
1. XBMC Addon Developers Guide

Author: Ashley Kitson

Copyright: 2010, Ashley Kitson, UK and XBMC.org (http://xbmc.org)

License: Creative Commons Attribution-NonCommercial-ShareAlike 3.0

License details
See Headlines: http://creativecommons.org/licenses/by-nc-sa/3.0/
See Legal Definitions: http://creativecommons.org/licenses/by-nc-
nd/3.0/legalcode

http://xbmc.org/
http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode
http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode
http://creativecommons.org/licenses/by-nc-sa/3.0/


2.Table of Contents
XBMC Addon Developers Guide.........................................................................................................1
Revisions..............................................................................................................................................4
Introduction..........................................................................................................................................5

Purpose.............................................................................................................................................5
Caveats.............................................................................................................................................5
Conventions.....................................................................................................................................5
Prerequisites.....................................................................................................................................5

First Steps.............................................................................................................................................6
The development user......................................................................................................................6
Your development environment.......................................................................................................6

Local working on your PC..........................................................................................................6
Local working on the XBMC server...........................................................................................6
Remote working to an XBMC server.........................................................................................6

IDE's................................................................................................................................................7
Editors..............................................................................................................................................7
Access to documentation.................................................................................................................7

Script Basics.........................................................................................................................................8
Anatomy of an addon.......................................................................................................................8

Directory Name...........................................................................................................................8
Directory structure......................................................................................................................9
File contents..............................................................................................................................10

icon.png................................................................................................................................10
fanart.jpg...............................................................................................................................10
changelog.txt........................................................................................................................10
resources/settings.xml..........................................................................................................10
resources/language...............................................................................................................12
resources/lib..........................................................................................................................15
resources/data.......................................................................................................................15
resources/media....................................................................................................................15
addon.xml.............................................................................................................................15

How to make the addon visible to XBMC.....................................................................................18
Packaging your script for release via XBMC Addons repository..................................................18

Worked examples...............................................................................................................................20
Static Listing..................................................................................................................................20

Goal...........................................................................................................................................20
Code it!......................................................................................................................................20
Breaking it down.......................................................................................................................21

Dynamic listing – Non scraper based............................................................................................23
Goal...........................................................................................................................................23
Code it!......................................................................................................................................23

addondev2.py.......................................................................................................................23
resources/lib/gpodder.py.......................................................................................................24

Breaking it down.......................................................................................................................27
addondev2.py.......................................................................................................................27
resources/lib/gpodder.py.......................................................................................................27

Homework.................................................................................................................................28
Dynamic listing – Scraper based...................................................................................................28

Goal...........................................................................................................................................28
Code it!......................................................................................................................................28
Breaking it down.......................................................................................................................28



Differences required for other extensions of XBMC.........................................................................29
Scripts............................................................................................................................................29
Repository......................................................................................................................................29

Debugging your script........................................................................................................................30
Debug Strategies............................................................................................................................30

XBMC debug log......................................................................................................................30
Script debugging.......................................................................................................................30

The XBMC libraries...........................................................................................................................31
xbmc..........................................................................................................................................31
xbmcgui.....................................................................................................................................31
xbmcplugin................................................................................................................................31
xbmxaddon................................................................................................................................31

References..........................................................................................................................................32
Python............................................................................................................................................32
XBMC............................................................................................................................................32

Current XBMC Python library API references.........................................................................32
XML...............................................................................................................................................32

Credits.................................................................................................................................................33
Appendix A – Code for working example 1.......................................................................................34
Appendix B – Code for working example 2.......................................................................................36
Appendix C – Code for working example 3.......................................................................................41
Appendix D – Code Snippets.............................................................................................................42

Get Current Context.......................................................................................................................42



Revisions

Version Date Item Author

0.1 06 Sept 2010 Initial Draft AK

0.2 08 Sept 2010 Second draft AK

0.3 09 Sept 2010 Third draft 
– includes first example 
program
- license added

AK

0.4 09 Sept 2010 Fourth draft
- includes second example

AK

0.5 11 Sept 2010 Fifth draft
- Completed language and 
settings.xml sections

AK

0.6 15 Sep 2010 Added final example AK

0.7 20 Sept 2010 Type corrections etc AK



Introduction

Purpose

• to provide a guide for would be XBMC Python plugin addon script developers

• to provide the skeleton frameworks to enable script developers to get up and running quickly

• to provide links to authoritative sources of information for script developers

Caveats

• This document does not try to teach you how to program in Python

• This document does not cover developing for the core XBMC system

Conventions

Any commands that you need to type at a terminal are shown thus;

sudo apt-get install xbmc

Any program examples, i.e. code that you will type in is shown thus;
import urllib,urllib2,re,xbmcplugin,xbmcgui 

#TV DASH - by You 2008. 

def CATEGORIES(): 

        addDir('','',1,'') 

        addDir( '','',1,'')

Prerequisites

The first two of these are really nice to haves. If you are not a programmer, there is nothing to stop 
you giving it a go, it'll just take a bit longer is all.

• Some knowledge of application development, particularly in a GUI environment

• Knowledge of Python scripting

• Installed version of XBMC 10 (Dharma) minimum – you do not need the development 
source version



First Steps

The development user

This document assumes for the purposes of illustration, that the user that you installed XBMC with 
is 'xbmc' and that that user has all rights to the /home/xbmc directory.  Please bear this in mind if 
you installed under a different user name on your box.

In addition you may want to set up another user on the XBMC server that you will use to login as 
the developer.  This user should have sudo rights on a Linux based system.  This is your 
development user.

Your development environment

You need to consider how you want to work whilst programming.  Three options are given in order 
of preference.

Local working on your PC

Using a separate development environment is by far the easiest and preferred method of 
development.  You will need to install XBMC on your local machine and run it there.  In some 
senses this is not a bad idea as you can install a plain vanilla XBMC and concentrate on 
developing and testing your addon in isolation, moving it to your 'production' machine for final 
integration testing and thence on into the wild.  In this case you can install XBMC1 as your 
normal logged on user and you shouldn't need to worry about file permissions etc.  You can run 
XBMC in a window to see the results of your work. (Go to System Settings - System Settings – 
Video Output and set Display Mode to Windowed.) Having a dual screen set-up can be very 
beneficial in this scenario.

Local working on the XBMC server

This scenario is similar to working on a local machine except that you will need to install a 
window manager (Linux machines), run XBMC in a window and connect a keyboard and mouse 
to the machine (there are some nice wireless keyboards with touchpads about, Toshiba among 
others do one.)  Otherwise the set-up is the same as for a local PC installation.

Remote working to an XBMC server

In this scenario you are going to use your XBMC server to run your code on, but use another 
machine to do the coding from.  You need to be able to access the server from the local machine.

Running XBMC under windows? 
- share the xbmc user directory and set permissions for your development user to read and write 
to the directory and its subdirectories

Running XBMC under Linux?
- Perhaps the easiest way to do this is to set the file permissions on /home/xbmc to allow the 
group to read and write, enrol your development user name in the xbmc group.  Set the sticky 
bits for the xbmc user and group so that all new files are owned by the xbmc user /group 
irrespective of who creates them;

sudo chmod -R u+s /home/xbmc/.xbmc

1 Fedora users can use a Dharma repository.  See http://forums.fedoraforum.org/showthread.php?t=229121

http://forums.fedoraforum.org/showthread.php?t=229121


sudo chmod -R g+rws /home/xbmc/.xbmc

sudo useradd -G xbmc your_dev_user_name

Then logon via ssh (or sftp) from your working machine. Alternatively, install Samba and set up 
the shares so that you can access your XBMC installation as any user.  Ref to Samba docs

In either OS, set up permanent mappings from your working machine to the XBMC server so 
that your editors etc, can see the files

IDE's

An integrated development environment is a good place to start when coding in any language. 
Check out the following link for a list of free and non free offerings.  Look out for ones that support 
not only Python scripting, but also XML editing and in particular, local and remote debugging; as 
someone once said – Professional programmers use a debugger!

http://wiki.python.org/moin/IntegratedDevelopmentEnvironments

See what other people are using at

http://stackoverflow.com/questions/81584

Editors

If you don't/can't use an IDE, then check

http://wiki.python.org/moin/PythonEditors

for a list of editors that support Python in some way.  And don't forget you can use any simple editor 
such as Nano or Gedit in Linux, ? In Windows, ? In Mac to edit python source code

Access to documentation

It's a really good idea to have a web browser set up so that you have all the documentation you need 
at your finger tips.  So go ahead and download another browser that is different to your normal one 
(e.g. I use Firefox for everyday stuff and Chrome as my Developers reference library,) or at least set 
up a group of tabs in your regular browser that you can fire up when you are developing.  See the 
reference section at the end of this document for sites you will want to have at hand.

http://wiki.python.org/moin/PythonEditors
http://stackoverflow.com/questions/81584
http://wiki.python.org/moin/IntegratedDevelopmentEnvironments


Script Basics

Anatomy of an addon

As of XBMC V10 (Dharma) all addon script packages have a similar structure.

