

ProteinEvolver documentation

Documentation for ProteinEvolver

Simulation of protein evolution along phylogenies accounting for structural
protein stability

Current version is 1.2.0

© 2012-2013 Miguel Arenas (marenas@cbm.uam.es - miguelmmmab@gmail.com),

David Posada (dposada@uvigo.es) and Ugo Bastolla (ubastolla@cbm.uam.es).

April 9, 2013

ProteinEvolver documentation

Contents

Disclaimer __3

Credits ___3
1. Purpose __3

2. Executables and compilation ___4
3. ProteinEvolver Usage ___4

3.1. Command line ___5
3.2. Parameters file___6

3.2.1. Arguments for the parameters file ___ 6
3.3. Input files for the SCS models ___11

3.3.1. Arguments for the file of SCS models ___ 11
3.4. Additional input files __13

3.4.1. User-specified tree. No coalescent simulation ___________________________________ 13
3.4.2. Recombination hotspots __ 13
3.4.3. MRCA/GMRCA sequence user-specified ______________________________________ 14
3.4.4. Empirical user-specified amino acid matrix _____________________________________ 15
3.4.5. Site by site variable substitution rate __ 15

3.5. Default settings ___16
3.6. Output Files __19

3.6.1. Output files for the SCS models __ 19
3.7. Solving message errors ___20

4. ProteinEvolver model __21
4.1. Markov substitution models___22

4.1.1. DNA models ___ 22
4.1.2. Empirical amino acid models __ 22

4.2. SCS models __22
4.2.5 Crossing the SCS models with classic Markov substitution models ___________________ 25
4.2.6 Evolution of sequences along trees under the SCS models __________________________ 26

4.3. Coalescent simulations ___26
4.3.1. Recombination ___ 27
4.3.2 Migration __ 32
4.3.3 Convergence of demes__ 35
4.3.4 Demography ___ 35
4.3.5 Tip Dates __ 36

5. Program benchmarking __37
6. History __37

7. Acknowledgments ___39
8. References ___39

ProteinEvolver documentation

Disclaimer
This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation;
either version (at your option) of the License. This program is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details. You should have received a copy
of the GNU General Public License along with this program; if not, write to the Free
Software Foundation, Inc., 59 Temple Place – Suite 330, Boston, MA 02111-1307,
USA.

Credits
This program was developed at the Bioinformatics Unit, Centre for Molecular Biology
“Severo Ochoa”, Consejo Superior de Investigaciones Científicas (CSIC). Madrid,
Spain.

1. Purpose
ProteinEvolver generates samples of coding and amino acid sequences evolved along
phylogenies under structurally constrained substitution (SCS) models. These models
consider the stability of the protein structure to evaluate candidate mutations. Thus, the
mutations can be fixed (substitutions) or rejected depending on the energy of the protein
structure with the mutated sequence.
The simulation of molecular evolution occurs along phylogenetic histories, which can
be either user-specified or simulated by the coalescent modified with recombination
(including recombination hotspots and coldspots), migration, demographics and
longitudinal sampling (among other options).

What is exactly implemented in ProteinEvolver?
ProteinEvolver implements protein stability substitution models that consider contact
matrices, configurational entropy per residue in unfolded and misfolded proteins,
configurational entropy offset (misfolded) and energy functions [1, 2]. In addition, these
structural models can be crossed with parametric DNA substitution models such as JC
[3], K80 [4], F81 [5], HKY [6], SYM [7], GTR [8] and even GTnR [extended from, 8] for
the simulation of DNA data or, with empirical amino acid substitution models such as
Blosum62 [9], CpRev [10], Dayhoff [11], DayhoffDCMUT [12], HIVb [13], HIVw [13],
JTT [14], JonesDCMUT [12], LG [15], Mtart [16], Mtmam [17], Mtrev24 [18], RtRev
[19], VT [20], WAG [21] or any user-specified matrix, for the simulation of proteins.
Indeed, heterogeneous substitution rates among sites by a gamma distribution (+G) and
proportion of invariable sites (+I) are also implemented. Furthermore, the user can
modify the substitution rate for each site, for example allowing fix particular sites (for
example, catalytic sites).
The molecular evolution is simulated forward in time along the phylogeny. The user can
either specify a particular phylogenetic tree or, simulate a coalescent history [22, 23]. In
the latter case, ProteinEvolver implements the coalescent with recombination [22]
(which can be homogeneous or heterogeneous along the sequence [following, 24]),
variable population size (by a growth rate and demographic periods), a variety of
migration models (such as island [25], stepping-stone [26] and continent-island [27])

ProteinEvolver documentation

with temporal variation of migration rates and convergence of demes or subpopulations,
the simulation of haploid or diploid data, and longitudinal sampling [see, 28].
The user has to specify a PDB file (which can be downloaded from the Protein Data
Bank, http://www.rcsb.org/PDB/home/home.do) and a sequence, both are assigned to
the root of the phylogeny. Then, a variety of input evolutionary parameters should be
specified (see next sections).
The output allows multiple options. Alignments can be printed in phylip, fasta and
nexus formats. The ancestral sequence (MRCA or GMRCA, most recent common
ancestor and grand most recent common ancestor, respectively [see, 29, 30]) can be also
printed. Energies for the native structural protein can be printed as a function of the
temperature and energies for the simulated proteins can be also printed to study how the
incorporation of substitution events influences the structural protein stability. When
coalescent histories are simulated, the simulated tree or ancestral recombination graph
(ARG) [31] can be also printed.
We recommend check the attached folder “example_input_files”, it contains a variety of
examples of evolutionary scenarios that can be simulated using ProteinEvolver.

2. Executables and compilation
Executable files are provided for Linux Debian and MacOS X (Intel and G4
processors), and a Makefile is provided for compilation in any OS with a C compiler.
This makefile can be optimized for different users, for example using the optimization
option -fast instead of –O3, for Mac processors. To compile the program type (it may
take a few minutes): make all
It should print something like:
Building ProteinEvolver version 1.2.0
gcc -c -O3 -Wall ProteinEvolver1.2.0.c
gcc -lm -O3 -Wall -o ProteinEvolver1.2.0 ProteinEvolver1.2.0.o
Finished compiling.
A second makefile “Makefile_MPI” is provided to compile a MPI version (which could
be convenient for diverse simulation experiments [e.g., 32, 33]). This Makefile might
need some modifications for particular OS. To compile the program type: make -f
Makefile_MPI. MPI libraries have to be installed in the host for running ProteinEvolver
in parallel. The minimum number of processors is two. An example of execution for 3
processors is the next: mpirun -np 3 ProteinEvolver1.2.0

3. ProteinEvolver Usage
The input of the program consists of a series of arguments and parameter values (Table
1) that can be written in the command line or, more conveniently, specified in a text file
called “parameters” that should be located at the same directory of the executable.
These arguments include the parameter values used in the simulations and several
printing options that control the amount of information that is sent to the console or the
type of output files.
In addition, other input files are required for diverse specifications (see sections 3.3 and
3.4):
 - For protein stability substitution models: particular settings for the structural
model, PDB file and amino acid contacts matrix.

- A user- specified empirical amino acid model.

ProteinEvolver documentation

 - A vector to modify the heterogeneous substitution rates per site.
- User-specified tree/s.
- A user-specified sequence for the root of the phylogeny.
- Settings for recombination hotspots.

3.1. Command line
In Mac systems, the command line is provided by the Terminal, while in Windows, this
is provided by the windows console or command prompt. If the user specifies any
argument in the command line, ProteinEvolver will use the values specified for those
parameters, and default values for the parameters not included in the command line. It is
highly recommended check the information shown in the screen to be sure that the
simulations have been parameterized as intended. Some example command lines are the
following:

Amino acid data by the empirical JTT substitution model applied along a coalescent
tree,
./ProteinEvolver1.2.0 -n2 -s8 150 -e200 1 -@JTT

Amino acid data by the structural protein stability (SCS) × JTT substitution model
applied along a simulated coalescent tree. Note that it also requires the input files
Pop_evol.in (and derived files) and, seqGMRCA.
./ProteinEvolver1.2.0 -n2 -s8 255 -e200 1 -@JTT -f20 0.04 0.06 0.05 0.05 0.08 0.02
0.05 0.05 0.03 0.07 0.04 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.06 -zPop_evol.in -
xseqGMRCA

DNA data by the classic JC substitution model applied along a user-specified tree in the
input file treefile,
./ProteinEvolver1.2.0 -n2 -ptreefile -v1 0.5 -a0.7 -i0.5

Coding DNA data by the structural protein stability (SCS) × JC substitution model
applied along a user-specified tree in the input file. Note that it also requires the input
files treefile, Pop_evol.in (and derived files) and, seqGMRCA.
./ProteinEvolver1.2.0 -n2 -ptreefile -v1 0.5 -f4 0.25 0.20 0.30 0.25 -mPop_evol.in -
xseqGMRCA -a1 0.7 -i0.5

DNA data according to the classic JC substitution model applied along an ARG
simulated by the coalescent with recombination (including recombination hotspots),
longitudinal sampling, demographic periods, migration by an island model, variable
migration rate according to temporal periods, convergence of demes, vector of rates per
site and multiple output files. Note that it also requires the input files UserHetRec,
HetRatesVector and seqGMRCA.
./ProteinEvolver1.2.0 -n2 -s8 765 -e1000 2 -=4 1995 1 1 2003 4 6 1997 2 3 2001 7 8 -
/1200 -g1 3 1000 1250 1000 1300 1550 2000 1560 1000 3000 -q1 4 2 2 3 1 -t3 100 800
0.002 0.001 0.003 -%1 1 2 10000 -r2.3e-6 -hUserHetRec -o0.1 -u4.1e-5 -f4 0.25 0.20
0.30 0.25 -a0.7 -i0.52 -_HetRatesVector -xseqGMRCA -bsequences -c1 1 0 -jtrees -
ktimes -dbreakpoints -*NetworkFile -y2 -#245

ProteinEvolver documentation

We strongly recommend the use of the parameters file (instead of the command
line, see next section) in order to avoid text errors and a better checking of the
input settings.

