

Preface

For years, college courses in computer networking were taught with little or no hands on expe-
rience. For various reasons, including some good ones, instructors approached the principles
of computer networking primarily through equations, analyses, and abstract descriptions of
protocol stacks. Textbooks might have included code, but it would have been unconnected to
anything students could get their hands on. We believe, however, that s tudents learn better
when they can see (and then build) concrete examples of the principles at work. And, for-
tunately, things have changed. The Internet has become a part of everyday life, and access
to its services is readily available to most s tudents (and their programs). Moreover, copious
examplesugood and bad- -of nontrivial software are freely available.

We wrote this book for the same reason we wrote TCP/IP Sockets in C: we needed a
resource to support learning networking through programming exercises in our courses. Our
goal is to provide a sufficient introduction so that s tudents can get their hands on real network
services without too much hand-holding. After grasping the basics, s tudents can then move on
to more advanced assignments, which support learning about routing algorithms, multimedia
protocols, medium access control, and so on. We have tried to make this book equivalent to
our earlier book to enable instructors to allow students to choose the language they use and
still ensure that all s tudents will come away with the same skills and understanding. Of course,
it is not clear that this goal is achievable, but in any case the scope, price, and presentat ion
level of the book are intended to be similar.

Intended Audience

This book is aimed primarily at s tudents in upper-division undergraduate or graduate courses
in computer networks. It is intended as a supplement to a traditional textbook that explains the
problems and principles of computer networks. At the same time, we have tried to make the

ix

X Preface m

book reasonably self-contained (except for the assumed programming background), so that it
can also be used, for example, in courses on operating systems or distributed computing. For
uses outside the context of a networking course, it will be helpful if the students have some
acquaintance with the basic concepts of networking and TCP/IP.

This book's other target audience consists of practitioners who know Java and want to
learn about writing Java applications that use TCP/IP. This book should take such users far
enough that they can start experimenting and learning on their own. Readers are assumed
to have access to a computer equipped with Java. This book is based on Version 1.3 of Java
and the Java Virtual Machine (JVM); however, the code should work with earlier versions of
Java, with the exception of a few new Java methods. Java is about portability, so the particular
hardware and operating system (OS) on which you run should not matter.

Approach

Chapter 1 provides a general overview of networking concepts. It is not, by any means, a com-
plete introduction, but rather is intended to allow readers to synchronize with the concepts and
terminology used throughout the book. Chapter 2 introduces the mechanics of simple clients
and servers; the code in this chapter can serve as a starting point for a variety of exercises.
Chapter 3 covers the basics of message construction and parsing. The reader who digests the
first three chapters should in principle be able to implement a client and server for a given
(simple) application protocol. Chapter 4 then deals with techniques that are necessary when
building more sophisticated and robust clients and servers. Finally, in keeping with our goal
of illustrating principles through programming, Chapter 5 discusses the relationship between
the programming constructs and the underlying protocol implementat ions in somewhat more
detail.

Our general approach introduces programming concepts through simple program exam-
ples accompanied by line-by-line commentary that describes the purpose of every part of the
program. This lets you see the important objects and methods as they are used in context. As
you look at the code, you should be able to unders tand the purpose of each and every line.

Java makes many things easier, but it does not support some functionality that is
commonly associated with the C/UNIX sockets interface (asynchronous I/O, select()-style
multiplexing). In C and C++, the socket interface is a generic application programming interface
(API) for all types of protocols, not just TCP/IP. Java's socket classes, on the other hand, by
default work exclusively with TCP and UDP over IPv4. Ironically, there does not seem to be
anything in the Java specification or documentat ion that requires that an instance of the Socket
class use TCP, or that a DatagramSoeket instance use UDP. Nevertheless, this book assumes this
to be the case, as is true of current implementations.

Our examples do not take advantage of all library facilities in Java. Some of these facilities,
in particular serialization, effectively require that all communicating peers be implemented in
Java. Also, to introduce examples as soon as possible, we wanted to avoid bringing in a thicket of
methods and classes that have to be sorted out later. We have tried to keep it simple, especially
in the early chapters.

• What This Book Is Not xi

What This Book Is Not

To keep the price of this book within a reasonable range for a supp lementa ry text, we have
had to limit its scope and mainta in a tight focus on the goals outlined above. We omit ted many
topics and directions, so it is probably worth ment ioning some of the things this book is not:

• It is not an introduct ion to Java. We focus specifically on TCP/IP socket p rogramming
using the Java language. We expect that the reader is already acquainted with the language
and basic Java libraries (especially I/O), and knows how to develop p rograms in Java.

• It is not a book on protocols. Reading this book will not make you an expert on IP, TCP,
FTP, HTTP, or any other existing protocol (except maybe the echo protocol). Our focus is
on the interface to the TCP/IP services provided by the socket abstraction. (It will help if
you s tar t with some idea about tl~e general workings of TCP and IP, but Chapter 1 may
be an adequate substitute.)

• It is not a guide to all of Java 's rich collection of libraries that are designed to hide
communicat ion details (e.g., HTTPConnection) and make the p rog rammer ' s life easier.
Since we are teaching the fundamenta ls of how to do, not how to avoid doing, protocol
development, we do not cover these parts of the API. We want readers to unders tand
protocols in te rms of what goes on the wire, so we most ly use simple byte s t reams and
deal with character encodings explicitly. As a consequence, this text does not deal with
URL, URLConnection, and so on. We believe that once you unders tand the principles, using
these convenience classes will be straightforward. The network-relevant classes that we
do cover include InetAddress, Socket, ServerSocket, DatagramPacket, DatagramSoeket, and
Uult icastSocket .

• It is not a book on object-oriented design. Our focus is on the impor tan t principles of
TCP/IP socket programming, and our examples are intended to illustrate them concisely.
As far as possible, we try to adhere to object-oriented design principles; however, when
doing so adds complexi ty that obfuscates the socket principles or bloats the code, we
sacrifice design for clarity. This text does not cover design pat terns for networking.
(Though we would like to think that it provides some of the background necessary for
understanding such patterns!)

• It is not a book on writing production-qual i ty code. Again, thoughwe strive for robustness ,
the pr imary goal of our code examples is education. In order to avoid obscuring the
principles with large amounts of error-handling code, we have sacrificed some robus tness
for brevity and clarity.

• It is not a book on doing your own native sockets implementa t ion in Java. We focus
exclusively on TCP/IP sockets as provided by the s tandard Java distr ibution and do not
cover the various socket implementa t ion wrapper classes (e.g., Socketlmpl).

• To avoid cluttering the examples with extraneous (nonsocket-related programming) code,
we have made them command-l ine based. While the book ' s Web site, www.mkp.com/
practical/javasockets, contains a few examples of GUI-enhanced network applications,
we do not include or explain them in this text.

X l l Preface u

• It is not a book on Java applets. Applets use the same Java networking API so the commu-
nication code should be very similar; however, there are severe security restr ict ions on
the kinds of communica t ion an applet can perform. We provide a very limited discussion
of these restr ict ions and a single apple t /appl ica t ion example on the Web site; however,
a complete descript ion of applet networking is beyond the scope of this text.

This book will not make you an exper t - - tha t takes years of experience. However, we hope
it will be useful as a resource, even to those who already know quite a bit about using sockets
in Java. Both of us enjoyed writing it and learned quite a bit along the way.

Acknowledgments

We would like to thank all the people who helped make this book a reality. Despite the book 's
brevity, many hours went into reviewing the original proposa l and the draft, and the reviewers '
input has significantly shaped the final result.

First, thanks to those who meticulously reviewed the draf t of the text and made sugges-
tions for improvement . These include Michel Barbeau, Carlton University; Chris Edmondson-
Yurkanan, University of Texas at Austin, Ted Herman, University of Iowa; Dave Hollinger,
Rensselaer Polytecnic Institute; Jim Leone, Rochester Insti tute of Technology; Dan Schmidt,
Texas A&M University; Erick Wagner, EDS; and CSI4321, Spring 2001. Any errors that remain
are, of course, our responsibility. We are very interested in weeding out such errors in future
printings so if you find one, please email either of us. We will mainta in an errata list on the
book ' s Web page.

Finally, we are grateful to the folks at Morgan Kaufmarm. They care about quality and
we appreciate that. We especially appreciate the efforts of Karyn Johnson, our editor, and Mei
Levenson, our product ion coordinator.

Feedback

We invite your suggestions for the improvemen t of any aspect of this book. You can send
feedback via the book ' s Web page, www.mkp.com/practical/javasockets, or you can email us at
the addresses below:

Kenneth L. Calvert calvert@netlab.uky.edu
Michael J. Donahoo Jeff_Donahoo@baylor.edu

c h a p t e r 1

Introduction

M i l l i o n s of compute r s all over the world are now connec ted to the worldwide ne twork
known as the Internet. The Internet enables p rograms running on compute r s thousands of
miles apart to communica te and exchange information. If you have a compute r connected to a
network, you may have used a Web b rowse r - - a typical p r o g r a m that makes use of the Internet.
What does such a p rog ram do to communica te with others over a network? The answer varies
with the applicat ion and the operat ing sys tem (OS), but a great many p rograms get access to
ne twork communica t ion services th rough the sockets applicat ion p rog ramming interface (API).
The goal of this book is to get you s tar ted writing Java p rograms that use the sockets API.

Before delving into the details of the API, it is wor th taking a brief look at the big picture
of ne tworks and protocols to see how an API for Transmiss ion Control Protocol / In ternet
Protocol fits in. Our goal here is not to teach you how networks and TCP/IP w o r k - - m a n y fine
texts are available for that pu rpose [2, 4, 11, 16, 22J--but ra ther to in t roduce some basic
concepts and terminology.

1.1 Networks, Packets, and Protocols

A compute r ne twork consists of machines in te rconnec ted by communica t ion channels. We
call these machines hosts and routers. Hosts are compute r s that run applicat ions such as your
Web browser. The applicat ion p rograms running on hos ts are really the users of the network.
Routers are machines whose job is to relay, or forward, in format ion f rom one communica t ion
channel to another . They may run p rog rams but typically do not run applicat ion programs. For
our purposes , a communication channel is a means of conveying sequences of bytes f rom one
host to another; it may be a b roadcas t technology like Ethernet, a dial-up m o d e m connection,
or someth ing more sophist icated.

Routers are impor tan t simply because it is not practical to connect every hos t directly
to every other host. Instead, a few hosts connect to a router, which connects to other routers ,
and so on to fo rm the network. This a r rangement lets each machine get by with a relatively

2 Chapter 1: Introduction []

I,,L] A
W

Channel

(e.g., Ethernet)

" I
1 ! (IP] ' ~ Channel "~

I I I
L

d,p]
Host Router Host

F i g u r e 1.1 : A TCP/IP network.

small number of communication channels; most hosts need only one. Programs that exchange
information over the network, however, do not interact directly with routers and generally
remain blissfully unaware of their existence.

By information we mean sequences of bytes that are constructed and interpreted by pro-
grams. In the context of computer networks, these byte sequences are generally called packets.
A packet contains control information that the network uses to do its job and sometimes also
includes user data. An example is information identifying the packet's destination. Routers
use such control information to figure out how to forward each packet.

A protocol is an agreement about the packets exchanged by communicating programs
and what they mean. A protocol tells how packets are structured--for example, where the
destination information is located in the packet and how big it ismas well as how the infor-
mation is to be interpreted. A protocol is usually designed to solve a specific problem using
given capabilities. For example, the HyperText Transfer Protocol (HTTP) solves the problem of
transferring hypertext objects between servers, where they are stored, and Web browsers that
make them available to human users.

Implementing a useful network requires that a large number of different problems be
solved. To keep things manageable and modular, different protocols are designed to solve
different sets of problems. TCP/IP is one such collection of solutions, sometimes called a
protocol suite. It happens to be the suite of protocols used in the Internet, but it can be used in
stand-alone private networks as well. Henceforth when we talk about the "network," we mean
any network that uses the TCP/IP protocol suite. The main protocols in the TCP/IP suite are
the Internet Protocol (IP), the Transmission Control Protocol (TCP), and the User Datagram
Protocol (UDP).

It turns out to be useful to organize protocols into layers; TCP/IP and virtually all
other protocol suites are organized this way. Figure 1.1 shows the relationships among the
protocols, applications, and the sockets API in the hosts and routers, as well as the flow
of data from one application (using TCP) to another. The boxes labeled TCP, UDP, and IP
represent implementations of those protocols. Such implementations typically reside in the

[] 1.2 About Addresses

operating system of a host. Applications access the services provided by UDP and TCP through
the sockets API. The arrow depicts the flow of data from the application, through the TCP and IP
implementations, through the network, and back up through the IP and TCP implementations
at the other end.

In TCP/IP, the bot tom layer consists of the underlying communication channelsnfor
example, Ethernet or dial-up modem connections. Those channels are used by the network
layer, which deals with the problem of forwarding packets toward their destination (i.e., what
routers do). The single network layer protocol in the TCP/IP suite is the Internet Protocol; it
solves the problem of making the sequence of channels and routers between any two hosts
look like a single host-to-host channel.

The Internet Protocol provides a datagram service: every packet is handled and delivered
by the network independently, like letters or parcels sent via the postal system. To make this
work, each IP packet has to contain the address of its destination, just as every package that
you mail is addressed to somebody. (We'll say more about addresses shortly.) Although most
delivery companies guarantee delivery of a package, IP is only a best-effort protocol: it at tempts
to deliver each packet, but it can (and occasionally does) lose, reorder, or duplicate packets in
transit through the network.

The layer above IP is called the transport layer. It offers a choice between two protocols:
TCP and UDP. Each builds on the service provided by IP, but they do so in different ways to
provide different kinds of transport, which are used by application protocols with different
needs. TCP and UDP have one function in common: addressing. Recall that IP delivers packets
to hosts; clearly, a finer granularity of addressing is needed to get a packet to a particular
application, perhaps one of many using the network on the same host. Both TCP and UDP
use addresses, called port numbers, to identify applications within hosts. They are called end-
to-end transport protocols because they carry data all the way from one program to another
(whereas IP only carries data from one host to another).

TCP is designed to detect and recover from the losses, duplications, and other errors
that may occur in the host-to-host channel provided by IP. TCP provides a reliable byte-stream
channel, so that applications do not have to deal with these problems. It is a connection-
oriented protocol: before using it to communicate, two programs must first establish a TCP
connection, which involves completing an exchange of handshake messages between the TCP
implementations on the two communicating computers. Using TCP is also similar in many ways
to file input /ou tput (I/O). In fact, a file that is written by one program and read by another is a
reasonable model of communication over a TCP connection. UDP, on the other hand, does
not at tempt to recover from errors experienced by IP; it simply extends the IP best-effort
datagram service so that it works between application programs instead of between hosts.
Thus, applications that use UDP must be prepared to deal with losses, reordering, and so on.

1.2 About Addresses

When you mail a letter, you provide the address of the recipient in a form that the postal
service can understand. Before you can talk to someone on the phone, you must supply their
number to the telephone system. In a similar way, before a program can communicate with

4 Chapter 1: Introduction I

another program, it mus t tell the network where to find the other program. In TCP/IP, it takes
two pieces of informat ion to identify a part icular program: an Internet address, used by IP, and
a port number, the additional address in terpreted by the t ranspor t protocol (TCP or UDP).

Internet addresses are 32-bit binary numbers . 1 In writing down Internet addresses for
h u m a n consumpt ion (as opposed to using them inside applications), we typically show them
as a string of four decimal numbers separa ted by periods (e.g., 10.1.2.3); this is called the
dotted-quad notation. The four numbers in a dot ted-quad string represent the contents of the
four bytes of the Internet address - - thus , each is a number between 0 and 255.

One special IP address wor th knowing is the loopback address, 127.0.0.1. This address
is always assigned to a special loopback interface, which simply echoes t ransmi t ted packets
right back to the sender. The loopback interface is very useful for testing; it can be used even
when a computer is not connected to the network.

Technically, each Internet address refers to the connection between a host and an
underlying communica t ion channel, such as a dial-up m o d e m or Ethernet card. Because each
such ne twork connection belongs to a single host, an Internet address identifies a host as
well as its connect ion to the network. However, because a host can have multiple physical
connect ions to the network, one host can have multiple Internet addresses.

The port number in TCP or UDP is always in terpreted relative to an Internet address.
Returning to our earlier analogies, a port number corresponds to a room number at a given
street address, say, that of a large building. The postal service uses the street address to get the
letter to a mailbox; whoever empties the mailbox is then responsible for getting the letter to the
proper room within the building. Or consider a company with an internal telephone system:
to speak to an individual in the company, you first dial the company 's main phone number to
connect to the internal telephone sys tem and then dial the extension of the part icular telephone
of the individual that you wish to speak with. In these analogies, the Internet address is the
street address or the company 's main number, whereas the port corresponds to the room
number or telephone extension. Port numbers are 16-bit unsigned binary numbers , so each
one is in the range 1 to 65,535 (0 is reserved).

1.3 About Names

Most likely you are accus tomed to referring to hosts by name (e.g., host.example.com). How-
ever, the Internet protocols deal with numerical addresses, not names. You should unde r s t and
that the use of names instead of addresses is a convenience feature that is independent of
the basic service provided by TCP/IP--you can write and use TCP/IP applications without ever

1Throughout this book the term Internet address refers to the addresses used with the current version of
IP, which is version 4 [12]. Because it is expected that a 32-bit address space will be inadequate for future
needs, a new version of IP has been defined [5]; it provides the same service but has much bigger Internet
addresses (128 bits). IPv6, as the new version is known, has not been widely deployed; the sockets API will
require some changes to deal with its much larger addresses [6].

[] 1.4 Clients and Servers

using a name. When you use a name to identify a communica t ion endpoint , the sys tem has to
do some extra work to resolve the name into an address .

This extra step is of ten wor th it, for a couple of reasons. First, names are generally
easier for h u m a n s to r emember than dot ted-quads . Second, names provide a level of indi-
rection, which insulates users f rom IP address changes. During the writing of this book, the
Web server for the publ isher of this text, Morgan Kaufmann, changed Internet addresses
f rom 208.164.121.48 to 216.200.143.124. However, because we refer to that Web server as
www.mkp.com (clearly m u c h easier to r emember than 208.164.121.48) and because the change
is reflected in the sys tem that maps names to addresses (www.mkp.com now resolves to the
new Internet address ins tead of 208.164.121.48), the change is t r ansparen t to p rograms that
use the name to access the Web server.

The name-reso lu t ion service can access in format ion f rom a wide variety of sources. Two
of the pr imary sources are the Domain Name System (DNS) and local configurat ion databases.
The DNS [9] is a d is t r ibuted database that maps domain names such as www.mkp.com to
Internet addresses and other information; the DNS protocol [10] allows hos ts connected to
the Internet to retrieve in format ion f rom that database using TCP or UDP. Local configurat ion
databases are generally OS-specific mechan i sms for local name-to-Internet address mappings .

1.4 Clients and Servers

In our postal and te lephone analogies, each communica t ion is init iated by one party, who sends
a letter or makes the te lephone call, while the other par ty r e sponds to the init iator 's contact by
sending a re tu rn letter or picking up the phone and talking. Internet communica t ion is similar.
The terms client and server refer to these roles: The client p r o g r a m initiates communicat ion,
while the server p rog ram waits passively for and then r e sponds to clients that contact it.
Together, the client and server compose the application. The terms client and server are
descriptive of the typical s i tuat ion in which the server makes a part icular capabi l i ty--for
example, a da tabase service--available to any client that is able to communica te with it.

Whether a p rog ram is acting as a client or server de te rmines the general fo rm of its
use of the sockets API to establish communica t ion with its peer. (The client is the peer of the
server and vice versa.) Beyond that, the client-server dis t inct ion is impor t an t because the client
needs to know the server 's address and por t initially, but not vice versa. With the sockets API,
the server can, if necessary, learn the client 's address in format ion when it receives the initial
communica t ion f rom the client. This is analogous to a te lephone call-- in order to be called, a
pe r son does not need to know the te lephone numb e r of the caller. As with a te lephone call,
once the connect ion is established, the dist inct ion be tween server and client disappears .

How does a client find out a server 's IP address and por t number? Usually, the client
knows the name of the server it w a n t s m f o r example, f rom a Universal Resource Locator (URL)
such as http://www.mkp.com--and uses the name-reso lu t ion service to learn the cor responding
Internet address .

Finding a server 's por t number is a different story. In principle, servers can use any port,
but the client mus t be able to learn what it is. In the Internet, there is a convent ion of assigning
well-known por t number s to certain applications. The Internet Assigned Number Authori ty

6 Chapter 1: Introduction u

(IANA) oversees this assignment. For example, port number 21 has been assigned to the File
Transfer Protocol (FTP). When you run an FTP client application, it tries to contact the FTP
server on that port by default. A list of all the assigned port numbers is maintained by the
numbering authority of the Internet (see http://www.iana.org/assignments/port-numbers).

1.5 What Is a Socket?

A socket is an abstraction through which an application may send and receive data, in much
the same way as an open file handle allows an application to read and write data to stable
storage. A socket allows an application to plug in to the network and communicate with other
applications that are plugged in to the same network. Information written to the socket by
an application on one machine can be read by an application on a different machine and vice
versa.

Different types of sockets correspond to different underlying protocol suites and different
stacks of protocols within a suite. This book deals only with the TCP/IP protocol suite. The
main types of sockets in TCP/IP today are stream sockets and datagram sockets. Stream sockets
use TCP as the end-to-end protocol (with IP underneath) and thus provide a reliable byte-
stream service. A TCP/IP stream socket represents one end of a TCP connection. Datagram
sockets use UDP (again, with IP underneath) and thus provide a best-effort datagram service that
applications can use to send individual messages up to about 65,500 bytes in length. Stream
and datagram sockets are also supported by other protocol suites, but this book deals only
with TCP stream sockets and UDP datagram sockets. A TCP/IP socket is uniquely identified by
an Internet address, an end-to-end protocol (TCP or UDP), and a port number. As you proceed,
you will encounter several ways for a socket to become bound to an address.

Figure 1.2 depicts the logical relationships among applications, socket abstractions,
protocols, and port numbers within a single host. Note that a single socket abstraction can
be referenced by multiple application programs. Each program that has a reference to a
particular socket can communicate through that socket. Earlier we said that a port identifies
an application on a host. Actually, a port identifies a socket on a host. From Figure 1.2, we see
that multiple programs on a host can access the same socket. In practice, separate programs
that access the same socket would usually belong to the same application (e.g., multiple copies
of a Web server program), although in principle they could belong to different applications.

1.6 Exercises

1. Can you think of a real-life example of communication that does not fit the client-server
model?

2. To how many different kinds of networks is your home connected? How many support
two-way transport?

[] 1.6 Exercises

Applications

TCP sockets

TCP ports 1

, - '~ -~. uDpSOCketsocketsreferences

. Sockets bound to ports

5535 UDPports

UDP

(" IP ")

Figure 1.2: Sockets, protocols, and ports.

3. IP is a best-effort protocol, requiring that information be broken down into datagrams,
which may be lost, duplicated, or reordered. TCP hides all of this, providing a reliable
service that takes and delivers an unbroken s t ream of bytes. How might you go about
providing TCP service on top of IP? Why would anybody use UDP when TCP is available?

c h a p t e r 2

Basic Sockets

Y o u are now ready to learn about writing your own socket applications. We begin by
demonstrating how Java applications identify network hosts. Then, we describe the creation
of TCP and UDP clients and servers. Java provides a clear distinction between using TCP and
UDP, defining a separate set of classes for both protocols, so we treat each separately.

2.1 Socket Addresses

IP uses 32-bit binary addresses to identify communicating hosts. A client must specify the
IP address of the host running the server program when it initiates communication; the
network infrastructure uses the 32-bit destination address to route the client's information
to the proper machine. Addresses can be specified in Java using a string that contains ei-
ther the dotted-quad representation of the numeric address (e.g., 169.1.1.1) or a name (e.g.,
server.example.corn). Java encapsulates the IP addresses abstraction in the InetAddress class
which provides three static methods for creating lnetAddress instances, getByName() and
getAllByName () take a name or IP address and return the corresponding InetAddress instance(s).
For example, InetAddress.getByName("192.168.75.13") returns an instance identifying the IP
address 192.168.75.13. The third method, getLocalHost (), returns an InetAddres s instance con-
taining the local host address. Our first program example, InetAddressExample. java, demon-
strates the use of InetAddress. The program takes a list of names or IP addresses as command-
line parameters and prints the name and an IP address of the local host, followed by names
and IP addresses of the hosts specified on the command line.

InetAdd ressExam pie.java

0 import java.net.*; // for InetAddress
1

2 public class InetAddressExample {
3

9

! O Chapter 2: Basic Sockets []

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
3O

public static void main(String[] args) {

// Get name and IP address of the local host
try {

InetAddress address = InetAddress.getLocalHost();
System.out.println("Local Host:");
System.out.println("\t" + address.getHostName());
System.out.println("\t" + address.getHostAddress());

} catch (UnknownHostException e) {
System.out.println("Unable to determine this host's address");

}

for (int i = O; i < args.length; i++) {
// Get name(s)/address(es) of hosts given on command line
try {

InetAddress[] addressList = InetAddress.getAllByName(args[i]);
System.out.println(args[i] + ":");
// Print the first name. Assume array contains at least one entry.
System.out.println("\t" + addressList[O].getHostName());
for (int j = O; j < addressList.length; j++)

System.out.println("\t" + addressList[j].getHostAddress());
} catch (UnknownHostException e) {

System.out.println("Unable to find address for " + args[i]);
}

InetAddressExample.java

1. Print i n fo rma t ion about the local host: lines 6-14

�9 Create an InetAddress ins tance for the local host: line 8

�9 Print the local hos t informat ion: lines 9-11
getH0stName() and getH0stAddress() re turn a string for the host name and IP address,
respectively.

2. Reques t i n fo rma t ion for each hos t specif ied on the c o m m a n d line: lines 16-28

�9 Create an a r r ay of InetAddress ins tances for the specif ied host: line 19
TnetAddress.getAllByName() re turns an array of InetAddress instances, one for each
of the specified host ' s addresses.

�9 Print the hos t informat ion: lines 22-24

To use this application to find informat ion about the local host and the publisher 's Web server
(www.mkp.com), do the following:

[] 2.1 Socket Addresses ! !

% java InetAddressExample www.mkp.com

Local Host:
t rac tor . farm.com
169.1.1.2

www.mkp.com:
www.mkp.com
216.200.143.124

If we know the IP add re s s of a hos t (e.g., 169.1.1.1), we find the n a m e of the hos t by

% java InetAddressExample 169. i. i. 1

Local Host:

tractor, farm. com

169.1.1.2
169.1.1.1:

base. farm. com
169.1.I.i

When the name service is not available for some reason--say, the program is running on

a mach ine tha t is no t c o n n e c t e d to any n e t w o r k - - a t t e m p t i n g to ident i fy a hos t by n a m e m a y
fail. Moreover, it m a y take a significant a m o u n t of t ime to do so, as the s y s t e m tries var ious
ways to resolve the n a m e to an IP address . It is t he re fo re good to know tha t you can always
refer to a hos t us ing the IP add re s s in d o t t e d - q u a d nota t ion . In any of our examples , if a r e m o t e

hos t is specif ied by name, the hos t r unn ing the example m u s t be conf igured to conver t n a m e s

to addresses , or the example won ' t work. If you can ping a hos t us ing one of its n a m e s (e.g.,
run the c o m m a n d "ping server.example.corn"), t h en the examples shou ld work wi th names . If
your ping tes t fails or the example hangs , t ry specifying the hos t by IP address , which avoids
the n a m e - t o - a d d r e s s conve r s ion a l together .

I n e t A d d r e s s 1

C r e a t o r s

s ta t ic I n e t A d d r e s s [] getAllByName(String host)

Returns the list of a d d r e s s e s for the specif ied host .

host Host n a m e or add re s s

1For each Java networking class described in this text, we present only the primary methods and omit
methods that are deprecated or whose use is beyond the scope of this text. As with everything in Java,
the specification is a moving target. This information is included to provide an overall picture of the Java
socket interface, not as a final authority. We encourage the reader to refer to the API specifications from
java.sun.com as the current and definitive source.

! 2 Chapter 2: Basic Sockets []

static InetAddress getByName(String host)

static InetAddress getLocalHost0

Returns an IP address for the specified/local host.

host Host name or IP address

Accessors

byte[] getAddress0

Returns the 4 bytes of the 32-bit IP address in big-endian order.

