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Disclaimer  
This program is free software; you can redistribute it and/or modify it under the terms 
of the GNU General Public License as published by the Free Software Foundation; 
either version (at your option) of the License. This program is distributed in the hope 
that it will be useful, but WITHOUT ANY WARRANTY; without even the implied 
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 
See the GNU General Public License for more details. You should have received a copy 
of the GNU General Public License along with this program; if not, write to the Free 
Software Foundation, Inc., 59 Temple Place – Suite 330, Boston, MA 02111-1307, 
USA. 
 

Credits 
This program was developed at the Bioinformatics Unit, Centre for Molecular Biology 
“Severo Ochoa”, Consejo Superior de Investigaciones Científicas (CSIC). Madrid, 
Spain.  
 

1. Purpose 
ProteinEvolver generates samples of coding and amino acid sequences evolved along 
phylogenies under structurally constrained substitution (SCS) models. These models 
consider the stability of the protein structure to evaluate candidate mutations. Thus, the 
mutations can be fixed (substitutions) or rejected depending on the energy of the protein 
structure with the mutated sequence. 
The simulation of molecular evolution occurs along phylogenetic histories, which can 
be either user-specified or simulated by the coalescent modified with recombination 
(including recombination hotspots and coldspots), migration, demographics and 
longitudinal sampling (among other options).  
 
What is exactly implemented in ProteinEvolver? 
ProteinEvolver implements protein stability substitution models that consider contact 
matrices, configurational entropy per residue in unfolded and misfolded proteins, 
configurational entropy offset (misfolded) and energy functions [1, 2]. In addition, these 
structural models can be crossed with parametric DNA substitution models such as JC 
[3], K80 [4], F81 [5], HKY [6], SYM [7], GTR [8] and even GTnR [extended from, 8] for 
the simulation of DNA data or, with empirical amino acid substitution models such as 
Blosum62 [9], CpRev [10], Dayhoff [11], DayhoffDCMUT [12], HIVb [13], HIVw [13], 
JTT [14], JonesDCMUT [12], LG [15], Mtart [16], Mtmam [17], Mtrev24 [18], RtRev 
[19], VT [20], WAG [21] or any user-specified matrix, for the simulation of proteins. 
Indeed, heterogeneous substitution rates among sites by a gamma distribution (+G) and 
proportion of invariable sites (+I) are also implemented. Furthermore, the user can 
modify the substitution rate for each site, for example allowing fix particular sites (for 
example, catalytic sites). 
The molecular evolution is simulated forward in time along the phylogeny. The user can 
either specify a particular phylogenetic tree or, simulate a coalescent history [22, 23]. In 
the latter case, ProteinEvolver implements the coalescent with recombination [22] 
(which can be homogeneous or heterogeneous along the sequence [following, 24]), 
variable population size (by a growth rate and demographic periods), a variety of 
migration models (such as island [25], stepping-stone [26] and continent-island [27]) 



 
ProteinEvolver documentation 

with temporal variation of migration rates and convergence of demes or subpopulations, 
the simulation of haploid or diploid data, and longitudinal sampling [see, 28]. 
The user has to specify a PDB file (which can be downloaded from the Protein Data 
Bank, http://www.rcsb.org/PDB/home/home.do) and a sequence, both are assigned to 
the root of the phylogeny. Then, a variety of input evolutionary parameters should be 
specified (see next sections). 
The output allows multiple options. Alignments can be printed in phylip, fasta and 
nexus formats. The ancestral sequence (MRCA or GMRCA, most recent common 
ancestor and grand most recent common ancestor, respectively [see, 29, 30]) can be also 
printed. Energies for the native structural protein can be printed as a function of the 
temperature and energies for the simulated proteins can be also printed to study how the 
incorporation of substitution events influences the structural protein stability. When 
coalescent histories are simulated, the simulated tree or ancestral recombination graph 
(ARG) [31] can be also printed. 
We recommend check the attached folder “example_input_files”, it contains a variety of 
examples of evolutionary scenarios that can be simulated using ProteinEvolver.  
 

2. Executables and compilation 
Executable files are provided for Linux Debian and MacOS X (Intel and G4 
processors), and a Makefile is provided for compilation in any OS with a C compiler. 
This makefile can be optimized for different users, for example using the optimization 
option -fast instead of –O3, for Mac processors. To compile the program type (it may 
take a few minutes): make all 
It should print something like: 
Building ProteinEvolver version 1.2.0 
gcc -c -O3 -Wall ProteinEvolver1.2.0.c 
gcc  -lm -O3 -Wall -o ProteinEvolver1.2.0 ProteinEvolver1.2.0.o  
Finished compiling. 
A second makefile “Makefile_MPI” is provided to compile a MPI version (which could 
be convenient for diverse simulation experiments [e.g., 32, 33]). This Makefile might 
need some modifications for particular OS. To compile the program type: make -f 
Makefile_MPI. MPI libraries have to be installed in the host for running ProteinEvolver 
in parallel. The minimum number of processors is two. An example of execution for 3 
processors is the next: mpirun -np 3 ProteinEvolver1.2.0 
 

3. ProteinEvolver Usage 
The input of the program consists of a series of arguments and parameter values (Table 
1) that can be written in the command line or, more conveniently, specified in a text file 
called “parameters” that should be located at the same directory of the executable. 
These arguments include the parameter values used in the simulations and several 
printing options that control the amount of information that is sent to the console or the 
type of output files. 
In addition, other input files are required for diverse specifications (see sections 3.3 and 
3.4): 
 - For protein stability substitution models: particular settings for the structural 
model, PDB file and amino acid contacts matrix. 

- A user- specified empirical amino acid model. 
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 - A vector to modify the heterogeneous substitution rates per site. 
- User-specified tree/s. 
- A user-specified sequence for the root of the phylogeny. 
- Settings for recombination hotspots. 
 

3.1. Command line 
In Mac systems, the command line is provided by the Terminal, while in Windows, this 
is provided by the windows console or command prompt. If the user specifies any 
argument in the command line, ProteinEvolver will use the values specified for those 
parameters, and default values for the parameters not included in the command line. It is 
highly recommended check the information shown in the screen to be sure that the 
simulations have been parameterized as intended. Some example command lines are the 
following: 
 
Amino acid data by the empirical JTT substitution model applied along a coalescent 
tree,  
./ProteinEvolver1.2.0 -n2 -s8 150 -e200 1 -@JTT 
 
Amino acid data by the structural protein stability (SCS) × JTT substitution model 
applied along a simulated coalescent tree. Note that it also requires the input files 
Pop_evol.in (and derived files) and, seqGMRCA. 
./ProteinEvolver1.2.0 -n2 -s8 255 -e200 1 -@JTT -f20 0.04 0.06 0.05 0.05 0.08 0.02 
0.05 0.05 0.03 0.07 0.04 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.06 -zPop_evol.in -
xseqGMRCA 
 
DNA data by the classic JC substitution model applied along a user-specified tree in the 
input file treefile,  
./ProteinEvolver1.2.0 -n2 -ptreefile -v1 0.5 -a0.7 -i0.5 
 
Coding DNA data by the structural protein stability (SCS) × JC substitution model 
applied along a user-specified tree in the input file. Note that it also requires the input 
files treefile, Pop_evol.in (and derived files) and, seqGMRCA. 
./ProteinEvolver1.2.0 -n2 -ptreefile -v1 0.5 -f4 0.25 0.20 0.30 0.25 -mPop_evol.in -
xseqGMRCA -a1 0.7 -i0.5 
 
DNA data according to the classic JC substitution model applied along an ARG 
simulated by the coalescent with recombination (including recombination hotspots), 
longitudinal sampling, demographic periods, migration by an island model, variable 
migration rate according to temporal periods, convergence of demes, vector of rates per 
site and multiple output files. Note that it also requires the input files UserHetRec, 
HetRatesVector and seqGMRCA. 
./ProteinEvolver1.2.0 -n2 -s8 765 -e1000 2 -=4 1995 1 1 2003 4 6 1997 2 3 2001 7 8 -
/1200 -g1 3 1000 1250 1000 1300 1550 2000 1560 1000 3000 -q1 4 2 2 3 1 -t3 100 800 
0.002 0.001 0.003 -%1 1 2 10000 -r2.3e-6 -hUserHetRec -o0.1 -u4.1e-5 -f4 0.25 0.20 
0.30 0.25 -a0.7 -i0.52 -_HetRatesVector -xseqGMRCA -bsequences -c1 1 0 -jtrees -
ktimes -dbreakpoints -*NetworkFile -y2 -#245 
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We strongly recommend the use of the parameters file (instead of the command 
line, see next section) in order to avoid text errors and a better checking of the 
input settings. 
 