3.2. Parameters file
If no argument is specified, the program will only read the text file “parameters” which
should be placed at the same directory of the executable. If no arguments are specified
in the command line, and there is no a “parameters” file, the program will stop and
throw an error.
In this file anything within brackets will be ignored. Examples of the “parameters” file
are included in the distribution. Then, only type:

./ProteinEvolver1.2.0

3.2.1. Arguments for the parameters file
Possible arguments for the parameters file are the following (# means number, NAME
means a word):

General settings
-n# : Number of replicates
The number of samples to be generated. Each sample is an independent realization of
the evolutionary process. This specification is mandatory. Example: -n10

Coalescent settings
-s# #: Sample size; Number of sites
The number of sequences to be generated for each sample and the total sequence length
(in nucleotides or amino acids). Example: -s6 255

-e# #: Effective population size; Haploid / Diploid
The effective size (N) of the population from which the sample was theoretically drawn.
If there are several demes, this argument is the effective population size for each deme.
The second number means that the data set can be simulated as haploid (1) or diploid
(2). Example: -e100 1

-=# : Tip dates
The time of the tips can be different with this option. For example, 4 samples:
1995:sequence 1; 2003: sequences 4 and 6; 1997: sequences 2 and 3; 2001: sequences 7
and 8. This option does not work if there is any convergence of demes at younger times.
Example (of above): - =4 1995 1 1 2003 4 6 1997 2 3 2001 7 8

-/# : Generation time
The time per generation. Example: -/300

-g0 # or -g1 # (# # #) : Demographics settings. Exponential growth rate or
Demographic periods
The first number specifies the model, exponential growth rate (0) or demographic
periods (1). These parameters are looking back in time, so it is not a good idea to

ProteinEvolver documentation

specify a negative growth rate for the last period, as the coalescent time could become
infinite in the past.
Rate of exponential growth per individual per generation, after “0” the growth rate must
be specified. Example: -g0 1e-5 (= -g0 0.00001)
Demographic periods, after “1” the user has to specify the number of periods (from the
present to the past) and N during those periods. The first number here specifies the
number of periods. For each period should be three consecutive numbers indicating the
size N at the beginning and at the end of the period, and the duration of the period in
generations. Example: -g1 3 1000 1250 1000 1300 1550 2000 1560 1000 3000
The exponential growth rate during the period (positive or negative) will be deduced
from the specified N at the beginning and at the end of the period. The growth rate
derived for the last period will continue into the indefinite past. This implementation is
borrowed from [34]. This option is incompatible with the exponential growth rate
option (-g). Again, these parameters are looking back in time, so it is not a good idea to
specify a negative growth rate for the last period, as the coalescent time could become
infinite in the past.

-q# # (#): Migration model and population structure
The first number specifies the migration model (island model=1, stepping-stone
model=2, continent-island model=3). The second number specifies the total number of
demes or subpopulations sampled. The next n numbers specify the number of
individuals (or sequences) per deme (note that the specified sample size (-s) must be
equal to the sum of these). For the island-continent model, deme #1 will be the
continent while the other demes will be islands (see details in section 4.3.2). Example: -
q2 2 3 3 (a stepping-stone model, two demes with three samples each).

-t# (#)(#): Migration rate
This parameter introduces the migration rate, which can be constant or variable with
time according to temporal periods. The first number specifies the number of temporal
periods, then:

For only 1 period, the second number is the migration rate (constant). Example:
-t1 0.001 (only 1 period with migration rate = 0.001).

For more than 1 period, the second number/s are the time/s for the beginning of
a new migration rate and the third/s numbers are the corresponding migration rate/s for
each period. Example: -t2 100 0.001 0.005 (2 periods, the first period occurs from t = 0
to t = 100 with a migration rate = 0.001, the second period occurs from t = 100 to the
end of the simulation with a migration rate = 0.005). Example: t3 100 800 0.002 0.001
0.003 (3 periods: from t = 0 to t = 100 with migration rate = 0.002, from t = 100 to t =
800 with migration rate = 0.001, from t = 800 to the end of the simulation with a
migration rate = 0.003).

-%# (# # #) : Events of convergence of demes
The first number specifies the total number of convergent events. For each convergence
event should be three consecutive numbers. The first number and the second number are
the numbers of the demes to converge. The third number is the time to that
convergence. With this option the user can build the demes evolutionary tree but it is
only available when the migration model is activated (despite the migration rate could
be zero). Examples: -%1 1 2 2000 (for 2 initial demes (-q2), convergence of deme 1
with deme 2 at time 2000 to create a new deme 3). -%3 1 2 400 3 4 1900 5 6 2000 (for 4
initial demes (-q4) convergence of deme 1 with deme 2 at time 400 to create a new

ProteinEvolver documentation

deme 5, convergence of deme 3 with deme 4 to create a new deme 6 at time 1900,
convergence of deme 5 with deme 6 at time 2000 to create a final new deme 7).

-r# : Homogeneous Recombination rate
The homogeneous recombination rate per site and per generation. All sites will share
this same rate. This is also the background recombination when simulating
recombination hotspots. Example: -r2e-6 (= -r0.000002)

-hNAME : Recombination hotspots
This option activates recombination hotspots. Parameters for recombination hotspots
must be introduced in the file here indicated (see section 3.4). Example: -hUserHetRec

-w# : Fixed number of events of recombination
This option fixes the number of events of recombination per replicate, so every sample
will have the same number of recombination events. What it does is to filter out
replicates with a different number of recombination events, so it will take more time.
We recommend to use this option with careful, with sense according to the
recombination rate (e.g. do not fix the number of events of recombination = 0 when the
recombination rate is very high, or do not fix the number to a high value when the
recombination rate is very low or nil), otherwise the execution may never ends until the
program crashes. Example: -w2

-u# : Substitution rate
Substitution rate per site and per generation. Example: -u0.0015

-o# : outgroup branch length
If this option is specified the program simulates an outgroup sequence that evolves
independently from the sample, along a branch of the specified length. By default the
outgroup is not simulated. Example: -o0.1

User-specified tree/s settings
-pNAME : User-specified tree/s
This option activates a user-specified tree, which can be applied for the molecular
evolution. Note that when this option is activated the coalescent is not simulated (in that
case, the user-specified tree is applied)!. Parameters for user-specified tree must be
introduced in the file indicated in this argument (see also the section 3.4). Example: -
ptreefile

Substitution model settings
-f4 # # # #, -f20 #: Nucleotide frequencies or amino
acid frequencies
The nucleotide frequencies A C G T are specified in this order.
The amino acid frequencies are specified in the order: A R N D C Q E G H I L K M F P
S T W Y V.
For nucleotide models the first number must be 4 while for amino acid models it must
be 20. By default all frequencies are equal. Four frequencies example: -f4 0.4 0.2 0.1
0.3. Twenty frequencies example: -f20 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06

-v1 #, -v6 # # # # # #, -v12 # # # # # # # # # # # #: relative substitution rates

ProteinEvolver documentation

The first number specifies the total number of relative substitution rates that can be 1
(for transition/transversion rate ratio), 6 (for relative symmetric substitution rates) or 12
(relative asymmetric substitution rates).

If the first number = 1, the second number is the transition/transversion rate
ratio. When set to 0.5, the probability of transitions and transversions are the same, like
in models “JC” [3] or “F81” [5] models. Example: -v1 2.1

If the first number = 6, the following 6 numbers are the relative symmetric
substitution rates A↔C, A↔G, A↔T, C↔G, C↔T and G↔T. Example: -v6 1.0 5.0
1.0 1.0 5.0 1.0.

If the first number = 12, the following 12 numbers are the relative asymmetric
substitution rates AC, CA, AG, GA, AT, TA, CG, GC, CT, TC, GT and TG. Note that
some calculations under this option can be problematic (complex eigenvalues/vectors)
if rates are too asymmetric, especially with codon models. Example: -v12 1.1 1.2 1.3 1.4
1.5 1.6 1.7 1.8 1.9 2.0 1.0 1.0

-mNAME : SCS for coding DNA simulation
This argument should be followed by the name of the file with settings for the SCS
models (see section 3.3). When this argument is specified the program will simulate
coding DNA data (which of course can be translated to amino acid data). In particular,
under this model the mutations and substitutions (accepted mutations) occur at DNA
level but their energies are tested at amino acid level taking into account the stability of
the protein structure (see section 4.2). Importantly, do not activate this argument and the
argument “-z” (which directly simulates amino acid data considering the stability of the
mutations in the protein structure) at the same time. Example: -mPop_evol.in

-@NAME : empirical amino acid model
This option allows for the simulation of proteins. The empirical amino acid models
implemented in ProteinEvolver are the following: Blosum62 [9], CpRev [10], Dayhoff
[11], DayhoffDCMUT [12], HIVb [13], HIVw [13], JTT [14], JonesDCMUT [12], LG
[15], Mtart [16], Mtmam [17], Mtrev24 [18], RtRev [19], VT [20], WAG [21]; in this
case just specify the name of the empirical amino acid model.
But in addition, it is possible to specify a user-defined empirical amino acid model by
an input file (see section 3.4); in this case just specify the name of the input file with the
empirical amino acid model. Example: -@JTT. Example: -@UserEAAM.

-zNAME : SCS model for coding protein simulation
This argument should be followed by the name of the file with settings for the SCS
models (see section 3.3). Importantly, when this argument is specified the program will
simulate protein data. In particular, under this model the mutations and substitutions
(accepted mutations) occur at the amino acid level and their energies take into account
the stability of the protein structure. Importantly, do not activate this argument and the
argument “-m” at the same time. Example: -zPop_evol.in

-a# : alpha shape of the gamma distribution
A gamma distribution (+G) can simulate substitution rate variation among sites [35].
Alpha is the shape of this distribution. Smaller alphas imply stronger rate variation.
Example: -a0.7.

-_NAME : factor for variable substitution rate site by site

ProteinEvolver documentation

After this argument the user should specify the name of an input file, which contains a
vector with values for each site (see details in section 3.4). Example: -_HetRatesVector

-i# : proportion of invariable sites
A proportion of sites can be set to be invariable (+I). Example: -i0.3

-xNAME : GMRCA input file
The user can specify its own MRCA/GMRCA sequence in a text file (see section 3.4).
This file must contain only a DNA or amino acid sequence (depending on the
substitution model applied), and the length has to be equal to the number of sites
specified in the arguments “-s” or in the tree file “-p”. By default, the MRCA/GMRCA
sequence is simulated from the nucleotide or amino acid frequencies (see above, -f
argument). Example: -xseqGMRCA

Output settings
-bNAME : print sequences
When this argument is invoked, aligned sequences are printed to the specified text file
in the Results folder. Example: -bsequences

-c# # #: format for printing sequences
This option specifies the format of the output alignments. The first argument indicates
Phylip sequential, Fasta and Nexus formats (1-3, respectively). The second argument
indicates that alignments for each replicate are printed into a single file (0) or different
files (1). The third argument prints the sequence of all internal nodes (1). Example: - c1
1 0 (which means: phylip format, a file for each replicate, sequences corresponding to
internal nodes are not printed).

