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Abstract

Mukherjee (Pattern Recognition Letters, vol. 32, pp. 824–831, 2011) recently introduced a class of distance

functions called weighted t-cost distances that generalize m-neighbor, octagonal, and t-cost distances. He proved

that weighted t-cost distances form a family of metrics and derived an approximation for the Euclidean norm

in Z
n. In this note we compare this approximation to two previously proposed Euclidean norm approximations

and demonstrate that the empirical average errors given by Mukherjee are significantly optimistic in R
n. We also

propose a simple normalization scheme that improves the accuracy of his approximation substantially with respect

to both average and maximum relative errors.

1. Introduction1

The Minkowski (Lp) metric is inarguably one of the most commonly used quantitative distance (dissimi-2

larity) measures in scientific and engineering applications. The Minkowski distance between two vectors x =3

(x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in the n-dimensional Euclidean space, Rn, is given by4

Lp(x,y) =
(∑n

i=1
|xi − yi|p

)1/p

. (1)

Three special cases of the Lp metric are of particular interest, namely, L1 (city-block metric), L2 (Euclidean5

metric), and L∞ (chessboard metric). Given the general form (1), L1 and L2 can be defined in a straightforward6

fashion, while L∞ is defined as7

L∞(x,y) = max
1≤i≤n

|xi − yi|.

The Minkowski metric enjoys the property of being translation invariant, i.e., Lp(x,y) = Lp(x + z,y + z) for8

all x,y, z ∈ R
n. Since in many applications the data space is Euclidean, the most natural choice of metric is L2,9
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which has the added advantage being isotropic (rotation invariant). For example, when the input vectors stem10

from an isotropic vector field, e.g., a velocity field, the most appropriate choice is to use the L2 metric so that all11

vectors are processed in the same way, regardless of their orientation [1]. However, L2 has the drawback of a high12

computational cost due to the multiplication and square root operations. As a result, L1 and L∞ are often used as13

alternatives. Although these metrics are computationally more efficient, they deviate from L2 significantly.14

Due to the translation invariance of Lp, it suffices to consider Dp(x) = Lp(x,0), i.e., the distance from the point15

x to the origin. Therefore, in the rest of the paper, we will consider approximations to Dp(x) rather than Lp(x,y).16

Let D̃, defined on R
n, be an approximation to D2 (Euclidean norm). We assume that D̃ is a continuous and17

absolutely homogeneous function. Recall that D̃ is called absolutely homogeneous (of degree one) if D̃(λx) =18

|λ|D̃(x) ∀λ ∈ R, ∀x ∈ R
n.19

We note that all variants of D̃ we consider in this paper satisfy these assumptions. As a measure of the quality20

of the approximation of D̃ to D2 we define the maximum relative error (MRE) as21

ε
˜D
max = sup

x∈Rn\{0}

|D̃(x)−D2(x)|
D2(x)

. (2)

Using the homogeneity of D2 and D̃, (2) can be written as22

ε
˜D
max = sup

x∈Sn−1
2

|D̃(x) − 1|, (3)

where Sn−1
2 = {x ∈ R

n : D2(x) = 1} is the unit hypersphere of Rn with respect to the Euclidean norm. Furthermore,23

by the continuity of D̃, we can replace the supremum with maximum in (3) and write24

ε
˜D
max = max

x∈Sn−1
2

|D̃(x) − 1|. (4)

We will use (4) as the definition of MRE throughout.25

Mukherjee [2] recently introduced a class of distance functions called weighted t-cost distances that generalize26

m-neighbor [3], octagonal [4], and t-cost [5] distances. He proved that weighted t-cost distances form a family of27

metrics and derived an approximation for the Euclidean norm in Z
n. Here we briefly review the t-cost norm.28

The t-cost norm [5] defines two points in the rectangular grid as neighbors when their respective hypercubes29

(or hypervoxels) share a hyperplane of any dimension. The cost associated with these points can be at most t,30

1 ≤ t ≤ n, such that if two consecutive points on a shortest path share a hyperplane of dimension r, the distance31

between them is taken as min(t, n− r). There are n distinct t-cost norms defined by32

Dt(x) =

t∑
i=1

x(i), 1 ≤ t ≤ n

where x(i) is the i-th absolute largest component of x, i.e., (x(1), x(2), · · · , x(n)) is a permutation of (|x1|, |x2|, · · · , |xn|)33

such that x(1) ≥ x(2) ≥ . . . ≥ x(n). The MRE of this norm is given by [5]34

εDt
max = max

(√
t− 1, 1− t√

n

)
.