 

3.2. Parameters file 
If no argument is specified, the program will only read the text file “parameters” which 
should be placed at the same directory of the executable. If no arguments are specified 
in the command line, and there is no a “parameters” file, the program will stop and 
throw an error. 
In this file anything within brackets will be ignored. Examples of the “parameters” file 
are included in the distribution. Then, only type: 
 
./ProteinEvolver1.2.0 
 

3.2.1. Arguments for the parameters file 
Possible arguments for the parameters file are the following (# means number, NAME 
means a word): 
 
General settings 
-n# : Number of replicates 
The number of samples to be generated. Each sample is an independent realization of 
the evolutionary process. This specification is mandatory. Example: -n10 
 
Coalescent settings 
-s# #: Sample size; Number of sites 
The number of sequences to be generated for each sample and the total sequence length 
(in nucleotides or amino acids). Example: -s6 255 
 
-e# #: Effective population size; Haploid / Diploid 
The effective size (N) of the population from which the sample was theoretically drawn. 
If there are several demes, this argument is the effective population size for each deme. 
The second number means that the data set can be simulated as haploid (1) or diploid 
(2). Example: -e100 1 
 
-=# : Tip dates 
The time of the tips can be different with this option. For example, 4 samples: 
1995:sequence 1; 2003: sequences 4 and 6; 1997: sequences 2 and 3; 2001: sequences 7 
and 8. This option does not work if there is any convergence of demes at younger times. 
Example (of above): - =4 1995 1 1 2003 4 6 1997 2 3 2001 7 8 
 
-/# : Generation time 
The time per generation. Example: -/300 
 
-g0 # or -g1 # (# # #) : Demographics settings. Exponential growth rate or 
Demographic periods 
The first number specifies the model, exponential growth rate (0) or demographic 
periods (1). These parameters are looking back in time, so it is not a good idea to 



 
ProteinEvolver documentation 

specify a negative growth rate for the last period, as the coalescent time could become 
infinite in the past. 
Rate of exponential growth per individual per generation, after “0” the growth rate must 
be specified. Example: -g0 1e-5 (= -g0 0.00001) 
Demographic periods, after “1” the user has to specify the number of periods (from the 
present to the past) and N during those periods. The first number here specifies the 
number of periods. For each period should be three consecutive numbers indicating the 
size N at the beginning and at the end of the period, and the duration of the period in 
generations. Example: -g1 3 1000 1250 1000 1300 1550 2000 1560 1000 3000 
The exponential growth rate during the period (positive or negative) will be deduced 
from the specified N at the beginning and at the end of the period. The growth rate 
derived for the last period will continue into the indefinite past. This implementation is 
borrowed from [34]. This option is incompatible with the exponential growth rate 
option (-g). Again, these parameters are looking back in time, so it is not a good idea to 
specify a negative growth rate for the last period, as the coalescent time could become 
infinite in the past. 
 
-q# # (#): Migration model and population structure 
The first number specifies the migration model (island model=1, stepping-stone 
model=2, continent-island model=3). The second number specifies the total number of 
demes or subpopulations sampled. The next n numbers specify the number of 
individuals (or sequences) per deme (note that the specified sample size (-s) must be 
equal to the sum of these). For the island-continent model, deme #1 will be the 
continent while the other demes will be islands (see details in section 4.3.2). Example: -
q2 2 3 3 (a stepping-stone model, two demes with three samples each). 
 
-t# (#)(#): Migration rate 
This parameter introduces the migration rate, which can be constant or variable with 
time according to temporal periods. The first number specifies the number of temporal 
periods, then:  

For only 1 period, the second number is the migration rate (constant). Example: 
-t1 0.001 (only 1 period with migration rate = 0.001). 

For more than 1 period, the second number/s are the time/s for the beginning of 
a new migration rate and the third/s numbers are the corresponding migration rate/s for 
each period. Example: -t2 100 0.001 0.005 (2 periods, the first period occurs from t = 0 
to t = 100 with a migration rate = 0.001, the second period occurs from t = 100 to the 
end of the simulation with a migration rate = 0.005). Example: t3 100 800 0.002 0.001 
0.003 (3 periods: from t = 0 to t = 100 with migration rate = 0.002, from t = 100 to t = 
800 with migration rate = 0.001, from t = 800 to the end of the simulation with a 
migration rate = 0.003). 
 
-%# (# # #) : Events of convergence of demes 
The first number specifies the total number of convergent events. For each convergence 
event should be three consecutive numbers. The first number and the second number are 
the numbers of the demes to converge. The third number is the time to that 
convergence. With this option the user can build the demes evolutionary tree but it is 
only available when the migration model is activated (despite the migration rate could 
be zero). Examples: -%1 1 2 2000 (for 2 initial demes (-q2), convergence of deme 1 
with deme 2 at time 2000 to create a new deme 3). -%3 1 2 400 3 4 1900 5 6 2000 (for 4 
initial demes (-q4) convergence of deme 1 with deme 2 at time 400 to create a new 
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deme 5, convergence of deme 3 with deme 4 to create a new deme 6 at time 1900, 
convergence of deme 5 with deme 6 at time 2000 to create a final new deme 7). 
 
-r# : Homogeneous Recombination rate 
The homogeneous recombination rate per site and per generation. All sites will share 
this same rate. This is also the background recombination when simulating 
recombination hotspots. Example: -r2e-6 (= -r0.000002) 
 
-hNAME : Recombination hotspots 
This option activates recombination hotspots. Parameters for recombination hotspots 
must be introduced in the file here indicated (see section 3.4). Example: -hUserHetRec 
 
-w# : Fixed number of events of recombination 
This option fixes the number of events of recombination per replicate, so every sample 
will have the same number of recombination events. What it does is to filter out 
replicates with a different number of recombination events, so it will take more time. 
We recommend to use this option with careful, with sense according to the 
recombination rate (e.g. do not fix the number of events of recombination = 0 when the 
recombination rate is very high, or do not fix the number to a high value when the 
recombination rate is very low or nil), otherwise the execution may never ends until the 
program crashes. Example: -w2 
 
-u# : Substitution rate 
Substitution rate per site and per generation. Example: -u0.0015 
 
-o# : outgroup branch length 
If this option is specified the program simulates an outgroup sequence that evolves 
independently from the sample, along a branch of the specified length. By default the 
outgroup is not simulated. Example: -o0.1 
 
User-specified tree/s settings 
-pNAME : User-specified tree/s 
This option activates a user-specified tree, which can be applied for the molecular 
evolution. Note that when this option is activated the coalescent is not simulated (in that 
case, the user-specified tree is applied)!. Parameters for user-specified tree must be 
introduced in the file indicated in this argument (see also the section 3.4). Example: -
ptreefile 
 
Substitution model settings 
-f4 # # # #, -f20 # # # # # # # # # # # # # # # # # # # #: Nucleotide frequencies or amino 
acid frequencies 
The nucleotide frequencies A C G T are specified in this order. 
The amino acid frequencies are specified in the order: A R N D C Q E G H I L K M F P 
S T W Y V. 
For nucleotide models the first number must be 4 while for amino acid models it must 
be 20. By default all frequencies are equal. Four frequencies example: -f4 0.4 0.2 0.1 
0.3. Twenty frequencies example: -f20 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 
0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 
 
-v1 #, -v6 # # # # # #, -v12 # # # # # # # # # # # #: relative substitution rates 
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The first number specifies the total number of relative substitution rates that can be 1 
(for transition/transversion rate ratio), 6 (for relative symmetric substitution rates) or 12 
(relative asymmetric substitution rates).  

If the first number = 1, the second number is the transition/transversion rate 
ratio. When set to 0.5, the probability of transitions and transversions are the same, like 
in models “JC” [3] or “F81” [5] models. Example: -v1 2.1 

If the first number = 6, the following 6 numbers are the relative symmetric 
substitution rates A↔C, A↔G, A↔T, C↔G, C↔T and G↔T. Example: -v6 1.0 5.0 
1.0 1.0 5.0 1.0. 

If the first number = 12, the following 12 numbers are the relative asymmetric 
substitution rates AC, CA, AG, GA, AT, TA, CG, GC, CT, TC, GT and TG. Note that 
some calculations under this option can be problematic (complex eigenvalues/vectors) 
if rates are too asymmetric, especially with codon models. Example: -v12 1.1 1.2 1.3 1.4 
1.5 1.6 1.7 1.8 1.9 2.0 1.0 1.0  
 
-mNAME : SCS for coding DNA simulation  
This argument should be followed by the name of the file with settings for the SCS 
models (see section 3.3). When this argument is specified the program will simulate 
coding DNA data (which of course can be translated to amino acid data). In particular, 
under this model the mutations and substitutions (accepted mutations) occur at DNA 
level but their energies are tested at amino acid level taking into account the stability of 
the protein structure (see section 4.2). Importantly, do not activate this argument and the 
argument “-z” (which directly simulates amino acid data considering the stability of the 
mutations in the protein structure) at the same time. Example: -mPop_evol.in 
 
-@NAME : empirical amino acid model 
This option allows for the simulation of proteins. The empirical amino acid models 
implemented in ProteinEvolver are the following: Blosum62 [9], CpRev [10], Dayhoff 
[11], DayhoffDCMUT [12], HIVb [13], HIVw [13], JTT [14], JonesDCMUT [12], LG 
[15], Mtart [16], Mtmam [17], Mtrev24 [18], RtRev [19], VT [20], WAG [21]; in this 
case just specify the name of the empirical amino acid model.  
But in addition, it is possible to specify a user-defined empirical amino acid model by 
an input file (see section 3.4); in this case just specify the name of the input file with the 
empirical amino acid model. Example: -@JTT. Example: -@UserEAAM. 
 
