








Preface 

For years, college courses in computer  networking were taught with little or no hands on expe- 
rience. For various reasons, including some good ones, instructors approached the principles 
of computer  networking primarily through equations, analyses, and abstract descriptions of 
protocol stacks. Textbooks might have included code, but it would have been unconnected to 
anything students could get their hands on. We believe, however, that s tudents  learn better 
when they can see (and then build) concrete examples of the principles at work. And, for- 
tunately, things have changed. The Internet has become a part  of everyday life, and access 
to its services is readily available to most  s tudents (and their programs). Moreover, copious 
examplesugood  and bad- -of  nontrivial software are freely available. 

We wrote this book for the same reason we wrote TCP/IP Sockets in C: we needed a 
resource to support  learning networking through programming exercises in our courses. Our 
goal is to provide a sufficient introduction so that s tudents can get their hands on real network 
services without too much hand-holding. After grasping the basics, s tudents can then move on 
to more advanced assignments,  which support  learning about routing algorithms, multimedia 
protocols, medium access control, and so on. We have tried to make this book equivalent to 
our earlier book to enable instructors to allow students to choose the language they use and 
still ensure that all s tudents will come away with the same skills and understanding.  Of course, 
it is not clear that this goal is achievable, but in any case the scope, price, and presentat ion 
level of the book are intended to be similar. 

Intended Audience 

This book is aimed primarily at s tudents in upper-division undergraduate  or graduate courses 
in computer networks. It is intended as a supplement  to a traditional textbook that explains the 
problems and principles of computer  networks. At the same time, we have tried to make the 
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book reasonably self-contained (except for the assumed programming background), so that it 
can also be used, for example, in courses on operating systems or distributed computing. For 
uses outside the context of a networking course, it will be helpful if the students  have some 
acquaintance with the basic concepts of networking and TCP/IP. 

This book's other target audience consists of practitioners who know Java and want to 
learn about writing Java applications that use TCP/IP. This book should take such users far 
enough that they can start experimenting and learning on their own. Readers are assumed 
to have access to a computer  equipped with Java. This book is based on Version 1.3 of Java 
and the Java Virtual Machine (JVM); however, the code should work with earlier versions of 
Java, with the exception of a few new Java methods.  Java is about portability, so the particular 
hardware and operating system (OS) on which you run should not matter.  

Approach 

Chapter 1 provides a general overview of networking concepts. It is not, by any means, a com- 
plete introduction, but rather is intended to allow readers to synchronize with the concepts and 
terminology used throughout  the book. Chapter 2 introduces the mechanics of simple clients 
and servers; the code in this chapter can serve as a starting point for a variety of exercises. 
Chapter 3 covers the basics of message construction and parsing. The reader who digests the 
first three chapters should in principle be able to implement  a client and server for a given 
(simple) application protocol. Chapter 4 then deals with techniques that are necessary when 
building more sophisticated and robust clients and servers. Finally, in keeping with our goal 
of illustrating principles through programming, Chapter 5 discusses the relationship between 
the programming constructs and the underlying protocol implementat ions in somewhat  more 
detail. 

Our general approach introduces programming concepts through simple program exam- 
ples accompanied by line-by-line commentary that describes the purpose of every part  of the 
program. This lets you see the important  objects and methods as they are used in context. As 
you look at the code, you should be able to unders tand the purpose of each and every line. 

Java makes many things easier, but it does not support  some functionality that is 
commonly associated with the C/UNIX sockets interface (asynchronous I/O, select( )-style 
multiplexing). In C and C++, the socket interface is a generic application programming interface 
(API) for all types of protocols, not just  TCP/IP. Java's socket classes, on the other hand, by 
default work exclusively with TCP and UDP over IPv4. Ironically, there does not seem to be 
anything in the Java specification or documentat ion that requires that an instance of the Socket 
class use TCP, or that a DatagramSoeket instance use UDP. Nevertheless, this book assumes this 
to be the case, as is true of current implementations.  

Our examples do not take advantage of all library facilities in Java. Some of these facilities, 
in particular serialization, effectively require that all communicating peers be implemented in 
Java. Also, to introduce examples as soon as possible, we wanted to avoid bringing in a thicket of 
methods  and classes that have to be sorted out later. We have tried to keep it simple, especially 
in the early chapters. 
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What This Book Is Not 

To keep the price of this book  within a reasonable range for a supp lementa ry  text, we have 
had to limit its scope and mainta in  a tight focus on the goals outlined above. We omit ted many  
topics and directions, so it is probably  worth  ment ioning some of the things this book  is not: 

• It is not  an introduct ion to Java. We focus specifically on TCP/IP socket  p rogramming  
using the Java language. We expect that  the reader  is already acquainted with the language 
and basic Java libraries (especially I/O), and knows how to develop p rograms  in Java. 