String getHostAddress()

Returns the IP address in dotted-quad notation (e.g., "169.1.1.2").

String getHostName()

Returns the canonical name of the host associated with the address.

boolean isMulticastAddress()

Returns true if the address is a multicast address (see Section 4.3.2).

Operators

boolean equals(Object address)

Returns true if address is non-null and represents the same address as this $netAddress
instance.

address Address to compare

2.2 TCP Sockets

Java provides two classes for TCP: Socket and ServerSocket. An instance of Socket represents
one end of a TCP connection. A TCP connection is an abstract two-way channel whose ends
are each identified by an IP address and port number. Before being used for communication,
a TCP connection must go through a setup phase, which starts with the client's TCP sending a
connection request to the server's TCP. An instance of ServerSocket listens for TCP connection
requests and creates a new Socket instance to handle each incoming connection.

2.2.1 TCPClient

The client initiates communication with a server that is passively waiting to be contacted. The
typical TCP client goes through three steps:

1. Construct an instance of Socket: The constructor establishes a TCP connection to the
specified remote host and port.

[] 2.2 TCP Sockets 1 3

2. Communica te using the socket 's I/O streams: A connec ted instance of Socket contains
an InputStream and 0utputStream that can be used jus t like any other Java I/O s t ream (see
Chapter 3).

3. Close the connect ion using the c lose () m e t h o d of Socket.

Our first TCP application, called TCPEchoClient.java, is a client that communica tes with an
e c h o s e r v e r using TCP. An echo server simply repeats whatever it receives back to the client.
The string to be echoed is provided as a command-l ine a rgumen t to our client. Many systems
include an echo server for debugging and test ing purposes . To test if the s t andard echo server
is running, try telnet t ing to por t 7 (the default echo port) on the server (e.g., at c o m m a n d line
" t e lne t server , example, corn 7" or use your basic telnet application).

TCPEchoClient.java

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
3O
31

0 import java.net.*; // for Socket
1 import java.io.*; // for lOException and Input/OutputStream
2
3 public class rCPEchoClient {
4

public static void main(String[] args) throws IOException {

if ((args.length < 2) II (args.length > 3)) // Test for correct # of args
throw new lllegalArgumentException("Parameter(s): <Server> <Word> [<Port>]");

String server = args[0]; // Server name or IP address
// Convert input String to bytes using the default character encoding
byte[] byteBuffer = args[l].getBytes();

int servPort = (args.length == 3) ? Integer.parselnt(args[2]) : 7;

// Create socket that is connected to server on specified port
Socket socket = new Socket(server, servPort) ;
System.out.println("Connected to server...sending echo string");

InputStream in = socket, getlnputStream() ;
OutputStream out = socket, getOutputStream() ;

out.write(byteBuffer); // Send the encoded string to the server

// Receive the same string back from the server
int totalBytesRcvd = 0; // Total bytes received so far
int bytesRcvd; // Bytes received in last read
while (totalBytesRcvd < byteBuffer.length) {

if ((bytesRcvd = in.read(byteBuffer, totalBytesRcvd,
byteBuffer.length - totalBytesRcvd)) == -I)

throw new SocketException("Connection closed prematurely");

14 Chapter 2: Basic Sockets m

32
33
34
35
36
37
38
39

}
}

totalBytesRcvd += bytesRcvd;
}

System.out.println("Received: " + new String(byteBuffer)) ;

socket.close(); // Close the socket and its streams

TCP Ec hoCI ie nt.ja va

1. Application setup and parameter parsing: lines 0-14

[] Convert the echo string: line 12
TCP sockets send and receive sequences of bytes. The getBytes() method of String
returns a byte array representat ion of the string. (See Section 3.1 for a discussion of
character encodings.)

[] Determine the port of the echo server: line 14
The default echo port is 7. If we specify a third parameter, I n t ege r .pa r se In t () takes
the string and returns the equivalent integer value.

2. TCP socket creation: line 17
The Socket constructor creates a socket and establishes a connection to the specified
server, identified either by name or IP address. Note that the underlying TCP deals only
with IP addresses. If a name is given, the implementat ion resolves it to the correspond-
ing address. If the connection at tempt fails for any reason, the constructor throws an
lOBxception.

3. Get socket input and output streams: lines 20-21
Associated with each connected Socket instance is an InputStream and 0utputStream. We
send data over the socket by writing bytes to the 0utputStream just as we would any other
stream, and we receive by reading from the InputStream.

4. Send the string to echo server: line 23
The wri te() method of 0utputStream transmits the given byte array over the connection
to the server.

5. Receive the reply from the echo server: lines 25-33
Since we know the number of bytes to expect from the echo server, we can repeatedly
receive bytes until we have received the same number of bytes we sent. This particular
form of read() takes three parameters: 1) buffer to receive into, 2) byte offset into the
buffer where the first byte received should be placed, and 3) the maximum number of
bytes to be placed in the buffer, read() blocks until some data is available, reads up
to the specified maximum number of bytes, and returns the number of bytes actually
placed in the buffer (which may be less than the given maximum). The loop simply fills

[] 2.2 TCP Sockets 1 5

up byteBuffer until we receive as many bytes as we sent. If the TCP connection is closed by
the other end, read() returns -1. For the client, this indicates that the server prematurely
closed the socket.

Why not just a single read? TCP does not preserve read() and wri te() message
boundaries. That is, even though we sent the echo string with a single wri te() , the echo
server may receive it in multiple chunks. Even if the echo string is handled in one chunk
by the echo server, the reply may still be broken into pieces by TCP. One of the most
common errors for beginners is the assumption that data sent by a single wri te() will
always be received in a single read ().

6. Print echoed string: line 35
To print the server's response, we must convert the byte array to a string using the default
character encoding.

7. Close socket: line 37
When the client has finished receiving all of the echoed data, it closes the socket.

We can communicate with an echo server named server.example.com with IP address
169.1.1.1 in either of the following ways:

% java TCPEchoClient server.example.com "Echo this!"
Received: Echo this!
% java TCPEchoClient 169. i. i. 1 "Echo this!"
Received: Echo this!

See TCPEchoClientGUI. java on the book's Web site for an implementation of the TCP echo client

with a graphical interface.

Socket

Constructors

Socket(InetAddress remoteAddr, int remotePort)

Socket(String remoteHost, int remotePort)
Socket(InetAddress remoteAddr, int remotePort, InetAddress localAddr, int localPort)

Socket(String remoteHost, int remotePort, InetAddress localAddr, int localPort)

Constructs a TCP socket connected to the specified remote address and port. The first
two forms of the constructor do not specify the local address and port, so a default
local address and some available port are chosen. Specifying the local address may be
useful on a host with multiple interfaces.

remoteAddr Remote host address

remoteHost Remote host name or IP address (in dotted-quad form)

remotePort Remote port

16 Chapter 2: Basic Sockets []

localAddr

localPort

Local address; use null to specify using the default local
address

Local port; a localPort of 0 allows the constructor to pick any
available port

O p e r a t o r s

void close()

Closes the TCP socket and its I/O streams.

void shutdownTnput()

Closes the input side of a TCP stream. Any unread data is silently discarded, including
data buffered by the socket, data in transit, and data arriving in the future. Any subse-
quent a t tempt to read from the socket will return end-of-stream (-1); any subsequent
call to getlnputStream() will cause an lOException to be thrown (see Section 4.5).

void shutdown0utput()

Closes the output side of a TCP stream. The implementat ion will a t tempt to deliver any
data already written to the socket's output s t ream to the other end. Any subsequent
a t tempt to write to the socket's output s tream or to call get0utputStream() will cause
an IOException to be thrown (see Section 4.5).

Accessors/Mutators

InetAddress getlnetAddress()

int getPort()

Returns the remote socket address/port .

InputStream getlnputStream0

OutputStream get0utputStream0

Returns a s t ream for reading/writ ing bytes f rom/to the socket.

boolean getKeepAlive()

void setKeepAlive(boolean on)

Returns/se ts keepalive message behavior. If keepalive is enabled, TCP sends a probe
to the other end of the connection when no data has been exchanged for a system-
dependent amount of time (usually two hours). If the remote socket is still alive, it
will acknowledge the probe (invisible to the application). However, if the other end
fails to acknowledge several probes in a row, the local TCP closes the connection, and
subsequent operations on it will throw an exception. Keepalive is disabled by default.

on If true (false), enable (disable) keepalive.

[] 2.2 TCP Sockets |

InetAddress getLocalAddress()

int getLocalPort()

Returns the local socket address/port.

int getReceiveBufferSize()

int getSendBufferSize()

void setReceiveBufferSize(int size)

void setSendBufferSize(int size)

Returns/sets the size of the send/receive buffer for the socket (see Section 4.4).

size Number of bytes to allocate for the socket send/receive
buffer

int getSoLinger()

void setSoLinger(boolean on, int linger)

Returns/sets the maximum amount of time (in milliseconds) that close() will block
waiting for all data to be delivered, getSoLinger() returns -1 if lingering is disabled
(see Section 5.4). Lingering is off by default.

on If true, the socket lingers on close() , up to the maximum
specified time.

l inger The maximum amount of time (milliseconds) a socket lingers
on close()

int getSoTimeout()

void setSoTimeout(int t imeout)

Returns/sets the maximum amount of time that a read() on this socket will block. If
the specified number of milliseconds elapses before any data is available, an In t e r -
ruptedIOException is thrown (see Section 4.2).

t imeout The maximum time (milliseconds) to wait for data on a
read(). The value 0 (the default) indicates that there is no
time limit, meaning that a read will not return until data is
available.

boolean getTcpNoDelay()

void setTcpNoDelay(boolean on)

Returns/sets whether the Nagle algorithm to coalesce TCP packets is disabled. To avoid
small TCP packets, which make inefficient use of network resources, Nagle's algorithm
(enabled by default) delays packet t ransmission under certain conditions to improve
the opportunities to coalesce bytes from several writes into a single TCP packet. This
delay is unacceptable to some types of interactive applications.

on If true (false), disable (enable) Nagle's algorithm.

1 8 Chapter 2: Basic Sockets m

Caveat: By default, Socket is implemented on top of a TCP connection; however, in Java,
you can actually change the underlying implementation of Socket. This book is about TCP/IP,
so for simplicity we assume that the underlying implementation for all of the these networking
classes is the default.

2.2.2 TCP Server

We now turn our attention to constructing a server. The server's job is to set up a communi-
cation endpoint and passively wait for connections from clients. The typical TCP server goes
through two steps:

1. Construct a ServerSocket instance, specifying the local port. This socket listens for
incoming connections to the specified port.

2. Repeatedly:

�9 Call the accept () method of ServerSocket to get the next incoming client connection.
Upon establishment of a new client connection, an instance of Socket for the new
connection is created and returned by accept ().

�9 Communicate with the client using the returned Socket's InputStream and Output-
Stream.

�9 Close the new client socket connection using the close() method of Socket.

Our next example, TCPEchoServer. java, implements the echo service used by our client
program. The server is very simple. It runs forever, repeatedly accepting a connection, receiving
and echoing bytes until the connection is closed by the client, and then closing the client socket.

TCPEchoServer.java

0 import java.net.* ; / / for Socket, ServerSocket, and InetAddress
1 import java.io.*; / / for IOException and Input/0utputStream
2
3 public class TCPEchoServer {
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

private static final int BUFSIZE = 32; // Size of receive buffer

public static void main(String[] args) throws lOException {

if (args.length != i) // Test for correct # of args
throw new lllegalArgumentException("Parameter(s): <Port>");

int servPort = Integer. parselnt (args [0]) ;

// Create a server socket to accept client connection requests
ServerSocket servSock = new ServerSocket(servPort) ;

int recvMsgSize; // Size of received message
byte[] byteBuffer = new byte[BUFSlZE]; // Receive buffer

m 2.2 TCP Sockets 19

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

}
}

for (;;) { // Run forever, accepting and servicing connections
Socket clntSock = servSock.accept() ; // Get client connection

System.out.println("Handling client at " +
clntSock.getInetAddress().getHostAddress() + " on port "+

clntSock, getPort ()) ;

InputStream in = clntSock, getlnputStream() ;

OutputStream out = clntSock.getOutputStream() ;

// Receive until client closes connection, indicated by-i return
while ((recvMsgSize = in.read(byteBuffer)) != -I)

out.write(byteBuffer, O, recvMsgSize) ;

clntSock, close () ;
}

/* NOT REACHED */

// Close the socket. We are done with this client!

TCPEchoServer.java

1. Application setup and paramete r parsing: lines 0-12

2. Server socket creation: line 15
servSock listens for client connection requests on the port specified in the constructor.

3. Loop forever, i terat ively handl ing incoming connections" lines 20-35

�9 Accept an incoming connection: line 21
The sole purpose of a ServerSocket instance is to supply a new, connected Socket
instance for each new TCP connection. When the server is ready to handle a client, it
calls accept (), which blocks until an incoming connection is made to the ServerSocket's
port. accept() then returns an instance of Socket that is already connected to the
remote socket and ready for reading and writing.

�9 Report connec ted client: lines 23-25
We can query the newly created Socket instance for the address and port of the
connecting client. The getlnetAddress() method of Socket returns an instance of
InetAddress containing the address of the client. We call getHostAddress() to return
the IP address as a dotted-quad String. The getPort() method of Socket returns the
port of the client.

�9 Get socket input and output streams: lines 27-28
Bytes written to this socket's 0utputStream will be read from the client's socket's
InputStream, and bytes written to the client's 0utputStream will be read from this
socket's InputStream.

20 Chapter 2: Basic Sockets []

�9 Receive and repeat data until the client closes: lines 30-32
The while loop repeatedly reads bytes (when available) from the input s t ream and
immediately writes the same bytes back to the output s tream until the client closes
the connection. The read() method of InputStream reads up to the max imum number
of bytes the array can hold (in this case, BUFSIZE bytes) into the byte array (byteBuffer)
and returns the number of bytes read. read () blocks until data is available and returns
-1 if there is no data available, indicating that the client closed its socket. In the echo
protocol, the client closes the connection when it has received the number of bytes
back that it sent, so in the server we expect to receive a -1 from read(). Recall that in
the client, receiving a -1 from read() indicates an error because it indicates that the
server prematurely closed the connection.

As previously mentioned, read() does not have to fill the entire byte array to
return. In fact, it can return after having read only a single byte. The wr i te () method
of 0utputStream writes recvMsgSize bytes from byteBuffer to the socket. The second
parameter indicates the offset into the byte array of the first byte to send. In this case,
0 indicates to take bytes starting from the front of byteBuffer. If we had used the
form of wr i te () that takes only the buffer argument, all the bytes in the buffer array
would have been transmitted, possibly including bytes that were not received from
the client!

�9 Close client socket: line 34

ServerSocket

C o n s t r u c t o r s

ServerSocket(int localPort)

ServerSocket(int localPort, int queueLimit)
ServerSocket(int localPort, int queueLimit, InetAddress localAddr)

Construct a TCP socket that is ready to accept incoming connections to the specified
local port. Optionally, the size of the connection queue and the local address can be
set.

localPort Local port. A port of 0 allows the constructor to pick any
available port.

queueLimit The maximum size of the queue of incomplete connections
and sockets waiting to be accept()ed. If a client connection
request arrives when the queue is full, the connection is
refused. Note that this may not necessarily be a hard lirrdt.
For most platforms, it cannot be used to precisely control
client population.

m 2.2 TCP Sockets 21

localAddr The IP address to which connections to this socket should be
addressed (must be one of the local interface addresses). If the
address is not specified, the socket will accept connections to
any of the host 's IP addresses. This may be useful for hosts
with multiple interfaces where the server socket should only
accept connections on one of its interfaces.

Operators

Socket accept()

Returns a connected Socket instance for the next new incoming connection to the

server socket. If no established connection is waiting, accept() blocks until one is
established or a timeout occurs (see setSoTimeout()).

void close()

Closes the underlying TCP socket. After invoking this method, incoming client con-
nection requests for this socket are rejected.

Accessors/Mutators

InetAddress getlnetAddress ()

int getLocalPort()

Returns the local address /por t of the server socket.

int getSoTimeoutO

void setSoTimeout(int timeout)

Returns/sets the maximum amount of time (in milliseconds) that an accept() will
block for this socket. If the timer expires before a connection request arrives, an
InterruptedlOException is thrown. A timeout value of 0 indicates no timeout: calls
to accept () will not return until a new connection is available, regardless of how much
time passes (see Section 4.2).

2.2.3 Input and Output Streams

As illustrated by the examples above, the primary paradigm for I/O in Java is the stream
abstraction. A stream is simply an ordered sequence of bytes. Java input streams support
reading bytes, and output streams support writing bytes. In our TCP client and server, each
Socket instance holds an InputStream and an 0utputStream instance. When we write to the
output stream of a Socket, the bytes can (eventually) be read from the input stream of the
Socket at the other end of the connection.

0utputStream is the abstract superclass of all output streams in Java. Using an Output-
Stream, we can write bytes to, flush, and close the output stream.

22 Chapter 2: Basic Sockets II

OutputStream

data

offset
length

vo id flush()

abstract vo id write(int data)

Writes a single byte to the output stream.

data Byte (low-order 8 bits) to write to output s t ream

void write(byte[] data)

Writes entire array of bytes to the output stream.

data Bytes to write to output s t ream

vo id write(byte[] data, int offset, int length)

Writes length bytes from data starting from byte offset.

Bytes from which to write to output s tream

Starting byte to send in data
Number of bytes to send

Pushes any buffered data out to the stream.

vo id close()

Terminates the stream.

InputStream is the abstract superclass of all input streams. Using an InputStream, we can
read bytes from and close the input stream.

InputStream

abst rac t int read()

Read and return a single byte from the input stream. The byte read is in the least
significant byte of the returned integer. This method returns -1 on end-of-stream.

int read(byte[] data)

Reads up to data.length bytes (or until the end-of-stream) from the input s t ream into
data and returns the number of bytes read. If no data is available, read () blocks until
at least I byte can be read or the end-of-stream is detected, indicated by a return of -1.

data Buffer to receive data from input s tream

int read(byte[] data, int offset, int length)

Reads up to length bytes (or until the end-of-stream) from the input s t ream into
data, starting at position offset, and returns the number of bytes read. If no data

[] 2.3 UDP Sockets 23

is available, read() blocks until at least 1 byte can be read or the end-of-stream is
detected, indicated by a return of -1.

data Buffer to receive data from input stream

offset Starting byte of data in which to write

length Maximum number of bytes to read

int available()

Returns the number of bytes available for input.

void close()

Terminates the stream.

2.3 UDP Sockets

UDP provides an end-to-end service different from that of TCP. In fact, UDP performs only
two functions: 1) it adds another layer of addressing (ports) to that of IP, and 2) it detects
data corruption that may occur in transit and discards any corrupted messages. Because of
this simplicity, UDP sockets have some different characteristics from the TCP sockets we saw
earlier. For example, UDP sockets do not have to be connected before being used. Where TCP
is analogous to telephone communication, UDP is analogous to communicating by mail: you
do not have to "connect" before you send a package or letter, but you do have to specify
the destination address for each one. Similarly, each message--called a datagram--carries its
own address information and is independent of all others. In receiving, a UDP socket is like
a mailbox into which letters or packages from many different sources can be placed. As soon
as it is created, a UDP socket can be used to send/receive messages to / f rom any address and
to / f rom many different addresses in succession.

Another difference between UDP sockets and TCP sockets is the way that they deal with
message boundaries: UDP sockets preserve them. This makes receiving an application message
simpler, in some ways, than it is with TCP sockets. (This is discussed further in Section 2.3.4.) A
final difference is that the end-to-end transport service UDP provides is best-effort: there is no
guarantee that a message sent via a UDP socket will arrive at its destination, and messages can
be delivered in a different order than they were sent Oust like letters sent through the mail).
A program using UDP sockets must therefore be prepared to deal with loss and reordering.
(We'll provide an example of this later.)

Given this additional burden, why would an application use UDP instead of TCP? One
reason is efficiency: if the application exchanges only a small amount of data--say, a single
request message from client to server and a single response message in the other direction--
TCP's connection establishment phase at least doubles the number of messages (and the
number of round-trip delays) required for the communication. Another reason is flexibility:
when something other than a reliable byte-stream service is required, UDP provides a minimal-
overhead platform on which to implement whatever is needed.

Java programmers use UDP sockets via the classes DatagramPacket and DatagramSocket.
Both clients and servers use DatagramSockets to send and receive DatagramPackets.

24 Chapter 2: Basic Sockets []

2.3.1 DatagramPacket

Instead of sending and receiving streams of bytes as with TCP, UDP endpoints exchange
self-contained messages, called datagrams, which are represented in Java as instances of
DatagramPacket. To send, a Java program constructs a DatagramPacket instance and passes it as
an argument to the send() method of a DatagramSocket. To receive, a Java program constructs
a DatagramPacket instance with preallocated space (a byte[]), into which the contents of a
received message can be copied (if/when one arrives), and then passes the instance to the
receive () method of a DatagramSocket.

In addition to the data, each instance of DatagramPacket also contains address and port
information, the semantics of which depend on whether the datagram is being sent or received.
When a DatagramPacket is sent, the address and port identify the destination; for a received
DatagramPacket, they identify the source of the received message. Thus, a server can receive
into a DatagramPacket instance, modify its buffer contents, then send the same instance, and
the modified message will go back to its origin. Internally, a DatagramPacket also has length
and offset fields, which describe the location and number of bytes of message data inside the
associated buffer. See the following reference and Section 2.3.4 for some pitfalls to avoid when
using DatagramPackets.

Datag ram Packet

Constructors

DatagramPacket(byte[] buffer, int length)
DatagramPacket(byte[] buffer, int offset, int length)
DatagramPacket(byte[] buffer, int length, InetAddress remoteAddr, int remotePort)
DatagramPacket(byte[] buffer, int offset, int length, InetAddress remoteAddr, int re-

motePort)

Constructs a datagram and makes the given byte array its data buffer. The first two
forms are typically used to construct DatagramPackets for receiving because the desti-
nation address is not specified (although it could be specified later with setAddress()
and setPort ()). The second two forms are typically used to construct DatagramPackets
for sending.

buffer Datagram payload

length Number of bytes of the buffer that will actually be used.
If the datagram is sent, length bytes will be transmitted. If
receiving into this datagram, length specifies the maximum
number of bytes to be placed in the buffer.

offset Location in the buffer array of the first byte of message data
to be sent/received; defaults to 0 if unspecified.

[] 2.3 UDP Sockets 2 5

remoteAddr
remotePort

Address (typically destination) of the datagram

Port (typically destination) of the datagram

Accessors/Mutators

InetAddress getAddress()

void setAddress(InetAddress address)

Returns/sets the datagram address. There are other ways to set the address: 1) the
address of a DatagramPacket instance can also be set by the constructor, and 2)
the receive() method of DatagramSocket sets the address to the datagram sender's
address.

address Datagram address

int getPort()

void setPort(int port)

Returns/sets the datagram port. There are other ways to set the address: 1) the port
can be explicitly set by the constructor or the setPort() method, and 2) the receive()
method of DatagramSocket sets the port to the datagram sender's port.

port Datagram port

int getT.ength()

void setLength(int length)

Returns/sets the internal length of the datagram. The internal datagram length can be
set explicitly by the constructor or by the setLength() method. Attempting to make it
larger than the length of the associated buffer results in an IllegalArgumentException.
The receive() method of DatagramSocket uses the internal length in two ways: 1) on
input, it specifies the maximum number of bytes of a received message that will be
copied into the buffer, and 2) on return, it indicates the number of bytes actually placed
in the buffer.

length Length in bytes of the usable portion of the buffer

int get0ffset()

Returns the location in the buffer of the first byte of data to be sent/received. There
is no se t0f fse t () method; however, it can be set with setData().

byte[] getDataO
Returns the buffer associated with the datagram. The returned object is a reference
to the byte array that was most recently associated with this DatagramPacket, either
by the constructor or by setData(). The length of the returned buffer may be greater
than the internal datagram length, so the internal length and offset values should be
used to determine the actual received data.

2 6 Chapter 2: Basic Sockets []

void setData(byte[] buffer)
void setData(byte[] buffer, int offset, int length)

Makes the given byte array the datagram buffer. The first form makes the entire byte
array the buffer; the second form makes bytes offset through offset + length- 1 the
buffer. The first form never updates the internal offset and only updates the internal
length if the given buffer's length is less than the current internal length. The second
form always updates the internal offset and length.

buffer Preallocated byte array for datagram packet data

offset Location in buffer where first byte is to be accessed

length Number of bytes to be read from/written into buffer

2.3.2 UDPClient

A UDP client begins by sending a datagram to a server that is passively waiting to be contacted.
The typical UDP client goes through three steps:

1. Construct an instance of DatagramSocket, optionally specifying the local address and port.

2. Communicate by sending and receiving instances of DatagramPacket using the send() and
receive() methods of DatagramSocket.

3. When finished, deallocate the socket using the close() method of DatagramSocket.

Unlike a Socket, a DatagramSocket is not constructed with a specific destination address.
This illustrates one of the major differences between TCP and UDP. A TCP socket is required to
establish a connection with another TCP socket on a specific host and port before any data can
be exchanged, and, thereafter, it only communicates with that socket until it is closed. A UDP
socket, on the other hand, is not required to establish a connection before communication, and
each datagram can be sent to or received from a different destination. (The connect () method
of DatagramSocket does allow the specification of the remote address and port, but its use is
optional.)

Our UDP echo client, UDPEchoClientTimeout. java, sends a datagram containing the string
to be echoed and prints whatever it receives back from the server. A UDP echo server simply
repeats each datagram that it receives back to the client. Of course, a UDP client only commu-
nicates with a UDP server. Many systems include a UDP echo server for debugging and testing
purposes.

One consequence of using UDP is that datagrams can be lost. In the case of our echo
protocol, either the echo request from the client or the echo reply from the server may be
lost in the network. Recall that our TCP echo client sends an echo string and then blocks on
read () waiting for a reply. If we try the same strategy with our UDP echo client and the echo
request datagram is lost, our client will block forever on receive (). To avoid this problem, our
client specifies a maximum amount of time to block on receive(), after which it tries again by
resending the echo request datagram. Our echo client performs the following steps:

[] 2.3 UDP Sockets 2 7

1. Send the echo str ing to the server.

2. Block on r e c e i v e () for up to three seconds, s tar t ing over (up to five t imes) if the reply is

not received before the t imeout .

3. Termina te the client.

UDPEchoClientTimeout.java

O import java.net.*;
1 import java.io.*; // for lOBxception
2
3 public class UDPEchoClientTimeout {
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

/ / for DatagramSocket, DatagramPacket, and InetAddress

private static final int TIMEOUT = 3000;
private static final int MAXTRIBS = 5;

// Resend timeout (milliseconds)
// Maximum retransmissions

public static void main(String[] args) throws lOException {

if ((args.length < 2) I I (args.length > 3)) // Test for correct # of args
throw new lllegalArgumentException("Parameter(s)' <Server> <Word> [<Port>]");

InetAddress serverAddress = InetAddress.getByName(args[0]); // Server address
// Convert the argument String to bytes using the default encoding
byte[] bytesZoSend = args[l].getBytes();

int servPort = (args.length == 3) ? Integer.parselnt(args[2]) �9 7;

DatagramSocket socket = new DatagramSocket() ;

socket.setSoTimeout(TIMEOUT); // Maximum receive blocking time (milliseconds)

DatagramPacket sendPacket = new DatagramPacket(bytesToSend,
bytesToSend.length, serverAddress, servPort) ;

// Sending packet

DatagramPacket receivePacket = // Receiving packet
new DatagramPacket(new byte[bytesToSend.length], bytesToSend.length);

int tries = 0; // Packets may be lost, so we have to keep trying
boolean receivedResponse = false;
do {

socket.send(sendPacket); // Send the echo string
try {

socket.receive(receivePacket); // Attempt echo reply reception

if (!receivePacket.getAddress().equals(serverAddress)) // Check source
throw new lOException("Received packet from an unknown source");

receivedResponse = true;

28 Chapter 2: Basic Sockets []

40
41
42
43
44
45
46
47
48
49
50
51
52
53

}

}

} catch (InterruptedlOException e) { // We did not get anything
tries += I;

System.out.println("Timed out, " + (~TRIES - tries) + " more tries...") ;
}

} while ((!receivedResponse) && (tries < ~s ;

if (receivedResponse)

System.out.println("Received: " + new String(receivePacket.getData()));
else

System. out.println("No response -- giving up.") ;

socket.close();

UDPEchoClientTimeout.java

1. Application setup and parameter parsing: lines 0-17
Convert argument to bytes: line 15

2. UDP socket creation: line 19
This instance of DatagramSocket can send datagrams to any UDP socket. We do not specify
a local address or port so some local address and available port will be selected. We can
explicitly set them with the setLocalAddress() and setLocalPort() methods or in the
constructor.