-zNAME : SCS model for coding protein simulation  
This argument should be followed by the name of the file with settings for the SCS 
models (see section 3.3). Importantly, when this argument is specified the program will 
simulate protein data. In particular, under this model the mutations and substitutions 
(accepted mutations) occur at the amino acid level and their energies take into account 
the stability of the protein structure. Importantly, do not activate this argument and the 
argument “-m” at the same time. Example: -zPop_evol.in 
 
-a# : alpha shape of the gamma distribution 
A gamma distribution (+G) can simulate substitution rate variation among sites [35]. 
Alpha is the shape of this distribution. Smaller alphas imply stronger rate variation. 
Example: -a0.7. 
 
-_NAME : factor for variable substitution rate site by site 
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After this argument the user should specify the name of an input file, which contains a 
vector with values for each site (see details in section 3.4). Example: -_HetRatesVector 
 
-i# : proportion of invariable sites 
A proportion of sites can be set to be invariable (+I). Example: -i0.3 
 
-xNAME : GMRCA input file 
The user can specify its own MRCA/GMRCA sequence in a text file (see section 3.4). 
This file must contain only a DNA or amino acid sequence (depending on the 
substitution model applied), and the length has to be equal to the number of sites 
specified in the arguments “-s” or in the tree file “-p”. By default, the MRCA/GMRCA 
sequence is simulated from the nucleotide or amino acid frequencies (see above, -f 
argument). Example: -xseqGMRCA 
 
Output settings 
-bNAME : print sequences 
When this argument is invoked, aligned sequences are printed to the specified text file 
in the Results folder. Example: -bsequences 
 
-c# # #: format for printing sequences 
This option specifies the format of the output alignments. The first argument indicates 
Phylip sequential, Fasta and Nexus formats (1-3, respectively). The second argument 
indicates that alignments for each replicate are printed into a single file (0) or different 
files (1). The third argument prints the sequence of all internal nodes (1). Example: - c1 
1 0 (which means: phylip format, a file for each replicate, sequences corresponding to 
internal nodes are not printed). 
 
-$: print catMRCA/GMRCA 
This option prints the ancestral catMRCA/GMRCA sequences in output files. These 
output files will be incorporated to the Results folder. Example: -$ 
 
-jNAME : print genealogies 
When this option is specified, genealogies for each recombinant fragment are printed, in 
Newick format, to the specified text file, in the Results folder. Example: -jtrees 
 
-kNAME : print times 
When this argument is specified the coalescent times for each genealogy will be printed 
to the specified text file, in the Results folder. This option will slow down the 
simulations. Example: -ktimes 
 
-*NAME : print ARGs 
When this argument is specified the ancestral recombination graph (ARG) will be 
printed to the specified text file in the Results folder. Then, this file can be directly 
introduced into the NetTest web server (http://darwin.uvigo.es/software/nettest/) [36] in 
order to visualize the ARG. Example: -*NetworkFile 
 
-dNAME : print breakpoints 
When this argument is specified breakpoint positions are printed into the specified text 
file, in the Results folder. This option only works for coalescent simulations. Example: -
dbreakpoints 
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Other settings 
-y# : noisy level 
This option controls the level of information that will be printed to the screen. 
 0 : does not print run information, just the simulation progress. 
 1 : run settings and run information summarizing the simulations. 
 2 : calculation status, initial demes and event information, run settings for each 
replicate 
 3 :  print ancestral status for each sequence at each event + MRCA status, tip 
dates insertion, demes, molecular evolution. 
 4 : potential recombining locations (g and G vectors) and information about 
recombinant fragments evolution. 
Note that higher levels of noisy will slow down the simulations. The default level is 1 
Example: -y1 
 
-## : Seed 
Seed for the random number generator. If no seed is specified, the computer clock will 
be used. When a seed is fixed the process can be always reproduced if same settings are 
specified. Example: -#386658297 
 
 

3.3. Input files for the SCS models 
The main input file to specify SCS models must be specified in the parameters file by 
the argument “-m” (for the simulation of coding DNA data) or “-z” (for the simulation 
of proteins). Examples of the main input file for these models can be found in the 
“examples” folder, with name “Pop_evol.in”. Theory is described in the section 4.2.   
Importantly, this simulation requires that the MRCA/GMRCA sequence must codify the 
amino acid sequence of the PDB file (for coding data simulation) or be equal to the 
amino acid sequence of the PDB file (for protein simulation), see details in the theory 
section. As a consequence, for these models it is highly recommended to fix the 
MRCA/GMRCA sequence by an input file (see section 3.2, argument “-x” in the 
parameters file) because a MRCA/GMRCA sequence computed using the nucleotide 
or amino acid frequencies could not satisfy such a condition.   
 

3.3.1. Arguments for the file of SCS models 
Possible arguments are the following (# means number, NAME means a word): 
 
Structural settings 
PDB= NAME: File from the Protein Data Bank 
A file from the Protein Data Bank (http://www.rcsb.org/PDB/home/home.do) (PDB) 
must be specified. Example: PDB= 1TRE.PDB 
 
CHAIN= NAME: Chain of the PDB file 
The particular chain of the PDB file to be considered must be specified. Example: 
CHAIN= A 
 
FILE_STR= NAME: List of contact matrices 
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A file with list of contact matrices must be specified. The folder with example input 
files already contains a file “structures.in” with a huge list of contact matrices 
downloaded from the PDB and which can be applied to compute energies from any 
PDB protein structure. However, the authors could provide other files with contact 
matrices (considering particular user-specified details) upon request. Example: 
FILE_STR= structures.in 
 
TEMP= #: Temperature 
The temperature used to compute protein energies must be specified (see section 4.2). 
We recommend a range between 1.25 and 2.0. Example: TEMP= 1.5 
 
S0= #: Configurational entropy per residue (unfolded) 
The configurational entropy per residue for the unfolded protein must be specified. We 
recommend a range between 0.025 and 0.075. Example: S0= 0.05 
 
SC1= #: Configurational entropy per residue (misfolded) 
The configurational entropy per residue for the misfolded protein must be specified (see 
section 4.2). We recommend a range between 0.025 and 0.075. Example: SC1= 0.05 
 
SC0= #: Configurational entropy offset (misfolded) 
The configurational entropy offset for the misfolded protein must be specified (see 
section 4.2). By default this it is 0. Example: SC1= 0.0 
 
REM3= #: Third cumulant in REM calculation 
The third cumulant in REM calculation (to compute the structural protein energy) must 
be specified (see section 4.2). By default this it is 0. Example: REM3= 0 
 
NEUTRAL= #: If 1, Neutral landscape (neutral SCS model), otherwise population size 
dependent selection (fitness SCS model) 
If this parameter is set to 1, the neutral substitution models of structural protein stability 
will be applied (see section 4.2). Note that this model does not use the population size 
(next parameter), by default we recommend this neutral model. Example: NEUTRAL= 1  
 
NPOP= #: Population size for protein structures 
The population size to simulate molecular evolution under fitness substitution models of 
structural protein stability. Importantly, note that this option requires that the setting 
“NEUTRAL=” must be set to 0, so a fitness substitution model is specified. Example: 
NPOP= 10 
 
Other settings 
TYPE_BL= #: Type of branch lengths (by mutations or substitutions) 
This argument specifies if branch lengths are either considered by events of mutation 
(1) or substitution (2). Note that the expected number of events = branch length × 
number of sites. Example: TYPE_BL= 2 
 
OUTPUT_LEVEL= #: Amount of output files  
This argument specifies the amount of output files printed using protein stability 
substitution models (see section 3.6.1). “2”, all output files are printed. “1”, only the 
final output files are printed. “0”, the output files are not printed. Importantly, note that 
a total of 4 output files related with these substitution models are printed per branch and 
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therefore, it can slow down the simulations and may need a lot of space in the hard disk. 
Example: OUTPUT_LEVEL= 1 
 
 

3.4. Additional input files 
The following input files are optional and if required, must be introduced in the same 
directory of the executable of ProteinEvolver. Indeed, note that the settings contained in 
these input files cannot be specified in the command line. The name of these files must 
be introduced in the main settings (parameters file or command line). 
 

3.4.1. User-specified tree. No coalescent simulation 
Alternatively to the coalescent simulation, the user can specify a tree in order to evolve 
sequences along its branches. This possibility is convenient when the user already has a 
tree (e.g., inferred from real data) or in order to avoid coalescent assumptions such as 
the molecular clock. This procedure is similar to other software such as SeqGen [37] or 
Evolver [38] (note that models implemented int these programs do not consider protein 
structures). 
The tree must be incorporated into an input file, which should be specified from the 
main settings by the argument “-p” (e.g., -ptreefile; see section 3.2).  
Then, the input file consists of a text line with a range of sites and a tree in Newick 
format. The range specifies the first and last site (nucleotide or amino acid position) 
where the following tree should work. Importantly, all sites should be covered by a 
phylogenetic tree, so it always should start by 1 and finish by the total number of sites. 
Only one tree is allowed because the whole protein must exist in all nodes. The file does 
not allow empty lines. Trees should be rooted. 
An example is shown below, 
 
 
 
 
 
Note that by this procedure the total number of sites, number of taxa and name of taxa 
are specified. In that example, a total of 765 sites with 5 taxas (taxonA, taxonB, taxonC, 
taxonD, taxonE). When this option is applied all coalescent input settings are ignored 
(see section 3.2). 
 

