draft standard.

Subclass ID = 9-14 : (reserved for future use)

These subclass IDs are reserved for future assignment, and shall not be used
without formal assignment by IBM.

Subclass ID = 15 : Miscellaneous

This subclass ID is used for miscellaneous designs of the associated design
class that are not covered by another Subclass.

Class ID = 11 (reserved for future use)

This class ID is reserved for future assignment, and shall not be used without
formal assignment by IBM.

Class ID = 12 Symbolic

This style is generally design independent, making it suitable for Pi and
special characters (icons, dingbats, technical symbols, etc.) that may be used
equally well with any font. This IBM Class reflects various ISO Specific
Groups, as noted below and documented in the 12/87 ISO/IEC 9541-5 draft
standard.

Subclass ID = 0 : No Classification

IBM Font Class Parameters

Revision 1.66 Page 375
File Name: ttchaa.doc

This subclass ID is used to indicate that the associated font has no design sub-
classification or that the design sub-classification is not of significance to the
creator or user of the font resource.

IBM Font Class Parameters

Page 376 Revision 1.66
 File Name: ttchaa.doc

Subclass ID = 1-2 : (reserved for future use)

These subclass IDs are reserved for future assignment, and shall not be used
without formal assignment by IBM.

Subclass ID = 3 : Mixed Serif

This style is characterized by either both or a combination of serif and sans
serif designs on those characters of the font for which design is important
(e.g., superscript and subscript characters, numbers, copyright or trademark
symbols, etc.). An example of this font style is found in the IBM Symbol
family. This IBM Subclass is not reflected in the 12/87 ISO/IEC 9541-5
draft standard.

Subclass ID = 4-5 : (reserved for future use)

These subclass IDs are reserved for future assignment, and shall not be used
without formal assignment by IBM.

Subclass ID = 6 : Oldstyle Serif

This style is characterized by a Oldstyle Serif IBM Class design on those
characters of the font for which design is important (e.g., superscript and
subscript characters, numbers, copyright or trademark symbols, etc.). An
example of this font style is found in the IBM Sonoran Pi Serif family. This
IBM Subclass is not directly reflected in the 12/87 ISO/IEC 9541-5 draft
standard, though it is indirectly by the ISO Serif Class and Legibility Subclass
(implies that all characters of the font exhibit the design appearance, while
only a subset of the characters actually exhibit the design).

Subclass ID = 7 : Neo-grotesque Sans Serif

This style is characterized by a Neo-grotesque Sans Serif IBM Font Class and
Subclass design on those characters of the font for which design is important
(e.g., superscript and subscript characters, numbers, copyright or trademark
symbols, etc.). An example of this font style is found in the IBM Sonoran Pi
Sans Serif family. This IBM Subclass is not directly reflected in the 12/87
ISO/IEC 9541-5 draft standard, though it is indirectly by the ISO Sans Serif
Class and Gothic Subclass (implies that all characters of the font exhibit the
design appearance, while only a subset of the characters actually exhibit the
design).

Subclass ID = 8-14 : (reserved for future use)

These subclass IDs are reserved for future assignment, and shall not be used
without formal assignment by IBM.

IBM Font Class Parameters

Revision 1.66 Page 377
File Name: ttchaa.doc

Subclass ID = 15 : Miscellaneous

This subclass ID is used for miscellaneous designs of the associated design
class that are not covered by another Subclass.

Class ID = 13 Reserved

Class ID = 14 Reserved

Appendix B

Revision 1.66 Page 377
File Name: ttchab.doc

Instruction Set Summary

Instructions by Category

Pushing data onto the interpreter stack
Instruction Opcode Takes from IS Pushes
NPUSHB[] 0x40 n, b1, b2,...bn b1,b2...bn
NPUSHW[] 0x41 n, w1, w2,...wn w1,w2...wn
PUSHB[abc] 0xB0 – 0xB7 b0, b1,..bn b0, b1, ...,bn
PUSHW[abc] 0xB8 – 0xBF w0,w1,..wn w0 ,w1, ...wn

Managing the Storage Area
Instruction Opcode Pops Pushes
RS[] 0x43 location value
WS[] 0x42 value, locat ion –

Managing the Control Value Table
Instruction Opcode Pops Pushes
WCVTP[] 0x44 value, location –
WCVTF[] 0x70 value, location –
RCVT[] 0x45 location value

Managing the Graphics State
Setting and getting the freedom_vector and the projection_vector
Instruction Opcode Pops Pushes
SVTCA[a] 0x00 – 0x01 – –
SPVTCA[a] 0x02 – 0x03 – –
SFVTCA[a] 0x04 – 0x05 – –
SPVTL[a] 0x06 – 0x07 p1, p2 –
SFVTL[a] 0x08 – 0x09 p1, p2 –
SFVTPV[] 0x0E – –
SDPVTL[a] 0x86 – 0x87 p1, p2 –
SPVFS[] 0x0A y, x –
SFVFS[] 0x0B y, x –
GPV[] 0x0C – x, y
GFV[] 0x0D – x, y

Instruction Set Summary

Page 378 Revision 1.66
 File Name: ttchab.doc

Setting reference points and glyph element pointers
Instruction Opcode Pops Pushes
SRP0[] 0x10 p –
SRP1[] 0x11 p –
SRP2[] 0x12 p –
SZP0[] 0x13 n –
SZP1[] 0x14 n –
SZP2[] 0x15 n –
SZPS[] 0x16 n –

Setting the round_state
Instruction Opcode Pops Pushes
RTHG[] 0x19 – –
RTG[] 0x18 – –
RTDG[] 0x3D – –
RDTG[] 0x7D – –
RUTG[] 0x7C – –
ROFF[] 0x7A – –
SROUND[] 0x76 n –
S45ROUND[] 0x77 n –

Setting other graphics state variables
Instruction Opcode Pops Pushes
INSTCTRL 0x8E selector and value –
SLOOP[] 0x17 n –
SMD[] 0x1A distance –
SCANCTRL[] 0x85 n –
SCANTYPE[] 0x8D n –
SCVTCI[] 0x1D n –
SSWCI[] 0x1E n –
SSW[] 0x1F n –
FLIPON[] 0x4D – –
FLIPOFF[] 0x4E – –
SANGW[] 0x7E weight –
SDB[] 0x5E n –
SDS[] 0x5F n –

Reading and Writing Data
Instruction Opcode Pops Pushes
GC[a] 0x46 – 0x47 p value
SCFS[] 0x48 value, p –
MD[a] 0x49 – 0x4A p1,p2 distance

Instruction Set Summary

Revision 1.66 Page 379
File Name: ttchab.doc

MPPEM[] 0x4B – ppem
MPS[] 0x4C – pointSize

Managing Outlines

Flipping Points
Instruction Opcode Pops Pushes
FLIPRGON[] 0x81 highpoint, lowpoint –
FLIPRGOFF[] 0x82 highpoint, lowpoint –
FLIPPT[] 0x80 p –

Shifting Points
Instruction Opcode Pops Pushes
SHC[a] 0x34 – 0x35 c –
SHZ[a] 0x36 – 0x37 e –
SHPIX[] 0x38 p1, p2, amount –
SHP 0x32 – 0x33 p –

Moving Points
Instruction Opcode Pops Pushes
MDAP[a] 0x2E – 0x2F p –
MIAP[a] 0x3E – 0x3F n, p –
MDRP[abcde] 0xC0 – 0xDF p –
MIRP[abcde] 0xE0 – 0xFF n, p –
ALIGNRP[] 0x3C p1, p2, ... , ploop –
AA[] 0x7F p –
ISECT[] 0x0F a1, a0, b1, b0, p –
ALIGNPTS[] 0x27 p1, p2 –

Interpolating Points
Instruction Opcode Pops Pushes
UTP[] 0x29 p –
IUP[a] 0x30 – 0x31 – –

Managing Exceptions
Instruction Opcode Pops Pushes
DELTAP1[] 0x5D n, p1, arg1, ..., pn,

argn
–

DELTAP2[] 0x71 n, p1, arg1, ..., pn,
argn

–

Instruction Set Summary

Page 380 Revision 1.66
 File Name: ttchab.doc

DELTAP3[] 0x72 n, p1, arg1, ..., pn,
argn

–

DELTAC1[], 0x73 n, c1, arg1, ..., cn, argn –
DELTAC2[] 0x74 n, c1, arg1, ..., cn, argn –
DELTAC3[] 0x75 n, c1, arg1, ..., cn, argn –

Managing the stack
Instruction Opcode Pops Pushes
DUP[] 0x20 e e, e
POP[] 0x21 e –
CLEAR[] 0x22 all items on the stack –
SWAP[] 0x23 e1, e2 e1, e2
DEPTH[] 0x24 – n
CINDEX[] 0x25 k ek
MINDEX[] 0x26 k, e1, e2, ..., ek ek–1, ek–2, ..., e1, ek
ROLL 0x8a – –

Logical functions
Instruction Opcode Pops Pushes
LT[] 0x50 e1, e2 (e2 < e1 Boolean

value
LTEQ[] 0x51 e1, e2 (e2 ≤ e1) Boolean

value
GT[] 0x52 e1, e2 (e2 > e1) Boolean

value
GTEQ[] 0x53 e1, e2 (e2 ≥ e1) Boolean

value
EQ[] 0x54 e1, e2 (e2 = e1) Boolean

value
NEQ[] 0x55 e1, e2 (e2 ≠ e1) Boolean

value
ODD[] 0x56 e (e mod 2) = 1

Boolean value
EVEN[] 0x57 e (e mod 2) = 0

Boolean value
AND[] 0x5A e1, e2 (e2 and e1)

Boolean value
OR[] 0x5B e1, e2 (e2 or e1)Boolean

value
NOT[] 0x5C e (not e)Boolean value

Instruction Set Summary

Revision 1.66 Page 381
File Name: ttchab.doc

Managing the flow of control
Instruction Opcode Pops Pushes
IF[] 0x58 e –
EIF[] 0x59 – –
ELSE 0x1B
JMPR 0x1C offset
JROT[] 0x78 e, offset –
JROF[] 0x79 e, offset –

