
PU’09 (International Workshop on Program Understanding)
June, 19-23, Altai Mountains, Russia

SPSC: a Simple Supercompiler in Scala ?

Ilya Klyuchnikov and Sergei Romanenko

Keldysh Institute of Applied Mathematics
Russian Academy of Sciences

1 Introduction

Supercompilation [3,4,5] is a program transformation technique, suggested by
V.F. Turchin in the early 1970-s. There is a good deal of literature devoted to
supercompilation. For the most part, however, the presentations suffer from the
techniques being described either in a fragmentary and incomplete way, or at an
excessively high level of abstraction (as specifications or inference rules, rather
than concrete algorithms). As a result, the suggested techniques appear to be
difficult to test for practical usability. If a presentation is incomplete, the reader
is supposed to be able to guess the missing parts. This puzzle may be a non-
trivial one (besides, there is no guarantee that the reader’s solution will be the
same as expected by the paper’s authors). On the other hand, if the level of a
presentation is too abstract, turning it into ready-to-use programs may be an
intricate task.

Thus, from a working programmer’s perspective, supercompilation appears as
something obscure, esoteric and sophisticated in implementation. And, in turn,
without an implementation at hand, the potential of supercompilation may be
difficult to judge.

The goal of the paper is to demystify supercompilation by presenting the
complete source code of a simple, yet operational supercompiler. This may be
helpful for a working programmer giving him an opportunity to familiarize him-
self with supercompilation formulated in terms of his ”native language”, i.e.
in form of concrete programs. Besides, these programs are complete and ready
to run, so that the supercompilation techniques described in the paper can be
immediately tried in practice.

We use Scala [1] as an implementation language. The reason is that various
algorithms related to supercompilation are different in nature. Some algorithms
are easy to formulate in functional style, while others can be naturally written
in object-oriented terms. A peculiarity of Scala is that it smoothly integrates
features of object-oriented and functional programming, including mixins, alge-
braic datatypes with pattern matching, genericity, and more. In addition, Scala
is a production programming language seamlessly integrated with underlying
implementation platform (Java).

The paper describes a simple supercompiler SPSC for a lazy first-order func-
tional language [2]. Each section of the paper starts by introducing an important
? Supported by Russian Foundation for Basic Research projects No. 08-07-00280-a

and No. 09-01-00834-a.

1

aspect of supercompilation and then provides an implementation of the corre-
sponding algorithms in Scala. We assume the reader to be familiar with Java
(or other modern object-oriented language). The features of Scala that are not
present in Java are given short explanations.

2 Supercompilation in a Nutshell

Consider a simple functional program appending two lists:

gApp(Nil(), vs) = vs;
gApp(Cons(u, us), vs) = Cons(u, gApp(us, vs));

Suppose we need to concatenate three lists. This can be achieved by evaluat-
ing the expression gApp(gApp(xs, ys), zs). However, this involves an ineffi-
ciency: the list xs is traversed twice (by the inner call to gApp, and by the outer
one). By supercomipiling this program, we can obtain a more efficient program.
Let us try to evaluate the expression (configuration) gApp(gApp(xs, ys), zs)
”symbolically”. First of all, we unfold the inner call gApp(xs, ys). Since gApp
analyzes the structure of the first argument, we have to consider two cases (or
using the jargon of supercompilation - to split the configuration). In the first
case xs = Nil(), and in the second case xs = Cons(u, us), where u and us
are fresh variables. We get:

!"##$!"##$%&'()&*'(+&*

!"##$,-.&$/'(!"##$/&'()&**'(+&*!"##$)&'(+&*

%&(0(,-.&$/'(/&*%&(0(123$*

Now, the outer call to gApp in the right configuration can be unfolded in
unambiguous way:

!"##$!"##$%&'()&*'(+&*

!"##$,-.&$/'(!"##$/&'()&**'(+&*

,-.&$/'(!"##$!"##$/&'()&*'(+&**

!"##$)&'(+&*

%&(0(,-.&$/'(/&*%&(0(123$*

2

The rightmost configuration has a constructor at the outermost level - we
can do nothing useful with it, so we continue by symbolically evaluating its
arguments:

gApp(gApp(xs, ys), zs)

gApp(Cons(u, gApp(us, ys)), zs)

Cons(u, gApp(gApp(us, ys), zs))

gApp(gApp(us, ys), zs)u

gApp(ys, zs)

xs = Cons(u, us)xs = Nil()

The rightmost configuration gApp(gApp(us, ys), zs) is the same as the
root configuration (up to variable renaming). It is clear that further evaluating
this configuration makes little sense, because it would produce the same result
again. Thus we continue by unfolding the leftmost configuration gApp(ys, zs).
The result of two unfolding steps is as follows:

gApp(gApp(xs, ys), zs)

gApp(Cons(u, gApp(us, ys)), zs)

Cons(u, gApp(gApp(us, ys), zs))

gApp(gApp(us, ys), zs)u

gApp(ys, zs)

Cons(u, gApp(us, zs))

gApp(us, zs)u

zs

xs = Cons(u, us)

ys = Cons(u, us)ys = Nil()

xs = Nil

Now the construction of the configuration tree terminates: each leaf contains
either a variable, a nullary constructor, or an already processed configuration (up
to variable renaming). One can say that the tree thus constructed represents all
possible ways of evaluating the root expression (configuration), which correspond
to different values of the variables appearing in the root configuration.