3.4.2. Recombination hotspots 
The user can optionally simulate recombination hotspots following the algorithm 
implemented in SNPsim [24] when using coalescent simulations. This file must be 
specified in the main settings (-hNAME; see section 3.2.1) and should be placed in the 
directory of the executable. An example file “UserHetRec” is included in the folder 
with examples. 
Possible arguments for recombination hotspots file are (# means number): 
 
-k# : Hotspot recombination rate 
Expected recombination rate at the hotspots sites. If the hotspots are homogeneous 
(option -t# is not invoked) all the hotspots have the same rate. Example: -k1e-4 (= -

1 765 ((taxonA:0.1,taxonB:0.1):0.4,(taxonC:0.1,taxonD:0.1):0.5,taxonE:1.0); 
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k0.0001) 
 
-h# : Expected number of hotspots 
This is the expected number of hotspots for a given sample in the absence of 
interference. This parameter corresponds to the intensity parameter for a Poisson 
distribution from which the actual number of hotspots is drawn. For a given sample, the 
actual number of hotspots will change around this value. It does not have to be an 
integer. NOTE: When interference is specified we need to divide this number by the 
interference interval (-z#) to obtain the expected number of hotspots. It does not have to 
be an integer. Example: -h1.1 
 
-q# : Fixed number of hotspots 
This option fixes the number of hotspots inside the region of interest, so every sample 
will have the same number. In this case the hotspot locations are chosen from a uniform 
distribution. If the hotspots overlap, they will be displaces to the closest available 
location. Note that in this case no recombination events will originate from a hotspot 
located outside the region of interest. Example: -q3 
 
-v# : Hotspot imprecision 
The hotspot imprecision corresponds to the variance of a Normal distribution for the 
specific site to recombine around the hotspot center (chosen by a Poisson process). The 
bigger the imprecision, the wider is the hotspot. If the imprecision is 0, all the 
recombination events happen exactly at the hotspot center. See figures 2 and 3. 
Example: -v0 
 
-m# : Hotspot width 
This option specifies the width of the hotspots. In this case any site in the hotspot has 
the same probability of recombination. If the width is 1 all the recombination events 
happen exactly at the hotspot center. This parameter has to be bigger than 0. See figures 
2 and 3. Example: -m1 
 
-t# : Hotspot heterogeneity 
This parameter indicates that there is hotspot heterogeneity, that is, hotspots may have 
different recombination rates. This heterogeneity is accomplished through the use if the 
continuous gamma distribution. The shape parameter of this distribution (%) will 
control the strength of this heterogeneity. The smaller the shape the strongest the 
heterogeneity. This is similar to the application of Yang [35]. Example: -t0.5 
 
-z# : Hotspot interference 
This parameter indicates whether the location of the hotspots is not independent of each 
other. If this parameter is 1 there is no interference, if it is between 0 and 1 hotspots 
tend to cluster, and if it is bigger than 1 hotspots will tend to be pushed away from each 
other. Example: -z1 
 

3.4.3. MRCA/GMRCA sequence user-specified 
By default, the GMRCA or MRCA sequence is simulated according to the nucleotide or 
amino acid frequencies. However, the user can optionally specify its own root sequence 
by a text file (the name of this file must be specified in the main settings (-xNAME), 
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which should be located in the directory of the executable. The file just contains a single 
sequence. An example file “seqGMRCA” is included in the folder with examples. 
The option is recommended for protein stability substitution models where the sequence 
assigned to the root node must be equal (for the simulation of proteins) or codify (for 
the simulation of coding DNA) for the amino acid sequence of the PDB file. 
Consequently, under SCS models, it is highly recommended introduce directly (by 
using this MRCA/GMRCA file) the amino acid sequence of the PDB file or a 
coding sequence that codifies for such a PDB sequence. 
 

3.4.4. Empirical user-specified amino acid matrix 
The user can optionally specify a particular empirical amino acid matrix from a text file, 
which has to be located in the directory of the executable. An example file “userEAAM” 
is included in the folder with examples.  
This file consists in two sets of parameter values: First, the substitution rates for each 
amino acid (values must start after the letter for the corresponding amino acid). Second, 
20 amino acid frequencies can be introduced (values must start after a “z”). The order of 
amino acids must be the following: A R N D C Q E G H I L K M F P S T W Y V. 
 

3.4.5. Site by site variable substitution rate 
The user can optionally modify the substitution rate site by site. This file must be 
specified in the main settings by “-_NAME” and should be located in the directory of 
the executable. An example file is included with the package (file named 
“HetRatesVector”) and another example is shown below. 
The file consists on two sets of numbers specified after an “r”. First, the sequence 
length (255 in the example). Second, values for each site separated by a single space. 
Note that the number of values must be equal to the number of sites.  
 
 
 
 
 
 
 
 
 
 
 
 
The value for each site consists in a factor that multiplies the original substitution rate 
for that site and should be between 1 and 0. Thus, for example a value of 1 means that 
the original substitution rate remains invariant while a value of 0 means that the 
substitution rate is 0 and therefore that site will never mutate. This option can be useful 
when the user already know the functional importance of the amino acids in the protein, 
so for example catalytic sites could have a value of 0 in order to keep the protein 
activity.  
 

[rate heterogeneity by a vector] 
[options and comments within brackets are ignored] 
 
[rates] r255  
1 1 1 1 1 1 1 1 1 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.7 0 1 0.6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 0.5 0.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 1 0.7 0 0 0 0 0 0.6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.8 0 0 0 0.7 1 1 1 1 1  
1 1 1 1 1 
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3.5. Default settings 
By default ProteinEvolver simulates 10 samples of 6 individuals with 201 sites, a 
constant effective size of 1000, constant size, no recombination, no migration and a 
mutation rate of 1e-7 under the JC DNA substitution model with nucleotide frequencies 
equal to 0.25. Noisy level is 1. The sequences will be printed to the sequences output 
file in the Results folder. To run the program with the equivalent arguments we should 
type: 
 
./ProteinEvolver1.2.0 -n10 
 
./ProteinEvolver1.2.0 -n10 -s6 201 -e1000 2 -u1.0e-07 -f4 0.25 0.25 0.25 0.25 -
bsequences -y1 
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Table 1. Key arguments for ProteinEvolver. The user can specify several parameters 
to define different simulation scenarios. These arguments can be entered in the 
command line or read from text file. 
 
Parameter Arg Example value Application 
Number of replicates n 200 All 
Sample size s 8 All 
Number of sites (bp or amino 
acids) 

s 765 All 

Effective population size e 1000 All  
Haploid / Diploid e 1 All 
Tip dates = 2 1995 1 3 2003 4 8  All1 
Generation Time / 400 All 
Exponential growth rate g 2.1x10-5 Demography  
Demographic periods2 g 1000 5000 200 Demography 
Migration model q 1 Migration 
Number of demes q “4” 2 2 3 1 Demes/Migration 
Population structure q 4 “2 2 3 1” Demes/Migration 
Migration rate (constant or 
variable with time) 

t 1.2×10-4 or 100 
“0.001 0.005” 

Migration  

Convergence of demes3 % 1 2 5000 Demes/Migration 
Homogeneous recombination 
rate 

r 5×10-6 Homogeneous 
recombination/Recombinati
on hotspots  

Fixed number of recombination 
events 

w 3 Homogeneous 
recombination/Recombinati
on hotspots 

Recombination hotspots h UserHetRec Recombination hotspots 
Substitution rate u 5.1×10-4 All 
Outgroup branch length o 0.1 All 

User-specified tree/s p Treefile Genetic data simulation  

Nucleotide frequencies f 0.4 0.3 0.1 0.2 DNA / DNA – structural 
protein stability substitution 
models 

Transition / transversion ratio v 2.1 DNA / DNA – structural 
protein stability substitution 
models 

Relative symmetrical 
substitution rates 

v 1.0 2.3 2.1 3.0 4.2 
1.0 

DNA / DNA – structural 
protein stability substitution 
models 

Relative asymmetrical v 0.1 0.2 0.3 0.4 0.9 DNA / DNA – structural 
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substitution rates 0.6 0.9 0.8 0.9 0.1 
0.2 0.3 

protein stability substitution 
models 

File for the coding DNA – SCS5 
models 

m Pop_evol.in Coding DNA – SCS models 

Amino acid frequencies 
 

f 0.04 0.05 0.05 0.05 
0.05 0.05 0.05 0.05 
0.05 0.05 0.05 0.05 
0.05 0.05 0.05 0.05 
0.05 0.05 0.05 0.06 