Arithmetic functions
Instruction Opcode Pops Pushes
ADD[] 0x60 n1, n2 (n1 + n2)
SUB[] 0x61 n1, n2 (n2 – n1)
DIV[] 0x62 n1, n2 (n2 ¥ 64)/ n1
MUL[] 0x63 n1, n2 (n1 ¥ n2)/64
ABS[] 0x64 n |n|
NEG[] 0x65 n1 –n1
FLOOR[] 0x66 n1 n
CEILING[] 0x67 n1 n
MAX[] 0X8B e1, e2 max(e1, e2)
MIN[] 0X8C e1, e2 min(e1, e2)

Compensating for the engine characteristics
Instruction Opcode Pops Pushes
ROUND[ab] 0x68 – 0x6B n1 n2
NROUND[ab] 0x6C – 0x6F n1 n2

Defining and using functions and instructions
Instruction Opcode Pops Pushes
FDEF[] 0x2C f –
ENDF[] 0x2D – –
CALL[] 0x2B f –
LOOPCALL[] 0x2A f, count –
IDEF[] 0x89 o –

Debugging
Instruction Opcode Pops Pushes
DEBUG[] 0x4F opcode –

Instruction Set Summary

Page 382 Revision 1.66
 File Name: ttchab.doc

Miscellaneous
Instruction Opcode Pops Pushes
GETINFO[] 0x88 selector result

Instruction Set Summary

Revision 1.66 Page 383
File Name: ttchab.doc

Instructions by Name
Instruction Opcode Takes from IS Pushes
AA[] 0x7F p –
ABS[] 0x64 n |n|
ADD[] 0x60 n1, n2 (n1 + n2)
ALIGNPTS[] 0x27 p1, p2 –
ALIGNRP[] 0x3C p1, p2, ... , ploop –
AND[] 0x5A e1, e2 (e2 and e1)

Boolean value
CALL[] 0x2B f –
CEILING[] 0x67 n1 n
CINDEX[] 0x25 k ek
CLEAR[] 0x22 all items on the stack –
DEBUG[] 0x4F opcode –
DELTAC1[], 0x73 n, c1, arg1, ..., cn, argn –
DELTAC2[] 0x74 n, c1, arg1, ..., cn, argn –
DELTAC3[] 0x75 n, c1, arg1, ..., cn, argn –
DELTAP1[] 0x5D n, p1, arg1, ..., pn,

argn
–

DELTAP2[] 0x71 n, p1, arg1, ..., pn,
argn

–

DELTAP3[] 0x72 n, p1, arg1, ..., pn,
argn

–

DEPTH[] 0x24 – n
DIV[] 0x62 n1, n2 (n2 * 64)/ n1
DUP[] 0x20 e e, e
EIF[] 0x59 – –
ELSE 0x1B
ENDF[] 0x2D – –
EQ[] 0x54 e1, e2 (e2= e1) Boolean

value
EVEN[] 0x57 e (e mod 2) = 0

Boolean value
FDEF[] 0x2C f –
FLIPOFF[] 0x4E – –
FLIPON[] 0x4D – –
FLIPPT[] 0x80 p1, p2, ..., ploop –
FLIPRGOFF[] 0x82 highpoint, lowpoint –
FLIPRGON[] 0x81 highpoint, lowpoint –
FLOOR[] 0x66 n1 n
GC[a] 0x46 – 0x47 p value
GETINFO[] 0x88 selector result
GFV[] 0x0D – x, y

Instruction Set Summary

Page 384 Revision 1.66
 File Name: ttchab.doc

GPV[] 0x0C – x, y
GT[] 0x52 e1, e2 (e2 > e1) Boolean

value
GTEQ[] 0x53 e1, e2 (e2 ≥ e1) Boolean

value
IDEF[] 0x89 o –
IF[] 0x58 e –
INSTCTRL 0x8E value –
IP[] 0x39 p1, p2, ... , ploop –
ISECT[] 0x0F a1, a0, b1, b0, p –
IUP[a] 0x30 – 0x31 – –
JMPR 0x1C offset
JROF[] 0x79 e, offset –
JROT[] 0x78 e, offset –
LOOPCALL[] 0x2A f, count –
LT[] 0x50 e1, e2 (e2 < e1 Boolean

value
LTEQ[] 0x51 e1, e2 (e2 ≤ e1) Boolean

value
MAX[] 0X8B e1, e2 max(e1, e2)
MD[a] 0x49 – 0x4A p1,p2 distance
MDAP[a] 0x2E – 0x2F p –
MDRP[abcde] 0xC0 – 0xDF p –
MIAP[a] 0x3E – 0x3F n, p –
MIN[] 0X8C e1, e2 min(e1, e2)
MINDEX[] 0x26 k, e1, e2, ..., ek ek–1, ek–2, ..., e1, ek
MIRP[abcde] 0xE0 – 0xFF n, p –
MPPEM[] 0x4B – ppem
MPS[] 0x4C – pointSize
MSIRP[a] 0x3A – 0x3B distance, p –
MUL[] 0x63 n1, n2 (n1 ¥ n2)/64
NEG[] 0x65 n1 –n1
NEQ[] 0x55 e1, e2 (e2 ≠ e1) Boolean

value
NOT[] 0x5C e (not e)Boolean value
NPUSHB[] 0x40 n, b1, b2,...bn b1,b2...bn
NPUSHW[] 0x41 n, w1, w2,...wn w1,w2...wn
NROUND[ab] 0x6C – 0x6F n1 n2
ODD[] 0x56 e (e mod 2) = 1

Boolean value
OR[] 0x5B e1, e2 (e2 or e1)Boolean

value
POP[] 0x21 e –
PUSHB[abc] 0xB0 – 0xB7 b0, b1,..bn b0, b1, ...,bn

Instruction Set Summary

Revision 1.66 Page 385
File Name: ttchab.doc

PUSHW[abc] 0xB8 – 0xBF w0,w1,..wn w0 ,w1, ...wn
RCVT[] 0x45 location value
RDTG[] 0x7D – –
ROFF[] 0x7A – –
ROLL 0x8a – –
ROUND[ab] 0x68 – 0x6B n1 n2
RS[] 0x43 location value
RTDG[] 0x3D – –
RTG[] 0x18 – –
RTHG[] 0x19 – –
RUTG[] 0x7C – –
S45ROUND[] 0x77 n –
SANGW[] 0x7E weight –
SCANCTRL[] 0x85 n –
SCANTYPE[] 0x8D n –
SCFS[] 0x48 value, p –
SCVTCI[] 0x1D n –
SDB[] 0x5E n –
SDPVTL[a] 0x86 – 0x87 p1, p2 –
SDS[] 0x5F n –
SFVFS[] 0x0B y, x –
SFVTCA[a] 0x04 – 0x05 – –
SFVTL[a] 0x08 – 0x09 p1, p2 –
SFVTPV[] 0x0E – –
SHC[a] 0x34 – 0x35 c –
SHP[a] 0x32 – 0x33 p1, p2, ..., ploop –
SHPIX[] 0x38 p1, p2, amount –
SHZ[a] 0x36 – 0x37 e –
SLOOP[] 0x17 n –
SMD[] 0x1A distance –
SPVFS[] 0x0A y, x –
SPVTCA[a] 0x02 – 0x03 – –
SPVTL[a] 0x06 – 0x07 p1, p2 –
SROUND[] 0x76 n –
SRP0[] 0x10 p –
SRP1[] 0x11 p –
SRP2[] 0x12 p –
SSW[] 0x1F n –
SSWCI[] 0x1E n –
SUB[] 0x61 n1, n2 (n2 – n1)
SVTCA[a] 0x00 – 0x01 – –
SWAP[] 0x23 e1, e2 e1, e2
SZP0[] 0x13 n –
SZP1[] 0x14 n –

Instruction Set Summary

Page 386 Revision 1.66
 File Name: ttchab.doc

SZP2[] 0x15 n –
SZPS[] 0x16 n –
UTP[] 0x29 p –
WCVTF[] 0x70 value, location –
WCVTP[] 0x44 value, location –
WS[] 0x42 value, location –

Appendix C

Revision 1.66 Page 387
File Name: ttchac.doc

Instruction Set Index

A

AA ... 286
ABS[] ... 340
ADD[] .. 336
ALIGNPTS[] .. 288
ALIGNRP[] .. 284
AND[] .. 330

C

CALL[] ... 352
CEILING[] ... 343
CINDEX[] .. 308
CLEAR[] .. 305

D

DEBUG[] ... 355
DELTAC1[] ... 298
DELTAC2[] ... 299
DELTAC3[] ... 300
DELTAP1[] .. 295
DELTAP2[] .. 296
DELTAP3[] .. 297
DEPTH[] .. 307
DIV[] .. 338
DUP[] ... 303

E

EIF[] ... 315
ELSE[] ... 314
ENDF[] ... 351
EQ[] .. 326
EVEN[] .. 329

F

FDEF[] ... 350
FLIPOFF[] ... 251
FLIPON[] ... 250
FLIPPT[] .. 263
FLIPRGOFF[] .. 265
FLIPRGON[] .. 264
FLOOR[] .. 342

G

GC[a] ... 256
GETINFO[] .. 356

GFV[] ... 219
GPV[] ... 217
GT[] .. 324
GTEQ[] ... 325

I

IDEF[] .. 354
IF[] .. 312
INSTCTRL[] ... 242
IP[] .. 289
ISECT[] .. 286
IUP[a] .. 291

J

JMPR[] ... 318
JROF[] .. 319
JROT[] .. 316

L

LOOPCALL[] ... 353
LT[] .. 322
LTEQ[] ... 323

M

MAX[] .. 344
MD[] ... 259
MDAP[a] ... 271
MDRP[abcde] .. 276
MIAP[a] ... 272
MIN[] .. 345
MINDEX[] ... 309
MIRP[abcde] ... 279
MPPEM[] ... 261
MPS[] ... 262
MSIRP[a] ... 270
MUL[] .. 339