-$: print catMRCA/GMRCA
This option prints the ancestral catMRCA/GMRCA sequences in output files. These
output files will be incorporated to the Results folder. Example: -$

-jNAME : print genealogies
When this option is specified, genealogies for each recombinant fragment are printed, in
Newick format, to the specified text file, in the Results folder. Example: -jtrees

-kNAME : print times
When this argument is specified the coalescent times for each genealogy will be printed
to the specified text file, in the Results folder. This option will slow down the
simulations. Example: -ktimes

-*NAME : print ARGs
When this argument is specified the ancestral recombination graph (ARG) will be
printed to the specified text file in the Results folder. Then, this file can be directly
introduced into the NetTest web server (http://darwin.uvigo.es/software/nettest/) [36] in
order to visualize the ARG. Example: -*NetworkFile

-dNAME : print breakpoints
When this argument is specified breakpoint positions are printed into the specified text
file, in the Results folder. This option only works for coalescent simulations. Example: -
dbreakpoints

ProteinEvolver documentation

Other settings
-y# : noisy level
This option controls the level of information that will be printed to the screen.
 0 : does not print run information, just the simulation progress.
 1 : run settings and run information summarizing the simulations.
 2 : calculation status, initial demes and event information, run settings for each
replicate
 3 : print ancestral status for each sequence at each event + MRCA status, tip
dates insertion, demes, molecular evolution.
 4 : potential recombining locations (g and G vectors) and information about
recombinant fragments evolution.
Note that higher levels of noisy will slow down the simulations. The default level is 1
Example: -y1

-## : Seed
Seed for the random number generator. If no seed is specified, the computer clock will
be used. When a seed is fixed the process can be always reproduced if same settings are
specified. Example: -#386658297

3.3. Input files for the SCS models
The main input file to specify SCS models must be specified in the parameters file by
the argument “-m” (for the simulation of coding DNA data) or “-z” (for the simulation
of proteins). Examples of the main input file for these models can be found in the
“examples” folder, with name “Pop_evol.in”. Theory is described in the section 4.2.
Importantly, this simulation requires that the MRCA/GMRCA sequence must codify the
amino acid sequence of the PDB file (for coding data simulation) or be equal to the
amino acid sequence of the PDB file (for protein simulation), see details in the theory
section. As a consequence, for these models it is highly recommended to fix the
MRCA/GMRCA sequence by an input file (see section 3.2, argument “-x” in the
parameters file) because a MRCA/GMRCA sequence computed using the nucleotide
or amino acid frequencies could not satisfy such a condition.

3.3.1. Arguments for the file of SCS models
Possible arguments are the following (# means number, NAME means a word):

Structural settings
PDB= NAME: File from the Protein Data Bank
A file from the Protein Data Bank (http://www.rcsb.org/PDB/home/home.do) (PDB)
must be specified. Example: PDB= 1TRE.PDB

CHAIN= NAME: Chain of the PDB file
The particular chain of the PDB file to be considered must be specified. Example:
CHAIN= A

FILE_STR= NAME: List of contact matrices

ProteinEvolver documentation

A file with list of contact matrices must be specified. The folder with example input
files already contains a file “structures.in” with a huge list of contact matrices
downloaded from the PDB and which can be applied to compute energies from any
PDB protein structure. However, the authors could provide other files with contact
matrices (considering particular user-specified details) upon request. Example:
FILE_STR= structures.in

TEMP= #: Temperature
The temperature used to compute protein energies must be specified (see section 4.2).
We recommend a range between 1.25 and 2.0. Example: TEMP= 1.5

S0= #: Configurational entropy per residue (unfolded)
The configurational entropy per residue for the unfolded protein must be specified. We
recommend a range between 0.025 and 0.075. Example: S0= 0.05

SC1= #: Configurational entropy per residue (misfolded)
The configurational entropy per residue for the misfolded protein must be specified (see
section 4.2). We recommend a range between 0.025 and 0.075. Example: SC1= 0.05

SC0= #: Configurational entropy offset (misfolded)
The configurational entropy offset for the misfolded protein must be specified (see
section 4.2). By default this it is 0. Example: SC1= 0.0

REM3= #: Third cumulant in REM calculation
The third cumulant in REM calculation (to compute the structural protein energy) must
be specified (see section 4.2). By default this it is 0. Example: REM3= 0

NEUTRAL= #: If 1, Neutral landscape (neutral SCS model), otherwise population size
dependent selection (fitness SCS model)
If this parameter is set to 1, the neutral substitution models of structural protein stability
will be applied (see section 4.2). Note that this model does not use the population size
(next parameter), by default we recommend this neutral model. Example: NEUTRAL= 1

NPOP= #: Population size for protein structures
The population size to simulate molecular evolution under fitness substitution models of
structural protein stability. Importantly, note that this option requires that the setting
“NEUTRAL=” must be set to 0, so a fitness substitution model is specified. Example:
NPOP= 10

Other settings
TYPE_BL= #: Type of branch lengths (by mutations or substitutions)
This argument specifies if branch lengths are either considered by events of mutation
(1) or substitution (2). Note that the expected number of events = branch length ×
number of sites. Example: TYPE_BL= 2

OUTPUT_LEVEL= #: Amount of output files
This argument specifies the amount of output files printed using protein stability
substitution models (see section 3.6.1). “2”, all output files are printed. “1”, only the
final output files are printed. “0”, the output files are not printed. Importantly, note that
a total of 4 output files related with these substitution models are printed per branch and

ProteinEvolver documentation

therefore, it can slow down the simulations and may need a lot of space in the hard disk.
Example: OUTPUT_LEVEL= 1

3.4. Additional input files
The following input files are optional and if required, must be introduced in the same
directory of the executable of ProteinEvolver. Indeed, note that the settings contained in
these input files cannot be specified in the command line. The name of these files must
be introduced in the main settings (parameters file or command line).

3.4.1. User-specified tree. No coalescent simulation
Alternatively to the coalescent simulation, the user can specify a tree in order to evolve
sequences along its branches. This possibility is convenient when the user already has a
tree (e.g., inferred from real data) or in order to avoid coalescent assumptions such as
the molecular clock. This procedure is similar to other software such as SeqGen [37] or
Evolver [38] (note that models implemented int these programs do not consider protein
structures).
The tree must be incorporated into an input file, which should be specified from the
main settings by the argument “-p” (e.g., -ptreefile; see section 3.2).
Then, the input file consists of a text line with a range of sites and a tree in Newick
format. The range specifies the first and last site (nucleotide or amino acid position)
where the following tree should work. Importantly, all sites should be covered by a
phylogenetic tree, so it always should start by 1 and finish by the total number of sites.
Only one tree is allowed because the whole protein must exist in all nodes. The file does
not allow empty lines. Trees should be rooted.
An example is shown below,

Note that by this procedure the total number of sites, number of taxa and name of taxa
are specified. In that example, a total of 765 sites with 5 taxas (taxonA, taxonB, taxonC,
taxonD, taxonE). When this option is applied all coalescent input settings are ignored
(see section 3.2).

3.4.2. Recombination hotspots
The user can optionally simulate recombination hotspots following the algorithm
implemented in SNPsim [24] when using coalescent simulations. This file must be
specified in the main settings (-hNAME; see section 3.2.1) and should be placed in the
directory of the executable. An example file “UserHetRec” is included in the folder
with examples.
Possible arguments for recombination hotspots file are (# means number):

-k# : Hotspot recombination rate
Expected recombination rate at the hotspots sites. If the hotspots are homogeneous
(option -t# is not invoked) all the hotspots have the same rate. Example: -k1e-4 (= -

1 765 ((taxonA:0.1,taxonB:0.1):0.4,(taxonC:0.1,taxonD:0.1):0.5,taxonE:1.0);

ProteinEvolver documentation

k0.0001)

-h# : Expected number of hotspots
This is the expected number of hotspots for a given sample in the absence of
interference. This parameter corresponds to the intensity parameter for a Poisson
distribution from which the actual number of hotspots is drawn. For a given sample, the
actual number of hotspots will change around this value. It does not have to be an
integer. NOTE: When interference is specified we need to divide this number by the
interference interval (-z#) to obtain the expected number of hotspots. It does not have to
be an integer. Example: -h1.1

-q# : Fixed number of hotspots
This option fixes the number of hotspots inside the region of interest, so every sample
will have the same number. In this case the hotspot locations are chosen from a uniform
distribution. If the hotspots overlap, they will be displaces to the closest available
location. Note that in this case no recombination events will originate from a hotspot
located outside the region of interest. Example: -q3

-v# : Hotspot imprecision
The hotspot imprecision corresponds to the variance of a Normal distribution for the
specific site to recombine around the hotspot center (chosen by a Poisson process). The
bigger the imprecision, the wider is the hotspot. If the imprecision is 0, all the
recombination events happen exactly at the hotspot center. See figures 2 and 3.
Example: -v0

-m# : Hotspot width
This option specifies the width of the hotspots. In this case any site in the hotspot has
the same probability of recombination. If the width is 1 all the recombination events
happen exactly at the hotspot center. This parameter has to be bigger than 0. See figures
2 and 3. Example: -m1

-t# : Hotspot heterogeneity
This parameter indicates that there is hotspot heterogeneity, that is, hotspots may have
different recombination rates. This heterogeneity is accomplished through the use if the
continuous gamma distribution. The shape parameter of this distribution (%) will
control the strength of this heterogeneity. The smaller the shape the strongest the
heterogeneity. This is similar to the application of Yang [35]. Example: -t0.5

-z# : Hotspot interference
This parameter indicates whether the location of the hotspots is not independent of each
other. If this parameter is 1 there is no interference, if it is between 0 and 1 hotspots
tend to cluster, and if it is bigger than 1 hotspots will tend to be pushed away from each
other. Example: -z1

3.4.3. MRCA/GMRCA sequence user-specified
By default, the GMRCA or MRCA sequence is simulated according to the nucleotide or
amino acid frequencies. However, the user can optionally specify its own root sequence
by a text file (the name of this file must be specified in the main settings (-xNAME),

ProteinEvolver documentation

which should be located in the directory of the executable. The file just contains a single
sequence. An example file “seqGMRCA” is included in the folder with examples.
The option is recommended for protein stability substitution models where the sequence
assigned to the root node must be equal (for the simulation of proteins) or codify (for
the simulation of coding DNA) for the amino acid sequence of the PDB file.
Consequently, under SCS models, it is highly recommended introduce directly (by
using this MRCA/GMRCA file) the amino acid sequence of the PDB file or a
coding sequence that codifies for such a PDB sequence.