Amino acid / Protein – 
structural protein stability 
substitution models 

Empirical amino acid model @ JTT Amino acid / Protein – 
structural protein stability 
substitution models 

File for the Protein – SCS5 
models 

z Pop_evol.in Protein – SCS models 

Rate variation among sites4 a 0.4 All 
Variable substitution rates site 
by site 

_ HetRatesVector All 

Proportion of invariable sites i 0.2 All 
User-defined sequence for 
GMRCA 

x seqGMRCA All 

Print sequences using diverse 
options 

b, c sequences, 1 1 0 All 

Print GMRCA sequence $  All 
Print simulated omega per site 
and/or per branch 

+  Codon models with variable 
omega per site and/or 
branch 

Print simulated trees j trees All 
Print simulated ARG * NetworkFile All 
Print times for genealogies k times All 
Print breakpoints d breakpoints All 
Apply a seed # 3444556 All 
Level of output information 
printed in the screen 

y 2 All 

1In presence of convergence of demes, the time of the tip dates must be younger than 
the time of the convergence of demes. 
2from 1000 to 5000 effective size during 200 generations. 
3deme 1 is converging with deme 2 at time 5000 to make a new ancestral deme 3. 
4shape of the gamma distribution. 
5SCS models can be neutral or fitness-based landscape. 
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3.6. Output Files 
All output files produced by the program are written to the folder “Results”:  
 
- Sequences file: contains the aligned sequences in Phylip sequential, Fasta or Nexus 
formats. 
- Breakpoints file: contains the breakpoints ordered by event time. Disabled when input 
tree/s are user-specified. 
- Trees file: contains the trees in newick format for each recombinant fragment. 
- Network file: contains the simulated ARG by a branches format (each line contains 
two connected nodes) [36]. Disabled when input tree/s are user-specified. See section 
4.3.1.2 for details.  
- Times file: contains information about time and branch length for each tree. 
- CatMRCA/GMRCA: contains the corresponding sequences catMRCA (concatenated 
MRCA fragments) and GMRCA (sequence of the GMRCA node) in the ARG. 
- Settings file: contains a summary of applied settings showed in the screen at the end of 
the simulation. This option must be activated in the source code. 
 

3.6.1. Output files for the SCS models 
The substitution models that account for the structural protein stability can produce 
additional output files that are printed within an output folder “ProteinStability”, located 
in the output folder “Results”.  
Note that these output files are printed for each branch so be careful when printing all 
output files in extensive simulations, it could require a lot of space in the hard disk and 
might slow down the simulations. See the argument OUTPUT_LEVEL in the section 
3.3.1 to control the amount of printed output files. 
The name for each output file consist in the prefix “ProteinStability_” followed by the 
number of replicate “Replicate#_”, the branch number “Branch#_”, and details about 
the particular settings specified: PDB name “NAME”, temperature “T#”, entropy “S#”, 
protein population size “N#”, and optionally GC bias for coding DNA simulation 
“GC#” (note that “#” means a number).  
 
Example from the simulation of coding DNA evolution,     
ProteinStability_Replicate1_Branch0_1TREA_DeltaG_2.dat 
ProteinStability_Replicate1_Branch0_1TREA_T1.80_S00.05_N10_GC0.40_ave.dat 
ProteinStability_Replicate1_Branch0_1TREA_T1.80_S00.05_N10_GC0.40_dna.dat 
ProteinStability_Replicate1_Branch0_1TREA_T1.80_S00.05_N10_GC0.40_stab.dat 
ProteinStability_Replicate1_Branch0_1TREA_T1.80_S00.05_N10_GC0.40_final.dat 
 
Example from the simulation of protein evolution,     
ProteinStability_Replicate5_Branch12_1TREA_DeltaG_2.dat 
ProteinStability_Replicate5_Branch12_1TREA_T1.80_S00.05_N10_ave.dat 
ProteinStability_Replicate5_Branch12_1TREA_T1.80_S00.05_N10_stab.dat 
ProteinStability_Replicate5_Branch12_1TREA_T1.80_S00.05_N10_final.dat 
 
Files “DELTAG_2.dat” show the protein energy values at amino acid level (∆G/L) as a 
function of the temperature (T) computed by the REM2 (Random Energy Model) 
energy function (see section 4.2).  
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Files “ave.dat” show information about the user-specified settings, computed energy, 
fitness and, transition and mutation loads.  
 
Files “dna.dat” show information about the user-specified settings and GC content.  
 
Files “stab.dat” show, for each accepted mutation (substitution), the structural energy of 
the mutated and native proteins, derived fitness and number of mutation attempts to 
reach such a substitution. It is recommended to explore the influence of substitution 
events in the protein structure. 
 
Files “final.dat” show the final results derived from the substitutions introduced on a 
branch. It indicates the mean of fitness, energy, entropy, transition and mutation loads 
and, rejected mutations. 
 

3.7. Solving message errors 
 
- Parameter values for the SCS models. Entropy and temperature must be chosen 
carefully, specially for fitness SCS models. See above recommended settings.  
 
- There is a common message of error due to not enough memory in scenarios with very 
high recombination rates. Note that recombination increases the number of nodes of the 
ARG and the number of recombinant fragments within nodes (see section 4.3.1). Then, 
when ρ (= 4Nrl) is very high, the ARG must save in memory a high amount of 
information, and with time such amount exponentially increases. Thus, at a given time 
the machine could not have enough available memory and the program stops with an 
error message like the following:  
malloc: *** mmap(size=1584291840) failed (error code=12) 
*** error: can't allocate region 
Could not reallocate segments (1584144000 bytes) 
In this situation we recommend to reduce the value of the following parameters: 
recombination rate, population size, length of the sequences and sample size. Of course, 
the other option is just to use another machine with more memory. 
 
- Using a fixed number of recombination events keep in mind that the recombination 
rate introduced should generate an accordingly number of recombination events. 
Otherwise the simulation could never finish (because the assumption of the fixed 
number of recombination events is never successful) leading to crash the execution. 
 
- Using growth rates or demographic periods you could find an error like:  
ERROR: Coalescent time (nan) is infinite 
       This might suggest that the growth rate is too negative 
       and the coalescent time is therefore infinite. 
       Try a smaller value 
This is because the population increases too much going back in time and thus, the 
coalescent time gets infinite. The best option to solve this error is to reduce the growth 
rate. In the case of demographic periods this could be done for example by using longer 
times for such period. 
 



 
ProteinEvolver documentation 

- Asymmetric substitution rates (for example, from user-specified amino acid matrices) 
could be problematic. In these cases the program writes an output message about 
“complex roots”. 
 
- Input tree from user. The file with the input tree must follow: first site should be 1 and 
the last site should be the total number of sites, no empty lines, the tree should be 
rooted. 
 
If you experience any unexpected error or there is any doubt, please do not hesitate to 
contact us: miguelmmmab@gmail.com. Thanks for your contribution! 
 
 

4. ProteinEvolver model 
 
ProteinEvolver implements site-dependent substitution models that consider the 
stability of the protein structure. These models compute the structural energy of mutated 
proteins (including misfolded and unfolded configurations) given the entropy and the 
temperature. Then, mutations can be accepted (substitutions) or rejected according to 
the Moran’s model. Two substitution models have been implemented, the neutral model 
(which does not consider population size) and the fitness model (which needs a user-
specified population size). 
Indeed, these models can be crossed with classic site-independent substitution models 
(see below) to compute substitution rates per site and state. The implemented classical 
DNA Markov models of substitution are all that currently exist (e.g., JC [3], K80 [4], 
F81 [5], HKY [6], SYM [7], GTR [8] and even GTnR [extended from, 8]) for the 
simulation of DNA data. The implemented empirical amino acid substitution models are 
Blosum62 [9], CpRev [10], Dayhoff [11], DayhoffDCMUT [12], HIVb [13], HIVw [13], 
JTT [14], JonesDCMUT [12], LG [15], Mtart [16], Mtmam [17], Mtrev24 [18], RtRev 
[19], VT [20], WAG [21] and any user-specified matrix. In addition, heterogeneous 
substitution rates among sites by a gamma distribution +G and proportion of invariable 
sites +I are implemented. Furthermore, the user can alter the substitution rate for each 
site, this allows to fix particular sites. For example, it would make sense to fix sites 
related with the activity of the protein such as catalytic positions.  
Using these substitution models, sequences can be evolved from the root to the tip 
nodes of a given phylogeny. Such a phylogeny can be user-specified or simulated by the 
coalescent. The program implements an extension of the coalescent with recombination, 
demographics and migration based on the neutral Wright-Fisher model [22, 25, 34] 
following [30, 39]. Given the specified recombination and migration rates (and other 
parameters like the effective population size (N) and growth rate) random genealogies 
are produced. Recombination hotspots are also implemented following SNPsim [24]. 
Several migration models (island [27], stepping-stone [26] and continent-island [27]) 
are allowed and migration rate can change with time. The evolution of the demes (or 
species tree) can be fixed. Complex demographic histories can be implemented by 
defining demographic periods in which population sizes augment, reduce, or remain 
constant. Samples can be collected at same or different times [see, 28] and simulated 
data can be haploid or diploid. 
The result is a random sample of aligned coding DNA or amino acid sequences. 
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4.1. Markov substitution models 
Once the sample genealogy has been constructed, nucleotide or amino acid data can be 
simulated along its branches. ProteinEvolver implements multiple nucleotide and amino 
acid Markov models through the specification of different parameters (including base 
frequencies, relative substitution rates, transition/transversion ratio, a proportion of 
invariable sites and rate variation among sites) and empirical matrices. Conveniently, 
the sequence of the root node can specified at random, according to the nucleotide or 
amino acid frequencies, or the user can specify its own sequence (highly recommended 
for structural protein stability substitution models). 
Variation in the substitution rate among sites can be user-established by the shape of a 
gamma distribution (+G). Indeed, ProteinEvolver also implements variation of 
substitution rates by a user-specified site-by-site vector. Finally, a proportion of 
invariable sites (+I) can be also simulated.  
 