3

To construct a program from a given tree, we generate a function definition
for each node alpha with child node beta. The left and right sides of the defini-
tion are derived from alpha and beta respectively. Particularly, in this example
we rename the expression gApp(gApp(xs, ys), zs) into gApp1(xs, ys, zs)
and get the following:

gApp1(Nil(), y, z) = gApp2(y, z);
gApp1(Cons(v1, v2), y, z) = Cons(v1, gApp1(v2, y, z));
gApp2(Nil(), z) = z;
gApp2(Cons(v3, v4), z) = Cons(v3, gApp2(v4, z));

It can be easily seen that the evaluation of App1(xs, ys, zs) results in the
list xs being traversed only once.

To sum up, the transformation has involved 3 procedures: symbolic compu-
tation, the search for regularities, and constructing the residual program from
a tree. Symbolic computation was used for adding children to the current leaf.
The search for regularities prevented the unfolding of already encountered con-
figurations. And finally, when the tree had stopped to grow, a new term and a
corresponding residual program were generated.

3 SLL: The Input Language of the Supercompiler

Our supercompiler deals with programs written in a simple first-order functional
language (SLL). We suppose that there are countably infinite sets of symbols
representing variables x ∈ X, constructors c ∈ C and function names f ∈ F and
g ∈ G. All symbols have fixed arity. SLL-programs deal with data represented
by (possibly infinite) trees built by means of constructors. The syntax of SLL is
shown in Fig. 1. A program is a sequence of function definitions. All functions
are divided into two classes: f-functions and g-functions[2]. The definition of
a g-function is a sequence of one or more rules, each rule performing pattern
matching on its first argument. The definition of an f-function is a single rule
whose arguments are just variables, so that an f-function performs no analysis
of its input data.

p : := d1 . . . dn

d : := f (x1 , . . . , xn) = e ;
| g (q1 , x1 , . . . ,xn) = e1 ;

. . .
g (qm , x1 , . . . ,xn) = em ;

e : := x
| c(e1 , . . . ,en)
| f (e1 , . . . ,en)
| g (e1 , . . . ,en)

q : := c v1 . . . vn

program
f-function
g-function

variable
constructor
call to f-function
call to g-function
pattern

Fig. 1. SLL Grammar

4

To simplify our presentation, variable names are required to start with a
lowercase letter, constructor names with an uppercase letter, and the names of
f- and g-functions with f and g respectively.

The intended operational semantics of the language is normal-order graph
reduction to weak head normal form. Thus, essentially, SLL is a small subset of
Haskell.

The SLL program considered in the previous section deals with lists built
with the constructors Nil and Cons, and consists of a single rule defining the
g-function gApp concatenating two lists.

4 Abstract Syntax

The implementation of the SLL abstract syntax in the language Scala is pre-
sented in Fig. 2. The first lines resemble Java, however, there are some differ-
ences.

The abstract class Term, which is used for representing SLL expressions, is
declared first. Since the class body is empty, it can be omitted in Scala (but not
in Java).

The concrete class Var is a subclass of Term and represents SLL variables. In
Scala, every concrete class has a primary constructor, whose arguments are de-
clared right after the class name. These arguments automatically become mem-
bers of the class. So, since the constructor Var has the string argument name,
name becomes a class member. The keyword case in a class definition indicates
that all instances of the class can be matched against patterns. For instance, if
the value of t is an instance of the class Var, then the contents of the field name
is printed, otherwise nothing is done:

t match { case Var(name) => print(name); case _ => }

Scala has two kinds of variables: vals and vars. A val is similar to a final
variable in Java. Once initialized, a val can never be reassigned. A var, by
contrast, is similar to a non-final variable in Java. A var can be reassigned
throughout its lifetime. Methods are declared using the keyword def.

Constructors, f-calls and g-calls are arranged in the same way - they have a
name and arguments. So it is natural to represent them by a single class with an
extra parameter denoting the term kind. The possible term kinds are enumerated
in the object TKind (in the way similar to Java enum). The keyword object
declares a singleton object. ”If you are a Java programmer, one way to think of
singleton objects is as the home for any static methods and values you might
have written in Java.”[1]

The class CFG is meant for representing these terms, the field kind being the
term’s kind, the field name being the term’s name, and the field args being the
list of the term’s arguments. The type of args is declared as List[Term], which
means ”a list of objects of the class Term”. Note that in Scala square brackets
are used for specifying type parameters, rather than array elements. (And in
Java type parameters are written in angular brackets).

5

abstract class Term
case class Var(name: String) extends Term
case class CFG(kind: TKind.Value, name: String, args: List[Term])
extends Term {
def replaceArgs(newArgs: List[Term]) = CFG(kind, name, newArgs)

}
case class Let(term: Term, bindings: List[(Var, Term)]) extends Term
case class Pat(name: String, args: List[Var])

object TKind extends Enumeration {val Ctr, FCall, GCall = Value}

class CFGObject(kind: TKind.Value) extends ((String, List[Term]) => CFG) {
def apply(name: String, args: List[Term]) = CFG(kind, name, args)
def unapply(e: CFG) = if (e.kind == kind) Some(e.name, e.args) else None