3. Set the socket timeout: line 21
The timeout for a datagram socket controls the maximum amount of time (milliseconds)
a call to receive() will block. Here we set the t imeout to three seconds. Note that t imeouts
are not precise: the call may block for more than the specified time (but not less).

4. Create da tagram to send: lines 23-24
To create a datagram for sending, we need to specify three things: data, destination
address, and destination port. For the destination address, we may identify the echo
server either by name or IP address. If we specify a name, it is converted to the actual IP
address in the constructor.

5. Create da tagram to receive: lines 26-27
To create a datagram for receiving, we only need to specify a byte array to hold the
datagram data. The address and port of the datagram source will be filled in by receive ().

6. Send the datagram: lines 29-44
Since datagrams may be lost, we must be prepared to retransmit the datagram. We loop
sending and at tempting a receive of the echo reply up to five times.

�9 Send the datagram: line 32

send() t ransmits the datagram to the address and port specified in the datagram.

II 2.3 UDP Sockets 29

�9 Handle da tagram reception: lines 33-43
receive() blocks until it either receives a datagram or the timer expires. Timer expi-
ration is indicated by an InterruptedlOException. If the timer expires, we increment
the send at tempt count (tries) and start over. After the maximum number of tries,
the while loop exits without receiving a datagram. If receive() succeeds, we set the
loop flag receivedResponse to true, causing the loop to exit. Since packets may come
from anywhere, we check the source address of the recieved datagram to verify that
it matches the address of the specified echo server.

7. Print recept ion results: lines 46-49
If we received a datagram, receivedResponse is true, and we can print the datagram data.

8. Close the socket: line 51

We invoke the UDP client using the same parameters as used in the TCP client.

DatagramSocket

Constructors

DatagramSocket()

DatagramSocket(int localPort)
DatagramSocket(int localPort, InetAddress localAddr)

Constructs a UDP socket. Either or both the local port and address may be specified.
If the local port is not specified, the socket is bound to any available local port. If the
local address is not specified, one of the local addresses is chosen.

localPort Local port; a localPort of 0 allows the constructor to pick any
available port.

localAddr Local address

Operators

void close()

After closing, datagrams may no longer be sent or received using this socket.

void connect(InetAddress remoteAddr, int remotePort)

Sets the remote address and port of the socket. Attempting to send datagrams with
a different address will cause an exception to be thrown. The socket will only receive
datagrams from the specified port and address. Datagrams from any other port or
address are ignored. This is strictly a local operation because there is no end-to-end
connection. Caveat: A socket that is connected to a multicast or broadcast address can

30 Chapter 2: Basic Sockets []

only send datagrams, because a datagram source address is always a unicast address
(see Section 4.3).

remoteAddr Remote address

remotePort Remote port

void disconnect()

Removes the remote address and port specification of the socket (see connect()).

void receive(DatagramPacket packet)

Places data from the next received message into the given DatagramPacket.

packet Receptacle for received information, including source
address and port as well as message data. (See the
DatagramPacket reference for details of semantics.)

void send(DatagramPacket packet)

Sends a datagram from this socket.

packet Specifies the data to send and the destination address and
port. If packet does not specify a destination address, the
DatagramSocket must be "connected" to a remote address
and port (see connect ()).

Accessors/Mutatots

InetAddress getlnetAddressO

int getPort0

Returns the remote socket address/port.

InetAddress getLocalAddress0

int getLocalPort0

Returns the local socket address/port.

int getReceiveBufferSize0

int getSendBufferSize0

void setReceiveBufferSize(int size)

void setSendBufferSize(int size)

The DatagramSocket has limits on the maximum datagram size that can be sent/
received through this socket. The receive limit also determines the amount of message
data that can be queued waiting to be returned via receive(). That is, when the amount
of buffered data exceeds the limit, arriving packets are quietly discarded. Setting the
size is only a hint to the underlying implementation. Also, the semantics of the limit
may vary from system to system: it may be a hard limit on some and soft on others.

size Desired limit on packet and/or queue size (bytes)

II 2.3 UDP Sockets 31

int getSoTimeout()
void setSoTimeout(int timeout)

Returns/sets the maximum amount of time that a receive () will block for this socket.
If the specified time elapses before data is available, an InterruptedlOException is
thrown.

timeout The maximum amount of time (milliseconds) that receive()
will block for the socket. A t imeout of 0 indicates that a
receive will block until data is available.

2.3.3 UDPServer

Like a TCP server, a UDP server's job is to set up a communicat ion endpoint and passively
wait for the client to initiate the communication; however, since UDP is connectionless, UDP
communication is initiated by a datagram from the client, without going through a connection
setup as in TCP. The typical UDP server goes through four steps:

1. Construct an instance of DatagramSocket, specifying the local port and, optionally, the
local address. The server is now ready to receive datagrams from any client.

2. Receive an instance of DatagramPacket using the receive() method of DatagramSocket.
When receive() returns, the datagram contains the client's address so we know where
to send the reply.

3. Communicate by sending and receiving DatagramPackets using the send() and receive()
methods of DatagramSocket.

4. When finished, deallocate the socket using the close() method of DatagramSocket.

Our next program example, UDPEchoServer. java, implements the UDP version of the echo
server. The server is very simple: it loops forever, receiving datagrams and then sending the
same datagrams back to the client. Actually, our server only receives and sends back the first
255 (ECHOMAX) characters of the datagram; any excess is silently discarded by the socket
implementat ion (see Section 2.3.4).

U D P Ec h oSe rye r .ja va

O import java.net .*; / / for DatagramSocket, DatagramPacket, and InetAddress
1 import java. io .*; / / for IOException
2
3 public class UDPEchoServer {
4
5 private s ta t ic f inal int ECHO~X = 255; / / Maximum size of echo datagram

32 Chapter 2: Basic Sockets I

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

public static void main(String[] args) throws lOF, xception {

if (args.length != i) // Test for correct argument list
throw new lllegalArgumentException("Parameter(s) : <Port>") ;

int servPort = Integer.parselnt(args[O]);

DatagramSocket socket = new DatagramSocket (servPort) ;
DatagramPacket packet = new DatagramPacket(new byte[ECHOMAX], ECHOMAX);

for (;;) { // Run forever, receiving and echoing datagrams
socket.receive(packet); // Receive packet from client
System.out.println("Handling client at " +

packet.getAddress().getHostAddress() + " on port " + packet.getPort());
socket.send(packet); // Send the same packet back to client
packet.setLength(ECHOMAX); // Reset length to avoid shrinking buffer

}

/* NOT REACHED */

U D P Ec h oSe rye r . ja va

1. Application setup and parameter parsing: lines 0-12
UDPEchoServer takes a single parameter , the local por t of the echo server socket.

2. Create and set up datagram socket: line 14
Unlike our UDP client, a UDP server mus t explicitly set its local por t to a n u mb e r known
by the client; otherwise, the client will not know the des t inat ion por t for its echo reques t
datagram. When the server receives the echo da tagram f rom the client, it can find out the
client 's address and por t f rom the datagram.

3. Create datagram: line 15
UDP messages are conta ined in datagrams. We cons t ruc t an instance of DatagramPacket
with a buffer of ECHOMAX (255) bytes. This da tagram will be used bo th to receive the echo
reques t and to send the echo reply.

4. Iteratively handle incoming echo requests: lines 17-23
The UDP server uses a single socket for all communicat ion, unlike the TCP server, which

creates a new socket with every successful accept ().

�9 Receive an echo request datagram: lines 18-20
The r ece ive () m e t h o d of DatagramSocket blocks until a da tagram is received f rom a
client (unless a t imeout is set). There is no connection, so each da tagram may come

[] 2.3 UDP Sockets ~

from a different sender. The datagram itself contains the sender 's (client's) source

address and port.

�9 Send echo reply: line 21
packet already contains the echo string and echo reply destination address and port,
so the send() method of DatagramSocket can simply transmit the datagram previously
received. Note that when we receive the datagram, we interpret the datagram address
and port as the source address and port, and when we send a datagram, we interpret
the datagram's address and port as the destination address and port.

�9 Reset buffer size: line 22
The internal length of packet was set to the length of the message just processed,
which may have been smaller than the original buffer size. If we do not reset the
internal length before receiving again, the next message will be truncated if it is longer
than the one just received.

2.3.4 Sending and Receiving with UDP Sockets

A subtle but important difference between TCP and UDP is that UDP preserves message
boundaries. Each call to receive() returns data from at most one call to send() Moreover,
different calls to receive() will never return data from the same call to send().

When a call to wr i te() on a TCP socket's output s tream returns, all the caller knows is
that the data has been copied into a buffer for transmission; the data may or may not have
actually been t ransmit ted yet. (This is covered in more detail in Chapter 5.) UDP, however, does
not provide recovery from network errors and, therefore, does not buffer data for possible
retransmission. This means that by the time a call to send() returns, the message has been
passed to the underlying channel for t ransmission and is (or soon will be) on its way out the
door.

Between the time a message arrives from the network and the time its data is returned via
read() or receive() , the data is stored in a first-in, first-out (FIFO) queue of received data. With
a connected TCP socket, all received-but-not-yet-delivered bytes are treated as one continuous
sequence of bytes (see Chapter 5). For a UDP socket, however, the received data may have come
from different senders. A UDP socket's received data is kept in a queue of messages, each with
associated information identifying its source. A call to receive() will never return more than
one message. However, if receive() is called with a DatagramPacket containing a buffer of size
n, and the size of the first message in the receive queue exceeds n, only the first n bytes of
the message are returned. The remaining bytes are quietly discarded, with no indication to the

receiving program that information has been lost!
For this reason, a receiver should always supply a DatagramPacket with a buffer big enough

to hold the largest message allowed by its application protocol at the time it calls receive() .
This technique will guarantee that no data will be lost. The maximum amount of data that can
be t ransmit ted in a DatagramPacket is 65,507 bytes-- the largest payload that can be carried in
a UDP datagram. It is important to remember here that each instance of DatagramPacket has an
internal notion of message length that may be changed whenever a message is received into

34 Chapter 2: Basic Sockets []

that instance (to reflect the number of bytes in the received message). Applications that call
receive() more than once with the same instance of DatagramPacket should explicitly reset the
internal length to the actual buffer length before each subsequent call to receive().

Another potential source of problems for beginners is the getData() method of Data-
gramPacket, which always returns the entire original buffer, ignoring the internal offset and
length values. Receiving a message into the DatagramPacket only modifies those locations of
the buffer into which message data was placed. For example, suppose buf is a byte array of
size 20, which has been initialized so that each byte contains its index in the array:

0] 1 I 2 I 3 I 4 I 5 1 0 1 ~ I ~ I 9 I 1 0 1 1 1 1 1 2 1 1 3 1 1 4 1 1 5 1 1 6 1 1 7 1 1 8 1 1 9 I

Suppose also that dg is a DatagramPacket, and that we set dg's buffer to be the middle 10 bytes
of buf :

dg. setData(buf, 5,10) ;

Now suppose that dgsocket is a DatagramSocket, and that somebody sends an 8-byte message
containing

I 41 I 42 143 I 44 I 45 I 46 I 47148 I
to dgsocket. The message is received into dg:

dgsocket .receive(dg) ;

Now, calling dg. getData() returns a reference to the original byte array buf, whose contents
are now

0 I 11 2 I 3 I 4 I 411 421 431 441 451 461 471 481 131 141 151 161 171 181 19 I

Note that only bytes 5-12 of buf have been modified and that, in general, the application
needs to use get0ffset () and getData() to access just the received data. One possibility is to
copy the received data into a separate byte array, like this:

byte[] destBuf = new byte[dg.getLength()];
System.arraycopy(dg.getData(), dg.getOffset(), destSuf, O, destSuf.length);

2.4 Exercises

1. For TCPF.choServer. java, we explicitly specify the port to the socket in the constructor.
We said that a socket must have a port for communication, yet we do not specify a port
in TCPY.choClient. java. How is the echo client's socket assigned a port?

2. When you make a phone call, it is usually the callee that answers with "Hello." What
changes to our client and server examples would be needed to implement this?

3. What happens if a TCP server never calls accept()? What happens if a TCP client sends
data on a socket that has not yet been accept ()ed at the server?

[] 2.4 Exercises ~

4. Servers are supposed to run for a long time without stopping--therefore, they must be
designed to provide good service no mat ter what their clients do. Examine the server
examples (TCPEchoServer. java and UDPEchoServer. java) and list anything you can think
of that a client might do to cause it to give poor service to other clients. Suggest
improvements to fix the problems that you find.

5. Modify TCPEchoServer. java to read and write only a single byte at a time, sleeping one
second between each byte. Verify that TCPEchoClient.java requires multiple reads to
successfully receive the entire echo string, even though it sent the echo string with one
wri te() .

6. Modify TCPEchoServer. java to read and write a single byte and then close the socket.
What happens when the TCPEchoClient sends a multibyte string to this server? What is
happening? (Note that the response could vary by OS.)

7. Modify UDPEchoServer. java so that it only echoes every other datagram it receives. Verify
that UDPEchoClientTimeout. java retransmits datagrams until it either receives a reply or
exceeds the number of retries.

8. Modify UDPEchoServer. java so that ECHOMAX is much shorter (say, 5 bytes). Then use
UDPEchoClientTimeout. java to send an echo string that is too long. What happens?

9. Verify experimentally the size of the largest message you can send and receive using a
DatagramPacket.

10. While UDPEchoServer. java explicitly specifies its local port in the constructor, we do not
specify the local port in UDPEchoClientTimeout. java. How is the UDP echo client's socket
given a port number? Hint: The answer is different for TCP.

c h a p t e r 3

Sending and Receiving Messages

W h e n writing programs to communicate via sockets, you will generally be implementing
an application protocol of some sort. Typically you use sockets because your program needs to
provide information to, or use information provided by, another program. There is no magic:
sender and receiver must agree on how this information will be encoded, who sends what
information when, and how the communicat ion will be terminated. In our echo example, the
application protocol is trivial: neither the client's nor the server's behavior is affected by the
contents of the bytes they exchange. Because most applications require that the behaviors of
client and server depend upon the information they exchange, application protocols are usually
more complicated.

The TCP/IP protocols t ransport bytes of user data without examining or modifying them.
This allows applications great flexibility in how they encode their information for transmission.
For various reasons, most application protocols are defined in terms of discrete messages
made up of sequences of fields. Each field contains a specific piece of information encoded
as a sequence of bits. The application protocol specifies exactly how these sequences of bits
are to be formatted by the sender and interpreted, or parsed, by the receiver so that the latter
can extract the meaning of each field. About the only constraint imposed by TCP/IP is that
information must be sent and received in chunks whose length in bits is a multiple of eight. So
from now on we consider messages to be sequences of bytes. Given this, it may be helpful to
think of a t ransmit ted message as a sequence of numbers, each between 0 and 255, inclusive
(that being the range of binary values that can be encoded in 8 bits--1 byte).

As a concrete example for this chapter, let's consider the problem of transferring price
quote information between vendors and buyers. A simple quote for some quantity of a
particular i tem might include the following information:

I tem number : A large integer identifying the i tem

Item description: A text string describing the i tem

Unit price: The cost per i tem in cents

Quantity: The number of units offered at that price

37

38 Chapter 3" Sending and Receiving Messages u

Discounted?: Whether the price includes a discount

In stock?: Whether the i tem is in stock

We collect this informat ion in a class ItemQuote. java. For convenience in viewing the informa-
t ion in our p r o g r a m examples, we include a t oS t r i ng () method. Throughout this chapter, the
variable item refers to an instance of ItemQuote.

ItemQuote.java

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

0 public class ItemQuote {

public long itemNumber; // Item identification number
public String itemDescription; // String description of item
public int quantity; // Number of items in quote (always >= i)
public int unitPrice; // Price (in cents) per item
public boolean discounted; // Price reflect a discount?
public boolean inStock; // Item(s) ready to ship?

public ItemQuote(long itemNumber, String itemDescription,
int quantity, int unitPrice, boolean discounted, boolean inStock)

this itemNumber = itemNumber;
this itemDescription = itemDescription;
this quantity = quantity;
this unitPrice = unitPrice;
this discounted = discounted;
this inStock = inStock;

public String toString() {
final String EOLN = java.lang.System.getProperty("line.separator");
String value = "Item#=" + itemNumber + EOLN +

"Description=" + itemDescription + EOLN +
"Quantity=" + quantity + BOLN +
"Price(each)=" + unitPrice + BOLN +
"Total=" + (quantity * unitPrice);

if (discounted)
value += " (discounted)";

if (inStock)
value += BOLN + "In Stock" + EOLN;

else
value += EOLN + "Out of Stock" + EOLN;

return value;

ItemQuote.java

[] 3.1 Encoding Information 39

3.1 Encoding Information

What if a client program needs to obtain quote information from a vendor program? The two
programs must agree on how the information contained in the ItemQuote will be represented
as a sequence of bytes "on the wire"--sent over a TCP connection or carried in a UDP datagram.
(Note that everything in this chapter also applies if the "wire" is a file that is written by one
program and read by another.) In our example, the information to be represented consists of
primitive types (integers, booleans) and a character string.

Transmitt ing information via the network in Java requires that it be written to an Out-
putStream (of a Socket) or encapsulated in a DatagramPacket (which is then sent via a Data-
gramSocket). However, the only data types to which these operations can be applied are bytes
and arrays of bytes. As a strongly typed language, Java requires that other types--Str ing, int,
and so on--be explicitly converted to these transmittable types. Fortunately, the language has
a number of built-in facilities that make such conversions more convenient. Before dealing
with the specifics of our example, however, we focus on some basic concepts of representing
information as sequences of bytes for transmission.

3.1.1 Text

Old-fashioned text--s tr ings of printable (displayable) characters--is perhaps the most com-
mon form of information representation. When the information to be t ransmit ted is natural
language, text is the most natural representation. Text is convenient for other forms of in-
formation because humans can easily deal with it when printed or displayed; numbers, for
example, can be represented as strings of decimal digits.

To send text, the string of characters is translated into a sequence of bytes according
to a character set. The canonical example of a character encoding system is the venerable
American Standard Code for Information Interchange (ASCII), which defines a one-to-one
mapping between a set of the most commonly used printable characters in English, and binary
values. For example, in ASCII the digit 0 is represented by the byte value 48, 1 by 49, and so
on up to 9, which is represented by the byte value 57. ASCII is adequate for applications that
only need to exchange English text. As the economy becomes increasingly globalized, however,
applications need to deal with other languages, including many that use characters for which
ASCII has no encoding, and even some (e.g., Chinese) that use more than 256 characters and
thus require more than I byte per character to encode. Encodings for the world's languages are
defined by companies and by standards bodies. Unicode is the most widely recognized such
character encoding; it is s tandardized by the International Organization for Standardization
(ISO).

Fortunately, Java provides good support for internationalization, in several ways. First,
Java uses Unicode to represent characters internally. Unicode defines a 16-bit (2-byte) code
for each character and thus supports a much larger set of characters than ASCII. In fact, the
Unicode standard currently defines codes for over 49,000 characters and covers "the principal
written languages and symbol systems of the world." [21] Second, Java supports various other
standard encodings and provides a clean separation between its internal representat ion and
the encoding used when characters are input or output.

~ O Chapter 3: Sending and Receiving Messages n

The getBytes() methods of class String implement this internal-to-external conversion,
returning the sequence of bytes that represent the given string in some external encoding--
either the default encoding or an explicitly named one. (This type of conversion may also
happen implicitly--for example, by writing a string to an instance of 0utputStreamWriter.)
Similarly, String provides constructors that take a byte array and the name of a particular
encoding, and return a String instance containing the sequence of characters represented by
the byte sequence according to the encoding. (If no encoding is explicitly requested, the default
encoding for the platform is used.)

Suppose the value of i tem.itemNumber is 123456. Using ASCII, that part of the string
representation of item produced by toString() would be encoded as

1105111611011109L 1611491501511 21 31 4 I
'i' 't' 'e' 'm' '#' '=' 'i' '2' '3' '4' '5' '6'

Using the "ISO8859_1" encoding would produce the same sequence of byte values, because the
International Standard 8859-1 encoding (which is also known as ISO Latin 1) is an extension
of ASCII--it maps the characters of the ASCII set to the same values as ASCII. However, if we
used the North American version of IBM's Extended Binary Coded Decimal Interchange Code
(EBCDIC), known in Java as the encoding "Cp037," the result would be rather different:

11371163L 1331148112311261241124212431244124 12461
' i ' ' t ' 'e ' 'm' '#' '=' '1' '2' '3' '4' '5' '6'

If we used Unicode, the result would use 2 bytes per character, with i byte containing zero and
the other byte containing the same value as with ASCII. Obviously the primary requirement in
dealing with character encodings is that the sender and receiver must agree on the code to be
used.

3.1.2 Binary Numbers

Transmitting large numbers as text strings is not very efficient: each character in the digit string
has one of only 10 values, which can be represented using, on average, less than 4 bits per
digit. Yet the standard character codes invariably use at least 8 bits per character. Moreover, it
is inconvenient to perform arithmetic computation and comparisons with numbers encoded
as strings. For example, a receiving program computing the total cost of a quote (quantity
times unit price) will generally need to convert both amounts to the local computer's native
(binary) integer representation before the computation can be performed. For a more compact
and computation-friendly encoding, we can transmit the values of the integers in our data as
binary values. To send binary integers as byte sequences, the sender and receiver need to agree
on several things:

�9 Integer size: How many bits are used to represent the integer? The sizes of Java's integer
types are fixed by the language definition--shorts are 2 bytes, ints are 4, longs are
8--so a Java sender and receiver only need to agree on the primitive type to be used.
(Communicating with a non-Java application may be more complex.) The size of an integer

i 3.1 Encoding Information ~ |

type, along with the encoding (signed/unsigned, see below), determines the maximum
and min imum values that can be represented using that type.

�9 Byte order: Are the bytes of the binary representat ion written to the s t ream (or placed in
the byte array) from left to right or right to left? If the most significant byte is t ransmit ted
first and the least significant byte is t ransmit ted last, that 's the so-called big-endian order.
Little-endian is, of course, just the opposite.

�9 Signed or unsigned: Signed integers are usually t ransmit ted in two's-complement repre-
sentation. For k-bit numbers, the two's-complement encoding of the negative integer - n ,
1 < n < 2 k-l , is the binary value of 2 k - n; and the non-negative integer p, 0 < p < 2 k-1 - 1,
is encoded simply by the k-bit binary value of p. Thus, given k bits, two's complement can
represent values in the range - 2 k-1 through 2 k-1 - 1, and the most significant bit (msb)
tells whether the value is positive (msb = 0) or negative (msb = 1). On the other hand, a
k-bit unsigned integer can encode values in the range 0 through 2 k - 1 directly.

Consider again the itemNumber. It is a long, so its binary representat ion is 64 bits (8
bytes). If its value is 12345654321 and the encoding is big-endian, the 8 bytes sent would be
(with the byte on the left t ransmit ted first):

0 0 0 2 223 219 188 49

If, on the other hand, the value was sent in little-endian order, the t ransmit ted byte values
would be:

If the sender uses big-endian when the receiver is expecting little-endian, the receiver will end
up with an itemNumber of 3583981154337816576! Most network protocols specify big-endian
byte order; in fact it is sometimes called network byte order.

Note that the most significant bit of the 64-bit binary value of 12345654321 is O, so its
signed (two's-complement) and unsigned representat ions are the same. More generally, the
distinction between k-bit signed and unsigned values is irrelevant for values that lie in the
range 0 through 2 k-1 - 1. Unfortunately, protocols often use unsigned integers; Java's lack of
unsigned integer types means that some care is required in dealing with such values, especially
in decoding. (See program ItemQuoteDecoderBin. java in Section 3.4.2 for an example.)

As with strings, Java provides mechanisms to turn primitive integer types into sequences
of bytes and vice versa. In particular, s treams that support the Data0utput interface have
methods writeShort (), wr i te In t (), and writeLong(), which allow those types to be written
out directly. These methods all write out the bytes of integer primitive types in big-endian byte
order using two's-complement representation. Similarly, implementat ions of the DataInput
interface have methods readInt () , readShort(), and so on. The next section describes some
ways to compose instances of these classes.

2 Chapter 3: Sending and Receiving Messages []

DataOutputStream BufferedOutputStream

writeDouble(3.14) -'-- ~ 1 ~ - I 3.14 (8 bytes) ~ 3.14

343 (4 bytes) ~ 343
writelnt(343) < , I 800 (2 bytes) ~ 800 I

writeShort(800) --~

DatalnputStream BufferedlnputStream

readDouble ()=readlnt () I I ~ I ~ ~____1 3.14 (8 bytes) ~ = I ~ 3.14

343 (4 bytes) ~ 343 i =
[Z soo readShort() = I 800 (2 bytes) = I !

F i g u r e 3.1 : Stream composition.

OutputStream

L

InputStream

I

3.2 Composing I / 0 Streams

Java's stream classes can be composed to provide powerful encoding and decoding facilities.
For example, we can wrap the 0utputStream of a Socket instance in a Buffered0utputStream
instance to improve performance by buffering bytes temporarily and flushing them to the
underlying channel all at once. We can then wrap that instance in a Data0utputStream to send
primitive data types. We would code this composition as follows:

Socket socket = new Socket(server, port) ;
DataOutputStream out = new DataOutputStream(

new BufferedOutputStream(socket. getOutputStream())) ;

Figure 3.1 demonstrates this composition. Here, we write our primitive data values, one by
one, to Data0utputStream, which writes the binary data to Buffered0utputStream, which buffers
the data from the three writes and then writes once to the socket 0utputStream, which controls
writing to the network. We create a parallel composition for the InputStream on the other
endpoint to efficiently receive primitive data types.

A complete description of the Java I/O API is beyond the scope of this text; however, Table
3.1 provides a list of some of the relevant Java I/O classes as a starting point for exploiting its
capabilities.

3.3 Framing and Parsing

Converting data to wire format is of course only half the story; the original information must
be recovered at the receiver from the transmitted sequence of bytes. Application protocols
typically deal with discrete messages, which are viewed as collections of fields. Framing refers
to the problem of enabling the receiver to locate the beginning and end of the message in

m 3.3 Framing and Parsing 4 3

I/O Class Function

Buffered[Input/Output]Stream
Checked[Input/Output]Stream
Data[Input/Output]Stream
Digest[Input/Output]Stream
GZIP[Input/Output]Stream
Object[Input/Output]Stream
PushbackInputStream
PrintOutputStream
ZIP[Input/Output]Stream

Performs buffering for I/O optimization.

Maintains a checksum on data.

Handles read/write for primitive data types.

Maintains a digest on data.

De/compresses a byte stream in GZIP format.

Handles read/write objects and primitive data types.

Allows a byte or bytes to be "unread."

Prints string representation of data type.

De/compresses a byte stream in ZIP format.

Table 3.1 : Java I/O Classes

the stream, and of the fields within the message. Whether in format ion is encoded as text, as
mult ibyte binary numbers , or as some combinat ion of the two, the applicat ion protocol mus t
enable the receiver of a message to de termine when it has received all of the message and to
parse it into fields.

If the fields in a message all have fixed sizes and the message is made up of a fixed
number of fields, then the size of the message is known in advance and the receiver can
simply read the expected number of bytes into a by te [] buffer. This technique was used in
TCPEchoClient. java, where we knew the number of bytes to expect f rom the server. However,
when some field (and/or the whole message) can vary in length, as with the itemDescription in
our example, we do not know be fo rehand how many bytes to read.

Marking the end of the message is easy in the special case of the last message to be
sent on a TCP connection: the sender simply closes the sending side of the connect ion (using
shutdown0utput() or c lose()) after sending the message. After the receiver reads the last byte
of the message, it receives an end-of-s t ream indicat ion (i.e., read() re turns -1), and thus can
tell that it has as much of the message as there will ever be. The same principle applies to the
last field in a message sent as a DatagramPacket.