Each addon (as they are now called – separated plugins, scripts etc are pre Dharma version), has its 
own directory.  This directory is located in the .xbmc/addons directory.

Directory Name

Your directory name should follow this convention2;

<addonType>[.<mediaType>].<yourPluginName>

The name parts are case sensitive and must be in lower case.  The dot character separates each 
name part – you can use further dot's to separate things in your plugin name if you wish, 
alternatively you may use a hyphen (-).  No other non-alphanumeric characters should be used.

The addonType is one from the following list

Addon Type Name Description

repository A repository definition file that allows users to add new repositories to 
the XBMC addon manager. Media type is not required.

plugin A plugin script or module that adds to the functionality of XBMC. 
Plugins appear under the relevant media section of the main home menu.

script A runnable program file that will appear in the Program section of the 
main home menu.

skin An XBMC skin definition and its supporting script files.  Media type is 
not required.

The mediaType is not required in all cases.  The following table describes the available 
mediaTypes for the available addon types.  Your addon may provide more than one mediaType if 
you wish, whereby it will appear in more than one section.  In most cases, however, a single 
media type will suffice, and it may be preferable to have multiple addons each providing a single 
media type rather than one addon that tries to do it all.

Addon Media Type Name Description

plugin
script

audio A music addon that will appear in the main menu music 
section

video A video addon that will appear in the main menu video 
section

picture A picture addon that will appear in the main menu  picture 
section

weather A weather addon that will appear in the main menu weather 
section

script module A script plugin that will not appear under a category or 
within the Addons manager, but provides support for other 
addons

2 The convention is not obligatory but represents best practice. See section on addon.xml for further information



The plugin name is up to you, but beware that others haven't used it before you.

So for instance, if you are creating an addon that integrates the Gpodder software with XBMC 
for audio podcasts you might name your directory;

plugin.audio.gpodder-xbmc3

If you are creating a screen scraper to present tv shows from MyGreatTv.com. It might be;

plugin.video.my-great-tv-com

A script to ping all your friends on twitter to tell them you are home might be called;

script.ping-twits-i-am-home

Having settled on your name create the directory under the .xbmc/addons directory.

Directory structure

Your directory contains all the resources needed to operate your addon.  The directory must be 
considered read-only and should not be used for storing intersession or transient data.  Other 
mechanisms are available to do that (more later.)

The directory must contain a file called 'addon.xml'

The directory may optionally contain the following files;

• icon.png

• fanart.jpg

• changelog.txt

Other files may be required to run your addon, most notably the primary or start script if your 
addon is a piece of python code.  It is also considered good practice to place various addon 
resources and support code modules as follows;

addon.xml
icon.png
fanart.jpg
changelog.txt
addon.py

/resources

settings.xml

/language

/lib

/data

/media

i.e. everything that shouldn't be in the root of your directory is considered a resource and should 
be placed in that sub-directory or a sub-directory from /resources.

3 This Gpodder example will be used in this document.



File contents

icon.png

Unless your addon is never viewable by the end user, provide this item.  It is displayed in various 
places within XBMC.

• It should convey what the addon does to the user by graphical means. 

• It should be a 256x256 PNG. 

• It should not have any shadows, gloss, or other overlays on it - XBMC's skinning system 
will handle that. 

• It is suggested that a logo on a plain background (non-transparent) is best in many situations 
(e.g. for addons that retrieve media from an online service, use that service's logo [as long as 
you are free to do so]). 

fanart.jpg

This is a 'nice to have', and helps to keep XBMC graphically rich.  fanart.png should be a 16:9 
JPG image. Some simple guidelines: 

• It is intended for the background, so should be simple and without text where reasonable. 
• A 1280x720 JPG image. It should certainly be no larger than 1920x1080. 
• Keep it as small as is reasonable with respect to file-size. Remember that hundreds of 

thousands of users are going to be downloading this. :-)

changelog.txt

A text file that contains a description of each release change that you make to the system.  This is 
displayed in the XBMC addon installation/update system.  Recommended format is to have it 
sorted by version in descending order, with a simple description as to the major changes (new 
functionality, big fixes etc,) in each version. (In the author's opinion, too many addons skip this 
piece of information making it difficult for users to determine whether a particular problem that 
they may have been having has been fixed or not.)

resources/settings.xml

An XML file that contains the current configuration for the addon.  If your addon has 
configurable items that are set by the user, put them here.  This file drives what the user sees 
when they click on Addon settings for your addon in the various places in XBMC that it can 
appear.  You need do no coding to utilise this functionality

The format for the settings file is relatively straightforward as can be seen in the following 
example;

<?xml version="1.0" encoding="utf-8" standalone="yes"?> 

<settings> 

<category label=”General”>

<setting id="username" type="text" label="2000" 
default="" /> 

<setting id="password" type="text" option="hidden" 
label="2001" enable="!eq(-1,)" default="" /> 

<setting type="sep" /> 

<setting id="debug" type="bool" label="2002" 
default="false" /> 

</category>

</settings>



You need to supply at least one category element.

The label attribute of both categories and settings can be a real piece of text or the id of a 
language string in your language files.

Setting type and additional attributes can be one in the following table

Type Description Value attribute (value=””) Notes

text Creates keyboard 
input

Can have 'option' attribute set 
“true” or “false”, will hide the 
text value if false.

file Creates a file selector

folder Creates a folder 
selector

enum Creates a select box Pipe separated list of values 
e.g. "1|3|5|10|All"

Using 
xbmcplugin.getSetting(pluginId,'
mytagname') on an enum will 
return the index into the list, not 
the value itself.  Also be aware 
that 1 digit indexes may be 
returned as '01', '02' etc

labelenum Same as enum except the value 
is returned by getSetting() 
instead of the index

ipaddress Creates IP dialog

integer Creates numeric 
dialog

bool Creates radio button Set default or value attribute to 
to “true” or “false” (note case).

Using 
xbmcplugin.getSetting(pluginId,'
mytagname') on a bool will 
return 'true' or 'false'. Use 
appropriate conversion to turn 
into real boolean.

sep Creates a separator 
line in the dialog

Ignored

music

video

pictures

programs

local

fileenum Create a file selector 
based on path set in 
value attribute

Set value to root of 
directory you want to use 
for selection

Optional 'mask' attribute ?



action Executes a script 
when selected

Set the 'action' attribute to the 
name of your function to 
execute. e.g.
action="RunPlugin(plug
in://video/Apple Movie 
Trailers Plugin/?
update=newest)"

Optionally set the 'option' 
attribute to “close” if you want to 
close the settings dialog when 
you click the setting.

Settings can have additional attributes

source=”” "video", "music", "pictures", "programs", "files", "local" or blank. if source is 
blank it will use the type for shares if it is a valid share if not a valid share it will 
use, both local and network drives.

visible=”” “true”, “false”.  Determines if the setting is displayed in the settings dialog 
(default = 'true')

enable=”” Allows you to determine whether this setting should be shown based on the value 
of another setting.  3 comparators are available, 

• eq() Equal to

• gt() Greater than

• lt() Less than

    You can AND the comparators using the + symbol and negate it using the ! 
symbol (e.g. !eq() ).  Each comparator takes 2 operands, 

• Relative position of setting to compare

• Value to compare against

Thus if we place settings in our file in the order
myFirst setting
mySecondSetting
myThirdSetting

for the third setting we might add the option
enable=”gt(-2,3) + lt(-2,10)” 

resources/language

put any language translation capability into this directory. A number of XBMC components 
expect language strings to be in this directory, so if you are using them, they must be here.  For 
each language that you are supporting you will create a subdirectory named after the language 
that you are including.  The list of languages supported by the core XBMC system is ;

Language (and language folder name) Lang code used in addons.xml

Bulgarian bg

Catalan ca

Chinese (Simple) zh



Language (and language folder name) Lang code used in addons.xml

Chinese (Traditional) zh

Croatian hr

Czech cs

Danish da

Dutch nl

English en

English (US) en

Esperanto eo

Finnish fi

French fr

German de

Greek el

Hebrew iw

Hungarian hu

Icelandic is

Indonesian in

Italian it

Japanese ja

Korean ko

Maltese mt

Norwegian no

Polish pl

Portuguese pt

Portuguese (Brazil) pt

Romanian ro

Russian ru

Serbian sr



Language (and language folder name) Lang code used in addons.xml

Serbian (Cyrillic) sh

Slovak sk

Slovenian sl

Spanish es

Spanish (Mexico) es

Swedish sv

Turkish tr

Ukrainian uk

NB, where a language shares a lang code, XBMC will decide the language variant based on 
region and language settings that user has set in their preferences.

You are strongly urged to support multilingual capabilities with your addon.  This allows the 
widest possible usage of the addon.  The default language of XBMC is English (NB not English 
(US)), so if you are providing additional language support, you must at least provide English in 
addition to your other supported languages.