• It is not  a book  on protocols.  Reading this book  will not make you an expert  on IP, TCP, 
FTP, HTTP, or any other  existing protocol  (except maybe  the echo protocol). Our focus is 
on the interface to the TCP/IP services provided by  the socket abstraction. (It will help if 
you s tar t  with some idea about  tl~e general workings of TCP and IP, but  Chapter  1 may  
be an adequate substitute.) 

• It is not  a guide to all of Java 's  rich collection of libraries that  are designed to hide 
communicat ion  details (e.g., HTTPConnection) and make the p rog rammer ' s  life easier. 
Since we are teaching the fundamenta ls  of how to do, not how to avoid doing, protocol  
development,  we do not cover these parts  of the API. We want  readers  to unders tand  
protocols  in te rms of what goes on the wire, so we most ly  use simple byte  s t reams and 
deal with character  encodings explicitly. As a consequence,  this text does not  deal with 
URL, URLConnection, and so on. We believe that  once you unders tand  the principles, using 
these convenience classes will be straightforward.  The network-relevant  classes that  we 
do cover include InetAddress, Socket, ServerSocket, DatagramPacket, DatagramSoeket, and 
Uult icastSocket .  

• It is not  a book on object-oriented design. Our focus is on the impor tan t  principles of 
TCP/IP socket programming,  and our examples are intended to illustrate them concisely. 
As far as possible, we try to adhere to object-oriented design principles; however, when 
doing so adds complexi ty that  obfuscates  the socket principles or bloats  the code, we 
sacrifice design for clarity. This text does not cover design pat terns  for  networking. 
(Though we would like to think that  it provides some of the background  necessary for 
understanding such patterns!) 

• It is not a book  on writing production-qual i ty code. Again, thoughwe  strive for robustness ,  
the pr imary  goal of our code examples  is education. In order to avoid obscuring the 
principles with large amounts  of error-handling code, we have sacrificed some robus tness  
for brevity and clarity. 

• It is not  a book on doing your  own native sockets implementa t ion  in Java. We focus 
exclusively on TCP/IP sockets as provided by the s tandard  Java distr ibution and do not 
cover the various socket implementa t ion  wrapper  classes (e.g., Socketlmpl). 

• To avoid cluttering the examples  with extraneous (nonsocket-related programming)  code, 
we have made them command-l ine  based. While the book ' s  Web site, www.mkp.com/ 
practical/javasockets, contains a few examples  of  GUI-enhanced network applications, 
we do not include or explain them in this text. 
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• It is not a book  on Java applets.  Applets  use the same Java networking API so the commu- 
nication code should be very similar; however, there are severe security restr ict ions on 
the kinds of  communica t ion  an applet  can perform. We provide a very limited discussion 
of these restr ict ions and a single apple t /appl ica t ion  example on the Web site; however, 
a complete  descript ion of applet  networking is beyond the scope of this text. 

This book  will not make you an exper t - - tha t  takes years of experience. However, we hope 
it will be useful as a resource, even to those who already know quite a bit about  using sockets 
in Java. Both of us  enjoyed writing it and learned quite a bit along the way. 

Acknowledgments 

We would like to thank all the people  who helped make this book  a reality. Despite the book 's  
brevity, many  hours  went into reviewing the original proposa l  and the draft, and the reviewers '  
input  has significantly shaped the final result. 

First, thanks to those who meticulously reviewed the draf t  of the text and made  sugges- 
tions for improvement .  These include Michel Barbeau, Carlton University; Chris Edmondson- 
Yurkanan, University of Texas at Austin, Ted Herman, University of Iowa; Dave Hollinger, 
Rensselaer Polytecnic Institute; Jim Leone, Rochester Insti tute of Technology; Dan Schmidt, 
Texas A&M University; Erick Wagner, EDS; and CSI4321, Spring 2001. Any errors that  remain 
are, of course, our  responsibility. We are very interested in weeding out such errors  in future 
printings so if you find one, please email  either of us. We will mainta in  an errata list on the 
book ' s  Web page. 

Finally, we are grateful to the folks at Morgan Kaufmarm. They care about  quality and 
we appreciate that. We especially appreciate  the efforts of Karyn Johnson, our editor, and Mei 
Levenson, our product ion  coordinator.  