4.1.1. DNA models 
ProteinEvolver implements the general time reversible model for nucleotide substitution 
(GTR) [8], a non reversible version (GTnR) [8], and models nested therein, like JC [3], 
K80 [4], F81 [5] or HKY [6]. 
 

4.1.2. Empirical amino acid models 
ProteinEvolver implements a variety of empirical amino acid models: Blosum62 [9], 
CpRev [10], Dayhoff [11], DayhoffDCMUT [12], HIVb [13], HIVw [13], JTT [14], 
JonesDCMUT [12], LG [15], Mtart [16], Mtmam [17], Mtrev24 [18], RtRev [19], VT 
[20], WAG [21]. In addition, it is possible to specify a user-defined empirical amino acid 
model by an input file (see section 3.4.4). 
 
 

4.2. SCS models 

The SCS models take into account the stability of the protein structure. These models 
compute the structural energy of mutated proteins given the entropy, contact matrices, 
the protein structure and the temperature. Then, mutations are evaluated and can be 
accepted (substitutions) or rejected. 
 
Our site-dependent SCS models estimates the stability of the mutated sequence folded 
into the target structure at the simulation temperature by means of a contact free energy 
function. The contact matrix ijC takes the value 1 if residues i and j are close in space 
and 0 otherwise (by a threshold distance of 4.5Å), and it is sufficient to reconstruct the 
three-dimensional structure of the protein up to good accuracy [40]. We assume that the 
free energy of a protein with sequence A folded into the contact matrix C is given by the 
sum of its pairwise contact interactions, 

!=
ij

jiij AAUCCAE ),(),(  

where U(a,b) is the contact interaction matrix that expresses the free energy gained 
when amino acids a and b are brought in contact. We adopt the contact interaction 
matrix determined in Bastolla et al. [41]. For proteins that fold with two-states 
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thermodynamics, i.e. for which only the native structure and the unfolded structure are 
thermodynamically important, stability against unfolding is defined as the free energy 
difference between the folded and the unfolded states. The free energy of the unfolded 
state is estimated as sL, where L is protein length and s is an entropic parameter, is 
estimated as ∆G~E(A,Cnat)+sL, where Cnat is the native structure and s = 0.074 was 
determined fitting the above equation to a set of 20 experimentally measured unfolding 
free energy, yielding a correlation coefficient r = 0.92 (U. Bastolla, unpublished data). 
The accuracy of this method for predicting the stability effect of mutations is 
comparable to state-of-the-art atomistic methods such as Fold-X [42], and its 
computational simplicity allows to use it for simulating protein evolution for long 
evolutionary trajectories and complex phylogenetic histories. 
Stability against unfolding is however not sufficient to characterize protein stability. 
Consequently, the model has also to check the stability against compact, incorrectly 
folded conformations of low energy that can act as kinetic traps in the folding process 
and, in many cases, give raise to pathological aggregation. The term positive design 
indicates sequence features that favor protein stability by decreasing the free energy of 
the native structure. On the other hand, stability against misfolding is realized by 
increasing the energy of key contacts that are frequently found in alternative structures, 
which is termed negative design [43-45]. Therefore, it is also influenced by mutations at 
positions that are distant in the native structure. 
Stability against misfolded structures is difficult to estimate, and several models of 
protein evolution do not consider it, despite its importance is being more and more 
recognized. Here we consider the set of alternative compact matrices of L residues that 
can be obtained from non-redundant structures in the Protein Data Bank. This 
procedure, called threading, guarantees that the contact matrices fulfill physical 
constraints on chain connectivity, atomic repulsion, and hydrogen bonding (secondary 
structure), which are not enforced in the contact energy function.  
The free energy of this misfolded ensemble can be estimated in analogy with the 
Random Energy Model [REM, [46]] as, 
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where 〈E(A,C)〉 is the mean and σ2 is the variance of the energy of alternative structures 
[47]. This formula holds for temperatures above the freezing temperature at which the 
entropy of the misfolding ensemble vanishes. At lower temperatures the free energy 
maintains the same frozen value [46]. A precise computation showed that the third 
moment of the energy can not be neglected (Minning et al. 2013). We therefore consider 
the equation, 
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where the tensors ijC , ijklD and ijklmnF are the averages over the set of contact matrices 
of L residues respectively of single contacts, contact correlations and triples of contacts 
and,  ),( jiij AAUU = only depends on the protein sequence [45]. The computing time is 
considerably reduced by approximating the above formula with one that only depends 
on pairs of residues, 
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ijB only depend on the set of alternative contact 
matrices and on protein length L, and they are pre-computed before the simulation 
starts. In this way, we can evaluate how the misfolded free energy changes upon 
mutation only performing order L operations for computing 

),(),( jiji AaAUAbAU =!= when the residue at the mutated site i changes from state a 
to b. The stability of the native state is finally evaluated as the difference in free energy 
between the native, the unfolded and the misfolded states, 

LTskGCAEG uBmisfoldnat !!=" ),( . 
Note that, even if the two configurational entropies per redisue 

u
s (unfolded ensemble) 

C
s act additively, the free energy is not simply a function of their sum, since it is only 

C
s that determines the freezing temperature of the misfolded ensemble. 
For modeling protein evolution, we still have to define how protein stability influences 
fitness. The simplest possibility is a neutral fitness landscape where the fitness is a 
binary variable and all proteins with stability above a given threshold, i.e. 
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"G < "G
thr

are 
considered viable and equally fit, whereas all proteins below threshold are considered 
lethal and therefore, discarded. The threshold is 
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"G
thr

= "G(A
0
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nat
)  where A0 is the 

protein sequence in the Protein Data Bank, which means that the neutral SCS model is 
not sensible to variations of the temperature or configurational entropies.   
The neutral fitness landscape can be generalized to a landscape in which fitness is an 
increasing function of stability, and in particular it is proportional to the fraction of 
protein that is in the native state [47], 
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Note that the fitness landscape can be reduced to the neutral landscape in the limit of 
very small temperature, since in this limit the fitness tends to 1 if 0<!G and to zero if 

0>!G . 
We then assume that the mutation rate is very small so that the population is 
monomorphic, and model selection through the Moran’s birth-death process [48], which 
yields the fixation probability, 
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where if is the fitness of the wild-type, jf is the fitness of the mutant, N is the effective 
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population size and a = 2 or 1 for a haploid or diploid population, respectively. Given 
the probability of fixation, the succession of mutant fixations can be depicted as a 
Markov process, in which the genotype of the population moves from one sequence to 
another one according to the mutation and fixation probabilities. 
 

4.2.5 Crossing the SCS models with classic Markov substitution 
models 
The SCS models implemented in ProteinEvolver can be crossed with any parametric 
DNA substitution model (such as JC, HKY or GTR) or any empirical amino acid 
substitution model (such as JTT, WAG or LG). The matrices of change and the 
nucleotide or amino acid frequencies are considered to compute the rates of change per 
site and state. 
Two types of material can be simulated using protein stability substitution models, 
coding DNA and amino acid sequences. 
 

4.2.5.1. Simulation of coding DNA data with the SCS models 
The simulation of coding DNA data consists basically in the following algorithm (which 
can be specified with argument “-m” in the parameters file).  

I) mutation rates among DNA states and per site are computed according to the 
rates of change provided by the matrix of the classic Markov model (JC, HKY or GTR, 
parameters specified with the command “-v” in the parameters file) and the nucleotide 
frequencies “-f4”.  

II) According to the mutation rates, a mutation at DNA level is introduced.  
III) The DNA sequence is translated to an amino acid sequence and the mutation 

is classified as synonymous or non-synonymous.  
IV) If the mutation is synonymous, it is accepted since it does not alter the 

protein sequence and structure.  
V) If the mutation leads to a nonsynonymous change, it is evaluated by the 

computation of the structural protein energy for the mutated amino acid protein (section 
4.2.2), the energy is used to compute a fitness value (section 4.2.3) and the mutation can 
be accepted or rejected according to the Moran’s birth-death process [48]. The mutation 
can be accepted or rejected and the DNA and protein sequences are updated according 
to such a result. 
The number of mutations or substitutions (accepted mutations) is computed according 
to the branch length and the user can specify if such branch length should be considered 
as mutations or substitutions (see section 3.3.1). 
 