For example, lets say we are going to support English. English (US) and French.  In the 
/resources/language directory you will create three sub directories;

/resources/language/English

/resources/language/English (US)

/resources/language/French

In each directory, create the file 'strings.xml'.  The file format is;
<?xml version="1.0" encoding="utf-8" standalone="yes"?> 

<strings> 

<string id="n">My text</string>

</strings>

The id is a number.  You can use your own number sequence, but the convention is for addon id 
numbers to be in the range 30000-30999. So for our three languages we might create;

English/strings.xml
<?xml version="1.0" encoding="utf-8" standalone="yes"?> 

<strings> 

   <!-- Addon Name -->

    <string id="30000">My Addon</string> 

    <!-- some other strings -->

    <string id="30100">Hello</string> 

    <!-- Settings --> 

    <string id="30200">Username</string> 

    <string id="30210">Password</string> 

    <string id="30220">Debugging (restart script to apply)</string> 



</strings>

English (US)/strings.xml
<?xml version="1.0" encoding="utf-8" standalone="yes"?> 

<strings> 

   <!-- Addon Name -->

    <string id="30000">My Addon</string> 

   <!-- some other strings -->

    <string id="30100">Hi</string> 

    <!-- Settings --> 

    <string id="30200">Username</string> 

    <string id="30210">Password</string> 

    <string id="30220">Debugging (restart script to apply)</string> 

</strings>

French/strings.xml
<?xml version="1.0" encoding="utf-8" standalone="yes"?> 

<strings> 

   <!-- Addon Name -->

    <string id="30000">Mon Addon</string> 

   <!-- some other strings -->

    <string id="30100">Bonjour</string> 

    <!-- Settings --> 

    <string id="30200">Pseudo</string> 

    <string id="30210">Mot de passe</string> 

    <string id="30220">Débogage (redémarrer le script à 
appliquer)</string> 

</string

Google Translate and Yahoo's Babelfish are good tools for basic translation, particularly of short 
strings.  Do however get a native speaker to check over your translations if at all possible, 
because both tools may not use the most appropriate idiomatic syntax.  (For instance Google 
translates 'Username' as 'Nom d'utilisateur'. A more appropriate idiomatic translation would be 
'Pseudo'.) The worst that can happen is that you provide a somewhat amusing translation to a 
native speaker.

The worked example section details how to use translations in your script.

resources/lib

put any module definitions or third party software libraries into this directory

resources/data

Store any other static data structures your application requires here. Examples might be 
XLT/XSD files or static XML files that contain lookup tables etc.

resources/media

store any static media (picture, audio, video etc.) files in this directory

Remember, the above is a recommended outline for your addon – if you need fewer or more 
directories to organise your work, just change it.  The only absolutely required file is;

addon.xml

addon.xml tells XBMC;



• what the addon provides

• what the addon relies on to work

• what script to run when it is fired up (if it is meant to be started.)

The basic format of the file is
<?xml version="1.0" encoding="UTF-8"?> 

<addon 

  id="" 

  version="" 

  name="" 

  provider-name=""

  > 

  <requires> </requires> 

  <extension point="see notes"></extension> 

  <extension point="xbmc.addon.metadata"> 

    <summary></summary> 

    <description></description> 

    <platform></platform> 

  </extension> 

</addon>

The attributes of the <addon> opening tag are required

• id - The id attribute is the unique identifier used for this addon. It must be unique, and must 
use only lowercase characters, periods, underscores, dashes and numbers. This identifier is 
also used as the name of the folder that contains the addon.  See comments on directory 
naming above. 

• version - The version attribute is used by XBMC to determine whether updates are 
available. You should use something like 1.0.3 for this. 

• name - The name attribute is the name of the addon as it appears in the UI. This should be in 
English where it makes sense for it to be so, and is not translatable. 

• provider - The provider-name attribute is used as the author field. This could be a team of 
authors or a single author. 

The <requires> tag is optional but where it exists it has the following format;
<requires>

<import addon="" version=""/>

</requires>

i.e a number of <import> tags make up the <requires> tag.  Each <import> tag has two 
attributes;

• addon the name of the library that the addon is dependent on

• version the minimal version number of the required library element.

Example;
<requires>

<import addon="xbmc.gui" version="2.11"/>

<import addon="script.module.simplejson" version="2.0.10"/>



</requires>

In this example, the addon requires the XBMC GUI library which comes with XBMC and a third 
party library (still within XBMC control,) that is delivered in another addon package called 
'script.module.simplesjon'. 

NB, if your module relies on third party modules, they must be installed prior to installing your 
module, by the user.  Assuming the third party module is available on an existing repository, 
XBMC will install this automatically when the user installs your addon.  Libraries outside of the 
xbmc domain must be loaded by your code and do not form part of the <requires> statement as 
XBMC doesn't know what to do with them.

The <extension> elements are required.  You will need at least two of them; the first is always 
named with a point attribute of 'xbmc.addon.metadata'.  This must be supplied by all addons.  It 
tells the addon manager important information about your addon that it uses to display to the 
user or in managing the addon itself.  The second <extension> tells XBMC where to locate this 
plugin within its hierarchy via the point attribute.  You must have at least one of these extensions, 
and it is possible to have more than one if for instance your addon extends say, Music and Video

An <extension point="xbmc.addon.metadata"> tag has the following sub tags;

• <summary [lang=""]> One or more summary elements provide a short summary of 
what the addon does. This should be a single sentence. It may be translated into multiple 
languages, whereby each has a lang="ch" attribute. No lang attribute indicates English. 

• <description [lang=""]> One or more description elements provide a more detailed 
summary of what the addon does. Again, these can be translated.

• <disclaimer [lang=""]> One or more disclaimer elements that indicate what (if any) 
things the user should know about the addon. There is no need to have a disclaimer if you 
don't want one, though if something requires settings, or only works in a particular country 
then you may want to state this here. 

• <platform> A platform tag which specifies which platforms (operating 
systems, hardware) this addon runs on. Many addons will run on all platforms, so "all" is an 
option, as are "linux", "osx", "windx" and "wingl". If the platform tag is missing, it is 
assumed the addon runs on all platforms.

Depending on what part of XBMC you are extending will depend on what attributes are 
contained in the second <extension tag>.  Your addon may specify additional extension points if 
required.

The most common extension point that will be used by plugin addon developers is 
"xbmc.python.pluginsource" .  The following addon.xml example demonstrates the setup for our 
Gpodder plugin addon.

<?xml version="1.0" encoding="UTF-8"?> 

<addon 

  id="plugin.audio.gpodder-xbmc" 

  version="0.0.1" 

  name="Gpodder XBMC Integrator" 

  provider-name="Ashley Kitson"

  > 

  <requires>

  <import addon="xbmc.gui" version="2.11"/>

<import addon="gpodder.api"/>

  </requires> 



  <extension point="xbmc.python.pluginsource" library="gpodder-
xbmc.py">

<provides>audio video</provides>

  </extension> 

  <extension point="xbmc.addon.metadata"> 

    <summary>XBMC Integration to Gpodder</summary>

<summary lang="fr">Intégration de XBMC Gpodder</summary>

    <description>Provides the ability to control Gpodder 
podcatching application from within XBMC including automating 
podcast downloads, managing subscriptions and 
episodes</description> 

<description lang="fr">Fournit la capacité de contrôler 
gpodder baladodiffusion application à partir de XBMC, y compris 
l'automatisation téléchargements podcast, la gestion des 
abonnements et des épisodes</description>

    <platform>linux</platform> 

  </extension> 

</addon>

The <extension point="xbmc.python.pluginsource"> tag has an extra attribute;

• library This is the name of the python script (startup script) that will be run when 
the plugin is activated.  This file must exist in the root of your addon directory.

The extension has an addition sub element;

• <provides> is a whitespace separated list of image, video, audio, executable.  This 
determines in what area (or context) of the XBMC system your addon will make itself 
visible in;
image => Pictures
video => Video
audio => Music
executable => Programs
<blank> => No visible presence

At the present time there is no inbuilt method provided by the XBMC API libraries to 
determine what context we are currently running in.  See Appendix D for a hack to 
determine the context that you can include in your scripts.

See http://wiki.xbmc.org/index.php?title=Plugin_Sources for additional information on this 
extension type.

How to make the addon visible to XBMC

Currently XBMC scans for addons only on startup.  This may be changed in the future. So for now, 
assuming you have put the files in the correct place (i.e. within .xbmc/addons directory as described 
in previous sections,) simply restart XBMC.  Check that you can see the addon in the expected 
place.  If not, its time to debug!  See section on debugging below.

Packaging your script for release via XBMC Addons repository

Once your addon is complete you are ready to release it in the wild, or at least via the inbuilt 
repository for XBMC.  XBMC require that you host your addon in a repository for preference and 
either Git or SVN is compatible.  Failing that, you need to create a ZIP file (i.e. winzip or similar 
created with a Linux/Mac tool,) and place it on a public server that XBMC can access.  See

http://wiki.xbmc.org/index.php?title=Official_Addons_Repository

for more details.  XBMC have a few provisos for adding to the official XBMC repository (all of 

http://wiki.xbmc.org/index.php?title=Official_Addons_Repository
http://wiki.xbmc.org/index.php?title=Plugin_Sources


them reasonable.)