}
object Ctr extends CFGObject(TKind.Ctr)
object FCall extends CFGObject(TKind.FCall)
object GCall extends CFGObject(TKind.GCall)

abstract class Def {def name: String}
case class FFun(name: String, args: List[Var], term: Term) extends Def
case class GFun(name: String, p: Pat, args: List[Var], term: Term) extends Def

case class Program(defs: List[Def]){
val f = (defs :\ (Map[String, FFun]()))
{case (x: FFun, m) => m + (x.name -> x); case (_, m) => m}

val g = (defs :\ (Map[(String, String), GFun]()))
{case (x: GFun, m) => m + ((x.name, x.p.name) -> x); case (_, m) => m}

val gs = (defs :\ Map[String, List[GFun]]().withDefaultValue(Nil))
{case (x: GFun, m) => m + (x.name -> (x :: m(x.name))); case (_, m) => m}

}

Fig. 2. SLanguage.scala

To simplify manipulations with terms we define functional objects Ctr, FCall,
GCall. A method apply is only used to mimick a constructor: c = Ctr(n, ts)
expands to c = Ctr.apply(n, ts). A method named unapply is used for gen-
eralized pattern-matching yielding an extractor : the pattern case Ctr(n, ts)
will cause an invocation of Ctr.unapply. Some(n, args) corresponds to a suc-
cessful match, while None is a failure.

In addition to the list of definitions defs (declared in the constructor), the
class Program contains three value fields: f, g, and gs. f is a map, where key
is a name of an f-function and a value is the f-function itself. g is a map which
uses a pair (a g-function name, a pattern name) as a key and the corresponding
g-function as a value. gs is a map with a g-function name as a key and a list
of g-functions as a value. In Scala, a piece of code appearing inside a class, but
outside the method definitions, is considered to be a part of the constructor
body. So, in the class Program, the maps f, g and gs are initialized when the
constructor is called. To populate the map f, we traverse the list of function
definitions. If an f-function is encountered then it is added to f. Note that this
can be written in Scala in an elegant way by means of higher-order functions.
We use the method :\ of the class List (where :\ is an alias for foldRight)
possessing the following property:

([a0, a1, a2 .. an] :\ z) op = op(a0, op(a1, op(..., op(an, z) ...)))

6

In this equation, op is a function, which, in Scala, can be written in-line as a
construction of the form {case p1 => e1; ... case pN => eN;}, representing
an anonymous function performing pattern matching on its argument. The logic
is as follows: we start with the empty map and traverse the function definition
list. If the current element is an f-function, we add it to the map, otherwise the
map remains unchanged. In this case, the operation op is a function that takes as
input a pair: the current function definition and the map accumulating function
definitions. The maps g and gs are built in a similar manner.

Maps in Scala (along with lists) are ”genuine” functions: getting the value
associated with a key k in a map d is written as d(k):

val f: FFun = program.f("fApp2") // f-functiion
val g: GFun = program.g("gApp", "Nil") // g-funtion corresponding to pattern
val gs: List[GFun] = program.gs("gApp") // list of g-functions

So we have defined the abstract syntax of SLL in functional style: all syntax
objects are immutable values.

Let-expressions do not correspond to any SLL construct: they are generated
by the supercompiler SPSC and will be described later.

5 Term Algebra

A substitution is a list of pairs (v, t), where v is a variable and t is a term.
A substitution can be conveniently represented in Scala by a map of the type
Map[Var, Term].

Informally, the result of applying a substitution to a term is defined as fol-
lows: find all the variables in the term that belong to the domain of the sub-
stitution and replace them by their values. This is implemented in the method
subst in Fig. 3. The method findSubst takes two terms t1 and t2 and tries
to find a substitution m such that subst(t1, m) = t2. If there exists such a
substitution, then t2 is an instance of t1. The idea is as follows: we start with
the empty substitution and populate it by simultaneously traversing both terms
t1 and t2. This is implemented in the method walk. The method inst checks
whether the second term is an instance of the first one. The method equiv
checks whether two terms are equivalent up to variable renaming. Here we make
extensive use of the higher-level methods of Scala collections: map, /: (an alias
for foldLeft), filter, forall, and local partial functions. The underscore is
used for creating curried versions of functions: subst(_, m) is equivalent to
{(x) => subst(x, m)}.

6 Process Tree

The SLL interpreter may be seen as a machine simplifying a given expression
step-by-step according to a set of rules that specify the semantics of the language.
It should be noted that the standard interpreter is only capable of simplifying
the terms that are ground, i.e. contain no variables. In this case the rule to be
applied is determined unambiguously.

7

object Algebra {
def subst(term: Term, m: Map[Var, Term]): Term = term match {
case v: Var => m.getOrElse(v, v)
case e: CFG => e.replaceArgs(e.args.map(subst(_, m)))

}

def equiv(t1: Term, t2: Term): Boolean = inst(t1, t2) && inst(t2, t1)
def inst(t1: Term, t2: Term): Boolean = findSubst(t1, t2) != null
def shallowEq(e1: CFG, e2: CFG) = e1.kind == e2.kind && e1.name == e2.name

def findSubst(t1: Term, t2: Term): Map[Var, Term] = {
val map = scala.collection.mutable.Map[Var, Term]()
def walk(t1: Term, t2: Term): Boolean = (t1, t2) match {
case (v1: Var, _) => map.getOrElse(v1, t2) == (map+(v1 -> t2))(v1)
case (e1: CFG, e2:CFG) if shallowEq(e1, e2) =>
List.forall2(e1.args, e2.args)(walk)

case _ => false
}
if (walk(t1, t2)) Map(map.toList:_*).filter{case (k, v) => k != v} else null

}

def vars(t: Term): List[Var] = t match {
case v: Var => (List(v))
case e: CFG => (List[Var]() /: e.args) {_ union vars(_)}

}

def trivial(expr: Term): Boolean = expr match {
case FCall(_, _) => false
case GCall(_, _) => false
case _ => true

}
}

Fig. 3. Algebra.scala

In the case of supercompilation, an expression to be transformed (a config-
uration) may contain variables, in which case it ”symbolically” represents a set
of ground expressions. Thus, there may arise situations in which an expression
cannot be reduced by applying a single reduction rule, and a case analysis is
needed.