In all o ther cases, the message itself mus t contain addit ional f raming informat ion en-
abling the receiver to parse the f ie ld/message. This in format ion typically takes one of the
following forms:

�9 Delimiter: The end of the variable-length field or message is indicated by a unique marker,
an explicit byte sequence that immedia te ly follows, but does not occur in, the data.

�9 Explicit length: The variable-length field or message is p receded by a (fixed-size) length
field that tells how many bytes it contains.

The del imiter-based approach is of ten used with variable-length text: A part icular char-
acter or sequence of characters is defined to mark the end of the field. If the entire message
consists of text, it is s t ra ight forward to read in characters using an instance of Reader (which

4 4 Chapter 3: Sending and Receiving Messages []

handles the byte-to-character translation), looking for the delimiter sequence, and returning
the character string preceding it.

Unfortunately, the Reader classes do not support reading binary data. Moreover, the
relationship between the number of bytes read from the underlying InputStream and the
number of characters read from the Reader is unspecified, especially with multibyte encodings.
When a message uses a combination of the two framing methods mentioned above, with some
explicit-length-delimited fields and others using character markers, this can create problems.

The class Framer, defined below, allows an InputStream to be parsed as a sequence of
fields delimited by specific byte patterns. The static method Framer.nextToken() reads bytes
from the given InputStream until it encounters the given sequence of bytes or the stream ends.
All bytes read up to that point are then returned in a new byte array. If the end of the stream is
encountered before any data is read, null is returned. The delimiter can be different for each
call to nextToken(), and the method is completely independent of any encoding.

A couple of words of caution are in order here. First, nextToken() is terribly inefficient;
for real applications, a more efficient pattern-matching algorithm should be used. Second,
when using Framer.nextToken() with text-based message formats, the caller must convert the
delimiter from a character string to a byte array and the returned byte array to a character
string. In this case the character encoding needs to distribute over concatenation, so that it
doesn't matter whether a string is converted to bytes all at once, or a little bit at a time.

To make this precise, let E() represent an encoding--that is, a function that maps
character sequences to byte sequences. Let a and b be sequences of characters, so E(a)
denotes the sequence of bytes that is the result of encoding a. Let "+" denote concatenation
of sequences, so a + b is the sequence consisting of a followed by b. This explicit-conversion
approach (as opposed to parsing the message as a character stream) should only be used with
encodings that have the property that E(a + b)= E(a)+ E(b); otherwise, the results may be
unexpected. Although most encodings supported in Java have this property, some do not.
In particular, UnicodeBig and UnicodeLittle encode a String by first outputting a byte-order
indicator (the 2-byte sequence 254-255 for big-endian, and 255-254 for little-endian), followed
by the 16-bit Unicode value of each character in the String, in the indicated byte order. Thus,
the encoding of "Big fox" using UnicodeBig is as follows:

12 412 510 166 I o 11051 0 11031 0 1 321 0 11021 0 Ii111 0 11201
[mark] 'B' 'i' 'g' ' ' 'f' 'o' 'x'

while the encoding of "Big" concatenated with the encoding of "fox", using the same encoding,
is as follows"

12 4J2 1 o 166 I o j l051 0 11o312 4125 1 0 132 I o 11o21 o i Xlll 0 112ol
[mark] ' B' ' i' ' g' [mark] ' ' ' f' ' o' ' x'

Using either of these encodings to convert the delimiter results in a byte sequence that
begins with the byte-order marker. Moreover, if the byte array returned by nextToken() does not
begin with one of the markers, any attempt to convert it to a String using one of these encodings

[] 3.3 Framing and Parsing 4

will throw an exception. The encodings UnicodeBigUnmarked and UnicodeLittleUnmarked
(supported in JDK as of 1.3) omit the byte-order marker, so they are suitable for use with
Framer. nextToken().

Framerjava

0 import java.io.*;
1

2 public class Framer {
3
4
5
6
7
8

9
i0
Ii
12
13
14
15
16
17
18
19
20
21
22
23
24 }
25
26
27
28
29
30
31
32
33
34
35 }
36 }

// for InputStream and ByteArrayOutputStream

public static byte[] nextToken(InputStream in, byte[] delimiter)
throws lOException {

int nextByte ;

// If the stream has already ended, return null
if ((nextByte = in.read()) == -i)

return null;

ByteArrayOutputStream tokenBuffer = new ByteArrayOutputStream();
do {

tokenBuffer.write(nextByte);
byte[] currentToken = tokenBuffer.toByteArray();
if (endsWith(currentToken, delimiter)) {

int tokenLength = currentToken.length - delimiter.length;
byte[] token = new byte[tokenLength];
System.arraycopy(currentToken, O, token, O, tokenLength);
return token;

}
} while ((nextByte = in.read()) != -i); // Stop on end-of-stream
return tokenBuffer.toByteArray(); // Received at least 1 byte

// Returns true if value ends with the bytes in suffix
private static boolean endsWith(byte[] value, byte[] suffix) {

if (value.length < suffix.length)
return false;

for (int offset = i; offset <= suffix.length; offset++)
if (value[value.length- offset] != suffix[suffix.length- offset])

return false;
return true;

Framerjava

46 Chapter 3: Sending and Receiving Messages !

1. nextToken(): lines 4-24
Read f rom input s t ream until delimiter or end-of-stream.

�9 Tes t for end-of-s t ream: lines 8-10
If the input s t ream is already at end-of-stream, re tu rn null .

�9 Create a buf fe r to ho ld the b y t e s of the token: line 12
We use a ByteArray0utputStream to collect the data byte by byte. The ByteArray[Input I
Output]Stream classes allow a byte array to be handled like a s t ream of bytes.

�9 Put the last by t e r ead into the buf fe r �9 line 14

�9 Get a by t e a r r ay con ta in ing the inpu t so far: line 15
It is very inefficient to create a new byte array on each iteration, but it is simple.

�9 Check w h e t h e r the de l imi te r is a suffix of the cu r r en t token: lines 16-21
If so, create a new byte array containing the bytes read so far, minus the delimiter
suffix, and re tu rn it.

�9 Get nex t byte: line 22

�9 Re tu rn the cu r r en t t o k e n on end-of-s t ream: line 23

2. endswith(): lines 26-35

�9 C o m p a r e lengths: lines 28-29
The candidate sequence mus t be at least as long as the delimiter to be a match.

�9 C o m p a r e by tes , r e t u r n f a l s e on a n y difference: lines 31-33
Compare the last delim.length bytes of the token to the delimiter.

�9 If no dif ference, r e t u r n true: line 34

3.4 Implementing Wire Formats in Java

To emphas ize the fact that the same informat ion can be r ep resen ted "on the wire" in different
ways, we define an interface ItemQuoteEncoder, which has a single m e t h o d that takes an
ItemQuote instance and converts it to a by te[] that can be wri t ten to an 0utputStream or
encapsu la ted in a DatagramPacket.

ItemQuoteEncoder.java

0 public interface ItemQuoteEncoder {
1 byte[] encode(ItemQuote item) throws Exception;
2 }

ItemQuoteEncoder.java

The specification of the cor responding decoding functionali ty is given by the ItemQuot-
eDecoder interface, which has me thods for pars ing messages received via s t reams or in Data-

I 3.4 Implementing Wire Formats in Java 4

gramPackets. Each method performs the same function: extracting the information for one
message and returning an ItemQuote instance containing the information.

ItemQuoteDecoder.java

0 import java.io.* ; // for InputStream and IOException
1 import java.net.*; // for DatagramPacket
2
3 public interface ItemQuoteDecoder {
4 ItemQuote decode(InputStream source) throws IOException;
5 ItemQuote decode(DatagramPacket packet) throws IOException;
6 }

ItemQuoteDecoder.java

Sections 3.4.1 and 3.4.2 present two different implementations for these interfaces: one using
a text representation, the other, a hybrid encoding.

3.4.1 Text-Oriented Representation

Clearly we can represent the ItemQuote information as text. One possibility is to simply
transmit the output of the toStr ing() method using a suitable character encoding. To simplify
parsing, the approach in this section uses a different representation, in which the values of
itemNumber, itemDescription, and so on are transmitted as a sequence of delimited text fields.
The sequence of fields is as follows:

<Item Number> <Description> <Quantity> <Price> (Discount?) (In Stock?>

The Item Number field (and the other integer-valued fields, Quantity and Price) contain a
sequence of decimal digit characters followed by a space character (the delimiter). The Descrip-
tion field is just the description text. However, because the text itself may include the space
character, we have to use a different delimiter; we choose the newline character, represented
as \n in Java, as the delimiter for this field.

Boolean values can be encoded in several different ways. One possibility is to include the
string "true" or the string "false", according to the value of the variable. A more compact
approach (and the one used here) is to encode both values (discounted and inStock) in a single
field; the field contains the character '8' if discounted is true, indicating that the item is
discounted, and the c h a r a c t e r ' s ' if inStock is true, indicating that the item is in stock. The
absence of a character indicates that the corresponding boolean is false, so this field may be
empty. Again, a different delimiter (\n) is used for this final field, to make it slightly easier to
recognize the end of the message even when this field is empty. A quote for 23 units of item
number 12345, which has the description "AAA Battery" and price $14.45, and which is both
in stock and discounted, would be represented as

12345 AAA Battery\n23 1445 ds\n

48 Chapter 3" Sending and Receiving Messages m

Constants needed by both the encoder and the decoder are defined in the ItemQuoteText-
Const interface, which defines "ISO8859_1" as the default encoding (we could just as easily
have used any other encoding as the default) and 1024 as the maximum length (in bytes) of
an encoded message. Limiting the length of an encoded message limits the flexibility of the
protocol, but it also provides for sanity checks by the receiver.

I te m Q u o t e T e x t C o n s t . j a v a

O public interface ItemOuoteTextConst {
1 public static final String DEFAULT_ENCODING = "IS0_8859_I";
2 public static final int MAX_WIRE_LENGTH = 1024;
3 }

ItemQuoteEncoderText implements the text encoding.

I t e m Q u o t e E n c o d e r T e x t . j a v a

I te m Q u o t e T e x t C o n s t . j a v a

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

O import java.io.*; // for ByteArrayOutputStream and OutputStreamWriter
1
2 public class ItemQuoteEncoderText implements ItemOuoteEncoder, ItemOuoteTextConst {

private String encoding; // Character encoding

public ItemQuoteEncoderText() {
encoding = DEFAULT_ENCODING;

}

public ItemQuoteEncoderText(String encoding) {
this.encoding = encoding;

}

public byte[] encode(ItemQuote item) throws Exception {
ByteArrayOutputStream buf = new ByteArrayOutputStream();
OutputStreamWriter out = new OutputStreamWriter(buf, encoding);
out.write(item.itemNumber +);
if (item.itemDescription.indexOf('\n') != -i)

throw new lOException("Invalid description (contains newline)");
out.write(item.itemDescription + "\n" + item.quantity + +

item.unitPrice +);
if (item.discounted)

out.write('d'); // Only include 'd' if discounted
if (item.inStock)

out.write('s'); // Only include 's' if in stock

1 3.4 Implementing Wire Formats in Java 4 9

26
27
28
29
30
31
32

}
}

out.write('\n');
out. flush() ;
if (buf.size() > MAX_WIRE_LENGTH)

throw new lOException("Bncoded length too long");
return buf. toByteArray() ;

ItemQuoteEncoderText.java

1. Constructors: lines 6-12
If no encoding is explicitly specified, we use the default encoding specified in the constant
interface.

2. encode() method: lines 14-31

�9 Create an output buffer: lines 15-16
A ByteArray0utputStream collects the bytes to be returned. Wrapping it in an Out-
putWriter allows us to take advantage of the latter's methods for converting strings
to bytes.

�9 Write the first integer, followed by a space delimiter: line 17

�9 Check for delimiter: lines 18-19
Make sure that the field delimiter is not contained in the field itself. If it is, throw an
exception.

�9 Output itemDescription and other integers: lines 20-21

�9 Write the flag characters if the b o o l e a n s are true: lines 22-25

�9 Write the del imiter for the flag field: line 26

�9 Flush the output stream: lines 27-29
Flush everything to the underlying stream, and call s ize() to check that the resulting
byte sequence is not too long. The length restriction allows the receiver to know how
big a buffer is needed to receive into a DatagramPacket. (For stream communication,
this is not necessary, but it is still convenient.)

�9 Return the byte array f rom the output stream: line 30

The decoding class ItemQuoteDecoderText simply inverts the encoding process.

ItemQuoteDecoderText.java

0 import java.io.*; // for InputStream, ByteArrayInputStream, and IOException
1 import java.net.*; // for DatagramPacket
2
3 public class ItemQuoteDecoderText implements ItemQuoteDecoder, ItemQuoteTextConst {
4
5 private String encoding; // Character encoding

50 Chapter 3: Sending and Receiving Messages []

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
3O
31
32
33
34
35
36

public ItemOuoteDecoderText() {
encoding = DEFAULT_ENCODING;

}

public ItemOuoteDecoderText(String encoding) {
this.encoding = encoding;

}

public ItemQuote decode(InputStream wire) throws lOException {
String itemNo, description, quant, price, flags;
byte[] space = " ".getBytes(encoding);
byte[] newline = "\n".getBytes(encoding);
itemNo = new String(Framer.nextToken(wire, space), encoding);
description = new String(Framer.nextToken(wire, newline), encoding);
quant = new String(Framer.nextToken(wire, space), encoding);
price = new String(Framer.nextToken(wire, space), encoding);
flags = new String(Framer.nextToken(wire, newline), encoding);
return new ItemQuote(Long.parseLong(itemNo), description,

Integer.parselnt(quant),
Integer.parselnt(price),
(flags.indexOf('d') != -i),
(flags.indexOf('s') != -i));

public ItemQuote decode(DatagramPacket p) throws lOException {
ByteArraylnputStream payload =

new ByteArraylnputStream(p.getData(), p.getOffset(), p.getLength());
return decode(payload);

}

ItemQuoteDecoderText.java

1. Var iables and cons t ruc to r s : lines 5-13

�9 Encoding: line 5

The encoding used in the decoder mus t be the same as in the encoder!

�9 Cons t ruc tors : lines 7-13
If no encoding is given at const ruct ion time, the default defined in TtemQuoteDecoder-

TextConst is used.

2. S t ream decode(): lines 15-29

�9 Conver t delimiters" lines 17-18

We get the encoded form of the delimiters ahead of time, for efficiency.

I 3.4 Implementing Wire Formats in Java 5 |

�9 Call the nextToken() method for each field: lines 19-23
For each field, we call Framer. nextToken() with the appropriate delimiter and convert
the result according to the specified encoding.

�9 Construct ItemQuote: lines 24-28
Convert to native types using the wrapper conversion methods and test for the
presence of the flag characters in the last field.

3. Packet decode(): lines 31-35
Extract the data, convert to a stream, and call the stream decode() method.

3.4.2 Combined Data Representation

Our next encoding represents the integers of the ItemQuote as fixed-size, binary numbers:
itemNumber as 64 bits, and quantity and unitPrice as 32 bits. It encodes the boolean values as
flag bits, which occupy the smallest possible space in an encoded message. Also, the variable-
length string itemDescription is encoded in a field with an explicit length indication. The binary
encoding and decoding share coding constants in the ItemQuoteBinConst interface.

Ite mQuote Bi nCon s t .ja va

O public interface ItemQuoteBinConst {
public static final String DEFAULT_ENCODING = "IS0_8859_i";
public static final int DISCOUNT_FLAG = 1 << 7;
public static final int IN_STOCK_FLAG = 1 << 0;
public static final int MAX_DESC_LEN = 255;
public static final int MAX_WIRE_LENGTH = 1024;

ItemQuoteEncoderBin implements the binary encoding.

I temQuoteBinConst . java

Ite mQuote E ncode r Bi n . java

0 import java.io.*;
I

2
3
4
5
6
7
8

9

// for ByteArrayOutputStream and DataOutputStream

public class ItemQuoteEncoderBin implements ItemQuoteEncoder, ItemQuoteBinConst {

private String encoding; // Character encoding

public ItemQuoteEncoderBin() {
encoding = DEFAULT_ENCODING;

}

52 Chapter 3: Sending and Receiving Messages []

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
3O
31
32
33
34
35

public ItemQuoteEncoderBin(String encoding) {
this.encoding = encoding;

}

public byte[] encode(ItemQuote item) throws Exception {

ByteArrayOutputStream buf = new ByteArrayOutputStream();
DataOutputStream out = new DataOutputStream(buf);
out.writeLong(item.itemNumber);
out .writeInt(i tem.quanti ty);
out .writeInt(i tem.unitPrice);
byte flags = O;
i f (item.discounted)

flags]= DISCOUNT_FLAG;
i f (item.inStock)

flags I= IN_STOCK_FLAG;
out.writeByte(flags);
byte[] encodedDesc = item.itemDescription.getBytes(encoding);
if (encodedDesc.length > MAX_DESC_LEN)

throw new IOException("Item Description exceeds encoded length limit");
out.writeByte(encodedDesc.length);
out.write(encodedDesc);
out.flush();
return buf.toByteArray();

I te m Qu o te E n c o d e r Bi n . ja v a

1. Constants, variables, and constructors: lines 4-12

2. encode(): lines 14-34

�9 Set up Output: lines 16-17
Again, a ByteArray0utputStream collects the bytes of the encoded message. Encapsu-
lating the ByteArray0utputStream in a Data0utputStream allows use of its methods for
writing binary integers.

�9 Write integers" lines 18-20
The writeLong() method writes the long's 8 bytes to the stream in big-endian order.
Similarly, wr i teIn t () outputs 4 bytes.

�9 Write booleans as flags: lines 21-26
Encode each boolean using a single bit in a flag byte. Initialize the flag byte to O, then
set the appropriate bits to 1, if either discounted or inStock is true. (The bits are defined
in the ItemQuoteBinConst interface to be the most and least significant bits of the byte,
respectively.) Write the byte to the stream.

�9 Convert descr ipt ion string to bytes: line 2 7
Although Data0utDutStream nrovides methods for writing Strings, it SUDDOrts only one

! 3.4 Implementing Wire Formats in Java 5

fixed encoding, namely, UTF-8. Because we want to support alternative encodings, we
convert the string to bytes explicitly.

�9 Check description length: lines 28-29
We are going to use an explicit length encoding for the string, with a single byte giving
the length. The biggest value that byte can contain is 255 bytes, so the length of the
encoded string must not exceed 255 bytes. If it does, we throw an exception.

�9 Write encoded string: lines 30-31
Write the length of the encoded string, followed by the bytes in the buffer.

�9 Flush output stream, return bytes: line 32
Ensure that all bytes are flushed from the Data0utputStream to the underlying byte
buffer.

ItemQuoteDecoderBin implements the corresponding decoder function.

I te m Q u o t e D e c o d e r Bi n . ja v a

0 import java.io.*; // for ByteArrayInputStream
1 import java.net.*; // for DatagramPacket
2
3 public class ItemQuoteDecoderBin implements ItemQuoteDecoder, ItemQuoteBinConst {
4
5 private String encoding; // Character encoding
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

public ItemQuoteDecoderBin() {
encoding = DEFAULT_ENCODING;

}

public ItemQuoteDecoderBin(String encoding) {
this.encoding = encoding;

}

public ItemQuote decode(InputStream wire) throws lOException {
boolean discounted, inStock;
DatalnputStream src = new DataInputStream(wire);
long itemNumber = src.readLong();
int quantity = src.readInt();
int unitPrice = src.readlnt();
byte flags = src.readByte();
int stringLength = src.read(); // Returns an unsigned byte as an int
if (stringLength == -i)

throw new EOFException();
byte[] stringBuf = new byte[stringLength];
src.readFully(stringBuf);
String itemDesc = new String(stringBuf,encoding);
return new ItemQuote(itemNumber,itemDesc, quantity, unitPrice,

((flags & DISCOUNT_FLAG) == DISCOUNT_FLAG),
((flags & IN_STOCK_FLAG) == IN_STOCK_FLAG));

54 Chapter 3: Sending and Receiving Messages 1

32
33
34
35
36
37
38

public ItemQuote decode(DatagramPacket p) throws lOException {
ByteArrayInputStream payload =

new ByteArraylnputStream(p.getData(), p.getOffset(), p.getLength());
return decode(payload);

}

ItemQuoteDecoderBin.java

1. Constants, variables, and constructors: lines 5-13

2. Stream decode: lines 15-31

�9 Wrap the InputStream: line 17
Using the given InputStream, construct a DataInputStream so we can make use of the
methods readLong() and readInt() for reading binary data types from the input.

�9 Read integers: lines 18-20
Read the integers back in the same order they were written out. The readLong()
method reads 8 bytes and constructs a (signed) long using big-endian byte ordering.
The readInt() method reads 4 bytes and does the same thing. Either will throw an
EOFException if the stream ends before the requisite number of bytes is read.

�9 Read flag byte: line 21
The flag byte is next; the values of the individual bits will be checked later.

�9 Read string length: lines 22-24
The next byte contains the length of the encoded string. Note that we use the read()
method, which returns the contents of the next byte read as an integer between 0 and
255 (or -1), and that we read it into an int. If we read it into a byte (which is signed),
we would not be able to distinguish between the case where the length is 255 and
the case where the stream ends prematurely--both would return -1, since the signed
interpretation of the 8-bit binary representation of 255 is -1.

�9 Allocate buffer and read encoded string: lines 25-26
Once we know how long the encoded string is, we allocate a buffer and call readFully() ,
which does not return until enough bytes have been read to fill the given buffer.
readFully() will throw an F,0FException if the stream ends before the buffer is filled.
Note the advantage of the length-prefixed String representation: bytes do not have to
be interpreted as characters until you have them all.

�9 Check flags: lines 29-30
The expressions used as parameters in the call to the constructor illustrate the stan-
dard method of checking whether a particular bit is set (equal to 1) in an integer type.

3. Packet decode:dines 33-37
Simply wrap the packer's data in a ByteArrayInputStream and pass to the stream-decoding
method.

[] 3.4 Implementing Wire Formats in Java 5

3.4.3 Sending and Receiving
The encodings p re sen ted above can be used with bo th Sockets and DatagramSockets. We show
the TCP usage first.

SendTCP.java

0 import java . io .* ; / / for Input/0utputStream
1 import java .ne t .* ; / / for Socket
2
3 public class SendTCP {
4
5 public s t a t i c void main(String args[]) throws Exception {
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 }

i f (args . length != 2) / / Test for correct # of args
throw new IllegalArgumentException("Parameter(s): <Destination> <Port>");

InetAddress destAddr = InetAddress. getByName(args[O]) ;
int destPort = Integer.parselnt(args[l]);

// Destination address
// Destination port

Socket sock = new Socket(destAddr, destPort) ;

ItemQuote quote = new ItemQuote(1234567890987654L, "5mm Super Widgets",
1000, 12999, true, false);

// Send text-encoded quote
ItemQuoteEncoder coder = new ItemQuoteEncoderText();
byte[] codedQuote = coder.encode(quote);
System.out.println("Sending Text-Encoded Quote (" +

codedQuote.length + " bytes): ");
System.out.println(quote);
sock.getOutputStream().write(codedQuote);

// Receive binary-encoded quote
ItemQuoteDecoder decoder = new ItemQuoteDecoderBin();
ItemQuote receivedQuote = decoder.decode(sock.getlnputStream());
System. out. println("Received Binary-Encode Quote :") ;
System. out. println(receivedQuote) ;

sock.close();

SendTCP.java

56 Chapter 3: Sending and Receiving Messages 1

1. Socket setup: line 13

2. Send using text encoding: lines 18-24

3. Receive using binary encoding: lines 26-30

RecvTCP.java

0 import java.io.*;
1 import java.net.*;
2
3
4
5
6
7
8
9

i0
ii
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 clntSock, close() ;
28 servSock, close() ;
29 }
30 }

// for Input/OutputStream
// for Socket and ServerSocket

public class RecvTCP {

public static void main(String args[]) throws Exception {

if (args.length != i) // Test for correct # of args
throw new IllegalArgumentException("Parameter(s): <Port>");

int port = Integer.parseInt(args[O]); // Receiving Port

ServerSocket servSock = new ServerSocket(port) ;
Socket clntSock = servSock, accept () ;

// Receive text-encoded quote
ItemQuoteDecoder decoder = new ItemQuoteDecoderText();
ItemQuote quote = decoder.decode(clntSock.getInputStream()) ;
System.out.println("Received Text-Encoded Quote:");
System.out.println(quote);

/ / Repeat quote with binary encoding, adding 10 cents to the price
ItemQuoteEncoder encoder = new ItemQuoteEncoderBin();
quote.unitPrice +: 10; / / Add 10 cents to unit price
System.out.println("Sending (b inary) . . . ");
clntSock, getOutputStream(), write (encoder. encode (quote)) ;

RecvTCP.java

1. Socket setup: line 12

2. Accept client connection: line 13

[] 3.4 Implementing Wire Formats in Java 5

3. Receive and print out a text-encoded message: lines 15-19

4. Send a binary-encoded message: lines 21-25
Note that before sending, we add 10 cents to the unit price given in the original message.

To demons t r a t e the use of the encoding and decoding classes with datagrams, we include

a simple UDP sender and receiver. Since this is very similar to the TCP code, we do not include

any code description.

SendUDP.java

0 import java.net.*;
1 import java.io.*;
2
3
4
5
6
7
8
9

I0
ii
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 sock. close() ;

30 }
31 }

/ / for DatagramSocket, DatagramPacket, and InetAddress
/ / for IOF.xception

public class SendUDP {

public static void main(String args[]) throws Exception {

if (args.length != 2 && args.length != 3) // Test for correct # of args
throw new lllegalArgumentException("Parameter(s)' <Destination>" +

" <Port> [<encoding]") ;

InetAddress destAddr = InetAddress. getByName (args [0]) ;
int destPort = Integer. parseInt (args [i]) ;

// Destination address
// Destination port

ItemQuote quote = new ItemQuote(1234567890987654L, "5mm Super Widgets",
1000, 12999, true, fa l se) ;

DatagramSocket sock = new DatagramSocket(); // UDP socket for sending

ItemQuoteEncoder encoder = (args . length == 3 ?
new ItemQuoteEncoderText(args[2]) '
new ItemQuoteEncoderText());

byte[] codedQuote = encoder.encode(quote);

DatagramPacket message = new DatagramPacket(codedQuote, codedQuote.length,
destAddr, destPort) ;

sock. send(message) ;

i

SendUDP.java

58 Chapter 3: Sending and Receiving Messages []

RecvUDP.java

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

O import java.net.*; / / for DatagramSocket and DatagramPacket
1 import java.io.*; / / for 10Exception
2
3 public class RecvUDP implements ItemQuoteTextConst {
4
5 public s ta t ic void main(String[] args) throws Exception {
6

i f (args.length != 1 && args.length != 2) / / Test for correct # of args
throw new lllegalArgumentException("Parameter(s): <Port> [<encoding>]");

int port = Integer.parselnt(args[O]); // Receiving Port

DatagramSocket sock = new DatagramSocket(port); / / UDP socket for receiving
ItemQuoteDecoder decoder = (args.length == 2 ? / / Which encoding

new ItemquoteDecoderText(args[1]) :
new ItemQuoteDecoderText());

DatagramPacket packet = new DatagramPacket(
new byte [MAX_WIRE_LENGTH], MAX_WIRE_LENGTH) ;

sock.receive(packet) ;

ItemQuote quote = decoder.decode(packet);
System.out.println(quote);

sock.close();

RecvUDP.java

3.5 Wrapping Up

We have seen how Java data types can be encoded in different ways, and how messages can
be constructed from various types of information. You may be aware that recent versions of
Java include serialization capabilities--the Ser ia l izable and Externalizable interfaces--which
provide for instances of supporting Java classes to be converted to and from byte sequences
very easily. It might seem that having these interfaces available would eliminate the need for
what has been described above, and that is to some extent true. However, it is not always the
case, for a couple of reasons.

First, the encoded forms produced by Ser ia l izable may not be very efficient. They may
include information that is meaningless outside the context of the Java Virtual Machine (JVM),
and may also incur overhead to provide flexibility that may not be needed. Second, Ser ia l izable
and External izable cannot be used when a different wire format has already been specified--

m 3.6 Exercises 59

for example, by a standardized protocol. And finally, custom-designed classes have to provide
their own implementations of the serialization interfaces anyway.

A basic tenet of good protocol design is that the protocol should constrain the imple-
mentor as little as possible and should minimize assumptions about the platform on which the
protocol will be implemented. We therefore avoid the use of Ser ia l izable and Externalizable
in this book, and instead use more direct encoding and decoding methods.