Remember - letting your addon loose carries a certain amount of responsibility, primarily to keep it 
bug free. For scraper based authors this can be problematic as websites do simple things like change 
their layout, css or other html elements on a page.  If you want to enhance it as time goes on, that of 
course is up to you,  but can I suggest that if you do get to a point that you don't want to maintain 
the code any more, you find someone who will take it on, or remove it from distribution.

Alternatively, you can create your own public facing repository and simply submit your repository 
details to XBMC, (using a <extension point="xbmc.addon.repository"> addon configuration.)  A 
third alternative is to distribute the addon as a zip file from your own site, as XBMC has the ability 
to install from zip file.



Worked examples
The following worked examples are based in the Music section of XBMC

Static Listing

This is the simplest of addons and is used to introduce the basic constructs required to develop a 
'xbmc.python.pluginsource' extension addon.

Goal

• To introduce the basic program construct for any xbmc.python.pluginsource addon

• To demonstrate a working addon

Code it!

Go to Appendix A and cut and paste the contents of the files there into the places specified.

This is the contents of our basic addon startup script.  If you've been following the examples so 
far, you should by now have an addons.xml file that points to your startup script.  

 1 """

 2 XBMC Addon Developer's Guide

 3 Example 1 - The basic plugin structure

 4             Demonstrates creating a static l ist

 5 

 6 NB This is done using functions - you could use classes

 7 

 8 Author: Ashley Kitson

 9 """

10 

11 # Step 1 - load in xbmc core support and setup the environment

12 import xbmcplugin

13 import xbmcgui

14 import sys

15 

16 # magic; id of this plugin's instance - cast to integer

17 thisPlugin = int(sys.argv[1])

18 

19 # Step 2 - create the support functions (or classes)

20 

21 def createListing():

22     """

23     Creates a listing that XBMC can display as a directory 
listing

24 

25     @return list

26     """

27     listing = []



28     listing.append('The first item')

29     listing.append('The second item')

30     listing.append('The third item')

31     listing.append('The fourth item')

32     return listing

33 

34 

35 def sendToXbmc(listing):

36     """

37     Sends a listing to XBMC for display as a directory listing

38     Plugins always result in a listing

39 

40     @param list listing

41     @return void

42     """

43     #access global plugin id

44     global thisPlugin

45 

46     # send each item to xbmc

47     for item in listing:

48         listItem = xbmcgui.ListItem(item)

49         xbmcplugin.addDirectoryItem(thisPlugin,'',listItem)

50 

51     # tell xbmc we have finished creating the directory listing

52     xbmcplugin.endOfDirectory(thisPlugin)

53 

54 # Step 3 - run the program

55 sendToXbmc(createListing())

Breaking it down

A plugin type addon is required to do only one thing;  display a list of links that XBMC can 
interpret as something to play or call additional functionality with.  The example program 
illustrates the basic program structure;

• Create your list of things to display

• Send them to XBMC to display

I have split these two bits up for clarity.  Purists would say that you could create and display at 
the same time and so you can, but it is no bad idea for maintainability to split functionality into 
small blobs if possible.  As your programs get bigger, more complex and probably slower to run 
(i.e. if you are screen scraping and need to fetch data from another web site,) you may need to 
revert to creating and displaying at the same time so that the user isn't left with a blank screen 
whilst your program does something useful.

This example creates the list.  The list it provides doesn't do anything yet so don't be despondent. 
Example 2 expands on it to do something active.

L11 – We need to import some supporting libraries.  In addition to the Python core 'sys' lib, we 
will invariably need to add the XBMC GUI (xbmcgui) and Addon (xbmcaddon) libraries. 



XBMC also provides a plugin helper library (xbmcplugin) in addition to its own core library 
(xbmc).  These are all documented via the Pydocs script, see Current XBMC Python library API
references  

L17 – This is a little bit of scriptfoo magic that you won't find documented other than in 
examples.  This line grabs the id of the currently running plugin instance (i.e. your one).  As it is 
possible that XBMC may be running more than one instance of a plugin, we need to be able to 
identify which one we are dealing with.  If you grab and set this early in your script, you can 
then access it when required.  A lot of XBMC functionality requires this id.  In your function 
definitions (or indeed your class definitions when you get to writing them,) you can always 
access it by telling the function that it is to use the global instance of your variable.  This is what 
the statement at line 44 does.  It makes a variable which is in its parent scope available within the 
local function scope.

L21 – This defines a function whose job it is to create the list of things we want to display.  This 
is where the real work goes on.  I am using the native Python list object (similar to arrays in PHP 
and the like,) to store my list information.  As you can see, a very simple list.

L35 – This defines a function that will send the list items to the XBMC console for display as a 
standard directory listing.

L47 – We loop through our list of items, creating an  xbmcgui.ListItem() from each one and then 
send it to XBMC via xbmcplugin.addDirectoryItem().  Both the ListItem() and 
addDirectoryItem() methods have additional parameters that we can use to do something useful 
with the list we produce, but I've left that out for clarity at the moment.

L52 – We need to tell XBMC that we have finished sending items for display.  This line does that 
and as it is the effective last line in the script, control now passes back to XBMC and our work is 
done.

L55 – This runs the main program.  It calls the sendToXbmc() function, passing in the result of a 
call to the createListing().  We could have written it on two lines thus;

list = createListing()

sendToXbmc(list)

but the sort of shorthand in the main listing is acceptable in simple cases.  I could have written 
Lines 48 and 49 as single line;

        xbmcplugin.addDirectoryItem(thisPlugin,'',xbmcgui.ListItem(
item))

but as you can see, it wraps the line, making readability less easy.  Another alternative would be 
to spread it over a number of lines thus;

   xbmcplugin.addDirectoryItem(

            thisPlugin,

            '',

            xbmcgui.ListItem(item)

        )

This is also easily readable.  Whatever style you choose, try and keep it readable, for your own 
sanity and others that may follow you.

A short plea on behalf of code comments;  If you want to help your fellow XBMC devs and 
indeed yourself when it comes to maintainability of your complex code down the line, please 
liberally comment your code.  I see so much code (not just in the XBMC forum threads and in 
the XBMC addon Python codebase, but in my professional PHP career as well,) that isn't 
commented, that it makes me want to weep when I have to read it or maintain it.  Just get into the 
habit of commenting.  More is definitely better here!



Dynamic listing – Non scraper based

Builds on previous example to show how we can dynamically generate the directory listing for 
display.  This example uses data that is on your machine and being controlled by another 
application.

For this example to work, you will need to install Gpodder, the podcasting software.  Gpodder is 
available for the Linux and Windows platforms.  You can get it at http://http://gpodder.org/ or via 
your package manager in Fedora and Ubuntu (at least.)

Install the software on your development machine and start it up.  Add a new subscription, ensure it 
plays, (if not – fix the problem).  Now add some more subscriptions and download some episodes. 
Now open up the Preferences dialog and hit the Advanced button.  Make a note of the location of 
download_dir, you'll need it later.

Now, XBMC can play the contents of Gpodders downloads all by itself.  If you want to prove this, 
In your Music section in XBMC, add a new source and specify the download_dir you noted earlier. 

Browse to your new source in XBMC and click on a file.  If the listing shows a '.m3u' extension this 
will play the only episode if there is only one, or it will display a sub directory listing the available 
episodes to play.  OK, you say, so what?  Well, also in your listing you will see the actual folders 
where the downloaded files are kept, i.e. you appear to get a double listing.  Bit confusing isn't it? 
This example shows you how you can clean this all up via an addon4.

Goal

• To create a simple listing using dynamically generated information from an external source

• To show how to interface to python libraries outside of xbmc domain

• To introduce modules to the development process

Code it!

You need to add some additional files for this example.  Go to Appendix B and cut and paste the 
contents of the files there into the places specified.  You will need the download_dir value you 
collected earlier.

addondev2.py
 1 """

 2 XBMC Addon Developer's Guide

 3 Example 2 - Moving on

 4             Demonstrates creating a dynamic list

 5             Demonstrates using your own modules and classes

 6 

 7 NB This is done using functions - you could use classes

 8 

 9 Author: Ashley Kitson

10 """

11 #

12 # Step 1 - load in core support and setup the environment

4 If you are interested you can automate GPodder doing the podcatching for you on Linux.  See 
http://forum.xbmc.org/showthread.php?t=80476 and read the bit about using cron.  The code you are seeing in this 
document is forming the basis for a complete Gpodder control integrated into XBMc that the author is currently 
writing as his first Python/XBMC project.  Watch the forum for announcements.!

http://forum.xbmc.org/showthread.php?t=80476
http://http://gpodder.org/


13 #

14 import sys

15 import xbmcplugin

16 

17 #addon id - name of addon directory

18 _id='plugin.audio.addon-dev-ex2'

19 #resources directory

20 _resdir = "special://home/addons/" + _id + "/resources"

21 #add our library to python search path

22 sys.path.append( _resdir + "/lib/")

23 

24 #import our worker classes from our module

25 import gpodder as worker

26 

27 # magic; id of this plugin's instance - cast to integer

28 _thisPlugin = int(sys.argv[1])

29 

30 #

31 # Step 2 - instantiate the support classes

32 #

33 creator = worker.creator(_thisPlugin, _id)

34 sender = worker.sender(_thisPlugin)