3.4.4. Empirical user-specified amino acid matrix
The user can optionally specify a particular empirical amino acid matrix from a text file,
which has to be located in the directory of the executable. An example file “userEAAM”
is included in the folder with examples.
This file consists in two sets of parameter values: First, the substitution rates for each
amino acid (values must start after the letter for the corresponding amino acid). Second,
20 amino acid frequencies can be introduced (values must start after a “z”). The order of
amino acids must be the following: A R N D C Q E G H I L K M F P S T W Y V.

3.4.5. Site by site variable substitution rate
The user can optionally modify the substitution rate site by site. This file must be
specified in the main settings by “-_NAME” and should be located in the directory of
the executable. An example file is included with the package (file named
“HetRatesVector”) and another example is shown below.
The file consists on two sets of numbers specified after an “r”. First, the sequence
length (255 in the example). Second, values for each site separated by a single space.
Note that the number of values must be equal to the number of sites.

The value for each site consists in a factor that multiplies the original substitution rate
for that site and should be between 1 and 0. Thus, for example a value of 1 means that
the original substitution rate remains invariant while a value of 0 means that the
substitution rate is 0 and therefore that site will never mutate. This option can be useful
when the user already know the functional importance of the amino acids in the protein,
so for example catalytic sites could have a value of 0 in order to keep the protein
activity.

[rate heterogeneity by a vector]
[options and comments within brackets are ignored]

[rates] r255
1 1 1 1 1 1 1 1 1 0.6 0.1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.7 0 1 0.6 1
1 1 1 1 1 1 1 1 1 0.5 0.5 1
1 1 1 1 1 1 1 1 1 1 0.7 0 0 0 0 0 0.6 1
1 0.8 0 0 0 0.7 1 1 1 1 1
1 1 1 1 1

ProteinEvolver documentation

3.5. Default settings
By default ProteinEvolver simulates 10 samples of 6 individuals with 201 sites, a
constant effective size of 1000, constant size, no recombination, no migration and a
mutation rate of 1e-7 under the JC DNA substitution model with nucleotide frequencies
equal to 0.25. Noisy level is 1. The sequences will be printed to the sequences output
file in the Results folder. To run the program with the equivalent arguments we should
type:

./ProteinEvolver1.2.0 -n10

./ProteinEvolver1.2.0 -n10 -s6 201 -e1000 2 -u1.0e-07 -f4 0.25 0.25 0.25 0.25 -
bsequences -y1

ProteinEvolver documentation

Table 1. Key arguments for ProteinEvolver. The user can specify several parameters
to define different simulation scenarios. These arguments can be entered in the
command line or read from text file.

Parameter Arg Example value Application
Number of replicates n 200 All
Sample size s 8 All
Number of sites (bp or amino
acids)

s 765 All

Effective population size e 1000 All
Haploid / Diploid e 1 All
Tip dates = 2 1995 1 3 2003 4 8 All1
Generation Time / 400 All
Exponential growth rate g 2.1x10-5 Demography
Demographic periods2 g 1000 5000 200 Demography
Migration model q 1 Migration
Number of demes q “4” 2 2 3 1 Demes/Migration
Population structure q 4 “2 2 3 1” Demes/Migration
Migration rate (constant or
variable with time)

t 1.2×10-4 or 100
“0.001 0.005”

Migration

Convergence of demes3 % 1 2 5000 Demes/Migration
Homogeneous recombination
rate

r 5×10-6 Homogeneous
recombination/Recombinati
on hotspots

Fixed number of recombination
events

w 3 Homogeneous
recombination/Recombinati
on hotspots

Recombination hotspots h UserHetRec Recombination hotspots
Substitution rate u 5.1×10-4 All
Outgroup branch length o 0.1 All

User-specified tree/s p Treefile Genetic data simulation

Nucleotide frequencies f 0.4 0.3 0.1 0.2 DNA / DNA – structural
protein stability substitution
models

Transition / transversion ratio v 2.1 DNA / DNA – structural
protein stability substitution
models

Relative symmetrical
substitution rates

v 1.0 2.3 2.1 3.0 4.2
1.0

DNA / DNA – structural
protein stability substitution
models

Relative asymmetrical v 0.1 0.2 0.3 0.4 0.9 DNA / DNA – structural

ProteinEvolver documentation

substitution rates 0.6 0.9 0.8 0.9 0.1
0.2 0.3

protein stability substitution
models

File for the coding DNA – SCS5
models

m Pop_evol.in Coding DNA – SCS models

Amino acid frequencies

f 0.04 0.05 0.05 0.05
0.05 0.05 0.05 0.05
0.05 0.05 0.05 0.05
0.05 0.05 0.05 0.05
0.05 0.05 0.05 0.06

Amino acid / Protein –
structural protein stability
substitution models

Empirical amino acid model @ JTT Amino acid / Protein –
structural protein stability
substitution models

File for the Protein – SCS5
models

z Pop_evol.in Protein – SCS models

Rate variation among sites4 a 0.4 All
Variable substitution rates site
by site

_ HetRatesVector All

Proportion of invariable sites i 0.2 All
User-defined sequence for
GMRCA

x seqGMRCA All

Print sequences using diverse
options

b, c sequences, 1 1 0 All

Print GMRCA sequence $ All
Print simulated omega per site
and/or per branch

+ Codon models with variable
omega per site and/or
branch

Print simulated trees j trees All
Print simulated ARG * NetworkFile All
Print times for genealogies k times All
Print breakpoints d breakpoints All
Apply a seed # 3444556 All
Level of output information
printed in the screen

y 2 All

1In presence of convergence of demes, the time of the tip dates must be younger than
the time of the convergence of demes.
2from 1000 to 5000 effective size during 200 generations.
3deme 1 is converging with deme 2 at time 5000 to make a new ancestral deme 3.
4shape of the gamma distribution.
5SCS models can be neutral or fitness-based landscape.

ProteinEvolver documentation

3.6. Output Files
All output files produced by the program are written to the folder “Results”:

- Sequences file: contains the aligned sequences in Phylip sequential, Fasta or Nexus
formats.
- Breakpoints file: contains the breakpoints ordered by event time. Disabled when input
tree/s are user-specified.
- Trees file: contains the trees in newick format for each recombinant fragment.
- Network file: contains the simulated ARG by a branches format (each line contains
two connected nodes) [36]. Disabled when input tree/s are user-specified. See section
4.3.1.2 for details.
- Times file: contains information about time and branch length for each tree.
- CatMRCA/GMRCA: contains the corresponding sequences catMRCA (concatenated
MRCA fragments) and GMRCA (sequence of the GMRCA node) in the ARG.
- Settings file: contains a summary of applied settings showed in the screen at the end of
the simulation. This option must be activated in the source code.

3.6.1. Output files for the SCS models
The substitution models that account for the structural protein stability can produce
additional output files that are printed within an output folder “ProteinStability”, located
in the output folder “Results”.
Note that these output files are printed for each branch so be careful when printing all
output files in extensive simulations, it could require a lot of space in the hard disk and
might slow down the simulations. See the argument OUTPUT_LEVEL in the section
3.3.1 to control the amount of printed output files.
The name for each output file consist in the prefix “ProteinStability_” followed by the
number of replicate “Replicate#_”, the branch number “Branch#_”, and details about
the particular settings specified: PDB name “NAME”, temperature “T#”, entropy “S#”,
protein population size “N#”, and optionally GC bias for coding DNA simulation
“GC#” (note that “#” means a number).

Example from the simulation of coding DNA evolution,
ProteinStability_Replicate1_Branch0_1TREA_DeltaG_2.dat
ProteinStability_Replicate1_Branch0_1TREA_T1.80_S00.05_N10_GC0.40_ave.dat
ProteinStability_Replicate1_Branch0_1TREA_T1.80_S00.05_N10_GC0.40_dna.dat
ProteinStability_Replicate1_Branch0_1TREA_T1.80_S00.05_N10_GC0.40_stab.dat
ProteinStability_Replicate1_Branch0_1TREA_T1.80_S00.05_N10_GC0.40_final.dat

Example from the simulation of protein evolution,
ProteinStability_Replicate5_Branch12_1TREA_DeltaG_2.dat
ProteinStability_Replicate5_Branch12_1TREA_T1.80_S00.05_N10_ave.dat
ProteinStability_Replicate5_Branch12_1TREA_T1.80_S00.05_N10_stab.dat
ProteinStability_Replicate5_Branch12_1TREA_T1.80_S00.05_N10_final.dat

Files “DELTAG_2.dat” show the protein energy values at amino acid level (∆G/L) as a
function of the temperature (T) computed by the REM2 (Random Energy Model)
energy function (see section 4.2).

ProteinEvolver documentation

Files “ave.dat” show information about the user-specified settings, computed energy,
fitness and, transition and mutation loads.

Files “dna.dat” show information about the user-specified settings and GC content.

Files “stab.dat” show, for each accepted mutation (substitution), the structural energy of
the mutated and native proteins, derived fitness and number of mutation attempts to
reach such a substitution. It is recommended to explore the influence of substitution
events in the protein structure.

Files “final.dat” show the final results derived from the substitutions introduced on a
branch. It indicates the mean of fitness, energy, entropy, transition and mutation loads
and, rejected mutations.

3.7. Solving message errors

- Parameter values for the SCS models. Entropy and temperature must be chosen
carefully, specially for fitness SCS models. See above recommended settings.

- There is a common message of error due to not enough memory in scenarios with very
high recombination rates. Note that recombination increases the number of nodes of the
ARG and the number of recombinant fragments within nodes (see section 4.3.1). Then,
when ρ (= 4Nrl) is very high, the ARG must save in memory a high amount of
information, and with time such amount exponentially increases. Thus, at a given time
the machine could not have enough available memory and the program stops with an
error message like the following:
malloc: *** mmap(size=1584291840) failed (error code=12)
*** error: can't allocate region
Could not reallocate segments (1584144000 bytes)
In this situation we recommend to reduce the value of the following parameters:
recombination rate, population size, length of the sequences and sample size. Of course,
the other option is just to use another machine with more memory.