4.2.5.2. Simulation of protein data with the SCS models 
The simulation of protein data consists in the following algorithm (which can be 
specified with argument “-z” in the parameters file).  

I) mutation rates among amino acid states and per site are computed according to 
the rates of change provided by an empirical amino acid matrix (WAG, JTT or HIVb, 
parameters specified with the command “-@” in the parameters file) and the nucleotide 
frequencies “-f20”.  
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II) According to the mutation rates, a mutation at amino acid level is introduced. 
Note that the mutation will be always classified as non-synonymous.  

III) The mutation is evaluated by the computation of the structural protein 
energy for the mutated amino acid protein (section 4.2.2), the energy is used to compute 
a fitness value (section 4.2.3) and the mutation can be accepted or rejected [48]. The 
protein sequence is updated according to such a result. 
The number of mutations or substitutions (accepted mutations) is computed according 
to the branch length and here the user can specify if such branch length should be again 
considered as mutations or substitutions (see section 3.3.1). 
 

4.2.6 Evolution of sequences along trees under the SCS models 
While under classic Markov substitution models the evolution of the sequence is 
preformed site by site along the branches of the tree, because the site-independent 
aspect of these models, the simulation under SCS models requires the evolution of the 
whole molecule along the tree because the site-dependent aspect.  
This leads to a problem when dealing with recombination because half a protein cannot 
be evolved independently. Consequently, the user-specified tree cannot be reticulated 
and recombination is only allowed in ProteinEvolver, for these structural substitution 
models, by a special algorithm described in 4.3.1.3. Here, the evolution starts from a 
molecule assigned to the GMRCA node of the ARG [31]. By this procedure all the 
material involved in the recombination events is considered. 

 

4.3. Coalescent simulations 
The coalescent proceeds backwards starting from the sample of s gametes. Time is 
scaled in units of 2N generations, where N is the effective population size. For a given 
site, without recombination or migration, and under constant population size, the time to 
the most recent common ancestor (TMRCA) is: 
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The times to a coalescence (CA), recombination (RE) or migration (MI) event are 
exponentially distributed, with intensity equal to their respective rates (see below). The 
next event will be the one that would occur before according to these expectations. 
 

! 

Time to CA" Exp rateCA[ ] # 2N  
 

! 

Time to RE " Exp rateRE[ ] # 2N  
 

! 

Time to MI" Exp rateMI[ ] # 2N  
 

 
The rate of coalescence depends only on the number of lineages (k): 
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4.3.1. Recombination 
The rate of recombination depends on the population size (N) and on the total 
recombination rate at all valid recombination sites (G). A valid recombination site has 
to have at both sides ancestral material that has not found its MRCA yet.  
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G = rGi
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Given that a recombination event occurs, a gamete is chosen according to the total rate 
at potential recombining sites in that gamete. Breakpoint sites are chosen according to 
the recombination probabilities per site (rGi). The expected number of recombination 
events in a panmictic population with constant size is: 
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Importantly, in the presence of recombination, different regions of the alignment might 
evolve under different genealogies (Figure 1), which together conform to the ancestral 
recombination graph. The number of genealogies will be the number of breakpoints + 1. 
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Figure 1. Representation of the ancestral recombination graph and the binary tree 
embedded. 
 
 

4.3.1.1 Recombination hotspots 
This implementation is based on SNPsim [24], the population genetic model of 
recombination hotspots developed by Wiuf and Posada, to result in heterogeneous 
recombination rates along the chromosomes.  
Given an expected number of recombination hotspots, a background homogenous 
recombination rate and a hotspot recombination rate, the algorithm starts by choosing 
the position and number of recombination hotspots for a particular sample. Adding 
recombination events around the hotspot center results in the specification of a 
probability distribution for the recombination rate along the region of interest. Other 
recombination events coming from recombinational hotspots centered outside the region 
of interest are also considered. This fast simulation results in different recombination 
rates for different sites along the region (hotspots and coldspots). Next model for 
hotspot recombination is described following the algorithm [24]. 
 
Hotspot recombination model 
The hotspots recombination model aims to represent the idea that some sites in a 
chromosome are more likely to recombine than others (“recombination hotspots”). This 
general model is composed of two basic recombination rates and a set of hotspots sites. 
The background recombination rate (RB) is the per generation recombination rate at any 
site in the chromosome of length L, while the hotspot recombination rate (RH) is the 
additional per generation recombination rate at the recombination hotspot. X is the 
number of hotspots. 
 

! 

Background recombination rate RB( )  = 4NrBL  
 

! 

Hotspot recombination rate RH( )  = 4NrH X  
 

! 

Global recombination rate R
G( )  = R

B
+ R

H  
 
In real life we do not expect the recombination hotspot to be always restricted to the 
same single site, to have always the same intensity, or to occur independently from 
other hotspots. The model described above can be generalized to include these relevant 
biological features. When the hotspot is not restricted to a single site, and under 
constant population size, the expected number of recombination events is  
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E(number of  recombination events)  =  RG
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i
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Hotspot location: interference 
We will assume that the distance between hotspots is Gamma distributed, Γ(m, λ), m > 
0. If m=1, we have a Poisson process with intensity λ. Allowing m≠1 introduces 
interference. If m>1 hotspots are pushed away from each other; if 0<m<1 they tend to 
be clustered (although the algorithm will only accept integer values for m). The average 
number of hotspots in the gene is λ/m (see Figure 2). 
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Hotspot imprecision 
We will consider that the hotspot location actually represents the center of the hotspot, 
and where recombination is more likely, but that there are also some sites around where 
recombination occurs with some frequency that decreases with increasing distance from 
the hotspot center. This can be represented by a Normal or a Uniform distribution for 
the location of the recombination. When the Normal distribution is used, this has a 
mean equal to the location of the hotspot center and variance called hotspot imprecision 
(σ2) (see Figure 2). When the variance is small the hotspot tends to be narrow. If the 
variance is 0, the hotspot is 1 bp wide. When the Uniform distribution is used, 
recombination events occur with the same probability along a given width for the 
hotspot. In addition there is the possibility of recombination events coming from 
hotspots located outside the region of interest of length L. To implement this idea we 
can extend the region of interest by a number of sites K at each end.  In the Normal 
distribution an arbitrary, but seemingly reasonable value for K that assures that wide 
hotspots outside L are taking into account is 
 

! 

K = 10 " 2  
 
If the uniform distribution is used, K equals half the width of the hotspot. 
 
Hotspot heterogeneity 
In addition, not all hotspots have to be equally “hot”. We can model this heterogeneity 
of recombination rates using a gamma distribution with a mean of 1. The shape of this 
distribution (α) will determine the strength of this hotspot heterogeneity. The smaller α, 
the bigger the heterogeneity of recombination rates at the hotspots. 
 
Implementation 
A nice feature of the hotspot model is that it allows for the construction of a distribution 
of recombination rate along the chromosome (ℜ)(Figure 2) for every sample. 
 
The algorithm starts by building ℜ. The first step is to set up the number of hotspot 
centers (X) along the extended region L + 2K. The average number of hotspots in the 
gene is λ/m, and when m>1 we use a thinning algorithm to locate these hotspots (Figure 
2). If m=1 we distributed the hotspots according to a Poisson distribution with intensity 
λ. 
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Figure 2. Thinning algorithm for the location of hotspots with interference (m=4). The 
index for the first hotspot site is chosen uniformly between 0 and m-1. This plot was 
taken from SNPsim manual [24]. 
 
 
Alternatively the user can specify a fixed number of hotspots, which will be located 
uniformly (see option -q in recombination hotspots file). 
 
The distribution ℜ is can be constructed according to a Normal (xi, σ2), or a Uniform 
(hotspot width) distribution. If there is hotspot recombination, a random gamma 
variable will scale the recombination events at each hotspot. Figures 3 and 4 represent a 
realization of this process. 
 

 
Figure 3. Schematic representation of ℜ in the case of three Normal hotspots for the 
region of interest (L=10000). In this case the hotspot imprecision is quite big. Note that 
some recombination probability is contributed by a hotspot outside the region of 
interest. The background recombination is the same for all sites. In this case there is 
hotspot heterogeneity. This plot was taken from SNPsim manual [24]. 
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We can use now ℜ now to set the global recombination rate per each site i, 
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where ϕi is the probability of block recombination at site i. 
 

 
Figure 4. Schematic representation of different ℜ. This plot was taken from SNPsim 
manual [24]. 
 
 
Finally, the total recombination rate at all valid recombination sites is considered to 
compute times for recombination events (as described before). Breakpoint sites are 
chosen according to the recombination probabilities per site (rGi). 
 

4.3.1.2 Visualization and characterization of the simulated ARG 
The simulated ARG can be directly exported to the NetTest web server 
(http://darwin.uvigo.es/software/nettest/) [36] in order to visualize and characterize the 
ARG [36, 49]. The ARG can be printed by ProteinEvolver in branches format [36] 
(argument “*” in the parameters file) to be introduced in NetTest. 
 