35 

36 #

37 # Step 3 - run the program

38 #

39 sender.send(creator.get())

40 xbmcplugin.endOfDirectory(_thisPlugin)

resources/lib/gpodder.py
 """

  4 XBMC Addon Developer's Guide

  5 Example 2 - Demonstrates creating a dynamic list from Gpodder directory

  6             This module provides the classes that wil l

  7             create and display the contents

  8 

  9 Author: Ashley Kitson

 10 """

 11 #make xbmc and system modules available

 12 import xbmc

 13 import xbmcplugin

 14 import xbmcgui

 15 import dircache

 16 import fnmatch

 17 

 18 #define global constants for settings xml tags



 19 __GPOPATH_TAG__ = 'gpoPath'

 20 

 21 #define classes

 22 

 23 class creator:

 24     """

 25     Responsible for creating the l ist of items that wil l  get displayed

 26     """

 27     #

 28     # PRIVATE Methods

 29     #

 30 

 31     # current instance of plugin identifer

 32     _pluginId = 0

 33     # plugin name

 34     _pluginName = ' '

 35 

 36     def __init__(self,  pluginId, pluginName):

 37         """

 38         constructor

 39         @parm int pluginId - Current instance of plugin identifer

 40         @param string pluginName - Name of plugin call ing us

 41         """

 42         self._pluginId = pluginId

 43         self._pluginName = pluginName

 44 

 45     def _createList(self):

 46         """

 47         Create the dynamic list

 48         @access private

 49         @returns l ist

 50         """

 51         #get the user setting for the gpodder directory

 52         dir = xbmcplugin.getSetting(self._pluginId,__GPOPATH_TAG__)

 53         #get contents of gpodder directory

 54         dirContent = dircache.l istdir(dir)

 55         #parse contents for all  .m3u fi les

 56         dirContent = fnmatch.fi lter(dirContent, '*.m3u')

 57 

 58         #create listing

 59         l isting = []

 60         for f i le in dirContent:

 61             uri  = xbmc.translatePath(dir + '/ '  + fi le)

 62             label = fi le.replace( '.m3u', ' ' )

 63             l isting.append([label,uri])

 64 



 65         return listing

 66 

 67 

 68     #

 69     # PUBLIC API

 70     #

 71 

 72     def get(self):

 73         """

 74         Refresh and retrieve the current list for display

 75         @access public

 76         @returns l ist

 77         @usage      c=example2.creator()

 78                     l ist = c.get()

 79         """

 80         return self._createList()

 81 

 82 class sender:

 83     """

 84     Responsible for sending output to XBMC

 85     """

 86     # current instance of plugin identifer

 87     _pluginId = 0

 88  

 89     def __init__(self,  pluginId):

 90         """

 91         constructor

 92         @parm int pluginId - current instance of plugin identifer

 93         """

 94         self._pluginId = pluginId

 95 

 96 

 97     def send(self, l isting):

 98         """

 99         Send output to XBMC

100         @param list l isting - the list of items to display

101         @return void

102         """

103         #create listing items

104         # item[0] = l ist label

105         # item[1] = item uri

106         for item in listing:

107             l istItem = xbmcgui.ListItem(item[0])

108             xbmcplugin.addDirectoryItem(

self._pluginId,item[1],l istItem

)



Breaking it down

This addon expands on what we have already learn't.  Some simple things first;

The addon uses a settings file (resources/settings.xml), the format of which was explained earlier 
in this document.  We need this because the location of the Gpodder downloaded files may vary 
from one machine to another.  This example doesn't show you how you can edit the value on 
line.  That comes in a later example!  In the meantime if you need to change the value in it, you 
can simply do it in your editor.

The addon makes use of a module to drive its core functionality from.  The primary reason is that 
the code in the gpodder.py module file is potentially reusable in other addons.  The secondary 
reason is to split up functionality into smaller files that are manageable.  The third reason is that 
it allows us to show how you pull in your own classes from separated modules in your addon 
directory hierarchy.

addondev2.py

L14 – Pull in external modules that we need

L17 to 22 – We need to tell Python where to find our module's files.  These lines set up the path 
and add it to the python search path.  The _id variable is also used later on.

L25 – having told Python where we can find our library modules, now we can load them.  I've 
renamed the reference to the gpodder module to be 'worker'.  It isn't necessary, but for semantic 
reading reasons it is sometimes nice to do this.

L33 & 34 – We now instantiate the classes that we are going to use.  These effectively replace 
the functions from the last example.  The variable values being passed in are required by the 
classes to operate.

L39 – Run the program.  Like the previous example, this uses shorthand to run one method with 
the contents of another.

L40 – Unlike example 1, we explicitly tell XBMC that we have finished work.  This separation 
of tasks, makes it easier to add functionality via the main program script without having to worry 
about a module exiting the directory listing.

resources/lib/gpodder.py

L19 – Python doesn't really support constants in the same way that say, PHP does.  The 
convention is to use __TAG__ for a variable thatyou want to treat as a constant.  This constant 
matches the name of the setting that we want to read from the settings file.

L23 – Here we define our class that is going to be responsible for creating our content listing. 
It's constructor at L36 simply stores the passed in values for later use.

L45 – Here we define the method that actaully does the work of creating the list.  It has a leading 
underscore in its name.  Again Python doesn't really support the concept of private or protected 
methods, it's merely a convention.

L52 – get the setting from the current user's setting file for the gpoPath setting.  This xbmc 
method takes all the pain out of getting the current user (profile's) addon variables.

L54 – Get the contents of the gpodder directory using the Python dircache module

L56 – Use the Python fmatch library to strip out all teh directory contents except those ending in 
'.m3u'
We could have concatenated the previous three lines together;

dirContent = fnmatch.filter(



dircache.listdir(

xbmcplugin.getSetting(self._pluginId,__GPOPATH_TAG__)

), '*.m3u')

L60 – 63 – XBMC really needs two bits of information to operate on in a directory listing;

• the label to display to the user – this is what we did in Example 1

• the URI on which to act.  This can be a url (http://), a file location 
(/home/user/bal/blah.mp3) or any other URI format that it supports (What does it support?)

We know that XBMC knows how to deal with .m3u (playlist files), so all we need to do is give 
the listing the location of the m3u file.

This loop constructs a list of lists, in each sublist there are two items, the label and the uri

L61 – Important one this – This is the construct that we need to use to ensure that the file path 
we are using is translated into something that teh platform on which XBMC us running, can 
understand

L62 – to get he label, we simply remove '.m3u' from the file name

L72 – A 'public' wrapper around around the function that actually does the work.

L82 – definition of the sender class that will output the listing to XBMC

L106 – 108 – The only difference between this and the Example 1 process is that we pass in an 
extra parameter to xbmcplugin.addDirectoryItem().  The second parameter is the URI of the 
thing that we want to display when the user clicks on the listing item.

Homework

The above example doesn't show the podcast image file when each item is browsed on.  Have a 
look at how Gpodder stores this information in the download directories and pick up the file 
location for adding to the listing.

Dynamic listing – A better RSS Reader?

One of the more frustrating bits of XBMC is that you can't read the RSS news feeds.  There are a 
number of ways of doing it, but how about opening up a browser with the news item?  Read on.

Goal

• To demonstrate utilising another addon as a module library for resuability

• To demonstrate calling a plugin from a directory listing

• To demonstrate starting anothe rporgram from within xbmc

To make this example work, you will first need to install the Rss Editor addon available from team 
XBMC (default addon library).

Code it!

The scripts for this example are contained in Appendix C.  Cut and paste them into script.rss-
chippyash directory under ./xbmc/addons.  The full listings also demonstrate the commenting 
required to comply with XBMC requirements to add licensing for your addon if you want to 
distribute it.  Rather than reproduce the listing again here, I will refer directly to the source code 
and pull out relevant lines for discussion.



Breaking it down

addon.xml

The only real thing of interest here is the requirement 
      <requires>

          <import addon="script.rss.editor" version="1.5.9"/>

      </requires>

which tells the system that we are dependent on the RSS Editor addon

rss-example.py

Lines 35 – 42
#name of the rwparris rss editor addon

__RSSEDITOR_NAME__ = "script.rss.editor";

#setup library path for RSS Editor

_path = xbmcaddon.Addon(__RSSEDITOR_NAME__).getAddonInfo('path')

sys.path.append (xbmc.translatePath( os.path.join( _path, 
'resources', 'lib' ) ))

#set up language bootstrapping for XML parser

__language__ = 
xbmcaddon.Addon(__RSSEDITOR_NAME__).getLocalizedString

This is where we set up the system to include the RSS Editor code into our script search path

the __language__ global variable setting is required as the XMLParser class that we will use in 
our code from the module requires it to be set.

Lines 66 – 79
#see if we have a URL parameter

params = creator.getparams()

try:

  url = params["url"]

except:

  url = None

if url == None:

    #do listing

    sender.send(creator.get())

    xbmcplugin.endOfDirectory(_thisPlugin)

else:

    #display news item

    sender.displayNews(url)

Here, we get any parameters that are passed on the command line and test to see if we have one 
called 'url'.  If we do then we call sender.displayNews(url) otherwise we just do as normal, create 
a listing and display it.

resources/lib/rss_chippyash.py

L33
from xmlParser import XMLParser



This is importing the XMLParser class from RSS Editor so we can reuse it.