- Using a fixed number of recombination events keep in mind that the recombination
rate introduced should generate an accordingly number of recombination events.
Otherwise the simulation could never finish (because the assumption of the fixed
number of recombination events is never successful) leading to crash the execution.

- Using growth rates or demographic periods you could find an error like:
ERROR: Coalescent time (nan) is infinite
 This might suggest that the growth rate is too negative
 and the coalescent time is therefore infinite.
 Try a smaller value
This is because the population increases too much going back in time and thus, the
coalescent time gets infinite. The best option to solve this error is to reduce the growth
rate. In the case of demographic periods this could be done for example by using longer
times for such period.

ProteinEvolver documentation

- Asymmetric substitution rates (for example, from user-specified amino acid matrices)
could be problematic. In these cases the program writes an output message about
“complex roots”.

- Input tree from user. The file with the input tree must follow: first site should be 1 and
the last site should be the total number of sites, no empty lines, the tree should be
rooted.

If you experience any unexpected error or there is any doubt, please do not hesitate to
contact us: miguelmmmab@gmail.com. Thanks for your contribution!

4. ProteinEvolver model

ProteinEvolver implements site-dependent substitution models that consider the
stability of the protein structure. These models compute the structural energy of mutated
proteins (including misfolded and unfolded configurations) given the entropy and the
temperature. Then, mutations can be accepted (substitutions) or rejected according to
the Moran’s model. Two substitution models have been implemented, the neutral model
(which does not consider population size) and the fitness model (which needs a user-
specified population size).
Indeed, these models can be crossed with classic site-independent substitution models
(see below) to compute substitution rates per site and state. The implemented classical
DNA Markov models of substitution are all that currently exist (e.g., JC [3], K80 [4],
F81 [5], HKY [6], SYM [7], GTR [8] and even GTnR [extended from, 8]) for the
simulation of DNA data. The implemented empirical amino acid substitution models are
Blosum62 [9], CpRev [10], Dayhoff [11], DayhoffDCMUT [12], HIVb [13], HIVw [13],
JTT [14], JonesDCMUT [12], LG [15], Mtart [16], Mtmam [17], Mtrev24 [18], RtRev
[19], VT [20], WAG [21] and any user-specified matrix. In addition, heterogeneous
substitution rates among sites by a gamma distribution +G and proportion of invariable
sites +I are implemented. Furthermore, the user can alter the substitution rate for each
site, this allows to fix particular sites. For example, it would make sense to fix sites
related with the activity of the protein such as catalytic positions.
Using these substitution models, sequences can be evolved from the root to the tip
nodes of a given phylogeny. Such a phylogeny can be user-specified or simulated by the
coalescent. The program implements an extension of the coalescent with recombination,
demographics and migration based on the neutral Wright-Fisher model [22, 25, 34]
following [30, 39]. Given the specified recombination and migration rates (and other
parameters like the effective population size (N) and growth rate) random genealogies
are produced. Recombination hotspots are also implemented following SNPsim [24].
Several migration models (island [27], stepping-stone [26] and continent-island [27])
are allowed and migration rate can change with time. The evolution of the demes (or
species tree) can be fixed. Complex demographic histories can be implemented by
defining demographic periods in which population sizes augment, reduce, or remain
constant. Samples can be collected at same or different times [see, 28] and simulated
data can be haploid or diploid.
The result is a random sample of aligned coding DNA or amino acid sequences.

ProteinEvolver documentation

4.1. Markov substitution models
Once the sample genealogy has been constructed, nucleotide or amino acid data can be
simulated along its branches. ProteinEvolver implements multiple nucleotide and amino
acid Markov models through the specification of different parameters (including base
frequencies, relative substitution rates, transition/transversion ratio, a proportion of
invariable sites and rate variation among sites) and empirical matrices. Conveniently,
the sequence of the root node can specified at random, according to the nucleotide or
amino acid frequencies, or the user can specify its own sequence (highly recommended
for structural protein stability substitution models).
Variation in the substitution rate among sites can be user-established by the shape of a
gamma distribution (+G). Indeed, ProteinEvolver also implements variation of
substitution rates by a user-specified site-by-site vector. Finally, a proportion of
invariable sites (+I) can be also simulated.

4.1.1. DNA models
ProteinEvolver implements the general time reversible model for nucleotide substitution
(GTR) [8], a non reversible version (GTnR) [8], and models nested therein, like JC [3],
K80 [4], F81 [5] or HKY [6].

4.1.2. Empirical amino acid models
ProteinEvolver implements a variety of empirical amino acid models: Blosum62 [9],
CpRev [10], Dayhoff [11], DayhoffDCMUT [12], HIVb [13], HIVw [13], JTT [14],
JonesDCMUT [12], LG [15], Mtart [16], Mtmam [17], Mtrev24 [18], RtRev [19], VT
[20], WAG [21]. In addition, it is possible to specify a user-defined empirical amino acid
model by an input file (see section 3.4.4).

4.2. SCS models

The SCS models take into account the stability of the protein structure. These models
compute the structural energy of mutated proteins given the entropy, contact matrices,
the protein structure and the temperature. Then, mutations are evaluated and can be
accepted (substitutions) or rejected.

Our site-dependent SCS models estimates the stability of the mutated sequence folded
into the target structure at the simulation temperature by means of a contact free energy
function. The contact matrix ijC takes the value 1 if residues i and j are close in space
and 0 otherwise (by a threshold distance of 4.5Å), and it is sufficient to reconstruct the
three-dimensional structure of the protein up to good accuracy [40]. We assume that the
free energy of a protein with sequence A folded into the contact matrix C is given by the
sum of its pairwise contact interactions,

!=
ij

jiij AAUCCAE),(),(

where U(a,b) is the contact interaction matrix that expresses the free energy gained
when amino acids a and b are brought in contact. We adopt the contact interaction
matrix determined in Bastolla et al. [41]. For proteins that fold with two-states

ProteinEvolver documentation

thermodynamics, i.e. for which only the native structure and the unfolded structure are
thermodynamically important, stability against unfolding is defined as the free energy
difference between the folded and the unfolded states. The free energy of the unfolded
state is estimated as sL, where L is protein length and s is an entropic parameter, is
estimated as ∆G~E(A,Cnat)+sL, where Cnat is the native structure and s = 0.074 was
determined fitting the above equation to a set of 20 experimentally measured unfolding
free energy, yielding a correlation coefficient r = 0.92 (U. Bastolla, unpublished data).
The accuracy of this method for predicting the stability effect of mutations is
comparable to state-of-the-art atomistic methods such as Fold-X [42], and its
computational simplicity allows to use it for simulating protein evolution for long
evolutionary trajectories and complex phylogenetic histories.
Stability against unfolding is however not sufficient to characterize protein stability.
Consequently, the model has also to check the stability against compact, incorrectly
folded conformations of low energy that can act as kinetic traps in the folding process
and, in many cases, give raise to pathological aggregation. The term positive design
indicates sequence features that favor protein stability by decreasing the free energy of
the native structure. On the other hand, stability against misfolding is realized by
increasing the energy of key contacts that are frequently found in alternative structures,
which is termed negative design [43-45]. Therefore, it is also influenced by mutations at
positions that are distant in the native structure.
Stability against misfolded structures is difficult to estimate, and several models of
protein evolution do not consider it, despite its importance is being more and more
recognized. Here we consider the set of alternative compact matrices of L residues that
can be obtained from non-redundant structures in the Protein Data Bank. This
procedure, called threading, guarantees that the contact matrices fulfill physical
constraints on chain connectivity, atomic repulsion, and hydrogen bonding (secondary
structure), which are not enforced in the contact energy function.
The free energy of this misfolded ensemble can be estimated in analogy with the
Random Energy Model [REM, [46]] as,

LTsk
Tk

CAEG cB

B

misfold !!"#$
2

),(
2%

where 〈E(A,C)〉 is the mean and σ2 is the variance of the energy of alternative structures
[47]. This formula holds for temperatures above the freezing temperature at which the
entropy of the misfolding ensemble vanishes. At lower temperatures the free energy
maintains the same frozen value [46]. A precise computation showed that the third
moment of the energy can not be neglected (Minning et al. 2013). We therefore consider
the equation,

() ()

LTsk
T

UUU
F

T

UU
DUC

LTsk
Tk

EE

Tk

EE
EG

cB

nmlkji

mnklij

ijklmn

ljki

klij

ijkl

ji

ijij

cB

BB

misfold

!+!=

!
!

+
!

!"#$

%%%
<<<<<< ,,

2

2

32

62

)(62

ProteinEvolver documentation

where the tensors ijC , ijklD and ijklmnF are the averages over the set of contact matrices
of L residues respectively of single contacts, contact correlations and triples of contacts
and,),(jiij AAUU = only depends on the protein sequence [45]. The computing time is
considerably reduced by approximating the above formula with one that only depends
on pairs of residues,

LTsk
Tk

UBUBUUA

Tk

UBUA
UAG cB

B

ij ij ijijijij

B

ij ijij

misfold !
+"#+"#

+
+"#

!"#$
% %%

2

3)3(2)2(3)3(2)1(2)2(

)(62

)1(

The quantities)1(
A

)2(
A

)3(
A

)1(

ijB
)2(

ijB
)3(

ijB only depend on the set of alternative contact
matrices and on protein length L, and they are pre-computed before the simulation
starts. In this way, we can evaluate how the misfolded free energy changes upon
mutation only performing order L operations for computing

),(),(jiji AaAUAbAU =!= when the residue at the mutated site i changes from state a
to b. The stability of the native state is finally evaluated as the difference in free energy
between the native, the unfolded and the misfolded states,

LTskGCAEG uBmisfoldnat !!="),(.
Note that, even if the two configurational entropies per redisue

u
s (unfolded ensemble)

C
s act additively, the free energy is not simply a function of their sum, since it is only

C
s that determines the freezing temperature of the misfolded ensemble.
For modeling protein evolution, we still have to define how protein stability influences
fitness. The simplest possibility is a neutral fitness landscape where the fitness is a
binary variable and all proteins with stability above a given threshold, i.e.

!

"G < "G
thr

are
considered viable and equally fit, whereas all proteins below threshold are considered
lethal and therefore, discarded. The threshold is

!