3.6 Exercises

1. What happens if the Encoder uses a different encoding than the Decoder?

2. Positive integers larger than 231- 1 cannot be represented as ints in Java, yet they can
be represented as 32-bit binary numbers. Write a method to write such an integer to a
stream. It should take a long and an OutputStream as parameters.

3. Rewrite the binary encoder so that the Item Description is terminated by " \ r \n" instead
of being length encoded. Use Send/RecvTCP to test this new encoding.

4. The nextToken() method of DelimitedInputStream assumes that either the delimiter or an
end-of-stream (EoS) terminates a token; however, finding the EoS may be an error in some
protocols. Rewrite nextToken() to include a second, boolean parameter. If the parameter
value is true, then the EoS terminates a token without error; otherwise, the EoS generates
an error.

chapte r4

Beyond the Basics

The client and server examples in Chapter 2 demonstrate the basic model for program-
ming with sockets in Java. The next step is to apply these concepts in various programming
models, such as multitasking, nonblocking I/O, and broadcasting.

4.1 Multitasking

Our basic TCP echo server from Chapter 2 handles one client at a time. If a client connects
while another is already being serviced, the server will not echo the new client's data until
it has finished with the current client, although the new client will be able to send data as
soon as it connects. This type of server is known as an iterative server. Iterative servers handle
clients sequentially, finishing with one client before servicing the next. They work best for
applications where each client requires a small, bounded amount of server connection time;
however, if the time to handle a client can be long, the wait experienced by subsequent clients
may be unacceptable.

To demonstrate the problem, add a 10-second sleep using Thread. sleep() after the Socket
constructor call in TCPEchoClient. java and experiment with several clients simultaneously
accessing the TCP echo server. Here the sleep operation simulates an operation that takes
significant time, such as slow file or network I/O. Note that a new client must wait for all
already-connected clients to complete before it gets service.

What we need is some way for each connection to proceed independently, without
interfering with other connections. Java threads provide exactly that: a convenient mechanism
allowing servers to handle many clients simultaneously. Using threads, a single application
can work on several tasks concurrently. In our echo server, we can give responsibility for each
client to an independently executing thread. All of the examples we have seen so far consist
of a single thread, which simply executes the main() method.

In this section we describe two approaches to coding concurren t servers, namely, thread-

per-client, where a new thread is spawned to handle each client connection, and thread pool,
where a fixed, prespawned set of threads work together to handle client connections.

61

62 Chapter 4: Beyond the Basics []

4.1.1 Java Threads

Java provides two approaches for performing a task in a new thread: 1) defimng a subclass
of the Thread class with a run() method that performs the task, and instantiating it; or 2)
defining a class that implements the Runnable interface with a run() method that performs the
task, and passing an instance of that class to the Thread constructor. In either case, the new
thread does not begin execution until its s t a r t () method is invoked. The first approach can
only be used for classes that do not already extend some other class; therefore, we focus on the
second approach, which is always applicable. The Runnable interface contains a single method
prototype:

public void run();

When the s t a r t () method of an instance of Thread is invoked, the JVM causes the in-
stance's run() method to be executed in a new thread, concurrently with all others. Meanwhile,
the original thread returns from its call to s t a r t () and continues its execution independently.
(Note that directly calling the run() method of a Thread or Runnable instance has the normal
procedure-call semantics: the method is executed in the caller's thread.) The exact interleaving
of thread execution is determined by several factors, including the implementat ion of the JVM,
the load, the underlying OS, and the host configuration. For example, on a uniprocessor sys-
tem, threads share the processor sequentially; on a multiprocessor system, multiple threads
from the same application can run simultaneously on different processors.

In the following example, ThreadExample. java implements the Runnable interface with a
run() method that repeatedly prints a greeting to the system output stream.

ThreadExample.java

0 public class ThreadExample implements Runnable {
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

private String greeting; / / Message to print to console

public ThreadExample(String greeting) {
this.greeting = greeting;

}

public void run() {
for (;;) {

System.out.println(Thread.currentThread().getName() + ": " + greeting);
try {

Thread.sleep((long) (Math.random() * i00)); // Sleep 0 to i00 milliseconds
} catch (InterruptedException e) {} // Will not happen

}

public static void main(String[] args) {
new Thread (new ThreadExample ("Hello")). start () ;

n 4.1 Multitasking 63

19
20
21
22

}
}

new Thread(new ThreadExample("Aloha")).start();
new Thread(new ThreadExample("Ciao")).start();

Th read Exam pie.java

1. Declaration of implementa t ion of the Runnable interface: line 0
Since ThreadExample implements the Runnable interface, it can be passed to the construc-
tor of Thread. If ThreadExample fails to provide a run() method, the compiler will complain.

2. Member var iables and constructor: lines 2-6
Each instance of ThreadExample contains its own greeting string.

3. run (): lines 8-15
Loop forever performing:

�9 Print the thread name and instance greeting: line 10
The static method Thread.currentThread() returns a reference to the thread from
which it is called, and getName() returns a string containing the name of that thread.

�9 Suspend thread: lines 11-13
After printing its instance's greeting message, each thread sleeps for a random amount
of time (between 0 and 100 milliseconds) by calling the static method Thread. sleep(),
which takes the number of milliseconds to sleep as a parameter. Math. random() returns
a random double between 0.0 and 1.0. Thread. sleep() can be interrupted by another
thread, in which case an InterruptedException is thrown. Our example does not include
an interrupt call, so the exception will not happen in this application.

4. main(): lines 17-21
Each of the three s tatements in main() does the following: 1) creates a new instance
of ThreadExample with a different greeting string, 2) passes this new instance to the
constructor of Thread, and 3) calls the new Thread instance's s t a r t () method. Each thread
independently executes the run() method of ThreadExample, while the main() thread
terminates. Note that the JVM does not terminate until all nondaemon (see Threads API)
threads terminate.

Upon execution, an interleaving of the three greeting messages is printed to the console.
The exact interleaving of the numbers depends upon the factors mentioned earlier.

4.1.2 Server Protocol

Since the two server approaches we are going to describe (thread-per-client and thread pool)
are independent of the particular client-server protocol, we want to be able to use the same
protocol code for both. The code for the echo protocol is given in the class EchoProtocol,
which encapsulates the implementat ion of the server side of the echo protocol. The idea is
that the server creates a separate instance of EchoProtocol for each connection, and protocol

64 Chapter 4: Beyond the Basics m

execut ion begins when run() is called on an instance. The code in run() is a lmost identical to
the connec t ion handl ing code in TCPEchoServer. java, except that a logging capabili ty (descr ibed
shortly) has been added. The class imp lemen t s the Runnable interface, so we can create a th read
that i ndependen t ly executes run() , or we can invoke run() directly.

EchoProtocol.java

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
3O
31
32
33
34
35
36
37
38
39

import java.net. *;
import java. io. * ;
import java.util. *;

// for Socket
// for lOException and Input/OutputStream
// for ArrayList

class EchoProtocol implements Runnable {
static public final int BUFSIZE = 32; // Size (in bytes) of I/O buffer

private Socket clntSock;
private Logger logger;

// Connection socket
// Logging facility

public EchoProtocol(Socket clntSock, Logger logger) {
this.clntSock = clntSock;
this.logger = logger;

}

public void run() {
ArrayList entry = new ArrayList();
entry.add("Client address and port = " +

clntSock.getlnetAddress().getHostAddress() + ":" +
clntSock.getPort());

entry.add("Thread = " + Thread.currentThread().getName());

try {
// Get the input and output I/O streams from socket
InputStream in = clntSock, getInputStream() ;
OutputStream out = clntSock.getOutputStream() ;

int recvUsgSize; // Size of received message
int totalBytesEchoed = 0; // Bytes received from client
byte[] echoBuffer = new byte[BUFSIZE]; // Receive Buffer
// Receive until client closes connection, indicated by -i
while ((recvUsgSize = in.read(echoBuffer)) != -i) {

out.write(echoBuffer, O, recvMsgSize);
totalBytesEchoed += recvUsgSize;

}

entry.add("Client finished; echoed " + totalBytesEchoed + " bytes.");
} catch (IOException e) {

entry.add("Exception = " + e.getMessage());
}

m 4.1 Multitasking 65

40
41
42
43
44
45
46
47
48
49

}
}

try { // Close socket
clntSock.close();

} catch (IOException e) {
entry.add("Exception = " + e.getMessage());

}

logger, writeEntry(entry) ;

EchoProtocol.java

1. Declaration of implementa t ion of the Runnable interface: line 4

2. Member variables and constructor: lines 7-13
Each instance of EchoProtocol contains a socket for the connection and a reference to the
logger.

3. run(): lines 15-48
Implement the echo protocol:

�9 Write the client and thread informat ion to a buffer: lines 16-20
ArrayList is a dynamically sized container of Objects. The add() method of ArrayList
inserts the specified object at the end of the list. In this case, the inserted object is a
String. Each element of the ArrayList represents a line of output to the logger.

�9 Execute the echo protocol: lines 22-45

�9 Write the elements (one per line) of the ArrayList instance to the logger: line 47

The logger allows for synchronized reporting of thread creation and client completion,
so that entries from different threads are not interleaved. This facility is defined by the Logger
interface, which has methods for writing strings or object collections.

Logger.java

0 import java.util.*; // for Collection
1

2 public interface Logger {
3 public void writeEntry(Collection entry); // Write list of lines
4 public void writeEntry(String entry); // Write single line
5 }

Logger.java

66 Chapter 4: Beyond the Basics 1

wr i teEnt ry() logs the given string or object collection. How it is logged depends on the
implementat ion. One possibility is to send the log messages to the console.

Con soleLogge r ja va

0
1
2
3
4
5
6
7
8
9

10
11
12
13

import java.util.*; // for Collection and Iterator

class ConsoleLogger implements Logger {
public synchronized void writeEntry(Collection entry) {

for (Iterator line = entry.iterator(); line.hasNext();)
System.out.println(line.next());

System.out.println();
}

public synchronized void writeEntry(String entry) {
System. out. println(entry) ;
System. out. println() ;

}

Con sole Log ge r .ja va

Another possibility is to write the log messages to a file specified in the constructor, as
in the following:

Fi leLogger . java

0 import java.io.*;
1 import java.util.*;
2
3
4
5
6
7
8
9

10
ii
12
13
14
15
16

// for PrintWriter and FileWriter
// for Collection and Iterator

class FileLogger implements Logger {

PrintWriter out; // Log file

public FileLogger(String filename) throws lOException {
out = new PrintWriter(new FileWriter(filename), true) ;

}

public synchronized void writeEntry(Collection entry) {
for (Iterator line = entry.iterator() ; line.hasNext();)

out. println(line, next ()) ;
out. println() ;

}

// Create log file

[] 4.1 Multitasking 67

17
18
19
20
21

public synchronized void writeEntry(String entry) {
out. println(entry) ;
out. println() ;

}

Fi leLogger. java

We are now ready to in t roduce some different approaches to concurrent servers.

4.1.3 Thread-per-Client
In a thread-per-client server, a new thread is created to handle each connection. The server
executes a loop that runs forever, l istening for connect ions on a specified por t and repeatedly
accepting an incoming connect ion f rom a client and then spawning a new thread to handle
that connection.

TCPEchoServerThread. j ava implements the thread-per-cl ient architecture. It is very similar

to the iterative server, using a single indefinite loop to receive and process client requests . The

main difference is that it creates a thread to handle the connect ion ins tead of handling it
directly. (This is possible because EchoProtoeol implements the Runnable interface.)

TCP Ec hoSe rye rTh read .ja va

0 import java.net.*; // for Socket, ServerSocket, and InetAddress
1 import java.io.*; // for IOException and Input/0utputStream
2
3 public class TCPEchoServerThread {
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

public s t a t i c void main(String[] args) throws 10Exception {

if (args.length != I) // Test for correct # of args
throw new IllegalArgumentException("Parameter(s) : <Port>") ;

int echoServPort = Integer.parselnt(args[O]); // Server port

// Create a server socket to accept client connection requests
ServerSocket servSock = new ServerSocket (echoServPort) ;

Logger logger = new ConsoleLogger() ; // Log messages to console

// Run forever, accepting and spawning threads to service each connection
for (; ;) {

try {
Socket clntSock = servSock.accept(); // Block waiting for connection

68 Chapter 4: Beyond the Basics []

21
22
23
24
25
26
27
28
29
30
31

}
}

EchoProtocol protocol = new EchoProtocol(clntSock, logger);

Thread thread = new Thread(protocol);

thread.start();

logger.writeEntry("Created and started Thread = " + thread.getName());

} catch (lOException e) {

logger.writeEntry("Exception = " + e.getMessage());
}

}
/* NOT REACHED */

TCP EchoSe rve rTh read .ja va

1. P a r a m e t e r pa r s ing and server s o c k e t / l o g g e r creation: lines 7-15

2. Loop forever , hand l ing incoming connec t ions : lines 17-28

�9 Accep t an incoming connect ion" line 20

�9 Create a p ro toco l ins tance to handle n e w connect ion: line 21
Each connect ion gets its own instance of EchoProtocol. Each instance mainta ins the
state of its part icular connection. The echo protocol has little internal state, but more
sophis t ica ted protocols may require substant ia l amoun t s of state.

�9 Create, start , and log a n e w thread for the connec t ion : lines 22-24
Since EchoProtocol implements the Runnable interface, we can give our new instance
to the Thread constructor , and the new thread will execute the run() m e t h o d of
EchoProtocol when s t a r t () is invoked. The getName() m e t h o d of Thread re turns a
S t r ing containing a name for the new thread.

�9 Handle excep t ion f r o m accept() : lines 25-27
If some I/O error occurs, accept () throws an IOException. In our earlier iterative echo
server (TCPEchoServer. java), the except ion is not handled, and such an error te rminates
the server. Here we handle the except ion by logging the error and cont inuing execution.

4.1.4 Factoring the Server

Our th readed server does what we want it to, but the code is not very reusable or extensible.
First, the echo protocol is hard-coded in the server. What if we want an HTTP server instead? We
could write an HTTPProtocol and replace the ins tant ia t ion of EchoProtocol in main(); however,
we would have to revise main() and have a separate main class for each different protocol that
we implement .

We want to be able to instant iate a protocol instance of the appropr ia te type for each
connect ion wi thout knowing any specifics about the protocol, including the name of a con-
structor. This p rob lem-- ins tan t i a t ing an object wi thout knowing details about its type- -a r i ses
f requent ly in object-or iented programming, and there is a s tandard solution: use a factory. A

II 4.1 Multitasking 69

factory object supplies instances of a particular class, hiding the details of how the instance
is created, such as what constructor is used.

For our protocol factory, we define the ProtocolFactory interface to have a single method,
createProtocol() , which takes Socket and Logger instances as arguments and returns an
instance implementing the desired protocol. Our protocols will all implement the Runnable
interface, so that once we have an instance we can simply call run() (or s t a r t () on a Thread
constructed from the protocol instance) to execute the protocol for that connection. Thus, our
protocol factory returns instances that implement the Runnable interface:

ProtocolFactory.java

0 import java.net.*; // for Socket
1

2 public interface ProtocolFactory {
3 public Runnable createProtocol(Socket clntSock, Logger logger);
4 }

Protocol Factory.java

We now need to implement a protocol factory for the echo protocol. The factory class is
simple. All it does is return a new instance of EchoProtocol whenever createProtocol () is called.

EchoProtocolFactory.java

0 import java.net.*; // for Socket
1

2 public class EchoProtocolFactory implements ProtocolFactory {
3 public Runnable createProtocol(Socket clntSock, Logger logger) {
4 return new EchoProtocol(clntSock, logger);
5 }
6 }

EchoProtocolFactory.java

We have factored out some of the details of protocol instance creation from our server,
so that the various iterative and concurrent servers can reuse the protocol code. However,
the server approach (iterative, thread-per-client, etc.) is still hard-coded in the main(). These
server approaches deal with how to dispatch each connection to the appropriate handling
mechanism. To provide greater extensibility, we want to factor out the dispatching model from
the main() of TCPEchoServerThread. java so that we can use any dispatching model with any
protocol. Since we have many potential dispatching models, we define the Dispatcher interface
to hide the particulars of the threading strategy from the rest of the server code. It contains a

70 Chapter 4: Beyond the Basics []

single method, startDispatching(), which tells the dispatcher to start handling clients accepted
via the given ServerSocket, creating protocol instances using the given ProtocolFactory, and
logging via the given Logger.

Dispatcher.java

0 import java.net.*; // for ServerSocket
1
2 public interface Dispatcher {
3 public void startDispatching(ServerSocket servSock, Logger logger,
4 ProtocolFactory protoFactory) ;
5 }

Dispatcher.java

To implement the thread-per-client dispatcher, we simply pull the for loop from main()
in TCPEchoServerThread. java into the startDispatching() method of the new dispatcher. The
only other change we need to make is to use the protocol factory instead of instantiating a
particular protocol.

Th read PerDi s patc he r .ja va

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

0 import java.net.*; // for Socket and ServerSocket
1 import java.io.*; // for IOException
2
3 class ThreadPerDispatcher implements Dispatcher {
4
5 public void startDispatching(ServerSocket servSock, Logger logger,
6 ProtocolFactory protoFactory) {

// Run forever, accepting and spawning threads to service each connection
for (;;) {

try {
Socket clntSock = servSock.accept(); // Block waiting for connection
Runnable protocol = protoFactory.createProtocol(clntSock, logger);
Thread thread = new Thread(protocol);
thread.start();
logger.writeEntry("Created and started Thread = " + thread.getName());

} catch (IOException e) {
logger.writeEntry("Exception = " + e.getMessage());

}
}
/* NOT REACHED */

}
}

ThreadPerDispatcher. java

[] 4.1 Multitasking 71

We demonstrate the use of this dispatcher and protocol factory in ThreadMain. java, which
we introduce after discussing the thread-pool approach to dispatching.

4.1.5 Thread Pool

Every new thread consumes system resources: spawning a thread takes CPU cycles and each
thread has its own data structures (e.g., stacks) that consume system memory. In addition,
the scheduling and context switching among threads creates extra work. As the number
of threads increases, more and more system resources are consumed by thread overhead.
Eventually, the system is spending more time dealing with thread management than with
servicing connections. At that point, adding an additional thread may actually increase client
service time.

We can avoid this problem by limiting the total number of threads and reusing threads.
Instead of spawning a new thread for each connection, the server creates a thread pool on start-
up by spawning a fixed number of threads. When a new client connection arrives at the server,
it is assigned to a thread from the pool. When the thread finishes with the client, it returns to
the pool, ready to handle another request. Connection requests that arrive when all threads in
the pool are busy are queued to be serviced by the next available thread.

Like the thread-per-client server, a thread-pool server begins by creating a ServerSocket.
Then it spawns N threads, each of which loops forever, accepting connections from the
(shared) ServerSocket instance. When multiple threads simultaneously call accept() on the
same ServerSocket instance, they all block until a connection is established. Then the system
selects one thread, and the Socket instance for the new connection is returned only in that
thread. The other threads remain blocked until the next connection is established and another
lucky winner is chosen.

Since each thread in the pool loops forever, processing connections one by one, a thread-
pool server is really a set of iterative servers. Unlike the thread-per-client server, a thread-pool
thread does not terminate when it finishes with a client. Instead, it starts over again, blocking
on accept ().

A thread pool is simply a different model for dispatching connection requests, so all we
really need to do is write another dispatcher. PoolDispatcher. java implements our thread-pool
dispatcher. To see how the thread-pool server would be implemented without dispatchers and
protocol factories, see TCPEchoServerPool. java on the book's Web site.

Pool Di s patc he r . ja va

import java.net. *;
import java. io. * ;

// for Socket and ServerSocket
// for lOException

class PoolDispatcher implements Dispatcher {

static final String NUMTHREADS = "8";
static final String THREADPROP = "Threads";

// Default thread-pool size
// Name of thread property

private int numThreads; // Number of threads in pool

72 Chapter 4: Beyond the Basics m

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
3O
31
32
33
34
35
36
37
38
39
4O
41
42
43
44
45
46
47 }

public PoolDispatcher() {
// Get the number of threads from the System properties or take the default
numThreads = Integer. parselnt (System. getProperty(THREADPROP, NUMTHREADS)) ;

}

public void startDispatching(final ServerSocket servSock, final Logger logger,
final ProtocolYactory protoFactory) {

// Create N-I threads, each running an iterative server
for (int i = O; i < (numThreads - i); i++) {

Thread thread = new Thread() {
public void run() {

dispatchLoop(servSock, logger, protoFactory);
}

};
thread.start();
logger.writeEntry("Created and started Thread = " + thread.getName());

logger.writeEntry("Iterative server starting in main thread " +
Thread. currentThread(), getName ()) ;

// Use main thread as Nth iterative server
dispatchLoop(servSock, logger, protoFactory) ;
/* NOT REACHED */

private void dispatchLoop(ServerSocket servSock, Logger logger,
ProtocolFactory protoFactory) {

// Run forever, accepting and handling each connection
for (;;) {

t ry {
Socket clntSock = servSock.accept(); / / Block waiting for connection
Runnable protocol = protoFactory.createProtocol(clntSock, logger);
protocol . run() ;

} catch (lOException e) {
logger.writeEntry("Exception = " + e.getMessage());

}

PoolDispatcher.java

1. PoolDispatcher() : lines 10-13
The thread-pool solut ion needs an addit ional piece of information: the n u mb e r of threads
in the pool. We need to provide this in format ion to the instance before the thread pool is
const ructed. We could pass the number of threads to the constructor , but this limits our
opt ions because the cons t ruc tor interface varies by dispatcher. We use sys tem proper t ies

[] 4.1 Multitasking ~

to specify the number of threads to PoolDispatcher. The call to System.getProperty()
returns a String containing the value of the "Threads" property or the default value if
the property is not defined. The string is then converted to an integer. (See the discussion
of system properties in the text below.)

2. s tar tDispatching() : lines 15-32

�9 Spawn N - 1 threads to execute dispatchLoop(): lines 17-26
For each loop iteration, an instance of an anonymous class that extends Thread is cre-
ated. When the s t a r t () method is called, the thread executes the run() method of this
anonymous class. The run() method simply calls dispatchLoop(), which implements
an iterative server.

�9 Execute dispatchLoop() in the main thread: lines 27-30
The original calling thread serves as the Nth thread of the pool.

3. dispatchLoop(): lines 34-46

�9 Accept an incoming connection: line 39
Since there are N threads executing dispatchLoop(), up to N threads can be blocked
on servSock's accept (), waiting for an incoming connection. The system ensures that
only one thread gets a Socket for any particular connection. If no threads are blocked
on accept() when a client connection is established, the new connection is queued
until the next call to accept() (see Section 5.4.1).

�9 Create a protocol instance to handle new connection: line 40

�9 Run the protocol for the connection: line 41

�9 Handle except ion f rom accept(): lines 42-44

Since threads are reused, the thread-pool solution only pays the overhead of thread
creation N times, irrespective of the total number of client connections. Since we control the
maximum number of simultaneously executing threads, we can control scheduling overhead.
Of course, if we spawn too few threads, we can still have clients waiting a long time for
service; therefore, the size of the thread pool should be tuned so that client connection time
is minimized.

In PoolDispatcher. java, we used system properties to specify the number of threads in
the pool. Here, we give a brief description of how system properties work.. The System class
contains a Propert ies instance that holds a set of externally defined property/value pairs (e.g.,
class path and JVM version). We can also define our own properties. For example, we might
want to know a user's favorite color. We could place this information in the "user.favoritecolor"
property. The following code demonstrates how to fetch and print out all system properties,
using the getProper t ies() method of System, and how to find a particular property value,
using System.getProperty(). The second parameter to getProperty() specifies a value ("None"),
to be used if the property is not found. (See Lis tProper t ies . java on the book's Web site for a
complete example.)

System.getProperties().list(System.out); // Print all System properties
System.out.println("\nFavorite Color: " + // Print favorite color property

System. getProperty("user, favoritecolor", "None")) ;

74 Chapter 4: Beyond the Basics []

When running Java programs from the command line, we simply use the -D option to set
a property value. For example, to set the property "user.favoritecolor" to "blue," we would try

% java-Duser.favoritecolor=blue ListProperties

Note that properties are typically defined with hierarchical (general to specific) names, such as
java.class.path. For brevity's sake, we did not use such a name, but in a production application
hierarchical names should be used to avoid collisions.

The main() of ThreadUain. java demonstrates how to use either the thread-per-client or
thread-pool server. This application takes three parameters: 1) the port number for the server,
2) the protocol name (use "Echo" for the echo protocol), and 3) the dispatcher name (use
"ThreadPer" or "Pool" for the thread-per-client and thread-pool servers, respectively). The
number of threads for the thread pool defaults to 8. However, this can be changed to 4, for
example, by setting a system property using the -DThreads=4 option to the JVM.

% java-DThreads=4 ThreadMain 5000 Echo Pool

Note that you must compile EchoProtocolFactory. java, ThreadPerDispatcher. java, and Pool-
Dispatcher.java explicitly before running ThreadMain.java. Failure to do so will result in a

ClassNotFoundException. Those classes are not referenced by name in ThreadMain (that's the

idea!), so they will not be automatically compiled with ThreadMain.

ThreadMain.java

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

import java.net. *;
import java. io. * ;

// for ServerSocket
// for IOException

public class ThreadMain {

public static void main(String[] args) throws Exception {

if (args.length != 3) // Test for correct # of args
throw new lllegalArgumentException("Parameter(s) : [<Optional properties>]"

+ " <Port> <Protocol> <Dispatcher>");

int servPort = Integer.parselnt(args[0]);
String protocolName = args[l] ;
String dispatcherName = args[2];

// Server Port
// Protocol name
// Dispatcher name

ServerSocket servSock = new ServerSocket(servPort);
Logger logger = new ConsoleLogger(); // Log messages to console
ProtocolYactory protoFactory = (ProtocolFactory) // Get protocol factory

Class.forName(protocolName + "ProtocolFactory").newlnstance();
Dispatcher dispatcher = (Dispatcher) // Get dispatcher

Class.forName(dispatcherName + "Dispatcher").newlnstance();

m 4.2 Nonblocking I/O 75

22
23
24
25

}
}

dispatcher, startDispatching(servSock, logger, protoFactory) ;
/* NOT REACHED */

ThreadMain.java

1. Application setup and parameter parsing: lines O-13

2. Create server socket and logger: lines 15-16

3. Instantiate a protocol factory: lines 17-18
The protocol name is passed as the second parameter. We adopt the naming convention
of <ProtocolName>ProtocolFactory for the class name of the factory for the protocol
name <ProtocolName>. For example, if the second parameter is "Echo," the corresponding
protocol factory is EchoProtocolFactory. The static method Class.forName() takes the
name of a class and returns a Class object. The newInstance() method of Class creates
a new instance of the class using the parameterless constructor, protoFactory refers to
this new instance of the specified protocol factory.

4. Instantiate a dispatcher: lines 19-20
The dispatcher name is passed as the third parameter. We adopt the naming convention
of <DispatcherType>Dispatcher for the class name of the dispatcher of type <Dispatcher-
Type>. For example, if the third parameter is "ThreadPer," the corresponding dispatcher
is ThreadPerDispatcher. dispatcher refers to the new instance of the specified dispatcher.

5. Start dispatching clients: line 22

ThreadMain. java makes it easy to use other protocols and dispatchers. The book's Web
site contains some additional examples. For example, see TimeProtocolFactory.java for an
implementation of the time protocol where clients can get the server time by simply connecting
to the server on the time port.

See GUIThreadUain. j ava on the book's Web site for an example of server integration with
a GUI. This application lists the currently connected client. You will need a protocol-specific
GUI implementation (see GUIEchoProtocolFactory. java). 1 The parameters to this application
are the same as for ThreadMain. For this application to work, you must specify the GUI version
of the protocol factory on the command line (e.g., GUIEcho instead of Echo).

4.2 Nonblocking I/O

Socket I/O calls may block for several reasons. Data input methods read() and receive() block
if data is not available. A wri te() on a TCP socket may block if there is not sufficient space to
buffer the transmitted data. The accept () method of ServerSocket and the Socket constructor

1 Clearly, more decomposition is possible, but it is beyond the scope of this book.

7 6 Chapter 4: Beyond the Basics m

both block until a connection has been established (see Section 5.4). Meanwhile, long round-
trip times, high error rate connections, and slow (or deceased) servers may cause connection
establishment to take a long time. In all of these cases, the method returns only after the request
has been satisfied. Of course, a blocking method call halts the execution of the application.