L45
__BROWSER__ = 'google-chrome'

This sets the command to fire up our browser.  On my system I have Google Chrome installed. 
You may want to change this to another browser.

L47 – This defines the rssFeed class.  This is nothing particularly special, it simply takes a feed 
URL and interrogates it to retrieve title and article link information.

L101
feeds = XMLParser().getCurrentRssFeeds()

This is where we use the RSS Editor's XMLParser class to retrieve and interpret the XBMC Rss 
feed file.

L106
self.feeds.append(rssFeed(feed['url']))

here we just create an rssFeed class for each feed we have.

L108 Our _createListAll method has been modified to create a listing list in our normal format 
for use by the sender class, by using the information in our feeds data structure.

L141 – The getparams() method is a straight lift from the Shoutcast addon and demonstartes how 
to get parameters from the command line.

L196
url = "plugin://" + self._pluginName + "?url=" + item[1]

We only need to slightly modify our send() method to create a special url that XBMC will 
interpret as 'run the plugin called X with a parameter list of Y.  Using this method you can then 
call back tou your own addon and do the extra functionality required.

L199 The definition of displayNews() method.  A simple one liner which tells the system to open 
a new process (our browser in this case,) with a parameter – the url of the item we want to read.

Now, purists are going to leap up and down and say stuff like, how can you control a browser 
with only a remote control and no keyboard.  Of course they are absolutely right and it is one of 
the reasons that a browser hasn't been incorporated into XBMC to date.  But hopefully this 
example gives you some useful insight into a number of techniques that you might use in your 
own work

Homework

Using what you've learnt so far, 

1/ change the example so that it is a Program script, rather than an addon.  What effect does that 
have on its operation?

2/ Instead of opening a browser, have a think about opening an XBMC dialog instead that 
displays the news item.  Take a look at http://wiki.xbmc.org/?title=HOW-
TO_write_plugins_for_XBMC by Voinage and http://wiki.xbmc.org/?title=HOW-
TO_write_Python_Scripts_for_XBMC for more information on scraping and GUI related stuff.

http://wiki.xbmc.org/?title=HOW-TO_write_Python_Scripts_for_XBMC
http://wiki.xbmc.org/?title=HOW-TO_write_Python_Scripts_for_XBMC
http://wiki.xbmc.org/?title=HOW-TO_write_plugins_for_XBMC
http://wiki.xbmc.org/?title=HOW-TO_write_plugins_for_XBMC


Differences required for other extensions of XBMC

Scripts

<extension point="xbmc.python.script"> addons appear under the Program main menu section of 
XBMC.  They need to handle all user interaction and are typically constructed to either run in a 
window constructed by the programmer, or to simply run and display a termination status to the 
user.  They can have settings like other addons which the user can access via the context menu 
when highlighting the program name.

For further up to date information see http://wiki.xbmc.org/index.php?title=Script_Sources

Repository

The repository addon only requires two files – addon.xml and icon.png.  It allows XBMC to include 
your SVN or GIT repository in the list of repositories available for users to download from.  See 
http://wiki.xbmc.org/index.php?title=Addon_Repositories#Repository_Addon for up to date details 
on the format of the  <extension point="xbmc.addon.repository">

http://wiki.xbmc.org/index.php?title=Addon_Repositories#Repository_Addon
http://wiki.xbmc.org/index.php?title=Script_Sources#What_XBMC_requires_for_your_addon


Debugging your script
A number of things can go wrong when developing your script.  XML validation errors caused by 
unfinished tags, use of the wrong string delimiter character (e.g. using “” instead of "", often as the 
result of copying from a word processed source instead of a plain text source).

Debug Strategies

XBMC debug log

Your first port of call is to look at the XBMC logs.  Switch debugging on in the XBMC system 
settings and then look at the log file it produces.  The log is created in  the .xbmc/temp directory.

Linux users can use the 

tail -f xbmc.log

command to watch the log

You can view the log using normal editors and tools available on your platform.

Script debugging

At the current time it is not possible to debug through the XBMC Python code as the Python 
modules are injected directly from C++ and there are no Python libraries in the normal sense. 
This is apparently being worked on5.

You can put print statements in your code and they will appear in the debug log.  As that spews 
out quite a lot of stuff, using something like;

print '#######################################'

print 'what I actually want to see'

can help you locate it easily in the log.

Some helpful setup instructions for installing a Python debugger can be found at;

http://wiki.xbmc.org/index.php?title=HOW-TO_debug_Python_Scripts

http://wiki.xbmc.org/index.php?title=HOW-TO_debug_Python_Scripts_with_Eclipse

The NetBeans Python addon comes with a debugger built in.

5 See http://forum.xbmc.org/showthread.php?t=80984

http://wiki.xbmc.org/index.php?title=HOW-TO_debug_Python_Scripts_with_Eclipse
http://wiki.xbmc.org/index.php?title=HOW-TO_debug_Python_Scripts
http://forum.xbmc.org/showthread.php?t=80984


The XBMC libraries
XBMC has 4 libraries for Python developers.  This may change in time as the system is restructured 
to encompass the addon concept instead of the legacy separation of different components.  

xbmc

This library provides access to the core functionality of XBMC 

xbmcgui

This library is primarily concerned with supporting the graphical user interface

xbmcplugin

This library supports plugin scripts.

xbmxaddon

This library supports a single class which allows you to get and set information and settings for 
your addon.

Please see the References section to find ut how you can generate the latest API reference 
documents for the XBMC library.



References

Python

Python.org: 

http://www.python.org/     - main Python site

http://wiki.python.org/moin/     - Python documentation wiki

http://www.python.org/doc/     - Main Python documentation

XBMC

Additional resources (some of which this document is based on) can be found at;

Addons for XBMC – prime source – read it!
http://wiki.xbmc.org/index.php?title=Addons_for_XBMC

Additional information on language support

http://wiki.xbmc.org/index.php?title=Information_on_Language_Support

Current XBMC Python library API references

You can view the up to date API reference documents by following these steps;

1. Download the Nuka repository xml file at
http://xbmc-addons.googlecode.com/svn/packages/repository.googlecode.xbmc-addons.zip

2. In XBMC home screen, go to System – addons – Install from Zip file, Browse to where the 
zip file is located and click OK (or simply enter on the file name)

3. From XBMC Home screen go to System – Addons and select the Googlecode-xbmc-addons 
entry.  From there, navigate to Program Addons and select and install Pydocs printer.

4. From XBMC Home screen go to Programs and select the Pydocs printer.  It will ask for a 
location to put the generated files – select a suitable location on your file system and hit go. 
This will generate 4 (at time of writing) html files that you can then browse to in your 
browser.  These are the API references.

XML

XBMC makes extensive use of XML for storing configurations and user data.  You can find 
reference material on XML and XSD

Definition for XML Schemas

http://www.w3.org/2001/XMLSchema.dtd

xbmc addons.xml XSD definition

http://trac.xbmc.org/browser/trunk/addons/xbmc.python/pluginsource.xsd

http://trac.xbmc.org/browser/trunk/addons/xbmc.python/pluginsource.xsd
http://www.w3.org/2001/XMLSchema.dtd
http://xbmc-addons.googlecode.com/svn/packages/repository.googlecode.xbmc-addons.zip
http://wiki.xbmc.org/index.php?title=Information_on_Language_Support
http://wiki.xbmc.org/index.php?title=Addons_for_XBMC
http://www.python.org/doc/
http://wiki.python.org/moin/
http://www.python.org/


Credits
Thanks to the following people who have helped either thought guidance, advice or perseverance

Jonathan Marshall – Team-XBMC Developer.  (http://forum.xbmc.org/member.php?u=3254)

rwparris2 – Team-XBMC Python Coder (http://forum.xbmc.org/member.php?u=29904)

Amet – Team-XBMC Member (http://forum.xbmc.org/member.php?u=51533)

http://forum.xbmc.org/member.php?u=51533
http://forum.xbmc.org/member.php?u=29904
http://forum.xbmc.org/member.php?u=3254


Appendix A – Code for working example 1
Create the following directory and files under .xbmc/addons

plugin.audio.addon-dev-ex1

addon.xml

addondev1.py

into addon.xml, paste the following
<?xml version="1.0" encoding="UTF-8"?> 

<addon 

  id="plugin.audio.addon-dev-ex1" 

  version="0.0.1" 

  name="XBMC Addon Developers Guide – Example 1" 

  provider-name="Ashley Kitson"

  > 

  <requires>

  <import addon="xbmc.gui"/>

  <import addon="xbmc.plugin"/>

  </requires> 

  <extension point="xbmc.python.pluginsource" 
library="addondev1.py">

<provides>audio</provides>

  </extension> 

  <extension point="xbmc.addon.metadata"> 

    <summary>XBMC Addon Developers Guide</summary>

<summary lang="fr">XBMC Developers Guide Addon</summary>

    <description>Demonstrates basic code loop for an XBMC plugin 
type addon</description> 