"G
thr

= "G(A
0
,C

nat
) where A0 is the

protein sequence in the Protein Data Bank, which means that the neutral SCS model is
not sensible to variations of the temperature or configurational entropies.
The neutral fitness landscape can be generalized to a landscape in which fitness is an
increasing function of stability, and in particular it is proportional to the fraction of
protein that is in the native state [47],

kTCAG nate
Af

/),(
1

1
)(

!
+

=

Note that the fitness landscape can be reduced to the neutral landscape in the limit of
very small temperature, since in this limit the fitness tends to 1 if 0<!G and to zero if

0>!G .
We then assume that the mutation rate is very small so that the population is
monomorphic, and model selection through the Moran’s birth-death process [48], which
yields the fixation probability,

N

j

i

a

i

i

f

f

f

f

ij
2

1

1

)(

!
!

"

#

$
$

%

&
'

!!
"

#
$$
%

&
'

=(

where if is the fitness of the wild-type, jf is the fitness of the mutant, N is the effective

ProteinEvolver documentation

population size and a = 2 or 1 for a haploid or diploid population, respectively. Given
the probability of fixation, the succession of mutant fixations can be depicted as a
Markov process, in which the genotype of the population moves from one sequence to
another one according to the mutation and fixation probabilities.

4.2.5 Crossing the SCS models with classic Markov substitution
models
The SCS models implemented in ProteinEvolver can be crossed with any parametric
DNA substitution model (such as JC, HKY or GTR) or any empirical amino acid
substitution model (such as JTT, WAG or LG). The matrices of change and the
nucleotide or amino acid frequencies are considered to compute the rates of change per
site and state.
Two types of material can be simulated using protein stability substitution models,
coding DNA and amino acid sequences.

4.2.5.1. Simulation of coding DNA data with the SCS models
The simulation of coding DNA data consists basically in the following algorithm (which
can be specified with argument “-m” in the parameters file).

I) mutation rates among DNA states and per site are computed according to the
rates of change provided by the matrix of the classic Markov model (JC, HKY or GTR,
parameters specified with the command “-v” in the parameters file) and the nucleotide
frequencies “-f4”.

II) According to the mutation rates, a mutation at DNA level is introduced.
III) The DNA sequence is translated to an amino acid sequence and the mutation

is classified as synonymous or non-synonymous.
IV) If the mutation is synonymous, it is accepted since it does not alter the

protein sequence and structure.
V) If the mutation leads to a nonsynonymous change, it is evaluated by the

computation of the structural protein energy for the mutated amino acid protein (section
4.2.2), the energy is used to compute a fitness value (section 4.2.3) and the mutation can
be accepted or rejected according to the Moran’s birth-death process [48]. The mutation
can be accepted or rejected and the DNA and protein sequences are updated according
to such a result.
The number of mutations or substitutions (accepted mutations) is computed according
to the branch length and the user can specify if such branch length should be considered
as mutations or substitutions (see section 3.3.1).

4.2.5.2. Simulation of protein data with the SCS models
The simulation of protein data consists in the following algorithm (which can be
specified with argument “-z” in the parameters file).

I) mutation rates among amino acid states and per site are computed according to
the rates of change provided by an empirical amino acid matrix (WAG, JTT or HIVb,
parameters specified with the command “-@” in the parameters file) and the nucleotide
frequencies “-f20”.

ProteinEvolver documentation

II) According to the mutation rates, a mutation at amino acid level is introduced.
Note that the mutation will be always classified as non-synonymous.

III) The mutation is evaluated by the computation of the structural protein
energy for the mutated amino acid protein (section 4.2.2), the energy is used to compute
a fitness value (section 4.2.3) and the mutation can be accepted or rejected [48]. The
protein sequence is updated according to such a result.
The number of mutations or substitutions (accepted mutations) is computed according
to the branch length and here the user can specify if such branch length should be again
considered as mutations or substitutions (see section 3.3.1).

4.2.6 Evolution of sequences along trees under the SCS models
While under classic Markov substitution models the evolution of the sequence is
preformed site by site along the branches of the tree, because the site-independent
aspect of these models, the simulation under SCS models requires the evolution of the
whole molecule along the tree because the site-dependent aspect.
This leads to a problem when dealing with recombination because half a protein cannot
be evolved independently. Consequently, the user-specified tree cannot be reticulated
and recombination is only allowed in ProteinEvolver, for these structural substitution
models, by a special algorithm described in 4.3.1.3. Here, the evolution starts from a
molecule assigned to the GMRCA node of the ARG [31]. By this procedure all the
material involved in the recombination events is considered.

4.3. Coalescent simulations
The coalescent proceeds backwards starting from the sample of s gametes. Time is
scaled in units of 2N generations, where N is the effective population size. For a given
site, without recombination or migration, and under constant population size, the time to
the most recent common ancestor (TMRCA) is:

!

E(TMRCA) = 2 1"
1

s

$
%

&

'
(

!

Var TMRCA() =
4

i
2
(i "1)

2

i= 2

s

#

The times to a coalescence (CA), recombination (RE) or migration (MI) event are
exponentially distributed, with intensity equal to their respective rates (see below). The
next event will be the one that would occur before according to these expectations.

!

Time to CA" Exp rateCA[] # 2N

!

Time to RE " Exp rateRE[] # 2N

!

Time to MI" Exp rateMI[] # 2N

The rate of coalescence depends only on the number of lineages (k):

ProteinEvolver documentation

!

rateCA =
k k "1()
2

4.3.1. Recombination
The rate of recombination depends on the population size (N) and on the total
recombination rate at all valid recombination sites (G). A valid recombination site has
to have at both sides ancestral material that has not found its MRCA yet.

!

G = rGi
i=1

L

"
j=1

k

"

!

" = rateRE= 2NG

Given that a recombination event occurs, a gamete is chosen according to the total rate
at potential recombining sites in that gamete. Breakpoint sites are chosen according to
the recombination probabilities per site (rGi). The expected number of recombination
events in a panmictic population with constant size is:

!

E(number of recombination events) = "
1

i
i=1

s#1

$

Importantly, in the presence of recombination, different regions of the alignment might
evolve under different genealogies (Figure 1), which together conform to the ancestral
recombination graph. The number of genealogies will be the number of breakpoints + 1.

 breakpoints: 200 300

 1-199 200-299 300-500

 1-199 200-299 300-500

 1-199 200-299 300-500

ProteinEvolver documentation

Figure 1. Representation of the ancestral recombination graph and the binary tree
embedded.

4.3.1.1 Recombination hotspots
This implementation is based on SNPsim [24], the population genetic model of
recombination hotspots developed by Wiuf and Posada, to result in heterogeneous
recombination rates along the chromosomes.
Given an expected number of recombination hotspots, a background homogenous
recombination rate and a hotspot recombination rate, the algorithm starts by choosing
the position and number of recombination hotspots for a particular sample. Adding
recombination events around the hotspot center results in the specification of a
probability distribution for the recombination rate along the region of interest. Other
recombination events coming from recombinational hotspots centered outside the region
of interest are also considered. This fast simulation results in different recombination
rates for different sites along the region (hotspots and coldspots). Next model for
hotspot recombination is described following the algorithm [24].

Hotspot recombination model
The hotspots recombination model aims to represent the idea that some sites in a
chromosome are more likely to recombine than others (“recombination hotspots”). This
general model is composed of two basic recombination rates and a set of hotspots sites.
The background recombination rate (RB) is the per generation recombination rate at any
site in the chromosome of length L, while the hotspot recombination rate (RH) is the
additional per generation recombination rate at the recombination hotspot. X is the
number of hotspots.

!

Background recombination rate RB() = 4NrBL

!

Hotspot recombination rate RH() = 4NrH X

!

Global recombination rate R
G() = R

B
+ R

H

In real life we do not expect the recombination hotspot to be always restricted to the
same single site, to have always the same intensity, or to occur independently from
other hotspots. The model described above can be generalized to include these relevant
biological features. When the hotspot is not restricted to a single site, and under
constant population size, the expected number of recombination events is

!

E(number of recombination events) = RG
1

i
i=1

s"1

#

Hotspot location: interference
We will assume that the distance between hotspots is Gamma distributed, Γ(m, λ), m >
0. If m=1, we have a Poisson process with intensity λ. Allowing m≠1 introduces
interference. If m>1 hotspots are pushed away from each other; if 0<m<1 they tend to
be clustered (although the algorithm will only accept integer values for m). The average
number of hotspots in the gene is λ/m (see Figure 2).

ProteinEvolver documentation

Hotspot imprecision
We will consider that the hotspot location actually represents the center of the hotspot,
and where recombination is more likely, but that there are also some sites around where
recombination occurs with some frequency that decreases with increasing distance from
the hotspot center. This can be represented by a Normal or a Uniform distribution for
the location of the recombination. When the Normal distribution is used, this has a
mean equal to the location of the hotspot center and variance called hotspot imprecision
(σ2) (see Figure 2). When the variance is small the hotspot tends to be narrow. If the
variance is 0, the hotspot is 1 bp wide. When the Uniform distribution is used,
recombination events occur with the same probability along a given width for the
hotspot. In addition there is the possibility of recombination events coming from
hotspots located outside the region of interest of length L. To implement this idea we
can extend the region of interest by a number of sites K at each end. In the Normal
distribution an arbitrary, but seemingly reasonable value for K that assures that wide
hotspots outside L are taking into account is

!

K = 10 " 2

If the uniform distribution is used, K equals half the width of the hotspot.

Hotspot heterogeneity
In addition, not all hotspots have to be equally “hot”. We can model this heterogeneity
of recombination rates using a gamma distribution with a mean of 1. The shape of this
distribution (α) will determine the strength of this hotspot heterogeneity. The smaller α,
the bigger the heterogeneity of recombination rates at the hotspots.

Implementation
A nice feature of the hotspot model is that it allows for the construction of a distribution
of recombination rate along the chromosome (ℜ)(Figure 2) for every sample.

The algorithm starts by building ℜ. The first step is to set up the number of hotspot
centers (X) along the extended region L + 2K. The average number of hotspots in the
gene is λ/m, and when m>1 we use a thinning algorithm to locate these hotspots (Figure
2). If m=1 we distributed the hotspots according to a Poisson distribution with intensity
λ.

ProteinEvolver documentation

Figure 2. Thinning algorithm for the location of hotspots with interference (m=4). The
index for the first hotspot site is chosen uniformly between 0 and m-1. This plot was
taken from SNPsim manual [24].