Feedback 

We invite your suggestions for the improvemen t  of  any aspect  of this book. You can send 
feedback via the book ' s  Web page, www.mkp.com/practical/javasockets, or you can email us at 
the addresses below: 

Kenneth L. Calvert calvert@netlab.uky.edu 
Michael J. Donahoo Jeff_Donahoo@baylor.edu 



c h a p t e r  1 

Introduction 

M i l l i o n s  of compute r s  all over the world are now connec ted  to the worldwide ne twork  
known as the Internet.  The Internet  enables p rograms  running  on compute r s  thousands  of 
miles apart  to communica te  and exchange information.  If you have a compute r  connected  to a 
network, you may have used  a Web b rowse r - - a  typical p r o g r a m that  makes  use of the Internet.  
What does such a p rog ram do to communica te  with others  over a network? The answer varies 
with the applicat ion and the operat ing sys tem (OS), but  a great  many  p rograms  get access to 
ne twork  communica t ion  services th rough  the sockets  applicat ion p rog ramming  interface (API). 
The goal of this book  is to get you s tar ted  writing Java p rograms  that  use the sockets  API. 

Before delving into the details of the API, it is wor th  taking a brief  look at the big picture 
of ne tworks  and protocols  to see how an API for Transmiss ion  Control  Protocol / In ternet  
Protocol fits in. Our goal here is not  to teach you how networks  and TCP/IP w o r k - - m a n y  fine 
texts are available for that  pu rpose  [2, 4, 11, 16, 22J--but  ra ther  to in t roduce  some basic 
concepts  and terminology. 

1.1 Networks, Packets, and Protocols 

A compute r  ne twork  consists  of machines  in te rconnec ted  by communica t ion  channels.  We 
call these machines  hosts and routers. Hosts are compute r s  that  run  applicat ions such as your  
Web browser.  The applicat ion p rograms  running  on hos ts  are really the users  of the network.  
Routers are machines  whose  job is to relay, or forward, in format ion  f rom one communica t ion  
channel  to another .  They may run  p rog rams  but  typically do not  run  applicat ion programs.  For 
our purposes ,  a communication channel is a means  of conveying sequences  of bytes f rom one 
host  to another;  it may be a b roadcas t  technology like Ethernet,  a dial-up m o d e m  connection,  
or someth ing  more  sophist icated.  

Routers  are impor tan t  simply because  it is not  practical to connect  every hos t  directly 
to every other  host.  Instead, a few hosts  connect  to a router,  which connects  to other  routers ,  
and so on to fo rm the network.  This a r rangement  lets each machine  get by with a relatively 
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small number of communication channels; most  hosts need only one. Programs that exchange 
information over the network, however, do not interact directly with routers and generally 
remain blissfully unaware of their existence. 

By information we mean sequences of bytes that are constructed and interpreted by pro- 
grams. In the context of computer networks, these byte sequences are generally called packets. 
A packet contains control information that the network uses to do its job and sometimes also 
includes user data. An example is information identifying the packet's destination. Routers 
use such control information to figure out how to forward each packet. 

A protocol is an agreement about the packets exchanged by communicating programs 
and what they mean. A protocol tells how packets are structured--for  example, where the 
destination information is located in the packet and how big it ismas well as how the infor- 
mation is to be interpreted. A protocol is usually designed to solve a specific problem using 
given capabilities. For example, the HyperText Transfer Protocol (HTTP) solves the problem of 
transferring hypertext objects between servers, where they are stored, and Web browsers that 
make them available to human users. 

Implementing a useful network requires that a large number of different problems be 
solved. To keep things manageable and modular, different protocols are designed to solve 
different sets of problems. TCP/IP is one such collection of solutions, sometimes called a 
protocol suite. It happens to be the suite of protocols used in the Internet, but it can be used in 
stand-alone private networks as well. Henceforth when we talk about the "network," we mean 
any network that uses the TCP/IP protocol suite. The main protocols in the TCP/IP suite are 
the Internet Protocol (IP), the Transmission Control Protocol (TCP), and the User Datagram 
Protocol (UDP). 

It turns out to be useful to organize protocols into layers; TCP/IP and virtually all 
other protocol suites are organized this way. Figure 1.1 shows the relationships among the 
protocols, applications, and the sockets API in the hosts and routers, as well as the flow 
of data from one application (using TCP) to another. The boxes labeled TCP, UDP, and IP 
represent implementations of those protocols. Such implementations typically reside in the 
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operating system of a host. Applications access the services provided by UDP and TCP through 
the sockets API. The arrow depicts the flow of data from the application, through the TCP and IP 
implementations, through the network, and back up through the IP and TCP implementations 
at the other end. 