<description lang="fr">Démontre boucle code de base pour un addon 
type de plugin XBMC</description>

    <platform>all</platform> 

  </extension> 

</addon>

into addondev1.py, paste the following
"""

XBMC Addon Developer's Guide

Example 1 - The basic plugin structure

            Demonstrates creating a static list

NB This is done using functions - you could use classes

Author: Ashley Kitson

"""

# Step 1 - load in xbmc core support and setup the environment

import xbmcplugin



import xbmcgui

import sys

# magic; id of this plugin - cast to integer

thisPlugin = int(sys.argv[1])

# Step 2 - create the support functions (or classes)

def createListing():

    """

    Creates a listing that XBMC can display as a directory listing

    @return list

    """

    listing = []

    listing.append('The first item')

    listing.append('The second item')

    listing.append('The third item')

    listing.append('The fourth item')

    return listing

def sendToXbmc(listing):

    """

    Sends a listing to XBMC for display as a directory listing

    Plugins always result in a listing

    @param list listing

    @return void

    """

    #access global plugin id

    global thisPlugin

    # send each item to xbmc

    for item in listing:

        listItem = xbmcgui.ListItem(item)

        xbmcplugin.addDirectoryItem(thisPlugin,'',listItem)

    # tell xbmc we have finished creating the directory listing

    xbmcplugin.endOfDirectory(thisPlugin)

# Step 3 - run the program

sendToXbmc(createListing())

Restart XBMC and then select your addon from the Music section to run it



Appendix B – Code for working example 2
Create the following directory and files under .xbmc/addons

plugin.audio.addon-dev-ex2

addon.xml

addondev2.py

/resources

settings.xml

/lib

gpodder.py

into addon.xml, paste the following
<?xml version="1.0" encoding="UTF-8"?> 

<addon 

  id="plugin.audio.addon-dev-ex2" 

  version="0.0.1" 

  name="XBMC Addon Developers Guide – Example 1" 

  provider-name="Ashley Kitson"

  > 

  <requires>

  <import addon="xbmc.gui"/>

  <import addon="xbmc.plugin"/>

  </requires> 

  <extension point="xbmc.python.pluginsource" 
library="addondev2.py">

<provides>audio video</provides>

  </extension> 

  <extension point="xbmc.addon.metadata"> 

    <summary>XBMC Addon Developers Guide</summary>

<summary lang="fr">XBMC Developers Guide Addon</summary>

    <description>Demonstrates creating dynamic listings for an XBMC 
plugin type addon</description> 

<description lang="fr">Montre la création d'annonces dynamiques pour 
un addon type de plugin XBMC</description>

    <platform>all</platform> 

  </extension> 

</addon>

into addondev2.py, cut and paste the following
"""

XBMC Addon Developer's Guide

Example 2 - Moving on

            Demonstrates creating a dynamic list

            Demonstrates using your own modules and classes



NB This is done using functions - you could use classes

Author: Ashley Kitson

"""

#

# Step 1 - load in core support and setup the environment

#

import sys

import xbmcplugin

#addon id - name of addon directory

_id='plugin.audio.addon-dev-ex2'

#resources directory

_resdir = "special://home/addons/" + _id + "/resources"

#add our library to python search path

sys.path.append( _resdir + "/lib/")

#import our worker classes from our module

import gpodder as worker

# magic; id of this plugin's instance - cast to integer

_thisPlugin = int(sys.argv[1])

#

# Step 2 - instantiate the support classes

#

creator = worker.creator(_thisPlugin, _id)

sender = worker.sender(_thisPlugin)

#

# Step 3 - run the program

#

sender.send(creator.get())

xbmcplugin.endOfDirectory(_thisPlugin)

in resources/settings.xml, paste the following
<?xml version="1.0" encoding="UTF-8"?>

<!--

    Document   : settings.xml

    Created on : September 9, 2010, 1:45 PM

    Author     : Ashley Kitson

    Description: Settings for gpodder example

                 (XBMC Addons Developer Guide example 2)

-->



<settings>

<setting id="gpoPath" type="text" label="Path to Gpodder 
downloads" default="" />

</settings>

Now add your download_dir value to the default setting for gpoPath setting and save the file

into resources/lib/gpodder.py, cut and paste the following
"""

XBMC Addon Developer's Guide

Example 2 - Demonstrates creating a dynamic list from Gpodder 
directory

            This module provides the classes that will

            create and display the contents

Author: Ashley Kitson

"""

#make xbmc and system modules available

import xbmc

import xbmcplugin

import xbmcgui

import dircache

import fnmatch

#define global constants for settings xml tags

__GPOPATH_TAG__ = 'gpoPath'

#define classes

class creator:

    """

    Responsible for creating the list of items that will get 
displayed

    """

    #

    # PRIVATE Methods

    #

    # current instance of plugin identifer

    _pluginId = 0

    # plugin name

    _pluginName = ''

    def __init__(self, pluginId, pluginName):

        """

        constructor

        @parm int pluginId - Current instance of plugin identifer

        @param string pluginName - Name of plugin calling us



        """

        self._pluginId = pluginId

        self._pluginName = pluginName

    def _createList(self):

        """

        Create the dynamic list

        @access private

        @returns list

        """

        #get the user setting for the gpodder directory

        dir = xbmcplugin.getSetting(self._pluginId,__GPOPATH_TAG__)

        #get contents of gpodder directory

        dirContent = dircache.listdir(dir)

        #parse contents for all .m3u files

        dirContent = fnmatch.filter(dirContent, '*.m3u')

        #create listing

        listing = []

        for file in dirContent:

            uri = xbmc.translatePath(dir + '/' + file)

            label = file.replace('.m3u','')

            listing.append([label,uri])

        return listing

    #

    # PUBLIC API

    #

    def get(self):

        """

        Refresh and retrieve the current list for display

        @access public

        @returns list

        @usage      c=example2.creator()

                    list = c.get()

        """

        return self._createList()

class sender:

    """

    Responsible for sending output to XBMC

    """

    # current instance of plugin identifer



    _pluginId = 0

 

    def __init__(self, pluginId):

        """

        constructor

        @parm int pluginId - current instance of plugin identifer

        """

        self._pluginId = pluginId

    def send(self,listing):

        """

        Send output to XBMC

        @param list listing - the list of items to display

        @return void

        """

        #create listing items

        # item[0] = list label

        # item[1] = item uri

        for item in listing:

            listItem = xbmcgui.ListItem(item[0])

            xbmcplugin.addDirectoryItem(self._pluginId,item[1],list
Item)



Appendix C – Code for working example 3
Create ./xbmc/addons/ script.rss-chippyash directory

Into addon.xml, cut and paste the following
<?xml version="1.0" encoding="UTF-8"?>

<!--

    Document   : addon.xml

    Package    : A better RSS reader?

    Author     : Ashley Kitson

    Copyright  : 2010, Ashley Kitson, UK

    License    : Gnu General Public License - see LICENSE.TXT

    Description: XBMC Addon settings for XBMC RSS Reader

-->

<addon id="script.rss-chippyash" version="0.0.1" name="A better RSS 
Reader?" provider-name="Ashley Kitson">

  <extension point="xbmc.python.pluginsource" library="rss-
example.py">

      <provides>audio</provides>

      <requires>

          <import addon="script.rss.editor" version="1.5.9"/>

      </requires>

  </extension>

  <extension point="xbmc.addon.metadata">

<summary>A better RSS Reader?</summary>

<description>Example dynamic listing program for the Addon 
Developer's Guide</description>

<platform>all</platform>

  </extension> 

</addon>

into rss-example.py, cut and paste the following
"""

    Document   : rss-example.py

    Package    : A better RSS Reader?

    Author     : Ashley Kitson

    Copyright  : 2010, Ashley Kitson, UK

    License    : Gnu General Public License - see LICENSE.TXT

    Description: Main program script for package

"""

"""

This file is part of "A better RSS Reader?"

    "A better RSS Reader?" is free software: you can redistribute

    it and/or modify it under the terms of the GNU General Public 
License as

    published by the Free Software Foundation, either version 3 of 
the License,



    or (at your option) any later version.

    "A better RSS Reader?" is distributed in the hope that it will

    be useful, but WITHOUT ANY WARRANTY; without even the implied 
warranty of

    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the

    GNU General Public License for more details.

    You should have received a copy of the GNU General Public 
License

    along with "A better RSS Reader?".

    If not, see <http://www.gnu.org/licenses/>.