Alternatively the user can specify a fixed number of hotspots, which will be located
uniformly (see option -q in recombination hotspots file).

The distribution ℜ is can be constructed according to a Normal (xi, σ2), or a Uniform
(hotspot width) distribution. If there is hotspot recombination, a random gamma
variable will scale the recombination events at each hotspot. Figures 3 and 4 represent a
realization of this process.

Figure 3. Schematic representation of ℜ in the case of three Normal hotspots for the
region of interest (L=10000). In this case the hotspot imprecision is quite big. Note that
some recombination probability is contributed by a hotspot outside the region of
interest. The background recombination is the same for all sites. In this case there is
hotspot heterogeneity. This plot was taken from SNPsim manual [24].

ProteinEvolver documentation

We can use now ℜ now to set the global recombination rate per each site i,

!

r
Gi

= r
Bi

+ r
Hi
"
i

where ϕi is the probability of block recombination at site i.

Figure 4. Schematic representation of different ℜ. This plot was taken from SNPsim
manual [24].

Finally, the total recombination rate at all valid recombination sites is considered to
compute times for recombination events (as described before). Breakpoint sites are
chosen according to the recombination probabilities per site (rGi).

4.3.1.2 Visualization and characterization of the simulated ARG
The simulated ARG can be directly exported to the NetTest web server
(http://darwin.uvigo.es/software/nettest/) [36] in order to visualize and characterize the
ARG [36, 49]. The ARG can be printed by ProteinEvolver in branches format [36]
(argument “*” in the parameters file) to be introduced in NetTest.

4.3.1.3 Algorithm to evolve molecules with the SCS models along the ARG
In the presence of recombination, classic Markov substitution models of evolution
independently evolve each site along the evolutionary history of the corresponding
recombinant fragment [see for example 30, 39, 50, 51]. Nevertheless, the SCS models
require the evolution of the whole molecule because the dependence among sites. This
implied the development of a new algorithm to evolve whole molecules under
recombination.
After building the ARG, the molecular evolution starts by the assignation of a sequence
to the GMRCA node. ProteinEvolver incorporates an algorithm for the evolution of the
whole molecule along the ARG (see Figure 5), which is an adaptation of the algorithm
developed to by Arenas and Posada to simulate intracodon recombination [30]. The
process starts from the sequence assigned to the GMRCA node. This sequence can
suffer substitutions along the branches and new whole sequences are assigned to the
descendant nodes (see steps 1-2 in the Figure 5). Later the evolution process can reach a

ProteinEvolver documentation

recombinant node (shown in grey, see step 3) and a sequence is assigned to such a
recombinant node. However, at that point the evolution stops and comes back to
continue by other path. This is forced to occur since there is no information about the
sequence at the parental recombinant node. Later, the process reaches the parental
recombinant node (step 5), at this point note that there are whole sequences in both
recombinant nodes, and there is a combination of the material according to the
recombinant breakpoint. Consequently, a new whole sequence is generated (step 6) and
this new sequence continues the evolutionary process. By this algorithm the molecular
evolution considers the exchanges of material introduced by the recombination and that
are described in the ARG.

Figure 5. Example of the evolution of a whole molecule along an ARG.

4.3.2 Migration
The simplest and most widely used model of population structure is the “finite island
model” [25, 27, 52-54] however the stepping-stone [26] and an approximation to the
continent-island [27] are also implemented. The rate of migration depends on the
population size (N), the migration rate per deme (m) and the number of available demes
(q).

!

rateMI = 2Nmq

Importantly, in the coalescent with migration, lineages can only coalesce with other
lineages in the same deme. When a migration event occurs, a given lineage changes
from one deme to another (Figure 6).

ProteinEvolver documentation

Figure 6. Coalescent with migration for two demes.

4.3.2.1 Island model
The Island Model describes an array of q demes, each of constant size (Figure 7).
Migration events may occur between any two demes.

Figure 7. Island model. All demes have the same population size and the same migrant
rate per deme.

4.3.2.2 Stepping-stone model
Under the stepping-stone migration events occur between neighboring demes (Figure
8).

Figure 8. 1D stepping-stone model implemented in ProteinEvolver.

Deme #1 Deme #2

Present

Past

Time

ProteinEvolver documentation

4.3.2.3 Continent-island model
The continent-island model implemented in ProteinEvolver allows symmetrical
migration between a deme (continent) and the other demes (islands), see Figure 9. Note
that there is not possible to directly migrate individuals among islands.

Figure 9. Continent-island model implemented in ProteinEvolver.

4.3.2.4 Temporal variation of the migration rate
ProteinEvolver allows for temporal variation where a migration rate can be applied at
different time periods (Figure 10).

Figure 10. Temporal variation of the migration rate implemented in ProteinEvolver.
The figure shows 3 temporal periods defined by two times (t1 and t2) and where each
period implements a given migration rate (m1, m2 or m3).

ProteinEvolver documentation

4.3.3 Convergence of demes
The evolution of the demes can be user-specified. Two demes can be converged at a
given time in order to build a new big deme with the lineages of the previous demes.
The convergence of demes always occurs under a migration model. An example is
shown in the Figure 11. It is not possible use convergence of demes in presence of tip
dates when the time of the convergence of demes is younger that the time of the tip
dates.

Figure 11. Demes evolution. Two demes can evolve convergences to generate an
ancestral big deme, these convergences are introduced by the user.

4.3.4 Demography
ProteinEvolver allows for the specification of exponential population growth rate. The
only modification concerns to the expected time to a coalescence, where t is the current
time:

time to CA ̃

!

log e"t + "Exp
k k #1()
2

$

%
&

'

(
) 2N

$

%
&

'

(
)

"
t

If the growth rate is negative, the coalescence time may be infinite (i.e., coalescence
does not happen), and ProteinEvolver will stop and issue an error message.
Alternatively, the user can define any number of demographic periods (Figure 12). βi is
the growth rate inferred for a demographic period i that goes from size NBi in the past to
size NEi in Ii generations:

ProteinEvolver documentation

!

"
i
=

#log
N

Bi

N
Ei

$

%
&

'

(
)

l
i

The time to coalescence will be:

Time to CA ∼

!

log Exp
k k "1()
2

$
%

&

'
()i2NEie

") t" ti"1() +1
*

+
,

-

.
/

) i

where t is the current time and ti is the cumulative time from the present:

!

ti = l j
j= 0

j= i

"

Figure 12. Demographic periods. The growth rate after the last period will the same as
the one implied by the last period.

4.3.5 Tip Dates
Tip dates can be specified by the user to simulate sequences with different times, such
as samples taken at different times. For this option, the user must introduce a generation
time. Figure 13 shows an example of four samples taken at different times, the oldest
sample contains only one sequence (seq00001), and the younger sample contains three
sequences (seq00004, seq00006 and seq00005).

ProteinEvolver documentation

Figure 13. Tip dates simulation examples. Three examples of four samples taken at
different times with 1, 2, 2 and 3 sequences per sample (from present to past).

5. Program benchmarking
The models on which ProteinEvolver is based have been separately validated. The
method to estimate protein folding stability against unfolding and misfolding has been
developed in [45, 55, 56] and yields good correlations with experimentally measured
free energies. It has been widely used with some variations in many simulations of
protein evolution (Bastolla 2001; etc.), since its computational simplicity allows its
application over long evolutionary trajectories.
The substitution processes implemented in the SCS models were verified using HYPHY
[57] and agreed with the branch lengths. The implemented site-independent DNA
substitution models were previously validated [30, 39]. The empirical amino acid
substitution models were accurately estimated using ProtTest [58]. Coalescent
simulations were contrasted with the theoretical expectations for the mean and variances
for different values, like the number of recombination and migration events, or the times
to the most recent common ancestor [39, 59]. Recombination hotspots agree with
theoretical expectations and breakpoints were likely to occur in recombination hotspots
regions [24].

6. History
Version 1.0.0 (June 2012)

- Implementation of Pop_evol (code developed by Ugo Bastolla) in
ProteinEvolver, a mutational model to evolve DNA sequences accounting for structural
protein stability (DNA -> AA -> DNA) and the HKY substitution model.
Version 1.0.1 (July-August 2012)
 - PDB from input file.
 - Seed for structural protein stability substitution model comes now from the
main input file (parameters).

ProteinEvolver documentation

Version 1.0.2 (August 2012)
 - Structural protein stability accounting for rates of change among all
nucleotide states (GTR and GTnR).
Version 1.0.3 (September 2012)
 - Solved bug in the "Compute_load" function. Other warnings from Pop_Evol
were solved.
 - Solved bug in GTR and GTnR models for PopEvol section (in "Mutate_nuc"
and "Compute_load" functions).
 - Structural protein stability substitution model crossed with any empirical
substitution model (Blosum62, CpRev, Dayhoff, DayhoffDCMUT, HIVb, HIVw, JTT,
JonesDCMUT, LG, Mtart, Mtmam, Mtrev24, RtRev, VT, WAG, UserEAAM).
 - Validation. User-specified tree was inferred by Hyphy from the simulated
alignmets (for both DNA and amino acid data) under the structural protein stability
substitution model.
Version 1.0.4 (September 2012)
 - Coalescent with recombination is allowed for the simulation under structural
protein stability substitution models.
 When a recombination occurs, the evolution stops at the first parental
recombinant node and goes in other direction. Later, when the other parental
recombinant node is reached, there is a combination of the material, according to the
recombination breakpoint, to generate the material for the descendant node, which
continues the evolution. Recombination can be homogeneous (recombination rate is
constant among all sites) or heterogeneous (recombination hotspots, functions
developed by David Posada). However, recombination cannot be applied using user-
specified input trees and structural protein stability substitution models because part of
a protein cannot be evolved under such a substitution model.
Version 1.0.5 (September 2012)
 - Included options to print the energy output files per branch produced by the
structural protein stability substitution models.
 - Print information about the attempted mutations in the structural protein
stability substitution models.
Version 1.2.0 (September-October 2012)
 - Proportion of invariable sites +I and variable substitution rates per site
(heterogeneity) according to a gamma distribution +G, for the structural protein
stability substitution models.
 - Heterogeneity by a user-defined vector. Each site can evolve under a
particular rate user-defined. This is compatible with the specification of +G.
 - Print number and mean of the introduced substitution events and, those
nonsynonymous for DNA structural protein evolution models.

- Maximun number of characters for the name of taxas is 10 (Phylip format).
- More robust generation of the random seed.
- Work with bigger input trees (MAX_LINE).