In particular, if the first argument of a g-function call is a variable x, and
the g-function definition contains N rules, we have to consider N cases, each
case corresponding to a rule in the g-function definition. If a rule has the form
g(c(x1,...,xM),...)=e, we replace x in the configuration with c(x1,...,xM),
so that the rule becomes applicable, and a reduction step can be performed by
unfolding the call to g.

A ”process tree” is an oriented tree with a start configuration placed in the
root, and is built as a result of symbolic computation (or metacomputation [5])
described above. If a node has been produced by the application of a g-rule, the
arrow connecting the parent and the child nodes is assigned the contraction of
the form x = c(x1,...,xM) where c is the constructor from the left hand side
of the g-rule.

We use 3 classes for representing process trees (see Fig. 4), the names of
classes being self-explanatory.

8

import Algebra._

case class Contraction(v: Var, pat: Pat)

class Node(val expr: Term, val parent: Node, val contr: Contraction) {
def ancestors: List[Node] =
if (parent == null) Nil else parent :: parent.ancestors

def fnode =
ancestors.find{n => !trivial(n.expr) && equiv(expr, n.expr)}.getOrElse(null)

def isProcessed = expr match {
case Ctr(_, Nil) => true
case v: Var => true
case _ => fnode != null

}
}

class Tree(val root: Node, val children: Map[Node, List[Node]]) {
def addChildren(n: Node, cs: List[(Term, Contraction)]) =
new Tree(root, children + (n -> (cs map {case (t, b) => new Node(t, n, b)})))

def replace(n: Node, exp: Term) =
if (n == root) new Tree(n, Map().withDefaultValue(Nil))
else {
val p = n.parent
val cs = children(p) map {m => if (m == n) new Node(exp, p, n.contr) else m}
new Tree(root, children + (p -> cs))

}

def leaves_(node: Node): List[Node] =
if (children(node).isEmpty) List(node)
else List.flatten(children(node) map leaves_)

def leaves() = leaves_(root)
}

Fig. 4. ProcessTree.scala

The class Tree has a number of utility methods. leaves returns a list of the
tree’s leaves. replace returns a new tree by replacing the expression in a node
and deleting the subtrees under the node (if any). addChildren takes a list of
terms, turns each term into a node, and returns a new tree with the nodes thus
obtained added as children to the node in question. The other members of the
classes are described in the following sections.

7 Supercompiler: the First Look

In a general case, the process tree constructed by metacomputation will be in-
finite. Supercompilation is based on the idea that, for a given source program,
the construction of the process tree should eventually produce a configuration
conf2 that is similar to an earlier configuration conf1. For example, suppose
that conf2 is identical to conf1 modulo variable renaming. It means that the
evaluation of conf2 will produce the same subtree as the evaluation of conf1.
So it seems reasonable, to just add an arrow from conf2 to conf1 to the tree,
thereby turning the tree into a graph. The node labeled with conf1 is called a
functional node (or a base node) and the node labeled with conf2 a repeat node.

9

import Algebra._
class BaseSuperCompiler(p: Program){
def driveExp(expr: Term): List[(Term, Contraction)] = expr match {
case Ctr(name, args) => args.map((_,null))
case FCall(name, args) =>
List((subst(p.f(name).term, Map(p.f(name).args.zip(args): _*)), null))

case GCall(name, Ctr(cname, cargs) :: args) =>
val g = p.g(name, cname)
List((subst(g.term, Map((g.p.args:::g.args) zip (cargs:::args): _*)), null))

case gCall @ GCall(name, (v : Var) :: args) =>
for (g <- p.gs(name); fp = freshPat(g.p); cons = Ctr(fp.name, fp.args))
yield driveExp(subst(gCall, Map(v -> cons))) match
{case (k, _) :: _ => (k, Contraction(v, fp))}

case GCall(name, args) =>
driveExp(args(0)) map {case (k, v) => (GCall(name, k :: args.tail), v)}

case Let(term, bs) => (term, null) :: bs.map {case (_, v) => (v, null)}
}

def buildProcessTree(e: Term): Tree = {
var t = new Tree(new Node(e, null, null), Map().withDefaultValue(Nil))
while (t.leaves.exists{!_.isProcessed}) {
val b = t.leaves.find(!_.isProcessed).get
t = b.ancestors.find(a => !trivial(a.expr) && inst(a.expr, b.expr)) match {
case Some(a) => t.replace(b, Let(a.expr, findSubst(a.expr, b.expr).toList))
case None => t.addChildren(b, driveExp(b.expr))
}

}
t

}

def freshPat(p: Pat) = Pat(p.name, p.args map freshVar)
}

Fig. 5. BaseSuperCompiler.scala

In a more complicated case, conf2 is not the same as conf1, but there ex-
ists a substitution theta such that conf2 = subst(conf1, theta). If so, the
supercompiler can transform conf2 into a configuration containing conf1s as a
constituent part by making use of the let-construct. And again this enables a
loop in the graph to be created.