What about a program that has other tasks to perform while waiting for call com-
pletion (e.g., updating the "busy" cursor or responding to user requests)? These programs
may have no time to wait on a blocked method call. Or what about lost UDP datagrams? In
UDPEchoClientTimeout. java, the client sends a datagram to the server and then waits to receive
a response. If a datagram is not received before the timer expires, receive () unblocks to allow
the client to handle the datagram loss. Here we describe the general nonblocking approaches
(where they exist) for various I/O methods. (Note: As this book goes to press, additional non-
blocking I/O features have been proposed for version 1.4 of the JDK. Because these features
are still under development, we do not cover them here.)

4.2.1 accept(), read(), and receive()

For these methods, we can set a bound on the maximum time (in milliseconds) to block, using
the setSoTimeout() method of Socket, ServerSocket, and DatagramSocket. If the specified time
elapses before the method returns, an InterruptedIOException is thrown. For Socket instances,
we can also use the avai lable() method of the socket's InputStream to check for available data
before calling read ().

4.2.2 Connecting and Writing

The Socket constructor attempts to establish a connection to the host and port supplied as
arguments, blocking until either the connection is established or a system-imposed timeout
occurs. Unfortunately, the system-imposed timeout is long (on the order of minutes), and Java
does not provide any means of shortening it.

A wri te() call blocks until the last byte written is copied into the TCP implementation's
local buffer; if the available buffer space is smaller than the size of the write, some data must be
successfully transferred to the other end of the connection before the call to wri te() will return
(see Section 5.1 for details). Thus, the amount of time that a wri te() may block is controlled
by the receiving application. Unfortunately, Java currently does not provide any way to cause
a wri te() to time out, nor can it be interrupted by another thread. Therefore, any protocol
that sends a large enough amount of data over a Socket instance can block for an unbounded
amount of time. (See Section 5.2 for further discussion on the consequences.)

4.2.3 Limiting Per-Client Time

Suppose we want to implement the Echo protocol with a limit on the amount of time taken to
service each client. That is, we define a target, TIMELIMIT, and implement the protocol in such
a way that after TIMELIMIT milliseconds, the protocol instance is terminated. One approach

II 4.2 Nonblocking I/O 77

simply has the protocol instance keep track of the amoun t of the remaining time, and use
setSoTimeout () to ensure that no read() call blocks for longer than that time. Unfortunately,
there is no way to b o u n d the dura t ion of a wr i t e () call, so we cannot really guarantee that the
time limit will hold. TimelimitEchoProtocolFactory. java implements this approach.

TimelimitEchoProtocolFactory.java

0 import java .net .* ;
1 import j ava . io .* ;
2 import j a v a . u t i l . * ;
3
4
5
6
7
8

9 }
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

/ / for Socket
/ / for IOException and Input/OutputStream
/ / for ArrayList

public class TimelimitEchoProtocolFactory implements ProtocolFactory {

public Runnable createProtocol(Socket clntSock, Logger logger) {
return new TimelimitEchoProtocol(clntSock, logger);

}

class TimelimitEchoProtocol implements Runnable {
private static final int BUFSIZE = 32; // Size (in bytes) of receive buffer
private static final String TIMELIMIT = "i0000"; // Default time limit (ms)
private static final String TIMELIMITPROP = "Timelimit"; // Thread property

private int timelimit;
private Socket clntSock;
private Logger logger;

public TimelimitEchoProtocol(Socket clntSock, Logger logger) {
this.clntSock = clntSock;
this.logger = logger;
/ / Get the time l imit from the System propert ies or take the default
t imelimit = Integer.parseInt(System.getProperty(TIMELIMITPROP, TIMELIMIT));

}

public void run() {
ArrayList entry = new ArrayList();
entry.add("Client address and port = " +

clntSock.getInetAddress().getHostAddress() + ":" +
clntSock.getPort ()) ;

entry.add("Thread = " + Thread'currentThread() 'getName());

t ry {
/ / Get the input and output I/O streams from socket
InputStream in = clntSock, getInputStream() ;
OutputStream out = clntSock, getOutputStream() ;

78 Chapter 4: Beyond the Basics II

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
6O
61
62
63
64
65
66
67
68
69
7O
71

}
}

int recvMsgSize; // Size of received message
int totalBytesEchoed = O; // Bytes received from client
byte[] echoBuffer = new byte[BUFSIZE]; // Receive buffer
long endTime = System.currentTimeMillis() + timelimit;
int timeBoundMillis = timelimit;

clntSock, setSoTimeout (timeBoundMillis) ;

// Receive until client closes connection, indicated by -i
while ((timeBoundMillis > O) && // catch zero values

((recvMsgSize = in.read(echoBuffer)) != -i)) {
out.write(echoBuffer, O, recvMsgSize);
totalBytesEchoed += recvMsgSize;
timeBoundMillis = (int) (endTime - System.currentTimeMillis()) ;
clntSock.setSoTimeout(timeBoundMillis);

}

entry.add("Client finished; echoed "+ totalBytesEchoed + " bytes,");
} catch (InterruptedlOException dummy) {

entry.add("Read timed out");
} catch (lOException e) {

entry,add("Exception = " + e,getMessage());
}

try { // Close socket
clntSock.close();

} catch (IOException e) {
entry.add("Exception = "+ e.getMessage());

}

logger, writeEntry(entry) ;

TimelimitEchoProtocolFactory.java

TimelimitF, choProtocolFactory.java contains both the factory and protocol instance
classes. The factory is exactly like EchoProtocolFactory, with the exception that it instant iates
TimelimitEehoProtoeol instead of EchoProtocol. The TimelimitEchoProtoeol class is similar to
the EchoProtocol class, except that it a t tempts to bound the total time an echo connection can
exist. The default time is 10 seconds; the total number of milliseconds per connection can be
set using the "Timelimit" property.

Another approach to limiting client service time involves starting two threads per client:
one that executes the protocol and another that acts as a "watchdog," sleeping until TIMELIMIT
mill iseconds pass or the other (protocol) thread finishes and interrupts it, whichever comes

[] 4.3 Multiple Recipients 79

first. If the watchdog awakens and the protocol thread has not finished, the watchdog termi-
nates the protocol thread. Unfortunately, threads killing other threads is deprecated in Java,
because the victim thread's abrupt termination might leave some objects in an inconsistent or
unrecoverable state. Since there is no other way to interrupt a blocking wri te() , this solution
usually will not work.

Finally, note that we could at tempt to use nonblocking I/O instead of threads. Be warned,
however, that these solutions typically involve polling loops employing busy-waiting. While
adding threads does consume extra CPU and memory resources, the overhead is generally
small, especially compared to that of busy-waiting.

4.3 Multiple Recipients

So far all of our sockets have dealt with communication between exactly two entities, usually
a server and a client. Such one-to-one communication is sometimes called unicast. Some
information is of interest to multiple recipients. In such cases, we could unicast a copy of
the data to each recipient, but this may be very inefficient. Unicasting multiple copies over a
single network connection wastes bandwidth by sending the same information multiple times.
In fact, if we want to send data at a fixed rate, the bandwidth of our network connection defines
a hard limit on the number of receivers we can support. For example, if our video server sends
1Mbps streams and its network connection is only 3Mbps (a healthy connection rate), we can
only support three simultaneous users.

Fortunately, networks provide a way to use bandwidth more efficiently. Instead of making
the sender responsible for duplicating packets, we can give this job to the network. In our
video server example, we send a single copy of the s tream across the server's connection
to the network, which then duplicates the data only when appropriate. With this model of
duplication, the server uses only 1Mbps across its connection to the network, irrespective of
the number of clients.

There are two types of one-to-many service: broadcast and multicast. With broadcast, all
hosts on the (local) network receive a copy of the message. With multicast, the message is sent
to a multicast address, and the network delivers it only to those hosts that have indicated that
they want to receive messages sent to that address. In general, only UDP sockets are allowed
to broadcast or multicast.

4.3.1 Broadcast
Broadcasting UDP datagrams is similar to unicasting datagrams, except that a broadcast ad-
dress is used instead of a regular (unicast) IP address. The local broadcast address (255.255.255
.255) sends the message to every host on the same broadcast network. Local broadcast mes-
sages are never forwarded by routers. A host on an Ethernet network can send a message to
all other hosts on that same Ethernet, but the message will not be forwarded by a router. IP
also specifies directed broadcast addresses, which allow broadcasts to all hosts on a specified
network; however, since most Internet routers do not forward directed broadcasts, we do not
deal with them here.

80 Chapter 4: Beyond the Basics []

There is no networkwide broadcast address that can be used to send a message to all
hosts. To see why, consider the impact of a broadcast to every host on the Internet. Sending
a single datagram would result in a very, very large number of packet duplications by the
routers, and bandwidth would be consumed on each and every network. The consequences of
misuse (malicious or accidental) are too great, so the designers of IP left such an Internetwide
broadcast facility out on purpose.

Even so, local broadcast can be very useful. Often, it is used in state exchange for network
games where the players are all on the same local (broadcast) network. In Java, the code for
unicasting and broadcasting is the same. To play with broadcasting applications, simply run
SendUDP. java using a broadcast destination address. Run RecvUDP. java as you did before (except
that you can run several receivers at one time). Caveat: Some operating systems do not give
regular users permission to broadcast, in which case this will not work.

4.3.2 Multicast

As with broadcast, the main difference between multicast and unicast is the form of the
address. A multicast address identifies a set of receivers. The designers of IP allocated a range
of the address space (from 224.0.0.0 to 239.255.255.255) dedicated to multicast. With the
exception of a few reserved multicast addresses, a sender can send datagrams addressed
to any address in this range. In Java, multicast applications generally communicate using
an instance of MulticastSocket, a subclass of DatagramSocket. It is important to unders tand
that a MulticastSocket is actually a UDP socket (DatagramSocket), with some extra multicast-
specific attributes that can be controlled. Our next example implements the multicast version
of SendUDP. java (see page 57).

SendUDPMulticast.c

0 import java.net.*; / / for MulticastSocket, DatagramPacket, and InetAddress
1 import java.io.*; / / for 10Exception
2
3 public class SendUDPMulticast {
4
5
6
7
8
9

10
11
12
13
14
15

public static void main(String args[]) throws Exception {

if ((args.length < 2) II (args.length > 3)) // Test for correct # of args
throw new lllegalArgumentException(

"Parameter(s): <Multicast Addr> <Port> [<TTL>]");

InetAddress destAddr = InetAddress.getByName(args[0]); // Destination address
if (!destAddr.isMulticastAddress()) // Test if multicast address

throw new lllegalArgumentException("Not a multicast address");

int destPort = Integer.parselnt(args[l]); // Destination port

m 4.3 Multiple Recipients 8 |

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

}
}

int TTL; // Time To Live for datagram
if (args.length == 3)

TTL = Integer. parselnt (args [2]) ;
else

TTL = i; // Default TTL

ItemQuote quote = new ItemQuote(1234567890987654L, "5mm Super Widgets",
i000, 12999, true, false);

MulticastSocket sock = new MulticastSocket(); // Multicast socket to sending
sock.setTimeToLive(TTL); // Set TTL for all datagrams

ItemQuoteEncoder encoder = new ItemQuoteEncoderText() ;
byte[] codedQuote = encoder.encode(quote) ;

/ / Text encoding

// Create and send a datagram
DatagramPacket message = new DatagramPacket(codedQuote, codedQuote.length,

destAddr, destPort) ;
sock. send (message) ;

sock.close();

SendUDPMulticast.c

The only significant differences be tween our unicast and mult icast senders are that 1) we
verify that the given address is multicast , and 2) we set the initial Time To Live (TTL) value for
the mult icast datagram. Every IP da tagram contains a TTL, initialized to some defaul t value and
dec remen ted (usually by one) by each router that forwards the packet. When the TTL reaches
zero, the packet is discarded. By sett ing the initial value of the TTL, we limit the distance a
packet can travel f rom the sender. 2

Unlike broadcast , ne twork mult icast duplicates the message only to a specific set of
receivers. This set of receivers, called a mult icas t group, is identif ied by a shared mult icast
(or group) address . Receivers need some m e c h a n i s m to notify the ne twork of their interest in
receiving data sent to a part icular mult icast address , so that the ne twork can forward packets
to them. This notification, called jo in ing a group, is accompl ished with the joinGroup() m e t h o d
of Mult icastSocket . Our mult icast receiver joins a specified group, receives and pr ints a single
mult icast message f rom that group, and exits.

2 The rules for multicast TTL are actually not quite so simple. It is not necessarily the case that a packet
with TTL = 4 can travel four hops from the sender; however, it will not travel more than four hops.

82 Chapter 4: Beyond the Basics []

RecvU DPM u Iticas t. java

0 import java.net.*;
1 import java.io.*;
2
3
4
5
6
7
8

9
lO
ii
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 sock.close();
29 }
30 }

// for MulticastSocket, DatagramPacket, and InetAddress
// for lOException

public class RecvUDPMulticast implements ItemQuoteTextConst {

public static void main(String[] args) throws Exception {

if (args.length != 2) // Test for correct # of args
throw new lllegalArgumentException("Parameter(s): <Multicast Addr> <Port>");

InetAddress address = InetAddress.getByName(args[0]); // Multicast address
if (!address.isMulticastAddress()) // Test if multicast address

throw new lllegalArgumentException("Not a multicast address");

int port = Integer.parselnt(args[l]); // Multicast port

MulticastSocket sock = new MulticastSocket(port) ; / / Multicast receiving socket
sock.joinGroup(address); / / Join the multicast group

// Create and receive a datagram
DatagramPacket packet = new DatagramPacket(

new byte[MAX_WIRE_LENGTH], MAX_WIRE_LENGTH);
sock.receive(packet) ;

ItemQuoteDecoder decoder = new ItemQuoteDecoderText();
ItemQuote quote = decoder.decode(packet);
System. out. println(quote) ;

// Text decoding

RecvUDPMulticast. java

The only significant difference between our multicast and unicast receiver is that the
multicast receiver must join the multicast group by supplying the desired multicast address.
The book's Web site also contains another example of a sender and receiver multicast pair.
UultieastImageSender. java transmits a set of images (JPEG or GIF) specified on the command
line, in three-second intervals. UulticastImageReceiver. java receives each image and displays
it in a window.

Multicast datagrams can, in fact, be sent from a DatagramSoeket by simply using a
multicast address. You can test this by using SendUDP. java (see page 57) to send to the multicast
receiver. However, a MulticastSocket has a few capabilities that a DatagramSocket does not,

I 4.3 Multiple Recipients 83

including 1) allowing specification of the datagram TTL, and 2) allowing the interface through
which datagrams are sent to the group to be specified/changed (an interface is identified by its
Internet address). A multicast receiver, on the other hand, must use a MulticastSocket because
it needs the ability to join a group.

MulticastSocket is a subclass of DatagramSocket, so it provides all of the DatagramSocket
methods. We only present methods specific to or adapted for MulticastSocket.

MulticastSocket

Constructors

MulticastSocketO

MulticastSocket(int localPort)

Constructs a datagram socket that can perform some additional multicast operations.
The second form of the constructor specifies the local port. If the local port is not
specified, the socket is bound to any available local port.

localPort Local port. A localPort of 0 allows the constructor to pick
any available port.

Operators

void joinGroup(InetAddress groupAddress)
void leaveGroup(InetAddress groupAddress)

Join/leave a multicast group. A socket may be a member of multiple groups simulta-
neously. Joining a group of which this socket is already a member or leaving a group
of which this socket is not a member may generate an exception.

groupAddress Multicast address identifying group

void send(DatagramPacket packet, byte TTL)

Send a datagram from this socket with the specified TTL.

packet Packet to transmit. Either the packet must specify a
destination address or the UDP socket must have a specified
remote address and port (see connect()).

TTL Time to live for this packet

Accessors

InetAddress getInterface()

void se t Interface(InetAddress interface)

Returns/sets the interface to use for multicast operations on this socket. This is
primarily used on hosts with multiple interfaces. Join/leave requests and datagrams

84 Chapter 4: Beyond the Basics II

will be sent and da tagrams will be received using this interface. The default mult icast
interface is p la t form dependent .

interface Address of one of host ' s mult icast interfaces

int getTimeToLive0

void setTimeToLive(int TTL)

Returns/sets the Time To Live for all datagrams sent on this socket. This can be

overridden on a per-datagram basis using the send() method that takes the TTL as
a parameter.

TTL Time To Live for this packet

The decision to use broadcas t or mult icast depends on several factors, including the
ne twork location of receivers and the knowledge of the communicat ing parties. The scope of a
broadcas t on the Internet is restr icted to a local broadcas t network, placing severe restr ict ions
on the location of the broadcas t receivers. Multicast communicat ion may include receivers
anywhere in the network, 3 so mult icast has the advantage that it can cover a dis t r ibuted set
of receivers. The disadvantage of IP mult icast is that receivers mus t know the address of a
mult icast group to join. Knowledge of an address is not required to receive broadcast . In some
contexts, this makes broadcas t a bet ter mechan i sm than mult icast for discovery. All hosts can
receive broadcas t by default, so it is simple to ask all hosts on a single network a quest ion like
"Where's the printer?"

UDP unicast, multicast, and broadcas t are all implemented using an underlying UDP
socket. The semantics of most implementa t ions are such that a UDP da tagram will be delivered
to all sockets bound to the dest inat ion port of the packet. That is, a DatagramSoeket or
Mult ieastSoeket instance bound to a local port X (with local address not specified, i.e., a wild
card), on a host with address Y will receive any UDP da tagram dest ined for port X that is
1) unicast with dest inat ion address Y, 2) mult icast to a group that any application on Y has
joined, or 3) broadcas t where it can reach host Y. A receiver can use connect() to limit the
da tagram source address and port. Also, a DatagramSoeket can specify the local unicast address,
which prevents delivery of mult icast and broadcas t packets. See UDPEehoClientTimeout. java
for an example of dest inat ion address verification and Section 5.5 for details on da tagram
demultiplexing.

4.4 Socket Options

The TCP/IP protocol developers spent a good deal of time thinking about the default behaviors
that would satisfy mos t applications. (If you doubt this, read RFCs 1122 and 1123, which
describe in excruciating detail the r ecommended behaviors - -based on years of exper ience--

3 At the time of writing of this book, there are severe limitations on who can receive multicast traffic on
the Internet; however, multicast availability should improve over time. Multicast should work if the sender
and receivers are on the same LAN.

[] 4.5 Closing Connections 8 5

for implementa t ions of the TCP/IP protocols.) For mos t applications, the designers did a good
job; however, it is se ldom the case that "one size fits all" really fits all. We have already seen
an example in our UDP echo client. By default, the rece ive () me thod of DatagramSocket blocks
indefinitely waiting on a datagram. In our example, we change that behavior by specifying a
t imeout for receives on the UDP socket using setSoTimeout(). In socket parlance, each type
of behavior we can change is called a socket option. In Java, the socket type (e.g., Socket,
ServerSocket, DatagramSocket, and MulticastSocket) determines the applicable socket options,
which are typically queried and controlled using accessor methods like getSoTimeout() and
setSoTimeout(). Unfortunately, the Java API allows access to only a subset of the options in
the underlying sockets API. This is at]east partly because options tend to vary in availability
from platform to platform, and Java is all about portability. However, as the versions wear
on, access to more and more socket options is being added in Java. Check the latest official
documentation for the various socket types to see the available options.

4.5 Closing Connections

You've probably never given much thought to who closes a connection. In phone conversations,
either side can start the process of terminat ing the call. It typically goes something like this:

"Well, I guess I'd bet ter go."
"OK. Bye."
"Bye."

Network protocols, on the other hand, are typically very specific about who "closes" first.
In the echo protocol, Figure 4.1(a), the server dutifully echoes everything the client sends. When
the client is finished, it calls c lose() . After the server has received and echoed all of the data
sent before the client's call to c lose() , its read operat ion re turns a -1, indicating that the client
is finished. The server then calls close () on its socket. The close is a critical par t of the protocol
because without it the server doesn ' t know when the client is finished sending characters to
echo. In HTTP, Figure 4.1(b), it's the server that initiates the connection close. Here, the client
sends a request ("GET") tO the server, and the server responds by sending a header (normally

"To Be Get/Guide.html ..."

"To Be 200 OK ...

"Or Not To Be" <HTML> ...

"Or Not To Be" ... </HTML>"

Closed Closed

Closed Closed

(a) (b)

Figure 4.1: Echo (a) and HTTP (b) protocol termination.

86 Chapter 4: Beyond the Basics m

starting with "200 OK"), followed by the requested file. Since the client does not know the size
of the file, the server must indicate the end-of-file by closing the socket.

Calling close() on a Socket terminates both directions (input and output) of data flow.
(Subsection 5.4.2 provides a more detailed description of TCP connection termination.) Once an
endpoint (client or server) closes the socket, it can no longer send or receive data. This means
that c lose() can only be used to signal the other end when the caller is completely finished
communicating. In the echo protocol, once the server receives the close from the client, it
immediately closes. In effect, the client close indicates that the communicat ion is completed.
HTTP works the same way, except that the server is the terminator.

Let's consider a different protocol. Suppose you want a compression server that takes a
s t ream of bytes, compresses them, and sends the compressed stream back to the client. Which
endpoint should close the connection? Since the s t ream of bytes from the client is arbitrarily
long, the client needs to close the connection so that the server knows when the s t ream of
bytes to be compressed ends. When should the client call c lose()? If the client calls c lose() on
the socket immediately after it sends the last byte of data, it will not be able to receive the last
bytes of compressed data. Perhaps the client could wait until it receives all of the compressed
data before it closes, as the echo protocol does. Unfortunately, neither the server nor the client
knows how many bytes to expect, so this will not work either. What is needed is a way to tell
the other end of the connection "I am through sending," without losing the ability to receive.

Fortunately, sockets provide a way to do this. The shutdownTnput () and shutdown0utput ()
methods of Socket allow the I/O streams to be closed independently. After shutdownlnput(),
the socket 's input s tream can no longer be used. Any undelivered data is silently discarded,
and any a t tempt to read from the socket's input s tream will return -1. After shutdown0utput ()
is called on a Socket, no more data may be sent on the socket's output stream. Attempts to
write to the s t ream throw an IOException. Any data written before the call to shutdown0utput ()
may be read by the remote socket. After this, a read on the input s tream of the remote socket
will re turn -1. An application calling shutdown0utput() can continue to read from the socket
and, similarly, data can be written after calling shutdownInput ().

In the compression protocol (see Figure 4.2), the client writes the bytes to be compressed,
closing the output s tream using shutdown0utput() when finished sending, and reads the
compressed byte s t ream from the server. The server repeatedly reads the uncompressed data

<Uncompressed ~

<Compressed bytes>

Closed

Figure 4.2: Compression protocol termination.

m 4.5 Closing Connections 87

and writes the compressed data until the client per forms a shutdown, causing the server read
to re turn -1, indicating an end-of-stream. The server then closes the connect ion and exits.
After the client calls shutdown0utput (), it needs to read any remaining compressed bytes f rom
the server.

Our compress ion client, CompressClient. java, implements the client side of the compres-
sion protocol. The uncompres sed bytes are read f rom the file specified on the command line,
and the compressed bytes are wri t ten to a new file. If the uncompressed filename is "data", the
compressed filename is "data. gz". Note that this implementa t ion works for small files, but that
there is a flaw that causes deadlock for large files. (We discuss and correct this shor tcoming
in Section 5.2.)

CompressClient.java

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
3O
31

0 import java.net.*; // for Socket
1 import java.io.*; // for lOException and [File]Input/0utputStream
2
3 public class CompressClient {
4

public static final int BUFSIZE = 256; // Size of read buffer

public static void main(String[] args) throws 10Exception {

if (args.length != 3) // Test for correct # of args
throw new lllegalArgumentException("Parameter(s): <Server> <Port> <File>");

String server = args [0] ;
int port = In teger .parse ln t (args[1]) ;
String filename = args[2];

// Server name or IP address
// Server port
// File to read data from

// Open input and output file (named input.gz)
FilelnputStream fileln = new FilelnputStream(filename);
FileOutputStream fileOut = new FileOutputStream(filename + " .gz");

// Create socket connected to server on specified port
Socket sock = new Socket(server, port) ;

// Send uncompressed byte stream to server
sendBytes(sock, fileln);

// Receive compressed byte stream from server
InputStream sockIn = sock.getInputStream();
int bytesRead; // Number of bytes read
byte[] buffer = new byte[BUFSIZE]; // Byte buffer
while ((bytesRead = sockIn.read(buffer)) != -i) {

fileOut.write(buffer, O, bytesRead);

88 Chapter 4: Beyond the Basics []

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
5O
51
52

System. out. print ("R") ;
}
System. out. println() ;

// Reading progress indicator

// End progress indicator line

sock.close();
fileln.close();
fileOut.close();

// Close the socket and its streams
// Close file streams

private static void sendBytes(Socket sock, InputStream fileIn)
throws IOException {

OutputStream sockOut = sock.getOutputStream();
int bytesRead; // Number of bytes read
byte[] buffer = new byte[BUYSIZE]; // Byte buffer
while ((bytesRead = fileIn.read(buffer)) != -1) {

sockOut.write(buffer, O, bytesRead);
System.out.print("W"); // Writing progress indicator

}
sock.shutdownOutput(); // Finished sending

}

CompressClient.java

1. Application setup and parameter parsing: lines 0-14

2. Create socket and open files: lines 16-21

3. Invoke sendBytes() to t ransmit bytes: lines 23-24

4. Receive the compressed data stream: lines 26-34
The while loop receives the compressed data stream and writes the bytes to the output
file until an end-of-stream is signaled by a -1 from read ().

5. Close socket and file streams: lines 36-38

6. sendBytes(): lines 41-51
Given a socket connected to a compression server and the file input stream, read all of
the uncompressed bytes from the file and write them to the socket output stream.

�9 Get socket output stream: line 43

�9 Send uncompres sed bytes to compress ion server: lines 44-49
The while loop reads from the input stream (in this case from a file) and repeats the
bytes to the socket output stream until end-of-file, indicated by -1 from read(). Each
write is indicated by a "W" printed to the console.

m 4.5 Closing Connections 89

�9 Shut down the socket output stream: line 50
After reading and sending all of the bytes from the input file, shut down the output
stream, notifying the server that the client is finished sending. The close will cause a
-1 return from read() on the server.

To implement the compression server, we simply write a protocol and factory for our
threaded server architecture. Our protocol implementation, CompressProtocolFactory.java,
implements the server-side compression protocol using the GZIP compression algorithm. The
server receives the uncompressed bytes from the client and writes them to a GZIP0utputStream,
which wraps the socket's output stream.

Com pres s Protocol Fac tory . java

0 import java.net.*;
1 import java.io.* ;
2 import java.util.*;
3 import java.util.zip.*;
4
5
6
7
8
9

lO
ll
12
13
14
15 }
16
17
18
19
2O
21
22
23
24
25
26
27
28
29
30
31

// for Socket
// for lOBxception and Input/OutputStream
// for ArrayList
// for GZIPOutputStream

public class CompressProtocolFactory implements ProtocolFactory {

public static final int BUFSIZE = 1024; // Size of receive buffer

public Runnable createProtocol(final Socket clntSock, final Logger logger) {
return new Runnable() {

public void run() {
CompressProtocolFactory.handleClient(clntSock, logger);

}
};

public static void handleClient(Socket clntSock, Logger logger) {
ArrayList entry = new ArrayList();
entry.add("Client address and port = " +

clntSock.getlnetAddress().getHostAddress() + ":"+
clntSock.getPort());

entry.add("Thread = "+ Thread.currentThread().getName());

try {
// Get the input and output streams from socket
InputStream in = clntSock, getInputStream() ;
GZIPOutputStream out = new GZIPOutputStream(clntSock. getOutputStream()) ;

byte[] buffer = new byte[BUFSIZE]; // Allocate read/write buffer
int bytesRead; // Number of bytes read
// Receive until client closes connection, indicated by-i return

90 Chapter 4: Beyond the Basics II

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48 }

while ((bytesRead = in.read(buffer)) != -i)
out.write(buffer, O, bytesRead) ;

out.finish(); // Flush bytes from GZIPOutputStream
} catch (lOException e) {

logger.writeEntry("Exception = " + e.getMessage());

try { // Close socket
clntSock.close();

} catch (lOException e) {
entry, add("Exception = " + e. getMessage()) ;

logger, writeEntry(entry) ;

CompressProtocolFactory.java

1. Factory me thod for compress ion protocol: lines 9-15
createProtocol() returns an anonymous class instance that implements the Runnable
interface. The run() method of this instance simply calls the static method CompressPro-
tocolFactory .handleCl ient () , which implements the server-side compression protocol.
Note that we do n o t need a separate CompressProtocol class, because createProtocol()
returns the type of instance (one that implements Runnable) that we need.