N

NEG[] ... 341
NEQ[] ... 327
NOT[] ... 334
NPUSHB[] .. 190
NPUSHW[]... 191
NROUND[ab] .. 348

Instruction Set Index

Page 388 Revision 1.66
 File Name: ttchac.doc

O

ODD[] .. 328
OR[].. 332

P

POP[] .. 304
PUSHB[abc] .. 192
PUSHW[abc] ... 193

R

RCVT[] .. 200
RDTG[] .. 231
ROFF[] ... 233
ROLL[] ... 310
ROUND[ab] .. 347
RS[] .. 195
RTDG[] .. 230
RTG[] ... 229
RTHG[] .. 228
RUTG[] .. 232

S

S45ROUND[] ... 239
SANGW[] .. 252
SCANCTRL[] .. 243
SCANTYPE[]... 245
SCFS[] .. 258
SCVTCI[] ... 247
SDB[] ... 253
SDPVTL[a] ... 212
SDS[] .. 254
SFVFS[] ... 215

SFVTCA[a] .. 205
SFVTL[a] ... 209
SFVTPV[] .. 211
SHC[a] .. 267
SHP[a] .. 266
SHPIX[] ... 269
SHZ[a] .. 268
SLOOP[] .. 240
SMD[] .. 241
SPVFS[] ... 213
SPVTCA[a] .. 204
SPVTL[a] ... 206
SROUND[] .. 234
SRP0[] ... 221
SRP1[] ... 222
SRP2[] ... 223
SSW[] .. 249
SSWCI[] .. 248
SUB[] ... 337
SVTCA[a] ... 203
SWAP[] ... 306
SZP0[] .. 224
SZP1[] .. 225
SZP2[] .. 226
SZPS[] ... 227

U

UTP[] ... 290

W

WCVTF[] .. 199
WCVTP[] .. 198
WS[] .. 196

The 'OS/2' & Windows Metrics Table

file:///F|/tmp/ttf/os2.htm[2011/11/19 17:13:01]

Microsoft Typography | Developer... | OpenType specification | OpenType tables | The OS/2 table

OS/2 - OS/2 and Windows Metrics
The OS/2 table consists of a set of metrics that are required in OpenType fonts. The fifth version of the
OS/2 table (version 4), follows:

Type Name of Entry Comments
USHORT version 0x0004
SHORT xAvgCharWidth
USHORT usWeightClass
USHORT usWidthClass
USHORT fsType
SHORT ySubscriptXSize
SHORT ySubscriptYSize
SHORT ySubscriptXOffset
SHORT ySubscriptYOffset
SHORT ySuperscriptXSize
SHORT ySuperscriptYSize
SHORT ySuperscriptXOffset
SHORT ySuperscriptYOffset
SHORT yStrikeoutSize
SHORT yStrikeoutPosition
SHORT sFamilyClass
BYTE panose[10]
ULONG ulUnicodeRange1 Bits 0-31
ULONG ulUnicodeRange2 Bits 32-63
ULONG ulUnicodeRange3 Bits 64-95
ULONG ulUnicodeRange4 Bits 96-127
CHAR achVendID[4]
USHORT fsSelection
USHORT usFirstCharIndex
USHORT usLastCharIndex
SHORT sTypoAscender
SHORT sTypoDescender
SHORT sTypoLineGap
USHORT usWinAscent
USHORT usWinDescent
ULONG ulCodePageRange1 Bits 0-31
ULONG ulCodePageRange2 Bits 32-63
SHORT sxHeight
SHORT sCapHeight
USHORT usDefaultChar
USHORT usBreakChar
USHORT usMaxContext

http://www.microsoft.com/typography/default.mspx
http://www.microsoft.com/typography/creators.htm
file:///F|/tmp/ttf/default.htm
file:///F|/tmp/ttf/otff.htm#otttables

The 'OS/2' & Windows Metrics Table

file:///F|/tmp/ttf/os2.htm[2011/11/19 17:13:01]

version

Format: 2-byte unsigned short
Units: n/a
Title: OS/2 table version number.
Description: The version number for this OS/2 table.

Comments:
The version number allows for identification of the precise contents and layout for the OS/2
table. The version number for this layout is four (4). Versions zero (0, TrueType rev 1.5), one
(1, TrueType rev 1.66), two (2, OpenType rev 1.2) and three (3, OpenType rev 1.4) have
been used previously.

xAvgCharWidth

Format: 2-byte signed short
Units: Pels / em units
Title: Average weighted escapement.

Description: The Average Character Width parameter specifies the arithmetic average of the escapement
(width) of all non-zero width glyphs in the font.

Comments:

The value for xAvgCharWidth is calculated by obtaining the arithmetic average of
the width of all non-zero width glyphs in the font. Furthermore, it is strongly
recommended that implementers do not rely on this value for computing layout for
lines of text. Especially, for cases where complex scripts are used.

usWeightClass

Format: 2-byte unsigned short
Title: Weight class.

Description: Indicates the visual weight (degree of blackness or thickness of strokes) of the characters in
the font.

Comments:
Value Description C Definition (from windows.h)

100 Thin FW_THIN
200 Extra-light (Ultra-light) FW_EXTRALIGHT
300 Light FW_LIGHT
400 Normal (Regular) FW_NORMAL
500 Medium FW_MEDIUM
600 Semi-bold (Demi-bold) FW_SEMIBOLD
700 Bold FW_BOLD
800 Extra-bold (Ultra-bold) FW_EXTRABOLD
900 Black (Heavy) FW_BLACK

usWidthClass

Format: 2-byte unsigned short
Title: Width class.

file:///F|/tmp/ttf/os2ver0.htm
file:///F|/tmp/ttf/os2ver1.htm
file:///F|/tmp/ttf/os2ver1.htm
file:///F|/tmp/ttf/os2ver2.htm
file:///F|/tmp/ttf/os2ver3.htm
file:///F|/tmp/ttf/os2ver3.htm

The 'OS/2' & Windows Metrics Table

file:///F|/tmp/ttf/os2.htm[2011/11/19 17:13:01]

Description: Indicates a relative change from the normal aspect ratio (width to height ratio) as specified by
a font designer for the glyphs in a font.

Comments:

Although every character in a font may have a different numeric aspect ratio, each character
in a font of normal width has a relative aspect ratio of one. When a new type style is created
of a different width class (either by a font designer or by some automated means) the relative
aspect ratio of the characters in the new font is some percentage greater or less than those
same characters in the normal font -- it is this difference that this parameter specifies.

Value Description C Definition % of normal
1 Ultra-condensed FWIDTH_ULTRA_CONDENSED 50
2 Extra-condensed FWIDTH_EXTRA_CONDENSED 62.5
3 Condensed FWIDTH_CONDENSED 75
4 Semi-condensed FWIDTH_SEMI_CONDENSED 87.5
5 Medium (normal) FWIDTH_NORMAL 100
6 Semi-expanded FWIDTH_SEMI_EXPANDED 112.5
7 Expanded FWIDTH_EXPANDED 125
8 Extra-expanded FWIDTH_EXTRA_EXPANDED 150
9 Ultra-expanded FWIDTH_ULTRA_EXPANDED 200

fsType

Format: 2-byte unsigned short
Title: Type flags.

Description:

Indicates font embedding licensing rights for the font. Embeddable fonts may be stored in a
document. When a document with embedded fonts is opened on a system that does not have
the font installed (the remote system), the embedded font may be loaded for temporary (and
in some cases, permanent) use on that system by an embedding-aware application.
Embedding licensing rights are granted by the vendor of the font.

The OpenType Font Embedding DLL Specification and DLL release notes describe the
APIs used to implement support for OpenType font embedding and loading. Applications that
implement support for font embedding, either through use of the Font Embedding DLL or
through other means, must not embed fonts which are not licensed to permit embedding.
Further, applications loading embedded fonts for temporary use (see Preview & Print and
Editable embedding below) must delete the fonts when the document containing the
embedded font is closed.

This version of the OS/2 table makes bits 0 - 3 a set of exclusive bits. In other
words, at most one bit in this range may be set at a time. The purpose is to
remove misunderstandings caused by previous behavior of using the least
restrictive of the bits that are set.

Bit Bit Mask Description

 0x0000

Installable Embedding: No fsType bit is set. Thus fsType is zero.
Fonts with this setting indicate that they may be embedded and
permanently installed on the remote system by an application. The user of
the remote system acquires the identical rights, obligations and licenses
for that font as the original purchaser of the font, and is subject to the
same end-user license agreement, copyright, design patent, and/or
trademark as was the original purchaser.

0 0x0001 Reserved, must be zero.
Restricted License embedding:
Fonts that have only this bit set must not be modified, embedded or

The 'OS/2' & Windows Metrics Table

file:///F|/tmp/ttf/os2.htm[2011/11/19 17:13:01]

1 0x0002 exchanged in any manner without first obtaining permission of the
legal owner.
Caution: For Restricted License embedding to take effect, it must be the
only level of embedding selected.

2 0x0004
Preview & Print embedding: When this bit is set, the font may be
embedded, and temporarily loaded on the remote system. Documents
containing Preview & Print fonts must be opened “read-only;” no edits can
be applied to the document.

3 0x0008
Editable embedding: When this bit is set, the font may be embedded but
must only be installed temporarily on other systems. In contrast to
Preview & Print fonts, documents containing Editable fonts may be
opened for reading, editing is permitted, and changes may be saved.

4-7 Reserved, must be zero.

8 0x0100
No subsetting: When this bit is set, the font may not be subsetted prior to
embedding. Other embedding restrictions specified in bits 0-3 and 9 also
apply.

9 0x0200

Bitmap embedding only: When this bit is set, only bitmaps contained in
the font may be embedded. No outline data may be embedded. If there
are no bitmaps available in the font, then the font is considered
unembeddable and the embedding services will fail. Other embedding
restrictions specified in bits 0-3 and 8 also apply.

10-15 Reserved, must be zero.

ySubscriptXSize

Format: 2-byte signed short
Units: Font design units
Title: Subscript horizontal font size.
Description: The recommended horizontal size in font design units for subscripts for this font.