Mukherjee generalized the t-cost norm as follows [2]:35
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DM (x) = max
1≤t≤n

{wtDt(x)} ,

where wt’s are non-negative real constants. Based on this weighted norm, he then derived an approximation for D236

using the following weight assignment: wt = 1
/√

t for 1 ≤ t ≤ n. Note that DM consistently underestimates D237

and the corresponding MRE is given by [2]38

εDM
max = 1− 1√∑n

i=1

(√
i−√

i− 1
)2 . (5)

In a recent study [6], we examined various Euclidean norm approximations in detail and compared their average39

and maximum errors using numerical simulations. Here we show that two of those approximations, namely Barni40

et al.’s norm [1, 7] and Seol and Cheun’s norm [8], are viable alternatives to DM .41

Barni et al. [1, 7] formulated a generic approximation for D2 as42

DB(x) = δ

n∑
i=1

αix(i),

where α = (α1, α2, · · · , αn) and δ > 0 are approximation parameters. Note that a non-increasing ordering and43

strict positivity of the component weights, i.e., α1 ≥ α2 ≥ · · · ≥ αn > 0 is a necessary and sufficient condition for44

DB to define a norm [7].45

Barni et al. showed that the minimization of (4) is equivalent to determining the weight vector α and the scale46

factor δ that solve the following minimax problem:47

min
α,δ

max
x∈V

|DB(x)− 1| ,

where V = {x ∈ R
n : x1 ≥ x2 ≥ · · · ≥ xn ≥ 0, D2(x) = 1}. The optimal solution and its MRE are given by48

α∗
i =

√
i−√

i− 1, δ∗ =
2

1 +
√∑n

i=1 α
∗
i
2
, εDB

max = 1− δ∗. (6)

Note the striking similarity between (5) and (6). Interestingly, a similar but less rigorous approach had been49

published earlier by Ohashi [9]. It should also be noted that several authors approached the problem from a50

Euclidean distance transform perspective and derived similar approximations for the 2- and 3-dimensional cases,51

see for example [10] and [11]. Furthermore, computation of weighted (Chamfer) distances in arbitrary dimensions52

on general point lattices is discussed in [12].53

More recently, Seol and Cheun [8] proposed an approximation of the form54

Da,b(x) = aD∞(x) + bD1(x), (7)

where a and b are strictly positive parameters to be determined by solving the following 2× 2 linear system55

aE(D2
∞) + bE(D∞D1) = E(D2D∞),

aE(D∞D1) + bE(D2
1) = E(D2D1),
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where E(·) is the expectation operator.56

Seol and Cheun estimated the optimal values of a and b using 100, 000 n-dimensional vectors whose components57

are independent and identically distributed, standard Gaussian random variables. In [6], we demonstrated that a58

fixed number of samples from the unit hypersphere gives biased estimates for the MRE. The basic reason behind59

this is the fact that a fixed number of samples fail to suffice as the dimension of the space increases.60

It is easy to see that DB and Da,b fit into the general form61

D̃(x) =

n∑
i=1

wix(i),

which is a weighted D1 norm. For DB the weights are w1 = δ∗ and wi�=1 = δ∗α∗
i , whereas for Da,b they are62

w1 = a+ b and wi�=1 = b. Clearly, DB has a more elaborate design in which each component is assigned a weight63

proportional to its ranking (absolute value). However, this weighting scheme also presents a drawback in that a full64

ordering of the component absolute values is required.65

DB and Da,b can also be written as linear combinations of the D1 and D∞ norms, as in (7). D1 overes-66

timates the D2 norm, whereas D∞ underestimates it [13]. Therefore, it is natural to expect a suitable linear67

combination of D1 and D∞ to give an approximation to D2 better than either of them [14]. Note that Rosen-68

feld and Pfaltz [15] obtained a 2-dimensional approximation by combining D1 and D∞ nonlinearly as follows:69