4.3.1.3 Algorithm to evolve molecules with the SCS models along the ARG 
In the presence of recombination, classic Markov substitution models of evolution 
independently evolve each site along the evolutionary history of the corresponding 
recombinant fragment [see for example 30, 39, 50, 51]. Nevertheless, the SCS models 
require the evolution of the whole molecule because the dependence among sites. This 
implied the development of a new algorithm to evolve whole molecules under 
recombination. 
After building the ARG, the molecular evolution starts by the assignation of a sequence 
to the GMRCA node. ProteinEvolver incorporates an algorithm for the evolution of the 
whole molecule along the ARG (see Figure 5), which is an adaptation of the algorithm 
developed to by Arenas and Posada to simulate intracodon recombination [30]. The 
process starts from the sequence assigned to the GMRCA node. This sequence can 
suffer substitutions along the branches and new whole sequences are assigned to the 
descendant nodes (see steps 1-2 in the Figure 5). Later the evolution process can reach a 
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recombinant node (shown in grey, see step 3) and a sequence is assigned to such a 
recombinant node. However, at that point the evolution stops and comes back to 
continue by other path. This is forced to occur since there is no information about the 
sequence at the parental recombinant node. Later, the process reaches the parental 
recombinant node (step 5), at this point note that there are whole sequences in both 
recombinant nodes, and there is a combination of the material according to the 
recombinant breakpoint. Consequently, a new whole sequence is generated (step 6) and 
this new sequence continues the evolutionary process. By this algorithm the molecular 
evolution considers the exchanges of material introduced by the recombination and that 
are described in the ARG. 
 

 
 
Figure 5. Example of the evolution of a whole molecule along an ARG. 
 
 

4.3.2 Migration 
The simplest and most widely used model of population structure is the “finite island 
model” [25, 27, 52-54] however the stepping-stone [26] and an approximation to the 
continent-island [27] are also implemented. The rate of migration depends on the 
population size (N), the migration rate per deme (m) and the number of available demes 
(q).  
 

! 

rateMI = 2Nmq 
 
Importantly, in the coalescent with migration, lineages can only coalesce with other 
lineages in the same deme. When a migration event occurs, a given lineage changes 
from one deme to another (Figure 6). 
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Figure 6. Coalescent with migration for two demes. 
 

4.3.2.1 Island model 
The Island Model describes an array of q demes, each of constant size (Figure 7). 
Migration events may occur between any two demes. 
 
 

 
 
Figure 7. Island model. All demes have the same population size and the same migrant 
rate per deme. 
 

4.3.2.2 Stepping-stone model 
Under the stepping-stone migration events occur between neighboring demes (Figure 
8). 
 
 

 
 
Figure 8. 1D stepping-stone model implemented in ProteinEvolver.  
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Time 
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4.3.2.3 Continent-island model 
The continent-island model implemented in ProteinEvolver allows symmetrical 
migration between a deme (continent) and the other demes (islands), see Figure 9. Note 
that there is not possible to directly migrate individuals among islands. 
 

 
 
Figure 9. Continent-island model implemented in ProteinEvolver. 
 
 

4.3.2.4 Temporal variation of the migration rate 
ProteinEvolver allows for temporal variation where a migration rate can be applied at 
different time periods (Figure 10).  
 
 

 
Figure 10. Temporal variation of the migration rate implemented in ProteinEvolver. 
The figure shows 3 temporal periods defined by two times (t1 and t2) and where each 
period implements a given migration rate (m1, m2 or m3). 
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4.3.3 Convergence of demes 
The evolution of the demes can be user-specified. Two demes can be converged at a 
given time in order to build a new big deme with the lineages of the previous demes. 
The convergence of demes always occurs under a migration model. An example is 
shown in the Figure 11. It is not possible use convergence of demes in presence of tip 
dates when the time of the convergence of demes is younger that the time of the tip 
dates. 
 
 

 
 
Figure 11. Demes evolution. Two demes can evolve convergences to generate an 
ancestral big deme, these convergences are introduced by the user. 
 

4.3.4 Demography 
ProteinEvolver allows for the specification of exponential population growth rate. The 
only modification concerns to the expected time to a coalescence, where t is the current 
time: 
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If the growth rate is negative, the coalescence time may be infinite (i.e., coalescence 
does not happen), and ProteinEvolver will stop and issue an error message. 
Alternatively, the user can define any number of demographic periods (Figure 12). βi is 
the growth rate inferred for a demographic period i that goes from size NBi in the past to 
size NEi in Ii generations: 
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The time to coalescence will be: 
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where t is the current time and ti is the cumulative time from the present: 
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Figure 12. Demographic periods. The growth rate after the last period will the same as 
the one implied by the last period. 
 
 

4.3.5 Tip Dates 
Tip dates can be specified by the user to simulate sequences with different times, such 
as samples taken at different times. For this option, the user must introduce a generation 
time. Figure 13 shows an example of four samples taken at different times, the oldest 
sample contains only one sequence (seq00001), and the younger sample contains three 
sequences (seq00004, seq00006 and seq00005). 
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Figure 13. Tip dates simulation examples. Three examples of four samples taken at 
different times with 1, 2, 2 and 3 sequences per sample (from present to past). 
 
 

5. Program benchmarking 
The models on which ProteinEvolver is based have been separately validated. The 
method to estimate protein folding stability against unfolding and misfolding has been 
developed in [45, 55, 56] and yields good correlations with experimentally measured 
free energies. It has been widely used with some variations in many simulations of 
protein evolution (Bastolla 2001; etc.), since its computational simplicity allows its 
application over long evolutionary trajectories.  
The substitution processes implemented in the SCS models were verified using HYPHY 
[57] and agreed with the branch lengths. The implemented site-independent DNA 
substitution models were previously validated [30, 39]. The empirical amino acid 
substitution models were accurately estimated using ProtTest [58]. Coalescent 
simulations were contrasted with the theoretical expectations for the mean and variances 
for different values, like the number of recombination and migration events, or the times 
to the most recent common ancestor [39, 59]. Recombination hotspots agree with 
theoretical expectations and breakpoints were likely to occur in recombination hotspots 
regions [24].  
 

6. History 
Version 1.0.0 (June 2012) 

- Implementation of Pop_evol (code developed by Ugo Bastolla) in 
ProteinEvolver, a mutational model to evolve DNA sequences accounting for structural 
protein stability (DNA -> AA -> DNA) and the HKY substitution model. 
Version 1.0.1 (July-August 2012) 
 - PDB from input file. 
 - Seed for structural protein stability substitution model comes now from the 
main input file (parameters). 
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Version 1.0.2 (August 2012) 
 - Structural protein stability accounting for rates of change among all 
nucleotide states (GTR and GTnR).   
Version 1.0.3 (September 2012) 
 - Solved bug in the "Compute_load" function. Other warnings from Pop_Evol 
were solved. 
 - Solved bug in GTR and GTnR models for PopEvol section (in "Mutate_nuc" 
and "Compute_load" functions). 
 - Structural protein stability substitution model crossed with any empirical 
substitution model (Blosum62, CpRev, Dayhoff, DayhoffDCMUT, HIVb, HIVw, JTT, 
JonesDCMUT, LG, Mtart, Mtmam, Mtrev24, RtRev, VT, WAG, UserEAAM).   
 - Validation. User-specified tree was inferred by Hyphy from the simulated 
alignmets (for both DNA and amino acid data) under the structural protein stability 
substitution model. 
Version 1.0.4 (September 2012) 
 - Coalescent with recombination is allowed for the simulation under structural 
protein stability substitution models.  
 When a recombination occurs, the evolution stops at the first parental 
recombinant node and goes in other direction. Later, when the other parental 
recombinant node is reached, there is a combination of the material, according to the 
recombination breakpoint, to generate the material for the descendant node, which 
continues the evolution. Recombination can be homogeneous (recombination rate is 
constant among all sites) or heterogeneous (recombination hotspots, functions 
developed by David Posada). However, recombination cannot be applied using user-
specified input trees and structural protein stability substitution models because part of 
a protein cannot be evolved under such a substitution model. 
Version 1.0.5 (September 2012) 
 - Included options to print the energy output files per branch produced by the 
structural protein stability substitution models. 
 - Print information about the attempted mutations in the structural protein 
stability substitution models. 
Version 1.2.0 (September-October 2012) 
 - Proportion of invariable sites +I and variable substitution rates per site 
(heterogeneity) according to a gamma distribution +G, for the structural protein 
stability substitution models. 
 - Heterogeneity by a user-defined vector. Each site can evolve under a 
particular rate user-defined. This is compatible with the specification of +G. 
 - Print number and mean of the introduced substitution events and, those 
nonsynonymous for DNA structural protein evolution models. 

- Maximun number of characters for the name of taxas is 10 (Phylip format). 
- More robust generation of the random seed. 
- Work with bigger input trees (MAX_LINE). 

Version 1.2.0 (September-December 2012) 
 - Implementation of the neutral evolution model to evolve sequences accounting for 
the protein structure. Here population size is not required, follow this with the variable 
"NEUTRAL". 
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