In TCP/IP, the bot tom layer consists of the underlying communication channelsnfor  
example, Ethernet or dial-up modem connections. Those channels are used by the network 
layer, which deals with the problem of forwarding packets toward their destination (i.e., what 
routers do). The single network layer protocol in the TCP/IP suite is the Internet Protocol; it 
solves the problem of making the sequence of channels and routers between any two hosts 
look like a single host-to-host channel. 

The Internet Protocol provides a datagram service: every packet is handled and delivered 
by the network independently, like letters or parcels sent via the postal system. To make this 
work, each IP packet has to contain the address of its destination, just  as every package that 
you mail is addressed to somebody. (We'll say more about addresses shortly.) Although most 
delivery companies guarantee delivery of a package, IP is only a best-effort protocol: it at tempts 
to deliver each packet, but it can (and occasionally does) lose, reorder, or duplicate packets in 
transit through the network. 

The layer above IP is called the transport layer. It offers a choice between two protocols: 
TCP and UDP. Each builds on the service provided by IP, but they do so in different ways to 
provide different kinds of transport,  which are used by application protocols with different 
needs. TCP and UDP have one function in common: addressing. Recall that IP delivers packets 
to hosts; clearly, a finer granularity of addressing is needed to get a packet to a particular 
application, perhaps one of many using the network on the same host. Both TCP and UDP 
use addresses, called port numbers, to identify applications within hosts. They are called end- 
to-end transport protocols because they carry data all the way from one program to another 
(whereas IP only carries data from one host to another). 

TCP is designed to detect and recover from the losses, duplications, and other errors 
that may occur in the host-to-host channel provided by IP. TCP provides a reliable byte-stream 
channel, so that applications do not have to deal with these problems. It is a connection- 
oriented protocol: before using it to communicate, two programs must  first establish a TCP 
connection, which involves completing an exchange of handshake messages between the TCP 
implementations on the two communicating computers. Using TCP is also similar in many ways 
to file input /ou tput  (I/O). In fact, a file that is written by one program and read by another is a 
reasonable model of communication over a TCP connection. UDP, on the other hand, does 
not at tempt to recover from errors experienced by IP; it simply extends the IP best-effort 
datagram service so that it works between application programs instead of between hosts. 
Thus, applications that use UDP must  be prepared to deal with losses, reordering, and so on. 

1.2 About Addresses 

When you mail a letter, you provide the address of the recipient in a form that the postal 
service can understand. Before you can talk to someone on the phone, you must  supply their 
number to the telephone system. In a similar way, before a program can communicate with 



4 Chapter 1: Introduction I 

another  program, it mus t  tell the network where to find the other program. In TCP/IP, it takes 
two pieces of informat ion to identify a part icular program: an Internet address, used  by IP, and 
a port number, the additional address  in terpreted by the t ranspor t  protocol (TCP or UDP). 

Internet  addresses  are 32-bit binary numbers .  1 In writing down Internet  addresses  for 
h u m a n  consumpt ion  (as opposed to using them inside applications), we typically show them 
as a string of four decimal numbers  separa ted  by periods (e.g., 10.1.2.3); this is called the 
dotted-quad notation. The four numbers  in a dot ted-quad string represent  the contents  of the 
four bytes of the Internet  address - - thus ,  each is a number  between 0 and 255. 

One special IP address  wor th  knowing is the loopback address, 127.0.0.1. This address  
is always assigned to a special loopback interface, which simply echoes t ransmi t ted  packets  
right back to the sender. The loopback interface is very useful  for testing; it can be used  even 
when a computer  is not connected to the network. 

Technically, each Internet address  refers to the connection between a host  and an 
underlying communica t ion  channel, such as a dial-up m o d e m  or Ethernet card. Because each 
such ne twork  connection belongs to a single host, an Internet  address  identifies a host  as 
well as its connect ion to the network. However, because a host  can have multiple physical 
connect ions to the network, one host  can have multiple Internet  addresses.  

The port  number  in TCP or UDP is always in terpreted relative to an Internet  address.  
Returning to our earlier analogies, a port  number  corresponds to a room number  at a given 
street  address,  say, that  of a large building. The postal  service uses the street address  to get the 
letter to a mailbox; whoever empties  the mailbox is then responsible for getting the letter to the 
proper  room within the building. Or consider a company with an internal telephone system: 
to speak to an individual in the company, you first dial the company 's  main  phone number  to 
connect  to the internal  telephone sys tem and then dial the extension of the part icular telephone 
of the individual that  you wish to speak with. In these analogies, the Internet  address  is the 
street  address  or the company 's  main  number,  whereas the port  corresponds  to the room 
number  or telephone extension. Port numbers  are 16-bit unsigned binary numbers ,  so each 
one is in the range 1 to 65,535 (0 is reserved). 