Comments:

If a font has two recommended sizes for subscripts, e.g., numerics and other, the numeric
sizes should be stressed. This size field maps to the em square size of the font being used for
a subscript. The horizontal font size specifies a font designer's recommended horizontal font
size for subscript characters associated with this font. If a font does not include all of the
required subscript characters for an application, and the application can substitute characters
by scaling the character of a font or by substituting characters from another font, this
parameter specifies the recommended em square for those subscript characters.

For example, if the em square for a font is 2048 and ySubScriptXSize is set to 205, then the
horizontal size for a simulated subscript character would be 1/10th the size of the normal
character.

ySubscriptYSize

Format: 2-byte signed short
Units: Font design units
Title: Subscript vertical font size.
Description: The recommended vertical size in font design units for subscripts for this font.

If a font has two recommended sizes for subscripts, e.g. numerics and other, the numeric
sizes should be stressed. This size field maps to the emHeight of the font being used for a
subscript. The horizontal font size specifies a font designer's recommendation for horizontal
font size of subscript characters associated with this font. If a font does not include all of the

The 'OS/2' & Windows Metrics Table

file:///F|/tmp/ttf/os2.htm[2011/11/19 17:13:01]

Comments:
required subscript characters for an application, and the application can substitute characters
by scaling the characters in a font or by substituting characters from another font, this
parameter specifies the recommended horizontal EmInc for those subscript characters.

For example, if the em square for a font is 2048 and ySubScriptYSize is set to 205, then the
vertical size for a simulated subscript character would be 1/10th the size of the normal
character.

ySubscriptXOffset

Format: 2-byte signed short
Units: Font design units
Title: Subscript x offset.
Description: The recommended horizontal offset in font design untis for subscripts for this font.

Comments:

The Subscript X Offset parameter specifies a font designer's recommended horizontal offset --
from the character origin of the font to the character origin of the subscript's character -- for
subscript characters associated with this font. If a font does not include all of the required
subscript characters for an application, and the application can substitute characters, this
parameter specifies the recommended horizontal position from the character escapement point
of the last character before the first subscript character. For upright characters, this value is
usually zero; however, if the characters of a font have an incline (italic characters) the
reference point for subscript characters is usually adjusted to compensate for the angle of
incline.

ySubscriptYOffset

Format: 2-byte signed short
Units: Font design units
Title: Subscript y offset.

Description: The recommended vertical offset in font design units from the baseline for subscripts for this
font.

Comments:

The Subscript Y Offset parameter specifies a font designer's recommended vertical offset from
the character baseline to the character baseline for subscript characters associated with this
font. Values are expressed as a positive offset below the character baseline. If a font does not
include all of the required subscript for an application, this parameter specifies the
recommended vertical distance below the character baseline for those subscript characters.

ySuperscriptXSize

Format: 2-byte signed short
Units: Font design units
Title: Superscript horizontal font size.
Description: The recommended horizontal size in font design units for superscripts for this font.

Comments:

If a font has two recommended sizes for subscripts, e.g., numerics and other, the numeric
sizes should be stressed. This size field maps to the em square size of the font being used for
a subscript. The horizontal font size specifies a font designer's recommended horizontal font
size for superscript characters associated with this font. If a font does not include all of the
required superscript characters for an application, and the application can substitute characters
by scaling the character of a font or by substituting characters from another font, this
parameter specifies the recommended em square for those superscript characters.

The 'OS/2' & Windows Metrics Table

file:///F|/tmp/ttf/os2.htm[2011/11/19 17:13:01]

For example, if the em square for a font is 2048 and ySuperScriptXSize is set to 205, then the
horizontal size for a simulated superscript character would be 1/10th the size of the normal
character.

ySuperscriptYSize

Format: 2-byte signed short
Units: Font design units
Title: Superscript vertical font size.
Description: The recommended vertical size in font design units for superscripts for this font.

Comments:

If a font has two recommended sizes for subscripts, e.g., numerics and other, the numeric
sizes should be stressed. This size field maps to the emHeight of the font being used for a
subscript. The vertical font size specifies a font designer's recommended vertical font size for
superscript characters associated with this font. If a font does not include all of the required
superscript characters for an application, and the application can substitute characters by
scaling the character of a font or by substituting characters from another font, this parameter
specifies the recommended EmHeight for those superscript characters.

For example, if the em square for a font is 2048 and ySuperScriptYSize is set to 205, then the
vertical size for a simulated superscript character would be 1/10th the size of the normal
character.

ySuperscriptXOffset

Format: 2-byte signed short
Units: Font design units
Title: Superscript x offset.
Description: The recommended horizontal offset in font design units for superscripts for this font.

Comments:

The Superscript X Offset parameter specifies a font designer's recommended horizontal offset
-- from the character origin to the superscript character's origin for the superscript characters
associated with this font. If a font does not include all of the required superscript characters
for an application, this parameter specifies the recommended horizontal position from the
escapement point of the character before the first superscript character. For upright
characters, this value is usually zero; however, if the characters of a font have an incline (italic
characters) the reference point for superscript characters is usually adjusted to compensate
for the angle of incline.

ySuperscriptYOffset

Format: 2-byte signed short
Units: Font design units
Title: Superscript y offset.

Description: The recommended vertical offset in font design units from the baseline for superscripts for this
font.

Comments:

The Superscript Y Offset parameter specifies a font designer's recommended vertical offset --
from the character baseline to the superscript character's baseline associated with this font.
Values for this parameter are expressed as a positive offset above the character baseline. If a
font does not include all of the required superscript characters for an application, this
parameter specifies the recommended vertical distance above the character baseline for those

The 'OS/2' & Windows Metrics Table

file:///F|/tmp/ttf/os2.htm[2011/11/19 17:13:01]

superscript characters.

yStrikeoutSize

Format: 2-byte signed short
Units: Font design units
Title: Strikeout size.
Description: Width of the strikeout stroke in font design units.

Comments:
This field should normally be the width of the em dash for the current font. If the size is one,
the strikeout line will be the line represented by the strikeout position field. If the value is two,
the strikeout line will be the line represented by the strikeout position and the line immediately
above the strikeout position. For a Roman font with a 2048 em square, 102 is suggested.

yStrikeoutPosition

Format: 2-byte signed short
Units: Font design units
Title: Strikeout position.
Description: The position of the top of the strikeout stroke relative to the baseline in font design units.

Comments:

Positive values represent distances above the baseline, while negative values represent
distances below the baseline. A value of zero falls directly on the baseline, while a value of
one falls one pel above the baseline. The value of strikeout position should not interfere with
the recognition of standard characters, and therefore should not line up with crossbars in the
font. For a Roman font with a 2048 em square, 460 is suggested.

sFamilyClass

Format: 2-byte signed short
Title: Font-family class and subclass.
Description: This parameter is a classification of font-family design.

Comments:

The font class and font subclass are registered values assigned by IBM to each font family.
This parameter is intended for use in selecting an alternate font when the requested font is
not available. The font class is the most general and the font subclass is the most specific. The
high byte of this field contains the family class, while the low byte contains the family
subclass. More information about this field.

Panose

Format: 10 byte array
Title: PANOSE classification number
International: Additional specifications are required for PANOSE to classify non-Latin character sets.

Description:

This 10 byte series of numbers is used to describe the visual characteristics of a given
typeface. These characteristics are then used to associate the font with other fonts of similar
appearance having different names. The variables for each digit are listed below. The
Panose values are fully described in the Panose “greybook” reference, currently owned by
Monotype Imaging.
The PANOSE definition contains ten digits each of which currently describes up to sixteen
variations. Windows uses bFamilyType, bSerifStyle and bProportion in the font mapper to

file:///F|/tmp/ttf/ibmfc.htm

The 'OS/2' & Windows Metrics Table

file:///F|/tmp/ttf/os2.htm[2011/11/19 17:13:01]

Comments: determine family type. It also uses bProportion to determine if the font is monospaced. If
the font is a symbol font, the first byte of the PANOSE number (bFamilyType) must be set to
“pictorial.” The specification for assigning PANOSE values can be found here.

Type Name
BYTE bFamilyType;
BYTE bSerifStyle;
BYTE bWeight;
BYTE bProportion;
BYTE bContrast;
BYTE bStrokeVariation;
BYTE bArmStyle;
BYTE bLetterform;
BYTE bMidline;
BYTE bXHeight;

ulUnicodeRange1 (Bits 0-31)
ulUnicodeRange2 (Bits 32-63)
ulUnicodeRange3 (Bits 64-95)
ulUnicodeRange4 (Bits 96-127)

Format: 32-bit unsigned long(4 copies) totaling 128 bits.
Title: Unicode Character Range

Description:

This field is used to specify the Unicode blocks or ranges encompassed by the font file in the
'cmap' subtables for platform 3, encoding ID 1 (Microsoft platform, Unicode) and platform 3,
encoding ID 10 (Microsoft platform, UCS-4). If the bit is set (1) then the Unicode range is
considered functional. If the bit is clear (0) then the range is not considered functional. Each
of the bits is treated as an independent flag and the bits can be set in any combination. The
determination of “functional” is left up to the font designer, although character set selection
should attempt to be functional by ranges if at all possible.

All reserved fields must be zero. Each long is in Big-Endian form. See ISO/IEC 10646 or
the most recent version of the Unicode Standard for the list of Unicode ranges and characters.