Version 1.2.0 (September-December 2012)
 - Implementation of the neutral evolution model to evolve sequences accounting for
the protein structure. Here population size is not required, follow this with the variable
"NEUTRAL".

ProteinEvolver documentation

7. Acknowledgments

This work was supported by the “Juan de la Cierva” fellowship JCI-2011-10452 to MA
from the Spanish Government. Several functions were taken from code provided by R.
Nielsen and Z. Yang, other functions were provided from SNPsim [24] (by David
Posada and Carsten Wiuf) and Mosaic (by David Posada). We want to thank J. Carlos
Mouriño at the Supercomputing Center of Galicia (CESGA) for extensive help with
code parallelization in first versions of the coalescent software.

8. References

1. Mendez R, Fritsche M, Porto M, Bastolla U: Mutation bias favors protein

folding stability in the evolution of small populations. PLoS Comput Biol
2010, 6(5):e1000767.

2. Bastolla U, Porto M, Roman HE, Vendruscolo M: Structural approaches to
sequence evolution. Berlin, Heidelberg: Springer; 2007.

3. Jukes TH, Cantor CR: Evolution of protein molecules. In: Mammalian Protein
Metabolism. Edited by Munro HM. New York, NY: Academic Press; 1969: 21-
132.

4. Kimura M: A simple method for estimating evolutionary rate of base
substitutions through comparative studies of nucleotide sequences. J Mol
Evol 1980, 16:111-120.

5. Felsenstein J: Evolutionary trees from DNA sequences: A maximum
likelihood approach. J Mol Evol 1981, 17:368-376.

6. Hasegawa M, Kishino K, Yano T: Dating the human-ape splitting by a
molecular clock of mitochondrial DNA. J Mol Evol 1985, 22:160-174.

7. Zharkikh A: Estimation of evolutionary distances between nucleotide
sequences. J Mol Evol 1994, 39(3):315-329.

8. Tavaré S: Some probabilistic and statistical problems in the analysis of DNA
sequences. In: Some mathematical questions in biology - DNA sequence
analysis. Edited by Miura RM, vol. 17. Providence, RI: Amer. Math. Soc.; 1986:
57-86.

9. Henikoff S, Henikoff JG: Amino acid substitution matrices from protein
blocks. Proc Natl Acad Sci U S A 1992, 89(22):10915-10919.

10. Adachi J, Waddell PJ, Martin W, Hasegawa M: Plastid genome phylogeny and
a model of amino acid substitution for proteins encoded by chloroplast
DNA. J Mol Evol 2000, 50(4):348-358.

11. Dayhoff MO, Schwartz RM, Orcutt BC: A model of evolutionary change in
proteins. In: Atlas of protein sequence and structure. Edited by Dayhoff MO,
vol. 5, Suppl. 3. Washington D. C.; 1978: 345-352.

12. Kosiol C, Goldman N: Different versions of the Dayhoff rate matrix. Mol
Biol Evol 2005, 22(2):193-199.

13. Nickle DC, Heath L, Jensen MA, Gilbert PB, Mullins JI, Kosakovsky Pond SL:
HIV-specific probabilistic models of protein evolution. PLoS One 2007,
2(6):e503.

14. Jones DT, Taylor WR, Thornton JM: The rapid generation of mutation data
matrices from protein sequences. Comput Appl Biosci 1992, 8(3):275-282.

ProteinEvolver documentation

15. Le SQ, Gascuel O: An improved general amino acid replacement matrix.
Mol Biol Evol 2008, 25(7):1307-1320.

16. Abascal F, Posada D, Zardoya R: MtArt: A New Model of Amino Acid
Replacement for Arthropoda. Mol Biol Evol 2007, 24(1):1-5.

17. Yang Z, Nielsen R, Masami H: Models of amino acid substitution and
applications to mitochondrial protein evolution. Mol Biol Evol 1998,
15(12):1600-1611.

18. Adachi J, Hasegawa M: MOLPHY version 2.3: programs for molecular
phylogenetics based in maximum likelihood. Comput Sci Monogr 1996, 28:1-
150.

19. Dimmic MW, Rest JS, Mindell DP, Goldstein RA: rtREV: an amino acid
substitution matrix for inference of retrovirus and reverse transcriptase
phylogeny. J Mol Evol 2002, 55(1):65-73.

20. Muller T, Vingron M: Modeling amino acid replacement. J Comput Biol 2000,
7(6):761-776.

21. Whelan S, Goldman N: A general empirical model of protein evolution
derived from multiple protein families using a maximum-likelihood
approach. Mol Biol Evol 2001, 18(5):691-699.

22. Hudson RR: Properties of a neutral allele model with intragenic
recombination. Theor Popul Biol 1983, 23:183-201.

23. Kingman JFC: The coalescent. Stochastic Processes and their Applications
1982, 13:235-248.

24. Wiuf C, Posada D: A coalescent model of recombination hotspots. Genetics
2003, 164(1):407-417.

25. Hudson RR: Island models and the coalescent process. Mol Ecol 1998, 7:413-
418.

26. Kimura M, Weiss GH: The Stepping Stone Model of Population Structure
and the Decrease of Genetic Correlation with Distance. Genetics 1964,
49(4):561-576.

27. Wright S: Evolution in Mendelian populations. Genetics 1931, 16:97-159.
28. Navascues M, Depaulis F, Emerson BC: Combining contemporary and

ancient DNA in population genetic and phylogeographical studies. Mol Ecol
Resour 2010, 10(5):760-772.

29. Arenas M, Posada D: The effect of recombination on the reconstruction of
ancestral sequences. Genetics 2010, 184(4):1133-1139.

30. Arenas M, Posada D: Coalescent simulation of intracodon recombination.
Genetics 2010, 184(2):429-437.

31. Griffiths RC, Marjoram P: An ancestral recombination graph. In: Progress in
population genetics and human evolution. Edited by Donelly P, Tavaré S, vol.
87. Berlin: Springer-Verlag; 1997: 257-270.

32. Beaumont MA: Approximate Bayesian Computation in Evolution and
Ecology. Annu Rev Ecol Evol Syst 2010, 41:379-405.

33. Beaumont MA, Zhang W, Balding DJ: Approximate Bayesian computation in
population genetics. Genetics 2002, 162(4):2025-2035.

34. Hudson RR: Generating samples under a Wright-Fisher neutral model of
genetic variation. Bioinformatics 2002, 18(2):337-338.

35. Yang Z: Among-site rate variation and its impact on phylogenetic analysis.
Trends Ecol Evol 1996, 11(9):367-372.

36. Arenas M, Patricio M, Posada D, Valiente G: Characterization of
phylogenetic networks with NetTest. BMC Bioinformatics 2010, 11(1):268.

ProteinEvolver documentation

37. Rambaut A, Grassly NC: Seq-Gen: an application for the Monte Carlo
simulation of DNA sequence evolution along phylogenetic trees. Comput
Appl Biosciences 1997, 13(3):235-238.

38. Yang Z: PAML: a program package for phylogenetic analysis by maximum
likelihood. Comput Appl Biosciences 1997, 13(5):555-556.

39. Arenas M, Posada D: Recodon: coalescent simulation of coding DNA
sequences with recombination, migration and demography. BMC
Bioinformatics 2007, 8:458.

40. Vendruscolo M, Kussell E, Domany E: Recovery of protein structure from
contact maps. Fold Des 1997, 2(5):295-306.

41. Bastolla U, Roman HE, Vendruscolo M: Neutral evolution of model proteins:
diffusion in sequence space and overdispersion. J Theor Biol 1999,
200(1):49-64.

42. Guerois R, Nielsen JE, Serrano L: Predicting changes in the stability of
proteins and protein complexes: a study of more than 1000 mutations. J Mol
Biol 2002, 320(2):369-387.

43. Berezovsky IN, Zeldovich KB, Shakhnovich EI: Positive and negative design
in stability and thermal adaptation of natural proteins. PLoS Comput Biol
2007, 3(3):e52.

44. Noivirt-Brik O, Horovitz A, Unger R: Trade-off between positive and
negative design of protein stability: from lattice models to real proteins.
PLoS Comput Biol 2009, 5(12):e1000592.

45. Minning J, Porto M, Bastolla U: Detecting selection for negative design in
proteins through an improved model of the misfolded state. Proteins 2013.

46. Derrida B: Random Energy Model: An exactly solvable model of disordered
systems. Phys Rev B 1981, 24:2613-2626.

47. Goldstein RA: The evolution and evolutionary consequences of marginal
thermostability in proteins. Proteins 2011, 79(5):1396-1407.

48. Ewens WJ: Mathematical Population Genetics, vol. 9. Berlin: Springer-
Verlag; 1979.

49. Arenas M, Valiente G, Posada D: Characterization of reticulate networks
based on the coalescent with recombination. Mol Biol Evol 2008,
25(12):2517-2520.

50. Arenas M: Simulation of Molecular Data under Diverse Evolutionary
Scenarios. PLoS Comput Biol 2012, 8(5):e1002495.

51. Fletcher W, Yang Z: INDELible: a flexible simulator of biological sequence
evolution. Mol Biol Evol 2009, 26(8):1879-1888.

52. Latter BD: The island model of population differentiation: a general
solution. Genetics 1973, 73(1):147-157.

53. Maruyama T: A simple proof that certain quantities are independent of the
geographical structure of population. Theor Popul Biol 1974, 5(2):148-154.

54. Matsen FA, Wakeley J: Convergence to the island-model coalescent process
in populations with restricted migration. Genetics 2006, 172(1):701-708.

55. Bastolla U, Farwer J, Knapp EW, Vendruscolo M: How to guarantee optimal
stability for most representative structures in the Protein Data Bank.
Proteins 2001, 44(2):79-96.

56. Bastolla U, Demetrius L: Stability constraints and protein evolution: the role
of chain length, composition and disulfide bonds. Protein Eng Des Sel 2005,
18(9):405-415.

ProteinEvolver documentation

57. Kosakovsky Pond SL, Frost SD, Muse SV: HYPHY: Hypothesis testing using
phylogenies. Bioinformatics 2005, 21:676-679.

58. Abascal F, Zardoya R, Posada D: ProtTest: selection of best-fit models of
protein evolution. Bioinformatics 2005, 21(9):2104-2105.

59. Hudson RR: Gene genealogies and the coalescent process. Oxf Surv Evol Biol
1990, 7:1-44.