D̃(x) = max (�2 (D1(x) + 1)/3� , D∞(x)).70

2. Comparison of the Euclidean Norm Approximations71

Due to their formulations, the MREs for DM and DB can be calculated analytically using (5) and (6), respec-72

tively. In Figure 1 we plot the theoretical errors for these norms for n ≤ 100. It can be seen that DB is not only73

more accurate than DM , but also it scales significantly better.74

Figure 1: Maximum relative errors for DM and DB
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Table 1: Operation counts for the norms

Norm ABS COMP ADD MULT SQRT

D∞ n n− 1 0 0 0
D1 n 0 n− 1 0 0
D2 0 0 n− 1 n 1
DB n O(n logn) n− 1 n 0
Da,b n n− 1 n 2 0
DM n O(n logn) n− 1 n 0

The operation counts for each norm are given in Table 1 (ABS: absolute value, COMP: comparison, ADD:75

addition, MULT: multiplication, SQRT: square root). The following conclusions can be drawn:76

� DB and DM have the highest computational cost due to the fact that they require sorting of the absolute77

values of the vector components.78

� Da,b has the lowest computational cost among the approximate norms. A significant advantage of this norm79

is that it requires only two multiplications regardless of the value of n.80

� Da,b can be used to approximate D2
2 (squared Euclidean norm) using an extra multiplication. On the other81

hand, the computational cost of DB (DM ) is higher than that of D2
2 due to the extra absolute value and82

sorting operations involved.83

In Table 2 we display the percentage average and maximum errors for Da,b, DB, and DM for n ≤ 8. Average84

relative error (ARE) is defined as85

ε
˜D
avg =

1

|S|
∑
x∈S

|D̃(x) − 1|,

where S is a finite subset of the unit hypersphere Sn−1
2 , and |S| denotes the number of elements in S. An efficient86

way to pick a random point on Sn−1
2 is to generate n independent Gaussian random variables x1, x2, . . . , xn with87

zero mean and unit variance. The distribution of the unit vectors88

{
y = (y1, y2, . . . , yn) : yi = xi/

(∑n

j=1
x2
j

)1/2

, i = 1, 2, . . . , n
}

will then be uniform over the surface of the hypersphere [16]. For each approximate norm, the ARE and MRE89

values were calculated over an increasing number of points, 220, 221, . . . (that are uniformly distributed on the90

hypersphere) until the error values converge, i.e., the error values do not differ by more than ε = 10−5 in two91

consecutive iterations.92

In Table 2, the error values under the column “DM (Rn)” were obtained using the aforementioned iterative93

scheme, whereas those under the column “DM (Zn)” are taken from [2]. Motivated by the fact that DM consistently94

underestimates D2, we also experimented with a normalized form of this approximate norm given by D
̂M
(x) =95

DM (x)/δ∗. Note that δ∗ < 1 for n ≥ 2 (6).96

Note that for DM and DB, two types of maximum error were considered: empirical maximum error (MREe),97

which is calculated numerically over S and the theoretical maximum error (MREt), which is calculated analytically98

using (5) and (6), respectively.99
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Table 2: Percentage average and maximum errors for the approximate Euclidean norms

Da,b DB D
̂M

DM

R
n

Z
n

n ARE MREe ARE MREe MREt ARE MREe ARE MREe ARE MREe MREt

2 2.00 5.25 2.41 3.96 3.96 2.48 4.12 2.55 7.61 2.40 7.61 7.61

3 2.39 9.98 3.00 6.02 6.02 2.97 6.40 4.14 11.35 3.63 11.35 11.35

4 2.57 13.64 3.44 7.39 7.39 3.28 7.97 5.21 13.75 4.29 13.75 13.75

5 2.68 16.59 3.77 8.39 8.39 3.53 9.16 5.98 15.47 4.65 15.46 15.49

6 2.73 18.88 4.01 9.19 9.19 3.73 10.12 6.55 16.80 4.85 16.79 16.83

7 2.76 20.67 4.18 9.84 9.84 3.92 10.91 7.00 17.90 5.00 17.86 17.92

8 2.77 21.92 4.31 10.39 10.39 4.10 11.59 7.35 18.78 5.04 18.75 18.82

By examining Table 2, the following observations can be made regarding the maximum error:100