2. handleClient() : lines 17-38
Given a socket connected to the compression client, read the uncompressed bytes from
the client and write the compressed bytes back.

�9 Get socket I /O streams: lines 26-27
The socket's output s tream is wrapped in a GZlP0utputStream. The sequence of bytes
writ ten to this s tream is compressed, using the GZIP algorithm, before being writ ten
to the underlying output stream.

�9 Read u n c o m p r e s s e d and write compressed bytes: lines 29-33
The while loop reads from the socket input s t ream and writes to the GZlP0utputStream,
which in turn writes to the socket output stream, until the end-of-stream indication is
received.

�9 Flush and close: lines 35-44
Calling f in i sh () on the GZlP0utputStream is necessary to flush any bytes that may be
buffered by the compression algorithm.

A simple iterative version of the server can be found in CompressServer. java on the book's
Web site.

n 4.8 Exercises 91

4.6 Applets

Applets can perform network communication using TCP/IP sockets, but there are severe
restrictions on how and with whom they can converse. Without such restrictions, unsuspecting
Web browsers might execute malicious applets that could, for example, send fake email,
at tempt to hack other systems while the browser user gets the blame, and so on. These security
restrictions are enforced by the Java security manager, and violations by the applet result in
a SecurityException. Typically, browsers only allow applets to communicate with the host
that served the applet. This means that applets are usually restricted to communicating with
applications executing on that host, usually a Web server originating the applet. The list of
security restrictions and general applet programming is beyond the scope of this book. It is
worth noting, however, that the default security restrictions can be altered, if allowed by the
browser user.

Suppose that you wanted to implement an applet that allowed users to type and save notes
to themselves on their browser. Browser security restrictions prevent applets from saving data
directly on the local file system, so you would need some other means besides local disk I/O
to save the notes. FileClientApplet . java (available from the book's Web site) is an applet that
allows the user to type text into an editor window and, by clicking the "Save" button, copy the
text over the network to a server (running on port 5000). The server, YCPFileServer. java (also
on the book's Web site), saves the data to a file. It takes a port (use 5000 to work with the applet)
and the name of the file. The server must execute on the Web server that serves the applet to
the browser. Note that there is nothing applet specific about the server. FileClientApplet .html
on the Web site demonstrates how to integrate the applet into a Web page. Be warned that the
applet is based on Swing, and most browsers don't have the Swing library. The HTML file should
download the necessary file to make this work, but it is not guaranteed.

4.7 Wrapping Up

We have discussed some of the ways Java provides access to advanced features of the sockets
API, and how built-in features such as threads can be used with socket programs. In addition
to these facilities, Java provides several mechanisms that operate on top of TCP or UDP and
at tempt to hide the complexity of protocol development. For example, Java Remote Method
Invocation (RMI) allows Java objects on different hosts to invoke one another 's methods as
if the objects all reside locally. The URL class and associated classes provide a framework
for developing Web-related programs. Many other standard Java library mechanisms exist,
providing an amazing range of services. These mechanisms are beyond the scope of this book;
however, we encourage you to look at the book's Web site for descriptions and code examples

for some of these libraries.

4.8 Exercises

1. State precisely the conditions under which an iterative server is preferable to a multipro-
cessing server.

~ Chapter 4: Beyond the Basics III

2. Would you ever need to implement a t imeout in a client or server that uses TCP?

3. How can you determine the min imum and m a x i m u m allowable sizes for a socket 's send
and receive buffers? Determine the min imums for your system.

4. Write an iterative dispatcher using the dispatching f ramework f rom this chapter.

5. Write the server side of a r andom-number server using the protocol factory f ramework
f rom this chapter. The client will connect and send the upper bound, B, on the r a n d o m
number to the server. The server should re turn a r andom number be tween 1 and B,
inclusive. All numbers should be specified in binary format as 4-byte, two's-complement ,
big-endian integers.

6. Modify TCPEehoClient.java so that it closes its output side of the connect ion before
a t tempt ing to receive any echoed data.

chapter 5

Under the. Hood

S o m e of the subtleties of network programming are difficult to grasp without some
understanding of the data structures associated with the socket implementat ion and certain
details of how the underlying protocols work. This is especially true of TCP sockets (i.e.,
instances of Socket). This chapter describes some of what goes on under the hood when you
create and use an instance of Socket or ServerSocket. (The initial discussion and Section 5.5
apply as well to DatagramSocket and UultieastSocket. However, most of this chapter focuses
on TCP sockets, that is, Socket and ServerSocket.) Please note that this description covers only
the normal sequence of events and glosses over many details. Nevertheless, we believe that
even this basic level of unders tanding is helpful. Readers who want the full story are referred
to the TCP specification [13] or to one of the more comprehensive treatises on the subject [3,
22].

Figure 5.1 is a simplified view of some of the information associated with a Socket
instance. The classes are supported by an underlying implementat ion that is provided by
the JVM and/or the platform on which it is running (i.e., the "socket layer" of the host 's OS).
Operations on the Java objects are translated into manipulat ions of this underlying abstraction.
In this chapter, "Socket" refers generically to one of the classes in Figure 5.1, while "socket"
refers to the underlying abstraction, whether it is provided by an underlying OS or the JVM
implementat ion itself (e.g., in an embedded system). It is important to note that other (possibly
non-Java) programs running on the same host may be using the network via the underlying
socket abstraction, and thus competing with Java Socket instances for resources such as ports.

By "socket structure" here we mean the collection of data structures in the underlying
implementat ion (of both the JVM and TCP/IP, but primarily the latter) that contain the informa-
tion associated with a particular Socket instance. For example, the socket structure contains,
among other information

�9 The local and remote Internet addresses and port numbers associated with the socket.
The local Internet address (labeled "Local IP" in the figure) is one of those assigned to
the local host; the local port is set at Socket creation time. The remote address and port
identify the remote socket, if any, to which the local socket is connected. We will say more

93

9 4 Chapter 5: Under the Hood II

o

o

q2

C~
<

o

cu
+~

4-J
~iD 4-J

H O
Socket, DatagramSocket, MulticastSocket,
or ServerSocket instance

SendQ [

I RecvQ
To network

Closed

Local port

Local IP

Remote port

Remote IP

Underlying socket structure

Figure 5.1: Data structures associated with a socket.

about how and when these values are determined shortly (Section 5.5 contains a concise
summary).

�9 A FIFO queue of received data waiting to be delivered and a queue for data waiting to be
transmitted.

�9 For a TCP socket, additional protocol state information relevant to the opening and
closing TCP handshakes. In Figure 5.1, the state is "Closed"; all sockets start out in the
Closed state.

Knowing that these data structures exist and how they are affected by the underlying
protocols is useful because they control various aspects of the behavior of the various Socket
objects. For example, because TCP provides a reliable byte-stream service, a copy of any data
written to a Socket's 0utputStream must be kept until it has been successfully received at the
other end of the connection. Writing data to the output stream does not imply that the data has
actually been sent--only that it has been copied into the local buffer. Even f lush() ing a Socket's
0utputStream doesn't guarantee that anything goes over the wire immediately. Moreover, the
nature of the byte-stream service means that message boundaries are not preserved in the
input stream. As we saw in Section 3.3, this complicates the process of receiving and parsing
for some protocols. On the other hand, with a DatagramSoeket, packets are not buffered for
retransmission, and by the time a call to the send () method returns, the data has been given to

[] 5.1 Buffering and TCP 95

the network subsystem for transmission. If the network subsystem cannot handle the message
for some reason, the packet is silently dropped (but this is rare).

The next three sections deal with some of the subtleties of sending and receiving with
TCP's byte-stream service. Then, Section 5.4 considers the connection establishment and ter-
mination of the TCP protocol. Finally, Section 5.5 discusses the process of matching incoming
packets to sockets and the rules about binding to port numbers.

5.1 Buffering and TCP

As a programmer, the most important thing to remember when using a TCP socket is this:

You cannot assume any correspondence between writes to the output s tream at one end

o f the connection and reads from the input s tream at the other end.

In particular, data passed in a single invocation of the output stream's wri te() method at
the sender can be spread across multiple invocations of the input stream's read() method at
the other end; and a single read() may return data passed in multiple wri te()s . To see this,
consider a program that does the following:

byte [] buffer0 = new byte [I000] ;
byte[] bufferl = new byte[2000];
byte[] buffer2 = new byte[S000];
,

Socket s = new Socket(destAddr, destPort) ;
0utputStream out = s. get0utputStream() ;

out .write(buffer0) ;

,

out .write(bufferl) ;

out. write (buffer2) ;

s.close() ;

where the ellipses represent code that sets up the data in the buffers but contains no other

calls to out. write(). Throughout this discussion, "in" refers to the InputStream of the receiver's

Socket, and "out" refers to the 0utputStream of the sender's Socket.

This TCP connection transfers 8000 bytes to the receiver. The way these 8000 bytes are

grouped for delivery at the receiving end of the connection depends on the timing between

the out.write()s and in.read()s at the two ends of the connection--as well as the size of the

buffers provided to the in. read() calls.

9 ~ Chapter 5: Under the Hood I

Sending implementation Receiving implementation Receiving program

I I I I
SendQ

send() TCP protocol

RecvQ Delivered

6500 bytes 1500 bytes 0 bytes

First write (1000 bytes)

Second write (2000 bytes)

:!jiiii~ Third write (5000 bytes)

Figure 5.2: State of the three queues after three writes.

We can think of the sequence of all bytes sent (in one direction) on a TCP connection up
to a particular instant in time as being divided into three FIFO queues:

1. SendQ: Bytes buffered in the underlying implementation at the sender that have been
written to the output stream but not yet successfully transmitted to the receiving host.

2. RecvQ: Bytes buffered in the underlying implementation at the receiver waiting to be
delivered to the receiving program--that is, read from the input stream.

3. Delivered: Bytes already read from the input stream by the receiver.

A call to out .wri te() at the sender appends bytes to SendQ. The TCP protocol is responsible
for moving bytes--in order--from SendQ to RecvQ. It is important to realize that this transfer
cannot be controlled or directly observed by the user program, and that it occurs in chunks
whose sizes are more or less independent of the size of the buffers passed in write()s. Bytes
are moved from RecvQ to Delivered as they are read from the Socket's InputStream by the
receiving program; the size of the transferred chunks depends on the amount of data in RecvQ
and the size of the buffer given to read().

Figure 5.2 shows one possible state of the three queues after the three out .wri te()s in
the example above, but before any in. reads ()s at the other end. The different shading patterns
denote bytes passed in the three different invocations of write() shown above.

Now suppose the receiver calls read() with a byte array of size 2000. The read() call
will move all of the 1500 bytes present in the waiting-for-delivery (RecvQ) queue into the byte
array and return the value 1500. Note that this data includes bytes passed in both the first and
second calls to write(). At some time later, after TCP has completed transfer of more data, the
three partitions might be in the state shown in Figure 5.3.

If the receiver now calls read () with a buffer of size 4000, that many bytes will be moved
from the waiting-for-delivery (RecvQ) queue to the already-delivered (Delivered) queue; this
includes the remaining 1500 bytes from the second write(), plus the first 2500 bytes from the
third write(). The resulting state of the queues is shown in Figure 5.4.

The number of bytes returned by the next call to read() depends on the size of the
buffer and the timing of the transfer of data over the network from the send-side socket/TCP

II 5.2 Buffer Deadlock 97

Sending implementation

SendQ

500 bytes

Figure 5.3: After first read().

Receiving implementation Receiving program

RecvQ

m_
6000 bytes

Delivered

1500 bytes

n First write (1000 bytes)

B Second write (2000 bytes)

,i:::i~: Third write (5000 bytes)

Sending implementation

I I I
SendQ

500 bytes

Figure 5.4: After another read().

Receiving implementation

RecvQ

l
2000 bytes

Receiving program

I I
Delivered

I n
5500 bytes

n First write (1000 bytes)

Second write (2000 bytes)

,, Third write (5000 bytes)

implementation to the receive-side implementation. The movement of data from the SendQ to
the RecvQ buffer has important implications for the design of application protocols. We have
already encountered the need to parse messages as they are received via a Socket when in-
band delimiters are used for framing (see Section 3.3). In the following sections, we consider
two more subtle ramifications.

5.2 Buffer Deadlock

Application protocols have to be designed with some care to avoid deadlock--that is, a state
in which each peer is blocked waiting for the other to do something. For example, it is
pretty obvious that if both client and server try to receive immediately after a connection
is established, deadlock will result. Deadlock can also occur in less immediate ways.

The buffers SendQ and RecvQ in the implementation have limits on their capacity.
Although the actual amount of memory they use may grow and shrink dynamically, a hard
limit is necessary to prevent all of the system's memory from being gobbled up by a single

9 8 Chapter 5: Under the Hood II

TCP connection under control of a misbehaving program. Because these buffers are finite, they
can fill up, and it is this fact, coupled with TCP's flow control mechanism, that leads to the
possibility of another form of deadlock.

Once RecvQ is full, the TCP flow control mechan i sm kicks in and prevents the t ransfer of
any bytes f rom the sending host ' s SendQ, until space becomes available in RecvQ as a result
of the receiver calling the input s t ream's read() method. (The purpose of the flow control
mechan i sm is to ensure that the sender does not t ransmit more data than the receiving sys tem
can handle.) A sending p rogram can continue to call send until SendQ is full; however, once
SendQ is full, a call to ou t .wr i t e () will block until space becomes available, that is, until some
bytes are t ransfer red to the receiving socket 's RecvQ. If RecvQ is also full, everything stops
until the receiving p rogram calls in. read () and some bytes are t ransferred to Delivered.

Let's assume the sizes of SendQ and RecvQ are SQS and RQS, respectively. A wr i t e () call
with a byte array of size n such that n > SQS will not re turn until at least n - SQS bytes have
been t ransfer red to RecvQ at the receiving host. If n exceeds (SQS + RQS), wri t e () cannot
re turn until after the receiving p rogram has read at least n - (SQS + RQS) bytes f rom the
input stream. If the receiving p rogram does not call read() , a large send() may not complete
successfully. In particular, if both ends of the connection invoke their respective output
s t reams ' wr i t e () me thod s imultaneously with buffers greater than SQS + RQS, deadlock will
result: nei ther write will ever complete, and both programs will remain blocked forever.

As a concrete example, consider a connection between a p rogram on Host A and a p rogram
on Host B. Assume SQS and RQS are 500 at both A and B. Figure 5.5 shows what happens
when bo th p rograms try to send 1500 bytes at the same time. The first 500 bytes of data in the
p rogram at Host A have been t ransferred to the other end; another 500 bytes have been copied
into SendQ at Host A. The remaining 500 bytes cannot be sen t - - and therefore out .wr i t e () will
not re tu rn- -un t i l space frees up in RecvQ at Host B. Unfortunately, the same si tuation holds
in the p rogram at Host B. Therefore, nei ther program's wr i t e () call will ever complete.

send(s,buffer,1500,O); send(s,buffer ,1500,0) ;

To be sent Se nd Q R ecvQ Delivered

Delivered RecvQ SendQ

I I I
I I I I I

To be sent

!
I I I

Program Implementation Implementation Program

I I I I
Host A Host B

Figure 5.5: Deadlock due to simultaneous write()s to output streams at opposite ends of the connection.

m 5.2 Buffer Deadlock 9 9

The moral of the story: Design the protocol carefully to avoid sending large quantities of
data simultaneously in both directions.

Can this really happen? Let's review the compression protocol example in Section 4.5. Try
running the compression client with a large file that is still large after compression. The precise
definition of "large" here depends on your system, but a file that is already compressed and
exceeds 2MB should do nicely. For each read/write, the compression client prints an "R"/"W"
to the console. If both the uncompressed and compressed versions of the file are large enough,
your client will print a series of Ws and then stop without terminating or printing any Rs.

Why does this happen? The program CompressClient. java sends all of the uncompressed
data to the compression server before it a t tempts to read anything from the compressed
stream. The server, on the other hand, simply reads the uncompressed byte sequence and
writes the compressed sequence back to the client. (The number of bytes the server reads before
it writes some compressed data depends on the compression algorithm it uses.) Consider the
case where SendQ and RecvQ for both client and server hold 500 bytes each and the client
sends a 10,000-byte (uncompressed) file. Suppose also that for this file the server reads about
1000 bytes and then writes 500 bytes, for a 2:1 compression ratio. After the client sends 2000
bytes, the server will eventually have read them all and sent back 1000 bytes, and the client's
RecvQ and the server's SendQ will both be full. After the client sends another 1000 bytes and
the server reads them, the server's subsequent a t tempt to write will block. When the client
sends the next 1000 bytes, the client's SendQ and the server's RecvQ will both fill up. The next
client write will block, creating deadlock.

How do we solve this problem? The easiest solution is to execute the client writing and
reading loop in separate threads. One thread repeatedly reads a buffer of uncompressed bytes
from a file and sends them to the server until the end of the file is reached, whereupon it calls
shutdown0utput() on the socket. The other thread repeatedly reads a buffer of compressed
bytes from the server and writes them to the output file, until the input s t ream ends (i.e., the
server closes the socket). When one thread blocks, the other thread can proceed independently.
We can easily modify our client to follow this approach by putt ing the call to SendBytes() in
CompressClient. java inside a thread as follows:

Thread thread = new Thread() {
public void run() {

try {
SendBytes(sock, fileIn);

} catch (Exception ignored) {}
}

};
thread.start();

See CompressClientNoDeadlock.java on the book's Web site for the complete example. Can
we solve this problem without using threads? To guarantee deadlock avoidance in a single

threaded solution, we need nonblocking writes, which are not available in the current version
of Java (see Section 4.2).

! OO Chapter 5: Under the Hood m

5.3 Performance Implications

The TCP implementation's need to copy user data into SendQ for potential retransrnission
also has implications for performance. In particular, the sizes of the SendQ and RecvQ buffers
affect the throughput achievable over a TCP connection. Throughput refers to the rate at which
bytes of user data from the sender are made available to the receiving program; in programs
that transfer a large amount of data, we want to maximize this rate. In the absence of network
capacity or other limitations, bigger buffers generally result in higher throughput.

The reason for this has to do with the cost of transferring data into and out of the buffers
in the underlying implementation. If you want to transfer n bytes of data (where n is large),
it is generally much more efficient to call wri te() once with a buffer of size n than it is to
call it n times with a single byte. 1 However, if you call wri te() with a size parameter that is
much larger than SQS, the system has to transfer the data from the user address space in SQS-
sized chunks. That is, the socket implementation fills up the SendQ buffer, waits for data to
be transferred out of it by the TCP protocol, refills SendQ, waits some more, and so on. Each
time the socket implementation has to wait for data to be removed from SendQ, some time
is wasted in the form of overhead (a context switch occurs). This overhead is comparable to
that incurred by a completely new call to wri te() . Thus, the effective size of a call to wri te()
is limited by the actual SQS. For reading from the InputStream, the same principle applies:
however large the buffer we give to read(), it will be copied out in chunks no larger than RQS,
with overhead incurred between chunks.

If you are writing a program for which throughput is an important performance metric,
you will want to change the send and receive buffer sizes using the setSendBufferSize()
and setReceiveBufferSize() methods of Socket. Although there is always a system-imposed
maximum size for each buffer, it is typically significantly larger than the default on modern
systems. Remember that these considerations apply only if your program needs to send an
amount of data significantly larger than the buffer size, all at once. Note also that these factors
may make little difference if the program deals with some higher-level stream derived from
the Socket's basic input stream (say, by using it to create an instance of Fil ter0utputStream or
PrintWriter), which may perform its own internal buffering or add other overhead.

5.4 TCP Socket Life Cycle

When a new instance of the Socket class is created--either via one of the public constructors or
by calling the accept () method of a ServerSocket--it can immediately be used for sending and
receiving data. That is, when the instance is returned, it is already connected to a remote
peer and the opening TCP message exchange, or handshake, has been completed by the
implementation.

1 The same thing generally applies to reading data from the Socket's InputStream, although calling read()
with a larger buffer does not guarantee that more data will be returned.

m 5.4 TCP Socket Life Cycle 101

<

�9
OJO .~-4

> -

Call Socket (W.X.Y.Z, Q)

Blocks

Create
s t ruc ture

Closed

Local port

Local IP

Remote port

Remote IP

Fill in
local a n d

remote
a d d r e s s

Send
connect ion
reques t to

s e rve r

Connecting

Local port P

Local IP A.B.C.D

Remote port Q

Remote IP W.X.Y.Z

H a n d s h a k e
comple t e s

v

Figure 5.6: Client-side connection establishment.

Returns instance

Established

Local port P

Local IP A.B.C.D

Remote port Q

Remote IP W.X.Y.Z

Let us therefore consider in more detail how the underlying structure gets to and from the
connected, or "Established," state; as you'll see later (see Section 5.4.2), these details affect the
definition of reliability and the ability to create a Socket or ServerSocket bound to a particular
port.

5.4.1 Connecting

The relationship between an invocation of the Socket constructor and the protocol events
associated with connection establishment at the client are illustrated in Figure 5.6. In this and
the remaining figures of this section, the large arrows depict external events that cause the
underlying socket structures to change state. Events that occur in the application program--
that is, method calls and returns--are shown in the upper part of the figure; events such as
message arrivals are shown in the lower part of the figure. Time proceeds left to right in these
figures. The client's Internet address is depicted as A.B.C.D, while the server's is W.X.Y.Z; the
server's port number is Q.

When the client calls the Socket constructor with the server's Internet address, W.X.Y.Z,
and port, Q, the underlying implementation creates a socket instance; it is initially in the Closed
state. If the client did not specify the local address /por t in the constructor call, a local port
number (P), not already in use by another TCP socket, is chosen by the implementation. The
local Internet address is also assigned; if not explicitly specified, the address of the network
interface through which packets will be sent to the server is used. The implementation copies
the local and remote addresses and ports into the underlying socket structure, and initiates
the TCP connection establishment handshake.

The TCP opening handshake is known as a 3-way handshake because it typically involves
three messages: a connection request from client to server, an acknowledgment from server
to client, and another acknowledgment from client back to server. The client TCP considers
the connection to be established as soon as it receives the acknowledgment from the server.

| 0 2 Chapter 5: Under the Hood III

r
L~

~o
<

o

.~--4

Call ServerS0cket (Q)

Create

s t ruc ture

Closed

Local port

Local IP

Remote port

Remote IP

Figure 5.7: Server-side socket setup.

Fill in

local port,

se t s ta te

I)

Returns instance

Listening

Local port Q

Local IP *

Remote port *

Remote IP *

In the normal case, this happens quickly. However, the Internet is a best-effort network, and
either the client's initial message or the server 's response can get lost. For this reason, the TCP
implementa t ion re t ransmi ts handshake messages multiple times, at increasing intervals. If the
client TCP does not receive a response f rom the server after some time, it times out and gives
up. In this case the constructor throws an IOExeeption. The connection t imeout is generally
long, and thus it can take on the order of minutes for a Socket () constructor to fail. If the server
is not accepting connect ions--say, if there is no p rogram associated with the given port at the
des t ina t ion- - the server-side TCP will send a rejection message instead of an acknowledgment ,
and the const ructor will throw an IOException almost immediately.

The sequence of events at the server side is ra ther different; we describe it in Figures 5.7,
5.8, and 5.9. The server first creates an instance of ServerSocket associated with its well-known
port (here, Q). The socket implementa t ion creates an underlying socket s t ructure for the new
ServerSocket instance, and fills in Q as the local port and the special wildcard address C*"
in the figures) for the local IP address. (The server may also specify a local IP address in the
constructor, but typically it does not. In case the server host has more than one IP address,
not specifying the local address allows the socket to receive connections addressed to any of
the server host ' s addresses.) The state of the socket is set to "Listening", indicating that it is
ready to accept incoming connection requests addressed to its port. This sequence is depicted
in Figure 5.7.

The server can now call the ServerSocket 's accept () method, which blocks until the TCP
opening handshake has been completed with some client and a new connection has been
established. We therefore focus in Figure 5.8 on the events that occur in the TCP implementa t ion
when a client connect ion request arrives. Note that everything depicted in this figure happens
"under the covers," in the TCP implementat ion.

[] 5.4 TCP Socket Life Cycle 1 O 3

o

Listening

Local port

Local IP

Remote port

Remote IP

Incoming
connection
request
from
A.B.C.D/P

Listening

Local port

Local IP

Remote port

Remote IP

Q

Listening

Local port Q

Local IP *

Remote port *

Remote IP *

[C!e _te_ ew_ stTytyf _
and continue handshake

Connecting

Local port Q

Local IP W.X.Y.Z

Remote port P

Remote IP A.B.C.D

Handshake
completes

Established

Local port Q

Local IP W.X.Y.Z

Remote port P

Remote IP A.B.C.D

Figure 5.8: Incoming connection request processing.

When the reques t for a connect ion arrives f rom the client, a new socket s t ructure is
created for the connection. The new socket 's addresses are filled in based on the arriving packet:
the packet ' s des t ina t ion Internet address and por t (W.X.Y.Z and Q, respectively) become the
local Internet address and port; the packet ' s source address and por t (A.B.C.D and P) become
the remote Internet address and port. Note that the local por t n u m b e r of the new socket is
always the same as that of the ServerSocket. The new socket 's state is set to "Connecting",
and it is added to a list of not -qui te-connected sockets associa ted with the socket s t ructure of
the ServerSocket. Note that the ServerSocket itself does not change state, nor does any of its

address in format ion change.
In addi t ion to creating a new under ly ing socket s tructure, the server-side TCP implemen-

tat ion sends an acknowledging TCP handshake message back to the client. However, the server
TCP does not consider the handshake complete unti l the third message of the 3-way handshake
is received f rom the client. When that message eventually arrives, the new s t ructure ' s state is
set to "Established", and it is then (and only then) moved to a list of socket s t ructures asso-
ciated with the ServerSocket s tructure, which represen t es tabl ished connect ions ready to be
accept () ed via the ServerSoeket. (If the third handshake message fails to arrive, eventually the

"Connecting" s t ructure is deleted.)

104 Chapter 5: Under the Hood II

4-a
e~

<

o
4-a

Call accept ()

Blocks until new
connection is established

Returns Socket instance
for this structure

Listening

Local port Q

Local IP *

Remote port *

Remote IP *

Events of
Figure 5.8

Listening

Local port Q

Local IP *

Remote port *

Remote IP *

Established

Local port Q

Local IP W.X.Y.Z

Remote port P

Remote IP A.B.C.D

/

Listening

Local port Q

Local IP *

Remote port *

Remote IP *

Figure 5.9: accept () processing.

Now we can cons ider (in Figure 5.9) what h a p p e n s w h e n the server p r o g r a m calls the

ServerSoeket ' s accept () me thod . The call unblocks as soon as there is some th ing in its associ-

a ted list of socket s t ruc tures for new connect ions . (Note that this list may already be n o n - e m p t y

w h e n accept () is called.) At that time, one of the new connec t ion s t ruc tures is r e m o v e d f rom

the list, and an ins tance of Socket is c rea ted for it and r e t u r n e d as the resul t of the accept ().

It is i m p o r t a n t to note that each s t ruc ture in the ServerSocket 's assoc ia ted list r ep re sen t s

a fully es tab l i shed TCP connec t ion with a client at the o ther end. Indeed, the client can send

da ta as soon as it receives the second message of the opening h a n d s h a k e - - w h i c h may be long

before the server calls accept () to get a Socket ins tance for it.

5.4.2 Closing aTCP Connection

TCP has a graceful close m e c h a n i s m that allows appl icat ions to t e rmina te a connec t ion wi thou t

having to worry about loss of data that might still be in transit . The m e c h a n i s m is also

des igned to allow data t ransfers in each di rect ion to be t e rmina t ed independen t ly , as in the

II 5.4 TCP Socket Life Cycle | O 5

Call close()/shutdownOutput()

Returns immediately

o
Established

Local port P

Local IP A.B.C.D

Remote port Q

Remote IP W.X.Y.Z

Star t

close

h a n d s h a k e

Closing

Local port P

Local IP A.B.C.D

Remote port Q

-- Remote IP W.X.Y.Z

Figure 5. ! O: Closing a TCP connection first.