Bit Unicode Range Block range
0 Basic Latin 0000-007F
1 Latin-1 Supplement 0080-00FF
2 Latin Extended-A 0100-017F
3 Latin Extended-B 0180-024F
4 IPA Extensions 0250-02AF
 Phonetic Extensions 1D00-1D7F
 Phonetic Extensions Supplement 1D80-1DBF
5 Spacing Modifier Letters 02B0-02FF
 Modifier Tone Letters A700-A71F
6 Combining Diacritical Marks 0300-036F
 Combining Diacritical Marks Supplement 1DC0-1DFF
7 Greek and Coptic 0370-03FF
8 Coptic 2C80-2CFF

http://www.monotypeimaging.com/ProductsServices/pan1.aspx

The 'OS/2' & Windows Metrics Table

file:///F|/tmp/ttf/os2.htm[2011/11/19 17:13:01]

9 Cyrillic 0400-04FF
 Cyrillic Supplement 0500-052F
 Cyrillic Extended-A 2DE0-2DFF
 Cyrillic Extended-B A640-A69F
10 Armenian 0530-058F
11 Hebrew 0590-05FF
12 Vai A500-A63F
13 Arabic 0600-06FF
 Arabic Supplement 0750-077F
14 NKo 07C0-07FF
15 Devanagari 0900-097F
16 Bengali 0980-09FF
17 Gurmukhi 0A00-0A7F
18 Gujarati 0A80-0AFF
19 Oriya 0B00-0B7F
20 Tamil 0B80-0BFF
21 Telugu 0C00-0C7F
22 Kannada 0C80-0CFF
23 Malayalam 0D00-0D7F
24 Thai 0E00-0E7F
25 Lao 0E80-0EFF
26 Georgian 10A0-10FF
 Georgian Supplement 2D00-2D2F
27 Balinese 1B00-1B7F
28 Hangul Jamo 1100-11FF
29 Latin Extended Additional 1E00-1EFF
 Latin Extended-C 2C60-2C7F
 Latin Extended-D A720-A7FF
30 Greek Extended 1F00-1FFF
31 General Punctuation 2000-206F
 Supplemental Punctuation 2E00-2E7F
32 Superscripts And Subscripts 2070-209F
33 Currency Symbols 20A0-20CF
34 Combining Diacritical Marks For Symbols 20D0-20FF
35 Letterlike Symbols 2100-214F
36 Number Forms 2150-218F
37 Arrows 2190-21FF
 Supplemental Arrows-A 27F0-27FF
 Supplemental Arrows-B 2900-297F
 Miscellaneous Symbols and Arrows 2B00-2BFF
38 Mathematical Operators 2200-22FF
 Supplemental Mathematical Operators 2A00-2AFF
 Miscellaneous Mathematical Symbols-A 27C0-27EF
 Miscellaneous Mathematical Symbols-B 2980-29FF
39 Miscellaneous Technical 2300-23FF
40 Control Pictures 2400-243F

The 'OS/2' & Windows Metrics Table

file:///F|/tmp/ttf/os2.htm[2011/11/19 17:13:01]

41 Optical Character Recognition 2440-245F
42 Enclosed Alphanumerics 2460-24FF
43 Box Drawing 2500-257F
44 Block Elements 2580-259F
45 Geometric Shapes 25A0-25FF
46 Miscellaneous Symbols 2600-26FF
47 Dingbats 2700-27BF
48 CJK Symbols And Punctuation 3000-303F
49 Hiragana 3040-309F
50 Katakana 30A0-30FF
 Katakana Phonetic Extensions 31F0-31FF
51 Bopomofo 3100-312F
 Bopomofo Extended 31A0-31BF
52 Hangul Compatibility Jamo 3130-318F
53 Phags-pa A840-A87F
54 Enclosed CJK Letters And Months 3200-32FF
55 CJK Compatibility 3300-33FF
56 Hangul Syllables AC00-D7AF
57 Non-Plane 0 * D800-DFFF
58 Phoenician 10900-1091F
59 CJK Unified Ideographs 4E00-9FFF
 CJK Radicals Supplement 2E80-2EFF
 Kangxi Radicals 2F00-2FDF
 Ideographic Description Characters 2FF0-2FFF
 CJK Unified Ideographs Extension A 3400-4DBF
 CJK Unified Ideographs Extension B 20000-2A6DF
 Kanbun 3190-319F
60 Private Use Area (plane 0) E000-F8FF
61 CJK Strokes 31C0-31EF
 CJK Compatibility Ideographs F900-FAFF
 CJK Compatibility Ideographs Supplement 2F800-2FA1F
62 Alphabetic Presentation Forms FB00-FB4F
63 Arabic Presentation Forms-A FB50-FDFF
64 Combining Half Marks FE20-FE2F
65 Vertical Forms FE10-FE1F
 CJK Compatibility Forms FE30-FE4F
66 Small Form Variants FE50-FE6F
67 Arabic Presentation Forms-B FE70-FEFF
68 Halfwidth And Fullwidth Forms FF00-FFEF
69 Specials FFF0-FFFF
70 Tibetan 0F00-0FFF
71 Syriac 0700-074F
72 Thaana 0780-07BF
73 Sinhala 0D80-0DFF
74 Myanmar 1000-109F
75 Ethiopic 1200-137F

The 'OS/2' & Windows Metrics Table

file:///F|/tmp/ttf/os2.htm[2011/11/19 17:13:01]

 Ethiopic Supplement 1380-139F
 Ethiopic Extended 2D80-2DDF
76 Cherokee 13A0-13FF
77 Unified Canadian Aboriginal Syllabics 1400-167F
78 Ogham 1680-169F
79 Runic 16A0-16FF
80 Khmer 1780-17FF
 Khmer Symbols 19E0-19FF
81 Mongolian 1800-18AF
82 Braille Patterns 2800-28FF
83 Yi Syllables A000-A48F
 Yi Radicals A490-A4CF
84 Tagalog 1700-171F
 Hanunoo 1720-173F
 Buhid 1740-175F
 Tagbanwa 1760-177F
85 Old Italic 10300-1032F
86 Gothic 10330-1034F
87 Deseret 10400-1044F
88 Byzantine Musical Symbols 1D000-1D0FF
 Musical Symbols 1D100-1D1FF
 Ancient Greek Musical Notation 1D200-1D24F
89 Mathematical Alphanumeric Symbols 1D400-1D7FF
90 Private Use (plane 15) FF000-FFFFD
 Private Use (plane 16) 100000-10FFFD
91 Variation Selectors FE00-FE0F
 Variation Selectors Supplement E0100-E01EF
92 Tags E0000-E007F
93 Limbu 1900-194F
94 Tai Le 1950-197F
95 New Tai Lue 1980-19DF
96 Buginese 1A00-1A1F
97 Glagolitic 2C00-2C5F
98 Tifinagh 2D30-2D7F
99 Yijing Hexagram Symbols 4DC0-4DFF
100 Syloti Nagri A800-A82F
101 Linear B Syllabary 10000-1007F
 Linear B Ideograms 10080-100FF
 Aegean Numbers 10100-1013F
102 Ancient Greek Numbers 10140-1018F
103 Ugaritic 10380-1039F
104 Old Persian 103A0-103DF
105 Shavian 10450-1047F
106 Osmanya 10480-104AF
107 Cypriot Syllabary 10800-1083F
108 Kharoshthi 10A00-10A5F

The 'OS/2' & Windows Metrics Table

file:///F|/tmp/ttf/os2.htm[2011/11/19 17:13:01]

109 Tai Xuan Jing Symbols 1D300-1D35F
110 Cuneiform 12000-123FF
 Cuneiform Numbers and Punctuation 12400-1247F
111 Counting Rod Numerals 1D360-1D37F
112 Sundanese 1B80-1BBF
113 Lepcha 1C00-1C4F
114 Ol Chiki 1C50-1C7F
115 Saurashtra A880-A8DF
116 Kayah Li A900-A92F
117 Rejang A930-A95F
118 Cham AA00-AA5F
119 Ancient Symbols 10190-101CF
120 Phaistos Disc 101D0-101FF
121 Carian 102A0-102DF
 Lycian 10280-1029F
 Lydian 10920-1093F
122 Domino Tiles 1F030-1F09F
 Mahjong Tiles 1F000-1F02F
123-127 Reserved for process-internal usage

Note: * Setting bit 57 implies that there is at least one codepoint beyond the Basic Multilingual Plane that
is supported by this font.

achVendID

Format: 4-byte character array
Title: Font Vendor Identification
Description: The four character identifier for the vendor of the given type face.

Comments:

This is not the royalty owner of the original artwork. This is the company responsible for the
marketing and distribution of the typeface that is being classified. It is reasonable to assume
that there will be 6 vendors of ITC Zapf Dingbats for use on desktop platforms in the near
future (if not already). It is also likely that the vendors will have other inherent benefits in
their fonts (more kern pairs, unregularized data, hand hinted, etc.). This identifier will allow
for the correct vendor's type to be used over another, possibly inferior, font file. The Vendor
ID value is not required.

Microsoft has assigned values for some font suppliers as listed below. Uppercase vendor ID's
are reserved by Microsoft. Other suppliers can choose their own mixed case or lowercase ID's,
or leave the field blank.

For a list of registered Vendor id's see our Registered 'vendors' links page.

fsSelection

Format: 2-byte bit field.
Title: Font selection flags.
Description: Contains information concerning the nature of the font patterns, as follows:

Bit # macStyle bit C definition Description

http://www.microsoft.com/typography/links/vendorlist.aspx

The 'OS/2' & Windows Metrics Table

file:///F|/tmp/ttf/os2.htm[2011/11/19 17:13:01]

0 bit 1 ITALIC Font contains italic or oblique characters, otherwise
they are upright.

1 UNDERSCORE Characters are underscored.

2 NEGATIVE Characters have their foreground and background
reversed.

3 OUTLINED Outline (hollow) characters, otherwise they are solid.
4 STRIKEOUT Characters are overstruck.
5 bit 0 BOLD Characters are emboldened.

6 REGULAR Characters are in the standard weight/style for the
font.

7 USE_TYPO_METRICS
If set, it is strongly recommended to use
OS/2.sTypoAscender - OS/2.sTypoDescender+
OS/2.sTypoLineGap as a value for default line
spacing for this font.

8 WWS
The font has ‘name’ table strings consistent with a
weight/width/slope family without requiring use of
‘name’ IDs 21 and 22. (Please see more detailed
description below.)

9 OBLIQUE Font contains oblique characters.

Comments:

All undefined bits must be zero.

Bits 1-4 are rarely used bits that indicate the font is primarily a decorative or special purpose
font.