� The most accurate approximation is DB. This is because this norm is designed to minimize the maximum101

error.102

� The proposed normalization is quite effective since the resulting norm, D
̂M
, is, on the average, only 8.6% less103

accurate than DB, whereas both DM (Rn) and DM (Zn) are, on the average, about 85% less accurate than104

DB.105

� The least accurate approximations are DM and Da,b for n ≤ 4 and n > 4, respectively.106

� As n is increased, the error increases in all approximations. However, as can also be seen in Fig. 1, the error107

grows faster in some approximations than others.108

� For DB, the empirical and theoretical errors agree almost perfectly in all cases, which demonstrates the109

validity of the presented iterative error calculation scheme. As for DM , the agreement in each case is close,110

but not as close as that observed in DB. We have confirmed that using a smaller convergence threshold (ε)111

alleviates this problem at the expense of increased computational cost.112

On the other hand, with respect to average error we can see that:113

� Da,b is the most accurate approximation. This is because this norm is designed to minimize the average error.114

� DM (Rn) and DM (Zn) are the least accurate approximations. Furthermore, the errors given by Mukherjee115

are lower than those that we obtained (over Rn), and the discrepancy between the outcomes of the two error116

calculation schemes increases as n is increased. The optimistic average error values given by Mukherjee are117

due to the fact that his approximation was primarily intended for use in digital geometry and hence the118

calculations were performed in Z
n (rather than R

n) using a very small number of points ranging from 32 to119

512 [2]. In fact, Mukherjee used progressively fewer points with increasing n to calculate the error values. In120

[6], we demonstrated that more points are required in higher dimensions to obtain unbiased error estimates.121

In the calculation of D
̂M
, we assumed that the optimal scaling factor for DM is the same as that of DB, i.e., δ

∗.122

In order to check this assumption, we performed a one-dimensional grid search over [δ∗, 1] for each n value. The123

results are shown in Table 3. It can be seen that:124
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Table 3: Percentage average and maximum errors for D
̂M

Dδ∗
̂M

D
̂δ
̂M

n ARE MREe δ∗ ARE MREe
̂δ

2 2.48 4.12 0.960434 2.41 3.96 0.961971

3 2.97 6.40 0.939809 2.79 6.02 0.943192

4 3.28 7.97 0.926150 2.99 7.39 0.931336

5 3.53 9.16 0.916059 3.13 8.40 0.922654

6 3.73 10.12 0.908117 3.23 9.18 0.915927

7 3.92 10.91 0.901603 3.31 9.84 0.910619

8 4.10 11.59 0.896101 3.40 10.39 0.905850

� D
̂δ
̂M

is significantly more accurate than Dδ∗
̂M

with respect to both ARE and MRE.125

� D
̂δ
̂M

and DB have almost identical MREs. Since DB is analytically optimized for the maximum error it can126

be concluded that D
̂δ
̂M

can reach the same optimality by means of a suitable scaling factor.127

� Interestingly, D
̂δ
̂M

is more accurate than DB with respect to ARE. This could be due to the fact that the two128

approximations take different paths towards minimizing the MRE.129

3. Conclusions130

In this paper, we examined the weighted t-cost norm recently proposed by Mukherjee [2] with respect to its131

ability to approximate the Euclidean norm in R
n. We evaluated the average and maximum errors of this norm using132

numerical simulations and compared the results to those of two other well-known Euclidean norm approximations.133

The results demonstrated that, because it was designed for digital geometry applications in Z
n, the original weighted134

t-cost norm is not particularly suited to approximate the Euclidean norm in R
n. It is also shown, however, that135

when normalized with an appropriate scaling factor, Mukherjee’s norm becomes competitive with an analytically136

optimized approximation with respect to both average and maximum relative errors.137
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