Close

h a n d s h a k e

c o m p l e t e s

Half closed

Local port P

Local IP A.B.C.D

Remote port Q

Remote IP W.X.Y.Z

Close

h a n d s h a k e

�9 " in i t ia ted b y

r emo te

c o m p l e t e s

Time-Wait

Local port P

Local IP A.B.C.D

Remote port Q

Remote IP W.X.Y.Z

compression example of Section 4.5. It works like this: the application indicates that it is
finished sending data on a connected socket by calling c lose () or by calling shutdown0utput ().
At that point, the underlying TCP implementation first transmits any data remaining in SendQ
(subject to available space in RecvQ at the other end), and then sends a closing TCP handshake
message to the other end. This closing handshake message can be thought of as an end-of-
transmission marker: it tells the receiving TCP that no more bytes will be placed in RecvQ.
(Note that the closing handshake message itself is not passed to the receiving application,
but that its position in the byte stream is indicated by read() returning -1.) The closing TCP
waits for an acknowledgment of its closing handshake message, which indicates that all data
sent on the connection made it safely to RecvQ. Once that acknowledgment is received, the
connection is "Half closed." It is not completely closed until a symmetric handshake happens
in the other direction--that is, until both ends have indicated that they have no more data to
send.

The closing event sequence in TCP can happen in two ways: either one application calls
c lose () (or shutdown0utput()) and completes its closing handshake before the other calls
c lose () , or both call c lose () simultaneously, so that their closing handshake messages cross
in the network. Figure 5.10 shows the sequence of events in the implementation when the
application invokes c lose () before the other end closes. The closing handshake message is
sent, the state of the socket structure is set to "Closing", and the call returns. After this
point, further reads and writes on the Socket are disallowed (they throw an exception). When
the acknowledgment for the close handshake is received, the state changes to "Half closed",
where it remains until the other end's close handshake message is received. Note that if the
remote endpoint goes away while the connection is in this state, the local underlying structure
will stay around indefinitely. When the other end's close handshake message arrives, an
acknowledgment is sent and the state is changed to "Time-Wait". Although the corresponding
Socket instance in the application program may have long since vanished, the associated
underlying structure continues to exist in the implementation for a minute or more; the reasons
for this are discussed on page 107.

| 0 6 Chapter 5: Under the Hood []

.,-.~

.,--4

<

Call close()

Returns immediately

o

.F..~

Established

Local port

Local IP

Remote port

Remote IP

A.B.C.D

Q

W.X.Y.Z

Close
handshake
initiated
by remote
completes

Close-Wait

Local port P

Local IP A.B.C.D

Remote port Q

Remote IP W.X.Y.Z

Figure 5.1 !: Closing after the other end closes.

Finish close handshake,
delete structure

y

Figure 5.11 shows the simpler sequence of events at the endpoint that does not close first.
When the closing handshake message arrives, an acknowledgment is sent immediately, and the
connection state becomes "Close-Wait." At this point, we are just waiting for the application
to invoke the Socket's c lose() method. When it does, the final close handshake is initiated
and the underlying socket structure is deallocated, although references to its original Socket
instance may persist in the Java program.

In view of the fact that both close() and shutdown0utput() return without waiting for
the closing handshake to complete, you may wonder how the sender can be assured that sent
data has actually made it to the receiving program (i.e., to Delivered). In fact, it is possible
for an application to call c lose() or shutdown0utput() and have it complete successfully (i.e.,
not throw an Exception) while there is still data in SendQ. If either end of the connection then
crashes before the data makes it to RecvQ, data may be lost without the sending application
knowing about it.

The best solution is to design the application protocol so that the side that calls c lose()
first does so only after receiving application-level assurance that its data was received. For
example, when our TCPEehoClient program receives the echoed copy of the data it sent, there
should be nothing more in transit in either direction, so it is safe to close the connection.

Java does provide a way to modify the behavior of the Socket's c lose() method, namely,
the setSoLinger() method, setSoLinger() controls whether close() waits for the closing hand-
shake to complete before returning. It takes two parameters, a boolean that indicates whether
to wait, and an integer specifying the number of seconds to wait before giving up. That is,
when a t imeout is specified via setSoLinger(), c lose() blocks until the closing handshake is
completed, or until the specified amount of time passes. At the time of this writing, how-
ever, c lose() provides no indication that the closing handshake failed to complete, even if
the time limit set by setSoLinger() expires before the closing sequence completes. In other
words, setSoLinger() does not provide any additional assurance to the application in current
implementat ions.

m 5.5 Demultiplexing Demystified ! O7

The final subtlety of closing a TCP connection revolves around the need for the Time-
Wait state. The TCP specification requires that when a connection terminates, at least one of
the sockets persists in the Time-Wait state for a period of time after both closing handshakes
complete. This requirement is motivated by the possibility of messages being delayed in the
network. If both ends' underlying structures go away as soon as both closing handshakes
complete, and a new connection is immediately established between the same pair of socket
addresses, a message from the previous connection, which happened to be delayed in the
network, could arrive just after the new connection is established. Because it would contain
the same source and destination addresses, the old message could be mistaken for a message
belonging to the new connection, and its data might (incorrectly) be delivered to the application.

Unlikely though this scenario may be, TCP employs multiple mechanisms to prevent it,
including the Time-Wait state. The Time-Wait state ensures that every TCP connection ends
with a quiet time, during which no data is sent. The quiet time is supposed to be equal to
twice the maximum amount of time a packet can remain in the network. Thus, by the time a
connection goes away completely (i.e., the socket structure leaves the Time-Wait state and is
deallocated) and clears the way for a new connection between the same pair of addresses, no
messages from the old instance can still be in the network. In practice, the length of the quiet
time is implementat ion dependent, because there is no real mechanism that limits how long a
packet can be delayed by the network. Values in use range from 4 minutes down to 30 seconds
or even shorter.

The most important consequence of Time-Wait is that as long as the underlying socket
structure exists, no other socket is permit ted to be associated with the same local port. In
particular, any at tempt to create a Socket instance using that port will throw an TOException.

5.5 Demultiplexing Demystihed

The fact that different sockets on the same machine can have the same local address and
port number is implicit in the discussions above. For example, on a machine with only one
IP address, every new Socket instance accept ()ed via a ServerSocket will have the same local
port number as the ServerSocket. Clearly the process of deciding to which socket an incoming
packet should be delivered--that is, the demul t ip lex ing process--involves looking at more than
just the packet 's destination address and port. Otherwise there could be ambiguity about which
socket an incoming packet is intended for. The process of matching an incoming packet to a
socket is actually the same for both TCP and UDP, and can be summarized by the following
points:

�9 The local port in the socket structure m u s t match the destination port number in the
incoming packet.

�9 Any address fields in the socket structure that contain the wildcard value (*) are consid-
ered to match a n y value in the corresponding field in the packet.

�9 If there is more than one socket structure that matches an incoming packet for all four
address fields, the one that matches using the fewest wildcards gets the packet.

| O ~ Chapter 5" Under the Hood II

Listening

Local port

Local IP

Remote port

Remote IP

99

Listening

Local port

Local IP

Remote port

Remote IP

99

10.1.2.3

Established

Local port

Local IP

Remote port

Remote IP

0 1 2

Figure 5.12: Demultiplexing with multiple matching sockets.

99

192.168.3.2

30001

172.16.1.9

Established

Local port

Local IP

Remote port

Remote IP

1025

10.1.2.3

25

10.5.5.8

For example, consider a host with two IP addresses, 10.1.2.3 and 192.168.3.2, and with a
subset of its active TCP socket structures, as shown in Figure 5.12. The structure labeled 0 is
associated with a ServerSocket and has port 99 with a wildcard local address. Socket structure 1
is also for a ServerSocket on the same port, but with the local IP address 10.1.2.3 specified (so
it will only accept connection requests to that address). Structure 2 is for a connection that
was accepted via the ServerSocket for structure 0, and thus has the same local port number,
but also has its local and remote Internet addresses filled in. Other sockets belong to other
active connections. Now consider a packet with source IP address 172.16.1.10, source port
56789, destination IP address 10.1.2.3, and destination port 99. It will be delivered to the
socket associated with structure 1, because that one matches with the fewest wildcards.

When a program attempts to create a socket with a particular local port number, the
existing sockets are checked to make sure that no socket is already using that local port. A
Socket () constructor will throw an exception if any socket matches the local port and local IP
address (if any) specified in the constructor. This can cause problems in the following scenario:

1. A client program creates a Socket with a specific local port number, say, P, and uses it to
communicate with a server.

2. The client closes the Socket, and the underlying structure goes into the Time-Wait state.

3. The client program terminates and is immediately restarted.

If the new incarnation of the client at tempts to use the same local port number, the Socket
constructor will throw an IOException, because of the other structure in the Time-Wait state.
As of this writing, the only way around this is to wait until the underlying structure leaves the
Time-Wait state.

So what determines the local/foreign address/port? For a ServerSocket, all constructors
require the local port. The local address may be specified to the constructor; otherwise, the
local address is the wildcard (*) address. The foreign address and port for a ServerSocket are
always wildcards. For a Socket, all constructors require specification of the foreign address
and port. The local address and/or port may be specified to the constructor. Otherwise, the
local address is the address of the network interface through which the connection to the
server is established, and the local port is a randomly selected, unused port number greater

I 5.6 Exercises 109

than 1023. For a Socket instance returned by accept(), the local address is the destination
address from the initial handshake message from the client, the local port is the local port of
the ServerSocket, and the foreign address /por t is the local address /por t of the client. For a
DatagramSocket, the local address and/or port may be specified to the constructor. Otherwise
the local address is the wildcard address, and the local port is a randomly selected, unused
port number greater than 1023. The foreign address and port are initially both wildcards, and
remain that way unless the connect () method is invoked to specify particular values.

5.6 Exercises

1. The TCP protocol is designed so that simultaneous connection at tempts will succeed.
That is, if an application using port P and Internet address W.X.Y.Z attempts to connect
to address A.B.C.D, port Q, at the same time as an application using the same address
and port tries to connect to W.X.Y.Z, port P, they will end up connected to each other.
Can this be made to happen when the programs use the sockets API?

2. The first example of "buffer deadlock" in this chapter involves the programs on both
ends of a connection trying to send large messages. However, this is not necessary for
deadlock. How could the TCPEchoClient from Chapter 2 be made to deadlock when it
connects to the TCPEchoServer from that chapter?

Bibliography

[1] Case, J. D., Fedor, M., and Schoffstall, M. L., "Simple Network Management Protocol
(SNMP)." Internet Request for Comments 1157, May 1990.

[2] Comer, Douglas E., Internetworking with TCP/IP, Volume k Principles, Protocols, and
Architecture (third edition). Prentice Hall, 1995.

[3] Comer, Douglas E., and Stevens, David L., Internetworking with TCP/IP, Volume II: Design,
Implementation, and Internals (third edition). Prentice Hall, 1999.

[4] Comer, Douglas E., and Stevens, David L., Internetworking with TCP/IP, Volume III: Client-
Server Programming and Applications (BSD version, second edition). Prentice Hall, 1996.

[5] Deering, S., and Hinden, R., "Internet Protocol, Version 6 (IPv6) Specification." Internet
Request for Comments 2460, December 1998.

[6] Gilligan, R., Thomson, S., Bound, J., and Stevens, W., "Basic Socket Interface Extensions
for IPv6." Internet Request for Comments 2553, March 1999.

[7] Hughes, M., Shoffner, M., Hamner, D., and Bellus, U., Java Network Programming (second
edition). Manning, 1999.

[8] International Organization for Standardization, Information Processing SystemsmOpen
Systems InterconnectionmSpecification of Abstract Syntax Notation One (ASN.1). Interna-
tional Standard 8824, December 1987.

[9] Mockapetris, P., "Domain Names--Concepts and Facilities." Internet Request for Com-
ments 1034, November 1987.

[10] Mockapetris, P., "Domain Names--Implementation and Specification." Internet Request
for Comments 1035, November 1987.

[11] Peterson, L. L., and Davie, B. S., Computer Networks: A Systems Approach (second edition).
Morgan Kaufmann, 2000.

[12] Postel, J., "Internet Protocol." Internet Request for Comments 791, September 1981.

I I I

| | 2 Bibliography m

[13] Postel, J., "Transmission Control Protocol." Internet Request for Comments 793, Septem-
ber 1981.

[14] Postel, J., "User Datagram Protocol." Internet Request for Comments 768, August 1980.

[15] Steedman, D., Abstract Syntax Notation One (ASN.1)--The Tutorial and Reference. Tech-
nology Appraisals, U.K., 1990.

[16] Stevens, W. R., TCP/IP Illustrated, Volume 1: The Protocols. Addison-Wesley, 1994.

[17] Stevens, W. R., UNIX Network Programming: Networking APIs: Sockets and XTI (second
edition). Prentice Hall, 1997.

[18] Sun Microsystems Incorporated, "External Data Representation Standard." Internet Re-
quest for Comments 1014, June 1987.

[19] Sun Microsystems Incorporated, "Network File System Protocol Specification." Internet
Request for Comments 1094, March 1989.

[20] Sun Microsystems Incorporated, "Network File System Protocol Version 3 Specification."
Internet Request for Comments 1813, June 1995.

[21] The Unicode Consortium, The Unicode Standard, Version 3.0. Addison-Wesley Longman,
2O0O.

[22] Wright, G. R., and Stevens, W. R., TCP/IP Illustrated, Volume 2: The Implementation.
Addison-Wesley, 1995.

Index

3-way handshakes, 101-102

accept () method of ServerSocket
blocking by, 75-76
connection establishment

events, 103-104
described, 21
returning Socket class, 18-19
in thread-per-client server, 70
in thread pool server, 71-73

addresses
broadcast, 79
connection establishment,

101
defined, 3
demultiplexing, 107-109
destination addresses, 9
dotted-quad notation, 4
IP (Internet), 9-12, 93-94
multicast, 80
socket structures, 93-94
sockets, 9-12
types of, 4

American Standard Code for
Information Exchange
(ASCII), 39

applets, 91
application protocols, 37, 42-43
applications, 5
architecture of TCP/IP net-

works, 2

big-endian byte order, 41
binary numbers, 40-42
blocking socket I/O calls, 75-79
boolean values, encoding, 47, 51
broadcast addresses, 79
broadcasting, 79-80, 84

browser applet security, 91
BufferedInputStream, 42
BufferedOutputStream, 42
buffering

closing connections, 105-
106

of datagrams, 24-25
deadlock, 97-99
FIFO queues, 96-97
flow control mechanism, 98
I/O streams, 42
memory limitations, 97-98
performance, effects on, 100
reliable service protocol,

94-97
setting size, 17
TCP and, 94-99
write() method with, 20, 76

byte order, 41
bytes required for transmission,

39

character sets, 39
client

closing connections, 85-90
defined, 5
handshake events, 101-102
TCP, 12-18
TCPEchoClient. java, 13-15
UDP, 26-31
UDPEchoClientTimeout. java,

27-28
close() method

closing connections, 85-90,
105-107

of DatagramSocket class, 26,
29,31

setSoLinger() method, 106

of Socket class, 15, 16
Closed state, 94, 101
Close-Wait state, 106
closing

connections, 85-90, 104-107
TCP streams, 16
UDP streams, 29

Closing state, 105
communication channels, 1
composing I/O streams, 42
CompressClient. java, 87-89
CompressClientNoDeadlock. java,

99
compression protocol

closing connections, 86-90
deadlock, 99

CompressProtocolFactory. java,
89-90

concurrent servers. See
multitasking

connect () method UDP, 26
in DatagramSocket, 29

Connecting state, 103
connection-oriented protocols, 3
connections

Close-Wait state, 106
closing, 85-90, 104-107
Closing state, 105
Connecting state, 103
creating, 14, 18, 28-30
disconnecting, 30
dispatching, 69-75
Established state, 103
establishment events,

101-104
Half closed state, 105
memory limitations, 97-98
Time-Wait state, 105,107

113

1 I 4 Index m

connections (continued)
write/read relationship,

95-96
ConsoleLogger. java, 66
corruption of data, UDP

treatment of, 23
createProtocol(), 69
creating

TCP sockets, 13-21
UDP sockets, 26-33

datagram service, 3, 23, 24-26
datagram sockets, 6. See also

DatagramSocket class
DatagramPacket class, 24-26,

33-34, 39, 43, 46, 49
datagrams

creation, 28, 32
encoding information for,

57-58
lost, 26
maximum size, 33
multicasting, 80-84
sending, 28-29
TTL (Time To Live) values, 81,

83
DatagramSocket class

accessors/mutators, 30-31
close() method, 26, 29, 31
constructors, 29
instancing by clients, 26
methods, 29-30
MulticastSocket subclass,

80-84
receive() method, 24, 26, 29,

31-34, 75-76
send() method, 24, 26, 28,

31-34, 98
DataInput interface, 41
DataInputStream, 42
Data0utput interface, 41
Data0utputStream, 42
deadlocked buffers, 97-99
defaults, socket, 84-85
delimiters, 43-44, 47
Delivered, 96-97
demultiplexing algorithm,

107-109
destination addresses, 9
directed broadcast addresses,

79
disconnect () method, 30
Dispatcher. java, 69-70
dispatching, 69-75
Domain Name System (DNS), 5
dotted-quad notation, 4

echo servers
EchoProtocolYactory. java,

69-70

EchoProtocol. java, 63-65
TCP version, 13-14
UDP version, 31-32

encode() method, 49
encoding of information, 39-59

application protocols, 42-43
boolean values, 47, 51
character sets, 39-40
combined data

representation, 51-54
composing I/O streams, 42
delimiters, 43-44, 47
framing, 42-46
integer types, 40-41
serialization capabilities,

58-59
TCP implementation, 55- 57
text data, 39-40, 47-51
UDP socket implementation,

57-58
end-of-message markers, 43
end-of-stream, 22, 43, 45, 46,

59,87
end-to-end transport protocols,

3
Established state, 103
exceptions

handshake timeouts, 102
multiple sockets with same

address, 108
security, 91
thread errors, 68

explicit-length fields, 43

factories, 68-71, 75, 89-90
factoring servers, 68-71
fields

defined, 37
explicit-length, 43

YileClientApplet. java, 91
FileLogger. java, 66-67
File Transfer Protocol (FTP), 6
flow control mechanism, TCP,

98
flush() method, 22
Framer. java, 45-46
framing, 42-46

getByName() method, 9-12
getBytes() methods, 40
getData() method, 25, 33-34
getInetAddress() method, 19
getLocalHost() method, 9-12
getPort () method, 19
getProperties() method, 73
graceful close mechanism,

104-107
GZIPOutputStream, 43, 89, 90

Half closed state, 105

handshake messages
closing, 105-107
defined, 3
establishing connections,

100-104
hosts, 1
Hypertext Transfer Protocol

(HTTP)
closing connections, 85-86
purpose of, 2

images, multicasting, 82
information

definition of, 2
encoding of. See encoding of

information
InetAddress class, 9-12
InetAddressExample. java, 9-11
input/output (I/O)

buffering, 42
closing. See close() method
input. See input streams
nonblocking, 75-79
output. See output streams
shutdown methods, 86-89,

105-106
input streams

closing. See close() method
composing, 42
creating, 21-23
framing, 42-46
Java classes, table of, 43
shutdownInput (), 86-89
TCP implementation, 55-56
write/read relationship, 96

InputStream, 13-14, 19, 21-23,
42

integer types, 40-41
internationalization, Java

support for, 39
Internet addresses, 4, 9-12,

93-94
Internet Protocol (IP), 2-3
IP addresses, 9-12, 93-94
ISO Latin I, 40
ItemQuoteSinConst. java,

51
ItemQuoteDecoderSin. java,

53-54
ItemQuoteDecoder. java, 47
ItemQuoteDecoderText. java,

49-51
ItemQuoteEncoderBin. java,

51-53
TtemQuoteEncoder. java, 46
It emQuot eEnc oderText, java,

48-49
ItemQuote. java, 38
ItemQuoteTextConst. java, 48
iterative servers, 61

III Index 1 1 5

joinGroup() method, 81.83
joining a group, 81-82

keepalive message behavior, 16

layers of TCP/IP, 2-3
leaveGroup() method, 83
length of datagrams, setting, 25
lengths of messages, 43
lingering, 17
little-endian byte order, 41, 44
local broadcast addresses, 79
local host IP addresses,

obtaining, 9-10
Logger. j ava, 65-66
logging, 64-67
loopback address, 4

memory limitations, deadlocks
from, 97-98

message boundaries
not preserved by TCP, 15
preserved by UDP, 23

messages
defined, 3 7
delimiters, 43-44, 47
encoding. See encoding of

information
framing, 42-43

multicast groups, 81-82
multicasting, 80-84
MulticastSoeket class, 80-84
multiplexing, demultiplexing

process, 107-109
multitasking, 61-75

factoring servers, 68-71,
74-75

nonblocking I/O, 75-79
pooled threads, 61, 71-75
server protocol, 63-67
thread-per-client, 67-68
threads. See threads

Nagle's algorithm, 17
names of Internet hosts, 4-5,

10-11
network byte order, 41
network layer, 3
network protocols. See

protocols; Transmission
Control Protocol (TCP);
User Datagram Protocol
(UDP)

networks, 1
nextToken() method, 44-46
nonblocking I/O, 75-79
numbers, transmitting, 40-42

options, socket, 84-85

output streams
composing, 42
defined, 21-23
flushing, 94
framing, 42-46
Java classes, table of, 43
shutdown0utput (), 86-89
TCP implementation, 55-56
write/read relationship,

95-96
0utputStream, 13-14, 19, 21-23,

42
OutputStreamWriter, 40

packets
addresses, 3
defined, 2
message boundaries, 15, 23
Time To Live (TTL) values, 81,

83
parsing, 37, 43-45
peers, 5
PoolDispatcher. java, 71-73
port numbers

defined, 3-4
finding by client, 5-6
getPort () method, 19
multiple sockets with,

107-109
socket structures, 93-94

price quote information
example, 37-38

PrintWriter, 1 O0
properties, 73
ProtocolFactory. java, 69,

77-79
protocols

closing connections, 85-90
compression. See

compression protocol
defined, 2
factoring, 68-71, 74-75
HTTP, 2, 85-86
IP, 2-3
TCP. See Transmission

Control Protocol (TCP)
in TCP/IP suite, 2
timing out, 76-77
UDP. See User Datagram

Protocol (UDP)

queues, data, 94-99

read () method
blocking by, 75-76
correspondence with write(),

96
data at server, 20
end-of-stream indication, 43

grouping data with TCP
socket, 96

maximum timeout, setting,
17

message boundaries, 15
performance vs. buffer size,

100
syntax, 22

Reader class delimiters, 43-44
receive() method, 24, 26,

29-34, 75-76
receiving data. See input stream
RecvQ, 96-99, 105-106
RecvTCP. java, 56-57
RecvUDP. java, 58
RecvUDPMulticast. java, 82-83
reliable byte-stream channels, 3,

94-97, 100
Remote Method Invocation

(RMI), 91
retransmission of packets.

See reliable byte-stream
channels

routers, 1-2
run() method, 62-65
Runnable interface, 62-65, 69

security of applets, 91
send () method

buffer limits, 98
DatagramSocket class, 24, 26,

28, 31-34
sending data. See output streams
SendQ, 96-99, 105-106
SendTCP. java, 55-56
SendUPD. j ava, 57
SendUDPMulticast. java, 80-81
Serializable interface, 58-59
serialization capabilities, 58-59
servers

closing connections, 85-90
compression, 86-90
concurrent. See multitasking
defined, 5
factoring, 68-71, 74-75
handshake events, 102-104
iterative, 61
loggers, 64-67
port numbers, 5-6
TCP. See TCP servers; TCP

sockets
text-encoded messages,

receiving, 56-57
thread-pool, 71-75
UDP, 31-33. See also UDP

sockets
ServerSocket class

accept() method, 18-19,
75-76, 103-104, 109

I I 6 Index []

ServerSocket class (continued)
constructing server with,

18-21
constructors, 20-21
demultiplexing, 107-109
establishment of connections,

103
methods, 21
purpose of, 12

setReceiveBufferSize() method,
100

setSendBufferSize() method,
100

setSoLinger() method, 106
setSoTimeout() method, 76-77
shutdownlnput () method, 86
shutdown0utput () method,

86-89, 105-106
signed integers, 41
Socket class, 12-18

accept () method creating,
18-19

accessors, 16-17
blocked I/O, 76
buffer size, methods for

setting, 100
connection establishment

events, 101-104
constructors, 15-16, 108
creating socket instances,

13-14, 18-19
demultiplexing, 107-109
getlnetAddress() method, 19
getPort() method, 19
implementation, underlying,

18
instantiation by accept () at

server, 18
methods, 16
shutdown methods, 86-89

socket options, 84-85
sockets

addresses, 9-12
creating, 13-14, 18-19
defaults, 84-85
defined, 6
identification, 6
servers. See ServerSocket

class
UDP. See UDP sockets

stream sockets, 6
streams

composition, 42
decoding, 54
encoding. See encoding of

information
end-of-stream indication, 43
input. See input streams

interface integer methods, 41
output. See output streams

structures, socket
connection establishment

events affecting, 101-104
fields, multiplexing, 107-108
Half closed state, 105
Internet addresses of sockets,

93-94
ports of sockets, 93-94
protocol state information,

94
queues of data, 94
Socket instances, 93-94
wildcard values, 107-109

system properties, 73-74

TCP clients, 12-18
TCP connections

closing, 15, 85-90, 104-10 7
defined, 12
end-of-stream indication, 43
establishing, 12-13
TCPEchoClient. java, 13-15

TCP servers, 18-21
TCP sockets

buffering, 94-97
closing connections, 104-107
data structures, 94
input/output streams, 21-23
reliable service requirements,

3, 94-97, 100
ServerSocket class, 20-21
socket class, 15-18
TCP clients, 12-18
TCP servers, 18-21
write/read relationship, 96

TCPEchoClient. java, 13-15
TCPEchoServer. java, 18-20
TCPEchoServerThread. java,

67-68
TfiPFileServer. java, 91
text data, 39-40, 47-51
thread pools, 61, 71-75
ThreadExample. java, 62-63
ThreadMain. java, 74-75
thread-per-client, 61, 67-68
ThreadPerDispatcher. java, 70
threads, 61- 75

creating, 62, 68
deadlock, avoiding with, 99
exceptions, 68
nonblocking I/O, 75-79
resources consumed, 71
reusing. See thread pools
Runnable interface, 62-65, 69
server protocol, 63-67
suspending, 63

thread-per-client, 61, 67-68
time, maximum blocking,

76-79
watchdog, 78-79

TimeLimitEchoProtocol, 77-78
Time Limi tEcho Pro t oc o IF a c tory. java,

77-79
time, maximum blocking, 76-79
Time To Live (TTL) values, 8 i, 83
Time-Wait state, 105,107
timing out of handshakes, 102
Transmission Control Protocol

(TCP), 2-3. See also TCP
sockets

transport layer, 3
two's-complement

representation, 41

UDP clients, 26-31
UDP sockets, 23-35

creating, 28
DatagramPacket class, 24-26
encoding information for,

57-58
getData() method, 25, 33-34
I/O with, 33-34
lost datagrams, 26
multicasting, 80-84
sending datagrams, 28-29
UDP clients, 26-31
UDP servers, 31-33
UDPEchoClientTimeout. java,

27-29
UDPEchoServer. java, 31-33
vs. TCP sockets, 23

UDPEchoClientTimeout. java,
27-29

UDPEchoServer. java, 31-33
unicast, 79
Unicode encodings, 39, 44-45
unsigned integers, 41
User Datagram Protocol (UDP)

datagram sockets, 6
functions of, 23
part of TCP/IP, 2
purpose of, 3

wildcard values, 107-109
write() method

blocking by, 75-77, 98
buffer parameters, 20
correspondence with read (),

96
message boundaries, 15
performance vs. buffer size,

100
syntax, 22

	Cover.jpg
	CR.jpg
	C-7.jpg
	C-8.jpeg
	Pages ix-xii.pdf
	Pages 1-7.pdf
	Pages 9-35.pdf
	Pages 37-59.pdf
	Pages 61-92.pdf
	Pages 93-109.pdf
	Pages 111-112.pdf
	Pages 113-116.pdf