If bit 6 is set, then bits 0 and 5 must be clear, else the behavior is undefined. As noted above,
the settings of bits 0 and 5 must be reflected in the macStyle bits in the 'head' table. While bit
6 on implies that bits 0 and 1 of macStyle are clear (along with bits 0 and 5 of fsSelection), the
reverse is not true. Bits 0 and 1 of macStyle (and 0 and 5 of fsSelection) may be clear and that
does not give any indication of whether or not bit 6 of fsSelection is clear (e.g., Arial Light
would have all bits cleared; it is not the regular version of Arial).

Bit 7 was specified in OS/2 table v. 4. If fonts created with an earlier version of the OS/2 table
are updated to the current version of the OS/2 table, then, in order to minimize potential
reflow of existing documents which use the fonts, the bit would be set only for fonts for which
using the OS/2.usWin* metrics for line height would yield significantly inferior results than
using the OS/2.sTypo* values. New fonts, however, are not constrained by backward
compatibility situations, and so are free to set this bit always.

If bit 8 is set in OS/2 table v. 4, then ‘name’ strings for family and subfamily are provided that
are consistent with a weight/width/slope family model without requiring the use of ‘name’ IDs
21 or 22.

Many typographic families contains faces that differ only in one or more of the attributes
weight, width and slope. Even though a family might have a large number of member faces, if
the variations are in these attributes only, then family and subfamily names provided in the
‘name’ table using IDs 1 and 2 or 16 and 17 will be consistent with a weight/width/slope family
model. If the names in these IDs are consistent with a weight/width/slope model, then bit 8
should be set, and ‘name’ entries for name IDs 21 and 22 should not be included.

Some typographic families include faces that differ in attributes other than weight, width or
slope. For example, a family might include variations for “handwriting”, “caption”, “display”,
“optical size”, etc. In this case, some of the member faces may differ from the Regular face
only in weight, width or slope attributes, while other members will differ in relation to other
attributes. Fonts for those member faces that differ from Regular only in weight, width or slope

The 'OS/2' & Windows Metrics Table

file:///F|/tmp/ttf/os2.htm[2011/11/19 17:13:01]

should have bit 8 set, and should not use name ID 21 or 22, as described above. But the fonts
for those member faces that differ from Regular in terms of other attributes should not have
bit 8 set, and they should use name IDs 21 and 22 to map these faces into a WWS-
conformant family model.

Thus, if a font has a v. 4 OS/2 table, bit 8 should be set if and only if ‘name’ entries for IDs 16
and 17 are consistent with the WWS model and entries for IDs 21 and 22 are not included.
Conversely, if bit 8 is not set, that will be interpreted to mean that the names provided by IDs
16 and 17 are not consistent with the WWS model and that ‘name’ entries for IDs 21 and 22
are included.

This bit must be unset in OS/2 table versions less than 4. In these cases, it is not possible to
determine any information about the typographic family’s attributes by examining this bit.

In this context, “typographic family” is the Microsoft Unicode string for name ID 16, if present,
else the Microsoft Unicode string for name ID 1; “weight” is OS/2.usWeightClass; “width” is
OS/2.usWidthClass; “slope” is OS/2.fsSelection bit 0 (ITALIC) and bit 9 (OBLIQUE).

If bit 9 is set in OS/2 table v. 4, then this font is to be considered an “oblique” style by
processes which make a distinction between oblique and italic styles, e.g. Cascading Style
Sheets font matching. For example, a font created by algorithmically slanting an upright face
will set this bit.

If unset in OS/2 table v. 4, then this font is not to be considered an “oblique” style. For
example, a font that has a classic italic design will not set this bit.

This bit must be unset in OS/2 table versions less than 4. In these cases, it is not possible to
determine any information about this font's attributes by examining this bit.

This bit, unlike the ITALIC bit, is not related to style-linking for Windows GDI or Mac OS
applications in a traditional four-member family of regular, italic, bold and bold italic.“. It may
be set or unset independently of the ITALIC bit. In most cases, if OBLIQUE is set, then ITALIC
will also be set, though this is not required.

usFirstCharIndex

Format: 2-byte USHORT

Description:

The minimum Unicode index (character code) in this font, according to the cmap subtable for
platform ID 3 and platform- specific encoding ID 0 or 1. For most fonts supporting Win-ANSI
or other character sets, this value would be 0x0020. This field cannot represent
supplementary character values (codepoints greater than 0xFFFF). Fonts that support
supplementary characters should set the value in this field to 0xFFFF if the minimum index
value is a supplementary character.

usLastCharIndex

Format: 2-byte USHORT

Description:

The maximum Unicode index (character code) in this font, according to the cmap subtable for
platform ID 3 and encoding ID 0 or 1. This value depends on which character sets the font
supports. This field cannot represent supplementary character values (codepoints greater than
0xFFFF). Fonts that support supplementary characters should set the value in this field to
0xFFFF.

The 'OS/2' & Windows Metrics Table

file:///F|/tmp/ttf/os2.htm[2011/11/19 17:13:01]

sTypoAscender

Format: SHORT

Description:

The typographic ascender for this font. Remember that this is not the same as the Ascender
value in the 'hhea' table, which Apple defines in a far different manner. One good source for
sTypoAscender in Latin based fonts is the Ascender value from an AFM file. For CJK fonts see
below.

The suggested usage for sTypoAscender is that it be used in conjunction with unitsPerEm to
compute a typographically correct default line spacing. The goal is to free applications from
Macintosh or Windows-specific metrics which are constrained by backward compatibility
requirements. These new metrics, when combined with the character design widths, will allow
applications to lay out documents in a typographically correct and portable fashion. These
metrics will be exposed through Windows APIs. Macintosh applications will need to access the
'sfnt' resource and parse it to extract this data from the “OS/2” table.

For CJK (Chinese, Japanese, and Korean) fonts that are intended to be used for vertical
writing (in addition to horizontal writing), the required value for sTypoAscender is that which
describes the top of the of the ideographic em-box. For example, if the ideographic em-box of
the font extends from coordinates 0,-120 to 1000,880 (that is, a 1000x1000 box set 120
design units below the Latin baseline), then the value of sTypoAscender must be set to 880.
Failing to adhere to these requirements will result in incorrect vertical layout.

Also see the Recommendations Section for more on this field.

sTypoDescender

Format: SHORT

Description:

The typographic descender for this font. Remember that this is not the same as the Descender
value in the 'hhea' table, which Apple defines in a far different manner. One good source for
sTypoDescender in Latin based fonts is the Descender value from an AFM file. For CJK fonts
see below.

The suggested usage for sTypoDescender is that it be used in conjunction with unitsPerEm to
compute a typographically correct default line spacing. The goal is to free applications from
Macintosh or Windows-specific metrics which are constrained by backward compatability
requirements. These new metrics, when combined with the character design widths, will allow
applications to lay out documents in a typographically correct and portable fashion. These
metrics will be exposed through Windows APIs. Macintosh applications will need to access the
'sfnt' resource and parse it to extract this data from the “OS/2” table (unless Apple exposes
the 'OS/2' table through a new API).

For CJK (Chinese, Japanese, and Korean) fonts that are intended to be used for vertical
writing (in addition to horizontal writing), the required value for sTypoDescender is that which
describes the bottom of the of the ideographic em-box. For example, if the ideographic em-
box of the font extends from coordinates 0,-120 to 1000,880 (that is, a 1000x1000 box set
120 design units below the Latin baseline), then the value of sTypoDescender must be set to -
120. Failing to adhere to these requirements will result in incorrect vertical layout.

Also see the Recommendations Section for more on this field.

sTypoLineGap

file:///F|/tmp/ttf/recom.htm#tad
file:///F|/tmp/ttf/recom.htm#tad

The 'OS/2' & Windows Metrics Table

file:///F|/tmp/ttf/os2.htm[2011/11/19 17:13:01]

Format: 2-byte SHORT

Description:

The typographic line gap for this font. Remember that this is not the same as the LineGap
value in the 'hhea' table, which Apple defines in a far different manner.

The suggested usage for usTypoLineGap is that it be used in conjunction with unitsPerEm to
compute a typographically correct default line spacing. Typical values average 7-10% of units
per em. The goal is to free applications from Macintosh or Windows-specific metrics which are
constrained by backward compatability requirements (see chapter, “Recommendations for
OpenType Fonts”). These new metrics, when combined with the character design widths, will
allow applications to lay out documents in a typographically correct and portable fashion.
These metrics will be exposed through Windows APIs. Macintosh applications will need to
access the 'sfnt' resource and parse it to extract this data from the “OS/2” table (unless Apple
exposes the 'OS/2' table through a new API)

usWinAscent

Format: 2-byte USHORT

Description:

The ascender metric for Windows. This, too, is distinct from Apple's Ascender value and from
the usTypoAscender values. usWinAscent is computed as the yMax for all characters in the
Windows ANSI character set. usWinAscent is used to compute the Windows font height and
default line spacing. For platform 3 encoding 0 fonts, it is the same as yMax. Windows will clip
the bitmap of any portion of a glyph that appears above this value. Some applications use this
value to determine default line spacing. This is strongly discouraged. The typographic
ascender, descender and line gap fields in conjunction with unitsPerEm should be used for this
purpose. Developers should set this field keeping the above factors in mind.
If any clipping is unacceptable, then the value should be set to yMax.
However, if a developer desires to provide appropriate default line spacing using this field, for
those applications that continue to use this field for doing so (against OpenType
recommendations), then the value should be set appropriately. In such a case, it may result in
some glyph bitmaps being clipped.

usWinDescent

Format: 2-byte USHORT

Description:

The descender metric for Windows. This, too, is distinct from Apple's Descender value and
from the usTypoDescender values. usWinDescent is computed as the -yMin for all characters in
the Windows ANSI character set. usWinDescent is used to compute the Windows font height
and default line spacing. For platform 3 encoding 0 fonts, it is the same as -yMin. Windows
will clip the bitmap of any portion of a glyph that appears below this value. Some applications
use this value to determine default line spacing. This is strongly discouraged. The typographic
ascender, descender and line gap fields in conjunction with unitsPerEm should be used for this
purpose. Developers should set this field keeping the above factors in mind.
If any clipping is unacceptable, then the value should be set to yMin.
However, if a developer desires to provide appropriate default line spacing using this field, for
those applications that continue to use this field for doing so (against OpenType
recommendations), then the value should be set appropriately. In such a case, it may result in
some glyph bitmaps being clipped.

ulCodePageRange1 Bits 0-31
ulCodePageRange2 Bits 32-63

Format: 32-bit unsigned long(2 copies) totaling 64 bits.