The partial process tree, produced by symbolic computation (also known as
driving [3,4,5] in the world of supercompilation) contains enough information for
the residual program (equivalent to the input one) to be constructed.

Now we describe an algorithm constructing the partial process tree. The
method fnode in the class Node finds a corresponding functional node (if any).

A term is trivial, if it is either a constructor, a variable, or a let-expression - see
corresponding method in object Algebra in Fig. 3. A node is called processed,
if it is either a repeat node, a node labeled by a variable, a node labeled by a
nullary constructor, or a repeat node - the method isProcessed in the class
Node implements this logic.

The construction of the partial process tree starts with labeling the root node
with the initial expression. If all leaves have already been processed, then the
supercompilation is complete. Otherwise let b be an unprocessed node:

– If b is trivial, then drive the configuration in b.

10

import Algebra._

class ResidualProgramGenerator(val tree: Tree) {
private val sigs = scala.collection.mutable.Map[Node, (String, List[Var])]()
private val defs = new scala.collection.mutable.ListBuffer[Def]
lazy val result = (walk(tree.root), Program(defs.toList))

private def walk(n: Node): Term = if (n.fnode == null) n.expr match {
case v: Var => v
case Let(_,bs) => subst(walk(tree.children(n).head),

Map(bs map {case (k, _) => k} zip (tree.children(n).tail map walk):_*))
case Ctr(name, _) => Ctr(name, tree.children(n).map(walk))
case FCall(name, args) => walkCall(n, name, args)
case GCall(name, args) => walkCall(n, name, args)

} else sigs(n.fnode) match {
case (name, args) =>
if (tree.children(n.fnode).head.contr == null)

subst(FCall(name, args), findSubst(n.fnode.expr, n.expr))
else subst(GCall(name, args), findSubst(n.fnode.expr, n.expr))

}

def walkCall(n: Node, name: String, args: List[Term]) = {
val vs = vars(n.expr)
if (tree.children(n).head.contr != null) {
val (gname, _) = sigs.getOrElseUpdate(n, (rename(name, "g"), vs))
for (cn <- tree.children(n))
defs += GFun(gname, cn.contr.pat, vs.tail, walk(cn))

GCall(gname, vs)
} else if (tree.leaves.exists(_.fnode == n)) {
val (fname, fargs) = sigs.getOrElseUpdate(n, (rename(name, "f"), vs))
defs += FFun(fname, fargs, walk(tree.children(n).head))
FCall(fname, vs)

} else walk(tree.children(n).head)
}

def rename(f: String, b: String) = {b + f.drop(1) + (sigs.size + 1)}
}

Fig. 6. ResidualProgramGenerator.scala

– If, among the ancestors of b, there is a node a, such that b is an instance of
a, then find a corresponding substitution and replace the expression in b by
a let-expression.

– Otherwise, drive the configuration in b.

The most interesting case is driving a call to a g-function, when the first ar-
gument is a variable. If so, the configuration is split up according to the patterns
in the g-function definition.

The composite patterns, like GCall(name, Ctr(n, cargs) :: args) are
very useful for the implementation of driving. Scala also enables the names of
methods and constructors to be used as binary operators, for instance :: is a
List constructor, which can be used as either ::(head, tail) or head::tail.

8 Residual Program Generator

The process of extracting the residual program from a process tree is conceptu-
ally simple. The initial configuration produces a function definition. Each cycle

11

produces a definition of a recursive function. Each splitting of configuration pro-
duces a g-function definition.

The method walk traverses a partial process tree in top-down order. Visiting
a functional node results in a function definition being generated. In the case of
a configuration splitting, a g-function is generated, otherwise an f-function. A
function definition consists of a signature (the name and the arguments of the
function) and a function body. The function’s arity depends on the number of
variables in the given configuration. The signature is generated from a functional
node, and the recursive function call is generated from the repeat node containing
a reference to the functional node. Visiting a node labeled by a constructor,
results in the corresponding constructor being generated, whose arguments are
produced by visiting the child nodes. Otherwise the result of visiting a node is
obtained by visiting its (single) child node. It should be noted that the names of
generated functions are syntactically correct: the names of f-functions start with
f and the names of g-functions with g. Residual Program Generator is shown in
Fig. 6. Its result is a pair - a new expression and a new program.

9 An Example

Let us consider again the program that concatenates lists. In order to supercom-
pile the term gApp(gApp(xs, ys), zs), the supercompiler SPSC can be invoked
in the following way (where triple quotes are used for representing multi-line
strings):

val code = """gApp(Nil(), vs) = vs;
gApp(Cons(u, us), vs) = Cons(u, gApp(us, vs));"""

val sc = new BaseSuperCompiler(SParsers.parseProg(code))
val pt = sc.buildProcessTree(SParsers.parseTerm("gApp(gApp(xs, ys), zs)"))
val (resTerm, resProgram) = new ResidualProgramGenerator(pt).result
println(resTerm)
println(resProgram)

The result of supercompilation is as follows.
gApp1(xs, ys, zs)
gApp1(Nil(), y, z) = gApp2(y, z);
gApp1(Cons(v1, v2), y, z) = Cons(v1, gApp1(v2, y, z));
gApp2(Nil(), z) = z;
gApp2(Cons(v3, v4), z) = Cons(v3, gApp2(v4, z));

The list xs in the residual program is traversed only once. The output con-
tains two function definitions produced from the source function definition gApp:
gApp1 and gApp2. gApp2 is isomorphic to gApp, while gApp1 is a ”specialized”
version of gApp, which concatenates three lists. The object SParsers will be
described later.