"""

#

# Step 1 - load in core support and setup the environment

#

import os

import sys

import xbmcplugin

import xbmcaddon

#name of the rwparris rss editor addon

__RSSEDITOR_NAME__ = "script.rss.editor";

#setup library path for RSS Editor

_path = xbmcaddon.Addon(__RSSEDITOR_NAME__).getAddonInfo('path')

sys.path.append (xbmc.translatePath( os.path.join( _path, 
'resources', 'lib' ) ))

#set up language bootstrapping for XML parser

__language__ = 
xbmcaddon.Addon(__RSSEDITOR_NAME__).getLocalizedString

# magic; id of this plugin's instance - cast to integer

_thisPlugin = int(sys.argv[1])

#addon id - name of addon directory

_id='script.rss-chippyash'

#set our library path

sys.path.append (xbmc.translatePath( os.path.join( os.getcwd(), 
'resources', 'lib' ) ))

#import our worker classes from our module

import rss_chippyash as worker

#

# Step 2 - instantiate the support classes



#

creator = worker.creator(_id)

sender = worker.sender(_thisPlugin, _id)

#

# Step 3 - run the program

#

#see if we have a URL parameter

params = creator.getparams()

try:

  url = params["url"]

except:

  url = None

if url == None:

    #do listing

    sender.send(creator.get())

    xbmcplugin.endOfDirectory(_thisPlugin)

else:

    #display news item

    sender.displayNews(url)

and into resources/lib/rss_chippyash.py, cut and paste the following
"""

    Document   : rss_chippyash.py

    Package    : A better RSS Reader?

    Author     : Ashley Kitson

    Copyright  : 2010, Ashley Kitson, UK

    License    : Gnu General Public License - see LICENSE.TXT

    Description: Worker class library

"""

"""

This file is part of "A better RSS Reader?"

    "A better RSS Reader?" is free software: you can redistribute

    it and/or modify it under the terms of the GNU General Public 
License as

    published by the Free Software Foundation, either version 3 of 
the License,

    or (at your option) any later version.

    "A better RSS Reader?" is distributed in the hope that it will

    be useful, but WITHOUT ANY WARRANTY; without even the implied 
warranty of

    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the

    GNU General Public License for more details.



    You should have received a copy of the GNU General Public 
License

    along with "A better RSS Reader?".

    If not, see <http://www.gnu.org/licenses/>.

"""

#make xbmc and system modules available

import subprocess

import sys

import xbmcplugin

import xbmcaddon

import xbmcgui

from xmlParser import XMLParser

import urllib2

from xml.dom import minidom

#define global constants for settings xml tags

__GPOPATH_TAG__ = 'gpoPath'

__GPOUPDT_TAG__ = 'gpoUpdate'

#Addon Title for dialogs

__TITLE__ = 'A Better RSS Reader?'

#Browser command

__BROWSER__ = 'google-chrome'

class rssFeed:

    """

    A very simple RSS feed class

    """

    feedLinks = []

    feedTitles = []

    feedDescs = []

    feedCount = 0

    def __init__(self, feedUrl):

        """

        gather the news items in an RSS feed

        """

        fileRequest = urllib2.Request(feedUrl)

        fileOpener = urllib2.build_opener()

        fileFeed = fileOpener.open(fileRequest).read()

        fileXml = minidom.parseString(fileFeed)

        itemNode = fileXml.getElementsByTagName("item") 

        for item in itemNode:



            self.feedTitles.append(item.childNodes[1].firstChild.da
ta)

            self.feedDescs.append(item.childNodes[2].firstChild.dat
a)

            self.feedLinks.append(item.childNodes[3].firstChild.dat
a)

            self.feedCount += 1

class creator:

    """

    Responsible for creating the list of items that will get 
displayed

    """

    #

    # PRIVATE Methods

    #

    # current instance of plugin identifer

    #_pluginId = 0

    # plugin name

    _pluginName = ''

    #this addon class

    _thisaddon = None

    #rss feed list

    _feedList = []

    #rss feed content

    feeds = []

    def __init__(self, pluginName):

        """

        constructor

        @parm int pluginId - Current instance of plugin identifer

        @param string pluginName - Name of plugin calling us

        """

        #self._pluginId = pluginId

        self._pluginName = pluginName

        self._thisaddon = xbmcaddon.Addon(pluginName)

        #get current feeds

        feeds = XMLParser().getCurrentRssFeeds()

        for setNum in sorted(feeds.keys()):

            for feed in feeds[setNum]['feedslist']:

                self._feedList.append(feed['url'])

                #get the feed contents

                self.feeds.append(rssFeed(feed['url']))

        

    def _createListAll(self):

        """



        Create the dynamic list of all content

        @param list dirContent - list of __PLAYLIST__ files in 
gpodder directory

        @param string dir - gpodder directory location

        @access private

        @return list

        """

        #create listing

        listing = []

        for feed in self.feeds:

            c = range(0,feed.feedCount-1)

            for x in c:

                listing.append([feed.feedLinks[x],feed.feedTitles[x
],''])

        return listing

    #

    # PUBLIC API

    #

    def get(self):

        """

        Refresh and retrieve the current list for display

        @access public

        @returns list

        @usage      c=example2.creator()

                    list = c.get()

        """

        return self._createListAll()

    def getparams(self):

        """

        Pick up parameters sent in via command line

        @return dict list of parameters

        @thanks Team XBM  - I lifted this straight out of the 
shoutcast addon

        """

        param=[]

        paramstring=sys.argv[2]

        if len(paramstring)>=2:

            params=sys.argv[2]

            cleanedparams=params.replace('?','')

            if (params[len(params)-1]=='/'):

                params=params[0:len(params)-2]



            pairsofparams=cleanedparams.split('&')

            param={}

            for i in range(len(pairsofparams)):

                splitparams={}

                splitparams=pairsofparams[i].split('=')

                if (len(splitparams))==2:

                    param[splitparams[0]]=splitparams[1]

        return param

class sender:

    """

    Responsible for sending output to XBMC

    """

    # current instance of plugin identifer

    _pluginId = 0

    # plugin name

    _pluginName = ''

    def __init__(self, pluginId, pluginName):

        """

        constructor

        @parm int pluginId - current instance of plugin identifer

        """

        self._pluginId = pluginId

        self._pluginName = pluginName

        pass

    def send(self,listing):

        """

        Send output to XBMC

        @param list listing - the list of items to display

        @return void

        """

        #create listing items

        # item[0] = list label

        # item[1] = item uri

        # item[2] = image uri

        for item in listing:

            listItem = xbmcgui.ListItem(item[0])

            url = "plugin://" + self._pluginName + "?url=" + 
item[1]

            xbmcplugin.addDirectoryItem(self._pluginId,url,listItem
)



    def displayNews(self, url):

        """

        Display the news item in a browser

        @param string url - Url to display

        """

        subprocess.Popen([__BROWSER__, url])

        



Appendix D – Code Snippets

Get Current Context
class context:

    """

    Hack to get current context that addon is running in

    @usage      context = context().getContext()

    @author chippyash

    @thanks amet - xbmc.org

    @link http://wiki.xbmc.org/index.php?title=Window_IDs

    """

    # Set up window Ids for the various contexts

    _ctxt_audio = (10005,10500,10501,10502)

    _ctxt_video = (10006,10024,10025,10028)

    _ctxt_image = (10002)

    _ctxt_executable = (10001,10020)

    # current  window id

    _currId = 0;

    def __init__(self):

        self._currId = xbmcgui.getCurrentWindowId();

    def getContext(self):

        """

        Returns the current system context

        @return string 
('audio','video','image','executable','unknown')

        """

        if self._currId in self._ctxt_audio:

            return 'audio'

        elif self._currId in self._ctxt_video:

            return 'video'

        elif self._currId in self._ctxt_image:

            return 'image'

        elif self._currId in self._ctxt_executable:

            return 'executable'

        else:

            return 'unknown'

This allows you to put multiple values in the <extension><provides> tag in addons.xml schema and 
determine at run time what section of XBMC you are in so that your addon an provide different 
responses dependent on the context.  At some point the XBMC Python API may incorporate this 
into it's provision.


	1. XBMC Addon Developers Guide
	2. Table of Contents
	Revisions
	Introduction
	Purpose
	Caveats
	Conventions
	Prerequisites

	First Steps
	The development user
	Your development environment
	Local working on your PC
	Local working on the XBMC server
	Remote working to an XBMC server

	IDE's
	Editors
	Access to documentation

	Script Basics
	Anatomy of an addon
	Directory Name
	Directory structure
	File contents
	icon.png
	fanart.jpg
	changelog.txt
	resources/settings.xml
	resources/language
	resources/lib
	resources/data
	resources/media
	addon.xml


	How to make the addon visible to XBMC
	Packaging your script for release via XBMC Addons repository

	Worked examples
	Static Listing
	Goal
	Code it!
	Breaking it down

	Dynamic listing – Non scraper based
	Goal
	Code it!
	addondev2.py
	resources/lib/gpodder.py

	Breaking it down
	addondev2.py
	resources/lib/gpodder.py

	Homework

	Dynamic listing – A better RSS Reader?
	Goal
	Code it!
	Breaking it down
	addon.xml
	rss-example.py
	resources/lib/rss_chippyash.py

	Homework


	Differences required for other extensions of XBMC
	Scripts
	Repository

	Debugging your script
	Debug Strategies
	XBMC debug log
	Script debugging


	The XBMC libraries
	xbmc
	xbmcgui
	xbmcplugin
	xbmxaddon

	References
	Python
	XBMC
	Current XBMC Python library API references

	XML

	Credits
	Appendix A – Code for working example 1
	Appendix B – Code for working example 2
	Appendix C – Code for working example 3
	Appendix D – Code Snippets
	Get Current Context