The 'OS/2' & Windows Metrics Table

file:///F|/tmp/ttf/os2.htm[2011/11/19 17:13:01]

Title: Code Page Character Range

Description:

This field is used to specify the code pages encompassed by the font file in the 'cmap'
subtable for platform 3, encoding ID 1 (Microsoft platform). If the font file is encoding ID 0,
then the Symbol Character Set bit should be set. If the bit is set (1) then the code page is
considered functional. If the bit is clear (0) then the code page is not considered functional.
Each of the bits is treated as an independent flag and the bits can be set in any combination.
The determination of “functional” is left up to the font designer, although character set
selection should attempt to be functional by code pages if at all possible.

Symbol character sets have a special meaning. If the symbol bit (31) is set, and the font file
contains a 'cmap' subtable for platform of 3 and encoding ID of 1, then all of the characters in
the Unicode range 0xF000 - 0xF0FF (inclusive) will be used to enumerate the symbol character
set. If the bit is not set, any characters present in that range will not be enumerated as a
symbol character set.

All reserved fields must be zero. Each long is in Big-Endian form.
Bit Code Page Description

0 1252 Latin 1
1 1250 Latin 2: Eastern Europe
2 1251 Cyrillic
3 1253 Greek
4 1254 Turkish
5 1255 Hebrew
6 1256 Arabic
7 1257 Windows Baltic
8 1258 Vietnamese
9-15 Reserved for Alternate ANSI
16 874 Thai
17 932 JIS/Japan
18 936 Chinese: Simplified chars--PRC and Singapore
19 949 Korean Wansung
20 950 Chinese: Traditional chars--Taiwan and Hong Kong
21 1361 Korean Johab
22-28 Reserved for Alternate ANSI & OEM
29 Macintosh Character Set (US Roman)
30 OEM Character Set
31 Symbol Character Set
32-47 Reserved for OEM
48 869 IBM Greek
49 866 MS-DOS Russian
50 865 MS-DOS Nordic
51 864 Arabic
52 863 MS-DOS Canadian French
53 862 Hebrew
54 861 MS-DOS Icelandic
55 860 MS-DOS Portuguese
56 857 IBM Turkish
57 855 IBM Cyrillic; primarily Russian
58 852 Latin 2

The 'OS/2' & Windows Metrics Table

file:///F|/tmp/ttf/os2.htm[2011/11/19 17:13:01]

59 775 MS-DOS Baltic
60 737 Greek; former 437 G
61 708 Arabic; ASMO 708
62 850 WE/Latin 1
63 437 US

sxHeight

Format: SHORT

Description:

This metric specifies the distance between the baseline and the approximate height of non-
ascending lowercase letters measured in FUnits. This value would normally be specified by a
type designer but in situations where that is not possible, for example when a legacy font is
being converted, the value may be set equal to the top of the unscaled and unhinted glyph
bounding box of the glyph encoded at U+0078 (LATIN SMALL LETTER X). If no glyph is
encoded in this position the field should be set to 0.

This metric, if specified, can be used in font substitution: the xHeight value of one font can be
scaled to approximate the apparent size of another.

sCapHeight

Format: SHORT

Description:

This metric specifies the distance between the baseline and the approximate height of
uppercase letters measured in FUnits. This value would normally be specified by a type
designer but in situations where that is not possible, for example when a legacy font is being
converted, the value may be set equal to the top of the unscaled and unhinted glyph bounding
box of the glyph encoded at U+0048 (LATIN CAPITAL LETTER H). If no glyph is encoded in
this position the field should be set to 0.

This metric, if specified, can be used in systems that specify type size by capital height
measured in millimeters. It can also be used as an alignment metric; the top of a drop capital,
for instance, can be aligned to the sCapHeight metric of the first line of text.

usDefaultChar

Format: USHORT

Description:

Whenever a request is made for a character that is not in the font, Windows provides this
default character. If the value of this field is zero, glyph ID 0 is to be used for the default
character otherwise this is the Unicode encoding of the glyph that Windows uses as the
default character. This field cannot represent supplementary character values (codepoints
greater than 0xFFFF), and so applications are strongly discouraged from using this field.

usBreakChar

Format: USHORT

Description:
This is the Unicode encoding of the glyph that Windows uses as the break character. The
break character is used to separate words and justify text. Most fonts specify 'space' as the
break character. This field cannot represent supplementary character values (codepoints
greater than 0xFFFF) , and so applications are strongly discouraged from using this field.

The 'OS/2' & Windows Metrics Table

file:///F|/tmp/ttf/os2.htm[2011/11/19 17:13:01]

usMaxContext

Format: USHORT

Description:

The maximum length of a target glyph context for any feature in this font. For example, a
font which has only a pair kerning feature should set this field to 2. If the font also has a
ligature feature in which the glyph sequence 'f f i' is substituted by the ligature 'ffi', then this
field should be set to 3. This field could be useful to sophisticated line-breaking engines in
determining how far they should look ahead to test whether something could change that
effects the line breaking. For chaining contextual lookups, the length of the string (covered
glyph) + (input sequence) + (lookahead sequence) should be considered.

This page was last updated 14 March 2011.

© 201` Microsoft Corporation. All rights reserved. Terms of use.

Comments to the MST group: how to contact us.

Microsoft Typography | Developer... | OpenType specification | OpenType tables | The OS2 table

http://www.microsoft.com/Misc/cpyright.htm
file:///typography/AboutMST.mspx
http://www.microsoft.com/typography/default.mspx
http://www.microsoft.com/typography/creators.htm
file:///F|/tmp/ttf/default.htm
file:///F|/tmp/ttf/otff.htm#otttables

	TrueType 1.0 Font Files

	Table of Contents
	Preface
	ch01 TrueType Fundamentals

	TrueType Fundamentals
	From design to font file
	From Font File to Paper
	Digitizing a design
	Outlines
	FUnits and the em square
	FUnits and the grid

	Scaling a glyph
	Device space
	Converting FUnits to pixels
	Display device characteristics

	Grid-fitting a glyph outline
	What are instructions?
	The TrueType interpreter
	Using instructions
	The Font Program
	The CVT Program

	The Storage Area
	The Graphics State

	The scan converter
	What is a dropout?
	Preventing dropouts

	ch02 The TrueType Font File

	The TrueType Font File
	Data Types
	The Table Directory
	cmap - Character To Glyph Index Mapping Table
	Format 0: Byte encoding table
	Format 2: High-byte mapping through table
	Format 4: Segment mapping to delta values
	Format 6: Trimmed table mapping

	cvt - Control Value Table
	EBDT - Embedded Bitmap Data Table
	EBLC - Embedded Bitmap Location Table
	EBSC - Embedded Bitmap Scaling Table
	fpgm - Font Program
	gasp - Grid-fitting And Scan-conversion Procedure
	glyf - Glyph Data
	Simple Glyph Description
	Composite Glyph Description

	hdmx - Horizontal Device Metrics
	head - Font Header
	hhea - Horizontal Header
	hmtx - Horizontal Metrics
	kern- Kerning
	Format 0
	Format 2

	loca - Index to Location
	Short version
	Long version

	LTSH - Linear Threshold
	maxp - Maximum Profile
	name - Naming Table
	OS/2 - OS/2 and Windows Metrics
	version
	xAvgCharWidth
	usWeightClass
	usWidthClass
	fsType
	ySubscriptXSize
	ySubscriptYSize
	ySubscriptXOffset
	ySubscriptYOffset
	ySuperscriptXSize
	ySuperscriptYSize
	ySuperscriptXOffset
	ySuperscriptYOffset
	yStrikeoutSize
	yStrikeoutPosition
	sFamilyClass
	Panose
	ulUnicodeRange1 (Bits 0–31) ulUnicodeRange2 (Bits 32–63) ulUnicodeRange3 (Bits 64–95) ulUnicodeRange4 (Bits 96–127)
	achVendID
	fsSelection
	usFirstCharIndex
	usLastCharIndex
	sTypoAscender
	sTypoDescender
	sTypoLineGap
	usWinAscent
	usWinDescent
	ulCodePageRange1 Bits 0–31 ulCodePageRange2 Bits 32–63

	PCLT - PCL 5 Table
	post - PostScript
	How to calculate VM usage
	Format 1.0
	Format 2.0
	Format 2.5
	Format 3.0

	prep - Control Value Program
	VDMX - Vertical Device Metrics
	vhea - Vertical Header Table
	vmtx - Vertical Metrics Table
	Vertical Metrics Table Format

	ch03 Recommendations for Windows Fonts

	Recommendations for Windows Fonts
	Filenames
	Table Requirements & Recommendations
	Table Alignment and Length
	‘cmap’ Table
	Macintosh ‘cmap’ Table

	‘cvt’ Table
	‘fpgm’ Table
	‘glyf’ Table
	‘hdmx’ Table
	‘head’ Table
	‘hhea’ Table
	‘hmtx’ Table
	‘kern’ Table
	‘loca’ Table
	‘LTSH’ Table
	‘maxp’ Table
	‘name’ Table
	Name strings

	‘OS/2’ Table
	‘post’ Table
	‘prep’ Table
	‘VDMX’ Table

	General Recommendations
	Non-Standard Fonts
	Device Resolutions
	Baseline to Baseline Distances
	Windows
	Macintosh
	Making Them Match

	Style Bits
	Drop-out Control

	Embedded bitmaps
	TrueType Collection (TTC) Files
	TTC File Structure
	TTC Header Table

	ch04 Character Sets

	Character Sets
	Microsoft Platform Requirements
	Macintosh Platform Requirements
	Recommendations