10 Whistle: Homeomorphic Embedding

The version of the supercompiler considered so far may never terminate in try-
ing to produce an infinite process tree. To prevent the non-termination of that
kind, a special technique can be used, which is known as whistle in the world

12

import Algebra._
object HE {
def he_*(t1: Term, t2: Term): Boolean = he(t1, t2) && b(t1) == b(t2)
def he(t1: Term, t2: Term) = heByDiving(t1, t2) || heByCoupling(t1, t2)

private def heByDiving(t1: Term, t2: Term): Boolean = t2 match {
case e: CFG => e.args exists (he(t1, _))
case _ => false

}

private def heByCoupling(t1: Term, t2: Term): Boolean = (t1, t2) match {
case (x: CFG, y: CFG) if shallowEq(x, y) => List.forall2(x.args, y.args)(he)
case (Var(_), Var(_)) => true
case _ => false

}

private def b(t: Term): Int = t match {
case GCall(_, args) => b(args.head)
case Var(_) => 1
case _ => 0

}
}

Fig. 7. HE.scala

of supercompilation. This technique is based on the use of the homeomorphic
embedding relation /. Informally speaking, a configuration a is embedded into
a configuration b, if b can be transformed into a by erasing some parts of b.

Here are a few examples:
b / f(b)

c(b) / c(f(b))
c(b, b) / c(f(b), f(b))

Some non-examples of homeomorphic embedding are:
f(c(b)) 6 / c(b)
f(c(b)) 6 / c(f(b))
f(c(b)) 6 / f(f(f(b)))

More formally, the homeomorphic embedding relation is defined by the rules:
v1 / v2
∃i ∈ {1, ..., n}: e / ei ⇒ e / h(e1, ..., en)

∀i ∈ {1, ..., n}: ei / e′
i ⇒ h(e1, ..., en) / h(e′

1, ..., e′
1)

Here h denotes either a constructor or a function call.
We will use a slightly refined version of the homeomorphic embedding rela-

tion, classifying all expressions according to the value of the following character-
istic function B. The additional requirement is that two expressions e1 and e2 are
tested for embedding only if they belong to the same class, i.e. B(e1) = B(e2).

B(g(e0, e1, ..., em)) = B(e0)
B(f(e1, ..., em)) = 0
B(c(e1, ..., em)) = 0
B(x) = 1

The method he_* in Fig. 7 implements the extended homeomorphic embed-
ding relation.

13

import Algebra._
case class Gen(t: Term, m1: Map[Var, Term], m2: Map[Var, Term])
object MSG {
def msg(t1: Term, t2: Term): Gen = {
val v = freshVar()
var g = Gen(v, Map(v -> t1), Map(v -> t2))
var exp = g.t
do {exp = g.t; g = commonSubst(commonFun(g))} while (exp != g.t)
g

}

def commonFun(g: Gen): Gen = {
for (v <- g.m1.keys) (g.m1(v), g.m2(v)) match {
case (e1: CFG, e2: CFG) if shallowEq(e1, e2) =>
val vs = e1.args map freshVar
val t = subst(g.t, Map(v -> e1.replaceArgs(vs)))
return Gen(t, g.m1 - v ++ vs.zip(e1.args), g.m2 - v ++ vs.zip(e2.args))
case _ =>

}
g

}

def commonSubst(gen: Gen): Gen = {
for ((v1, e1) <- gen.m1; (v2, e2) <- gen.m1)
if ((v1 != v2 && e1 == e2) && (gen.m2(v1) == gen.m2(v2)))
return Gen(subst(gen.t, Map(v1 -> v2)), gen.m1 - v1, gen.m2 - v1)

gen
}

}

Fig. 8. MSG.scala

11 Generalization

A generalization of two configurations t1 and t2 is a triple (t, s1, s2), where
t is a configuration, and s1, s2 are substitutions, such that:

subst(t, s1) == t1 && subst(t, s2) == s2

The most specific generalization of expressions t1 and t2 is a generaliza-
tion (t, s1, s2), such that for every generalization (t’, s1’, s2’), t is an
instance of t’.

The most specific generalization of two expressions t1 and t2 can be found
by exhaustively applying the following rewrite rules to the initial trivial gener-
alization (v, {v:=t1}, {v:=t2}): e

{v := h(e′1, . . . , e
′
n)} ∪ θ′

{v := h(e′′1 , . . . , e
′′
n)} ∪ θ′′

⇒
subst(e, {v := h(v1, . . . , vn)})
{v1 := e′1, . . . , vn := e′n} ∪ θ′
{v1 := e′′1 , . . . , vn := e′′n} ∪ θ′′

 e
{v1 := e′1, v2 := e′2} ∪ θ′
{v1 := e′′1 , v2 := e′′2} ∪ θ′′

⇒
subst(e, {v1 := v2})

{v2 := e′2} ∪ θ′
{v2 := e′′2} ∪ θ′′

An algorithm computing MSG is shown in Fig. 8.

14

import Algebra._

class SuperCompiler(p: Program) extends BaseSuperCompiler(p){

override def buildProcessTree(e: Term): Tree = {
var t = new Tree(new Node(e, null, null), Map().withDefaultValue(Nil))
while (t.leaves.exists{!_.isProcessed}) {
val b = t.leaves.find(!_.isProcessed).get
t = if (trivial(b.expr)) {
t.addChildren(b, driveExp(b.expr)) //drive

} else {
b.ancestors.find(a => !trivial(a.expr) && HE.he_*(a.expr, b.expr)) match {
case Some(a) => {
if (inst(a.expr, b.expr)) abs(t, b, a)
else if (equiv(MSG.msg(a.expr, b.expr).t, Var("z"))) split(t, b)
else abs(t, a, b)

}
case None => t.addChildren(b, driveExp(b.expr)) // drive

}}}
t

}

def abs(t: Tree, a: Node, b: Node) =
((g: Gen) => t.replace(a, Let(g.t, g.m1.toList))) (MSG.msg(a.expr, b.expr))

def split(t: Tree, n: Node) : Tree = n.expr match {
case e : CFG =>
val vs = e.args map freshVar
t.replace(n, Let(e.replaceArgs(vs), vs zip e.args))

}
}

Fig. 9. SuperCompiler.scala

12 Supercompiler Revisited

Now we are ready to ”patch” our supercompiler by adding the whistle and
generalization. Here is a revised algorithm constructing the partial process tree.

The construction of partial process tree starts with labeling the root node
with the initial expression. If all leaves are processed, then the supercompilation
is complete. Otherwise, let b be an unprocessed node:

– If b is trivial, then drive the configuration in b.
– If, among the ancestors of b, there is a node a, such that a.expr / b.expr:

• If b.expr is an instance of a.expr, then find a corresponding substitution
and replace the expression in b by a let-expression.

• If the most specific generalization of a.expr and b.expr is a variable,
then split a.expr.

• Otherwise, generalize a.expr.

– Otherwise, drive the configuration in b.

The revised supercompiler is presented in the Fig. 9.

15

13 One More Example

Consider the following initial configuration gApp(gApp(x, y), x). Without the
whistle and generalization, the supercompilation would never terminate. This is
an example of the accumulating side effect. The progressively larger terms would
be encountered again and again:

gApp(gApp(x, y), x) / gApp(gApp(us, y), Cons(u, us))
/ gApp(gApp(vs, y), Cons(u, Cons (v, vs))))

BaseSuperCompiler will not terminate on this input:
val code = """gApp(Nil(), vs) = vs;

gApp(Cons(u, us), vs) = Cons(u, gApp(us, vs));"""
val sc = new SuperCompiler(SParsers.parseProg(code))
val pt = sc.buildProcessTree(SParsers.parseTerm("gApp(gApp(x, y), x)"))
val (resTerm, resProgram) = new ResidualProgramGenerator(pt).result
println(resTerm)
println(resProgram)

However, with the whistle we can detect these growing terms. So the initial
configuration is generalized and the result of supercompilation is as follows:

gApp1(x, y, x)
gApp1(Nil(), y, z) = gApp2(y, z);
gApp1(Cons(v1, v2), y, z) = Cons(v1, gApp1(v2, y, z));
gApp2(Nil(), z) = z;
gApp2(Cons(v3, v4), z) = Cons(v3, gApp2(v4, z));

14 SLL Parser

This section describes a parser transforming an SLL-program in the concrete syn-
tax (as a character sequence) into the corresponding SLL-program represented
by an abstract syntax tree.

This stuff is not essential for understanding supercompilation, however it has
been included in order to make the SPSC source code complete and ready-to use.
Besides, this section illustrates some powerful features of the Scala programming
language.

The standard Scala library provides a package for writing combinator parsers.
The idea of combinator parsing is to construct sophisticated parsers by com-
posing elementary parsers by means of combinators, which are functions and
operators defined in Scala that take parsers as input and produce new parsers.
More specifically, parsers are implemented in Scala as classes making use of some
advanced object-oriented features. Namely, a concrete parser is a subclass of the
abstract class defined in the library:

abstract class Parser[+T] extends (Input => ParseResult[T]) {...}

Since the class Parser has a functional type Input => ParseResult[T], the
objects of this class are genuine functions. On the other hand, since all functions
in Scala are objects, they can provide additional fields and methods.

Thus, parsers are functions from Input to ParseResult[T]. In our case
Input is a token stream (constructed by the standard library lexer from a char-
acter stream) and T corresponds to different classes that represent SLL abstract