	Character Set Specifications: WGL4, Win31, UGL, and Macintosh

	
ch05 Instructing Glyphs
	Instructing Glyphs
	Choosing a scan conversion setting
	Controlling rounding
	Points
	Zones
	Zone pointers
	Reference points
	Phantom points

	Determining distances
	Controlling movement
	Moving points

	Managing the direction of distances
	Interpolating points
	Maintaining minimum_distance
	Controlling regularization using the cut_in
	Control_value_cut_in
	The single_width_cut_in
	The single_width_value

	Managing at specific sizes
	The delta_base
	The delta_shift

	ch06 The TrueType Instruction Set
	The TrueType Instruction Set
	Anatomy of a TrueType Instruction
	Data types
	The instruction stream
	The stack

	Pushing data onto the interpreter stack
	PUSH N Bytes
	PUSH N Words
	PUSH Bytes
	PUSH Words

	Managing the Storage Area
	Read Store
	Write Store

	Managing the Control Value Table
	Write Control Value Table in Pixel units
	Write Control Value Table in FUnits
	Read Control Value Table

	Managing the Graphics State
	Getting a value
	Setting a value
	Set freedom and projection Vectors To Coordinate Axis
	Set Projection_Vector To Coordinate Axis
	Set Freedom_Vector to Coordinate Axis
	Set Projection_Vector To Line
	Set Freedom_Vector To Line
	Set Freedom_Vector To Projection Vector
	Set Dual Projection_Vector To Line
	Set Projection_Vector From Stack
	Set Freedom_Vector From Stack
	Get Projection_Vector
	Get Freedom_Vector
	Set Reference Point 0
	Set Reference Point 1
	Set Reference Point 2
	Set Zone Pointer 0
	Set Zone Pointer 1
	Set Zone Pointer 2
	Set Zone PointerS
	Round To Half Grid
	Round To Grid
	Round To Double Grid
	Round Down To Grid
	Round Up To Grid
	Round OFF
	Super ROUND
	period
	phase
	threshold
	Super ROUND 45 degrees
	Set LOOP variable
	Set Minimum_ Distance
	INSTRuction execution ConTRoL
	SCAN conversion ConTRoL
	SCANTYPE
	Set Control Value Table Cut In
	Set Single_Width_Cut_In
	Set Single-width
	Set the auto_flip Boolean to ON
	Set the auto_flip Boolean to OFF
	Set Angle _Weight
	Set Delta_Base in the graphics state
	Set Delta_Shift in the graphics state

	Reading and writing data
	Get Coordinate projected onto the projection_vector
	Sets Coordinate From the Stack using projection_vector and freedom_vector
	Measure Distance
	Measure Pixels Per EM
	Measure Point Size

	Managing outlines
	FLIP PoinT
	FLIP RanGe ON
	FLIP RanGe OFF
	SHift Point by the last point
	SHift Contour by the last point
	SHift Zone by the last pt
	SHift point by a PIXel amount
	Move Stack Indirect Relative Point
	Move Direct Absolute Point
	Move Indirect Absolute Point
	Move Direct Relative Point
	Move Indirect Relative Point
	ALIGN Relative Point
	Adjust Angle (No Longer Supported)
	moves point p to the InterSECTion of two lines
	ALIGN Points
	Interpolate Point by the last relative stretch
	UnTouch Point
	Interpolate Untouched Points through the outline

	Managing exceptions
	DELTA exception P1
	DELTA exception P2
	DELTA exception P3
	DELTA exception C1
	DELTA exception C2
	DELTA exception C3
	Example of DELTA exceptions

	Managing the stack
	Duplicate top stack element
	POP top stack element
	Clear the entire stack
	SWAP the top two elements on the stack
	Returns the DEPTH of the stack
	Copy the INDEXed element to the top of the stack
	Move the INDEXed element to the top of the stack
	ROLL the top three stack elements

	Managing the flow of control
	IF test
	ELSE
	End IF
	Jump Relative On True
	JuMP
	Jump Relative On False

	Logical functions
	Less Than
	Less Than or Equal
	Greater Than
	Greater Than or Equal
	EQual
	Not EQual
	ODD
	EVEN
	logical AND
	logical OR
	logical NOT

	Arithmetic and math instructions
	ADD
	SUBtract
	DIVide
	MULtiply
	ABSolute value
	NEGate
	FLOOR
	CEILING
	MAXimum of top two stack elements
	MINimum of top two stack elements

	Compensating for the engine characteristics
	ROUND value
	No ROUNDing of value

	Defining and using functions and instructions
	Function DEFinition
	END Function definition
	CALL function
	LOOP and CALL function
	Instruction DEFinition

	Debugging
	DEBUG call

	Miscellaneous instructions
	GET INFOrmation

	ch07 Graphics State Summary

	Graphics State Summary

	Appendix A IBM Font Class Parameters

	IBM Font Class Parameters
	sFamilyClass
	Class ID = 0 No Classification
	Class ID = 1 Oldstyle Serifs
	Subclass ID = 0 : No Classification
	Subclass ID = 1 : IBM Rounded Legibility
	Subclass ID = 2 : Garalde
	Subclass ID = 3 : Venetian
	Subclass ID = 4 : Modified Venetian
	Subclass ID = 5 : Dutch Modern
	Subclass ID = 6 : Dutch Traditional
	Subclass ID = 7 : Contemporary
	Subclass ID = 8 : Calligraphic
	Subclass ID = 9-14 : (reserved for future use)
	Subclass ID = 15 : Miscellaneous

	Class ID = 2 Transitional Serifs
	Subclass ID = 0 : No Classification
	Subclass ID = 1 : Direct Line
	Subclass ID = 2 : Script
	Subclass ID = 3-14 : (reserved for future use)
	Subclass ID = 15 : Miscellaneous

	Class ID = 3 Modern Serifs
	Subclass ID = 0 : No Classification
	Subclass ID = 1 : Italian
	Subclass ID = 2 : Script
	Subclass ID = 3-14 : (reserved for future use)
	Subclass ID = 15 : Miscellaneous

	Class ID = 4 Clarendon Serifs
	Subclass ID = 0 : No Classification
	Subclass ID = 1 : Clarendon
	Subclass ID = 2 : Modern
	Subclass ID = 3 : Traditional
	Subclass ID = 4 : Newspaper
	Subclass ID = 5 : Stub Serif
	Subclass ID = 6 : Monotone
	Subclass ID = 7 : Typewriter
	Subclass ID = 8-14: (reserved for future use)
	Subclass ID = 15 : Miscellaneous

	Class ID = 5 Slab Serifs
	Subclass ID = 0 : No Classification
	Subclass ID = 1 : Monotone
	Subclass ID = 2 : Humanist
	Subclass ID = 3 : Geometric
	Subclass ID = 4 : Swiss
	Subclass ID = 5 : Typewriter
	Subclass ID = 6-14 : (reserved for future use)
	Subclass ID = 15 : Miscellaneous

	Class ID = 6 (reserved for future use)
	Class ID = 7 Freeform Serifs
	Subclass ID = 0 : No Classification
	Subclass ID = 1 : Modern
	Subclass ID = 2-14 : (reserved for future use)
	Subclass ID = 15 : Miscellaneous

	Class ID = 8 Sans Serif
	Subclass ID = 0 : No Classification
	Subclass ID = 1 : IBM Neo-grotesque Gothic
	Subclass ID = 2 : Humanist
	Subclass ID = 3 : Low-x Round Geometric
	Subclass ID = 4 : High-x Round Geometric
	Subclass ID = 5 : Neo-grotesque Gothic
	Subclass ID = 6 : Modified Neo-grotesque Gothic
	Subclass ID = 7-8 : (reserved for future use)
	Subclass ID = 9 : Typewriter Gothic
	Subclass ID = 10 : Matrix
	Subclass ID = 11-14 : (reserved for future use)
	Subclass ID = 15 : Miscellaneous

	Class ID = 9 Ornamentals
	Subclass ID = 0 : No Classification
	Subclass ID = 1 : Engraver
	Subclass ID = 2 : Black Letter
	Subclass ID = 3 : Decorative
	Subclass ID = 4 : Three Dimensional
	Subclass ID = 5-14 : (reserved for future use)
	Subclass ID = 15 : Miscellaneous

	Class ID = 10 Scripts
	Subclass ID = 0 : No Classification
	Subclass ID = 1 : Uncial
	Subclass ID = 2 : Brush Joined
	Subclass ID = 3 : Formal Joined
	Subclass ID = 4 : Monotone Joined
	Subclass ID = 5 : Calligraphic
	Subclass ID = 6 : Brush Unjoined
	Subclass ID = 7 : Formal Unjoined
	Subclass ID = 8 : Monotone Unjoined
	Subclass ID = 9-14 : (reserved for future use)
	Subclass ID = 15 : Miscellaneous

	Class ID = 11 (reserved for future use)
	Class ID = 12 Symbolic
	Subclass ID = 0 : No Classification
	Subclass ID = 1-2 : (reserved for future use)
	Subclass ID = 3 : Mixed Serif
	Subclass ID = 4-5 : (reserved for future use)
	Subclass ID = 6 : Oldstyle Serif
	Subclass ID = 7 : Neo-grotesque Sans Serif
	Subclass ID = 8-14 : (reserved for future use)
	Subclass ID = 15 : Miscellaneous

	Class ID = 13 Reserved
	Class ID = 14 Reserved

	Appendix B Instruction Set Summary

	Instruction Set Summary
	Instructions by Category
	Pushing data onto the interpreter stack
	Managing the Storage Area
	Managing the Control Value Table
	Managing the Graphics State
	Setting and getting the freedom_vector and the projection_vector
	Setting reference points and glyph element pointers
	Setting the round_state
	Setting other graphics state variables

	Reading and Writing Data
	Managing Outlines
	Flipping Points
	Shifting Points
	Moving Points
	Interpolating Points

	Managing Exceptions
	Managing the stack
	Logical functions
	Managing the flow of control
	Arithmetic functions
	Compensating for the engine characteristics
	Defining and using functions and instructions
	Debugging
	Miscellaneous

	Instructions by Name

	Appendix C Instruction Set Index

	Instruction Set Index

	OS/2 and Windows Metrics