16

import scala.util.parsing.combinator.ImplicitConversions
import scala.util.parsing.combinator.syntactical.StandardTokenParsers
import scala.util.parsing.input.{CharSequenceReader => Reader}

object SParsers extends StandardTokenParsers with ImplicitConversions {
lexical.delimiters += ("(", ")", ",", "=", ";")
def prog = definition+
def definition: Parser[Def] = gFun | fFun
def term: Parser[Term] = fcall | gcall | ctr | vrb
def uid = ident ˆ? {case id if id.charAt(0).isUpperCase => id}
def lid = ident ˆ? {case id if id.charAt(0).isLowerCase => id}
def fid = ident ˆ? {case id if id.charAt(0) == ’f’ => id}
def gid = ident ˆ? {case id if id.charAt(0) == ’g’ => id}
def vrb = lid ˆˆ Var
def pat = uid ∼ ("(" ∼> repsep(vrb, ",") <∼ ")") ˆˆ Pat
def fFun = fid ∼ ("(" ∼> repsep(vrb, ",") <∼ ")") ∼ ("=" ∼> term <∼ ";") ˆˆ FFun
def gFun =
gid ∼ ("(" ∼> pat) ∼ ((("," ∼> vrb)*) <∼ ")") ∼ ("=" ∼> term <∼ ";") ˆˆ GFun

def ctr = uid ∼ ("(" ∼> repsep(term, ",") <∼ ")") ˆˆ Ctr
def fcall = fid ∼ ("(" ∼> repsep(term, ",") <∼ ")") ˆˆ FCall
def gcall = gid ∼ ("(" ∼> repsep(term, ",") <∼ ")") ˆˆ GCall
def parseProg(s: String) = Program(prog(new lexical.Scanner(new Reader(s))).get)
def parseTerm(s: String) = term(new lexical.Scanner(new Reader(s))).get

}

Fig. 10. SParsers.scala

syntax trees. ParseResult[T] is an abstract class with subclasses Success[T]
and Failure. The class StandardTokenParsers provides a few basic parsers
that transform text into a stream of tokens, each token corresponding to an
identifier, an operator, a keyword, etc.

Now we need to construct an abstract syntax tree from the token stream.
This can be done by making use of the standard library of basic parsers and
parser combinators. We will use the following combinators:

– x | y - a parser combinator for alternative composition
– x ∼ y - a parser combinator for sequential composition
– x* - returns a parser that accepts x zero or more times
– x ˆˆ f - a parser combinator for function application
– x ˆ? f - a parser combinator for partial function application
– x ∼> x - a parser combinator for sequential composition which keeps only

the right result
– x <∼ y - a parser combinator for sequential composition which keeps only

the left result
– repsep(x, del) - a parser generator for interleaved repetitions

Since Scala allows the method and operator names to contain non-alphanu-
meric characters, and permits the method names to be used as infix operators,
a parser written in Scala looks like the standard BNF-notation.

First, we supply the lexer with the information about the delimiters of our
language. Then we define our custom building blocks: parser fid corresponds to
an identifier starting with the letter f. Here we use the standard parser ident
which matches a sequence of letters and digits starting with a letter. We define

17

a new parser using the combinator ˆ?. Note that a sequence of case expressions
in Scala is actually a partial function (defined for the arguments that match
one of the patterns). The following parsers are defined in a similar manner:
gid, uid and lid parsers that match identifiers starting with the letter g, an
upper-case letter and a lower case letter, respectively. Other parsers are self-
explanatory. Parser vrb transforms a string into a Var (object of SLL abstract
syntax), etc. Note that a Scala constructor can be considered as a function of
the corresponding arity.

SPSC uses the parser as a ”black box”, calling the following methods:

– parseProg: String => Program, which transforms a (correct) text repre-
sentation of SLL program into an object of class Program

– parseTerm: String => Term, which transforms a (correct) text represen-
tation of SLL term into an abstract syntax tree

15 Conclusions

In this paper we have described a simple supercompiler for a lazy first-order
functional language. The main focus was on providing the complete and ready-
to-use sources of the supercompiler.

To reduce the size of the paper, we have presented a slightly simplified
version of SPSC. In particular, the input programs are supposed to be cor-
rect, so that all checks concerning context-dependent restrictions have been re-
moved. A more advanced version of SPSC can be found at the project page:
http://spsc.appspot.com

References

1. M. Odersky, L. Spoon and B. Venners. Programming in Scala: A Comprehensive
Step-by-step Guide. Artima Inc. 2008.

2. M.H. Sørensen. Convergence of program transformers in the metric space of trees.
In Mathematics of Program Construction, volume 1422 of Lecture Notes in Com-
puter Science. Springer, 1998.

3. V. F. Turchin. The Language Refal: The Theory of Compilation and Metasystem
Analysis. Department of Computer Science, Courant Institute of Mathematical
Sciences, New York University, 1980.

4. V. F. Turchin. The concept of a supercompiler. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 8(3):292325, 1986.

5. S.M. Abramov and L.V. Parmenova. Metacomputations and their application.
Supercompilation (In Russian). Ailamazyan University of Pereslavl, 2006.

6. M.H. Sørensen and R. Glück. Introduction to Supercompilation. In Partial Eval-
uation - Practice and Theory, DIKU 1998 International Summer School, volume
1706 of Lecture Notes in Computer Science. Springer, 1998.

7. M.H. Sørensen, R. Glück and N. Jones. A positive supercompiler. Journal of
Functional Programming, 6, 1996.

8. R. Glück and M.H. Sørensen. A Roadmap to Metacomputation by Supercompi-
lation. In Selected Papers from the International Seminar on Partial Evaluation,
volume 1110 of Lecture Notes in Computer Science. Springer, 1996

18

http://spsc.appspot.com

	Introduction
	Supercompilation in a Nutshell
	SLL: The Input Language of the Supercompiler
	Abstract Syntax
	Term Algebra
	Process Tree
	Supercompiler: the First Look
	Residual Program Generator
	An Example
	Whistle: Homeomorphic Embedding
	Generalization
	Supercompiler Revisited
	One More Example
	SLL Parser
	Conclusions