1.3 About  Names 

Most likely you are accus tomed to referring to hosts  by name (e.g., host.example.com). How- 
ever, the Internet  protocols deal with numerical  addresses,  not names.  You should unde r s t and  
that  the use of names  instead of addresses  is a convenience feature that  is independent  of 
the basic service provided by TCP/IP--you can write and use TCP/IP applications without  ever 

1Throughout this book the term Internet address refers to the addresses used with the current version of 
IP, which is version 4 [12]. Because it is expected that a 32-bit address space will be inadequate for future 
needs, a new version of IP has been defined [5]; it provides the same service but has much bigger Internet 
addresses (128 bits). IPv6, as the new version is known, has not been widely deployed; the sockets API will 
require some changes to deal with its much larger addresses [6]. 
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using a name. When you use a name to identify a communica t ion  endpoint ,  the sys tem has to 
do some extra work to resolve the name into an address .  

This extra step is of ten wor th  it, for a couple of reasons.  First, names  are generally 
easier for h u m a n s  to r emember  than dot ted-quads .  Second, names  provide a level of indi- 
rection, which insulates users  f rom IP address  changes.  During the writing of this book, the 
Web server for the publ isher  of this text, Morgan Kaufmann,  changed Internet  addresses  
f rom 208.164.121.48 to 216.200.143.124. However, because  we refer to that  Web server as 
www.mkp.com (clearly m u c h  easier to r emember  than  208.164.121.48) and because  the change 
is reflected in the sys tem that  maps  names  to addresses  (www.mkp.com now resolves to the 
new Internet  address  ins tead  of 208.164.121.48), the change is t r ansparen t  to p rograms  that  
use the name to access the Web server. 

The name-reso lu t ion  service can access in format ion  f rom a wide variety of sources. Two 
of the pr imary  sources are the Domain Name System (DNS) and local configurat ion databases.  
The DNS [9] is a d is t r ibuted  database  that  maps  domain names such as www.mkp.com to 
Internet  addresses  and other  information;  the DNS protocol  [10] allows hos ts  connected  to 
the Internet  to retrieve in format ion  f rom that  database  using TCP or UDP. Local configurat ion 
databases  are generally OS-specific mechan i sms  for local name-to-Internet  address  mappings .  

1.4 Clients and Servers 

In our postal  and te lephone  analogies, each communica t ion  is init iated by one party, who sends 
a letter or makes  the te lephone  call, while the other  par ty  r e sponds  to the init iator 's  contact  by 
sending a re tu rn  letter or picking up the phone  and talking. Internet  communica t ion  is similar. 
The terms client and server refer to these roles: The client p r o g r a m initiates communicat ion,  
while the server p rog ram waits passively for and then  r e sponds  to clients that  contact  it. 
Together,  the client and server compose  the application. The terms client and server are 
descriptive of the typical s i tuat ion in which the server makes  a part icular  capabi l i ty--for  
example, a da tabase  service--available to any client that  is able to communica te  with it. 

Whether  a p rog ram is acting as a client or server de te rmines  the general  fo rm of its 
use of the sockets  API to establish communica t ion  with its peer. (The client is the peer  of the 
server and vice versa.) Beyond that, the client-server dis t inct ion is impor t an t  because  the client 
needs  to know the server 's  address  and por t  initially, but  not  vice versa. With the sockets  API, 
the server can, if necessary,  learn the client 's address  in format ion  when  it receives the initial 
communica t ion  f rom the client. This is analogous to a te lephone call-- in order  to be called, a 
pe r son  does not  need  to know the te lephone  numb e r  of the caller. As with a te lephone call, 
once the connect ion  is established,  the dist inct ion be tween  server and client disappears .  

How does a client find out  a server 's  IP address  and por t  number?  Usually, the client 
knows the name of the server it w a n t s m f o r  example,  f rom a Universal Resource Locator (URL) 
such as http://www.mkp.com--and uses  the name-reso lu t ion  service to learn the cor responding  
Internet  address .  

Finding a server 's  por t  number  is a different story. In principle, servers can use any port,  
but  the client mus t  be able to learn what  it is. In the Internet,  there is a convent ion  of assigning 
well-known por t  number s  to certain applications.  The Internet  Assigned Number  Authori ty  
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(IANA) oversees this assignment. For example, port number 21 has been assigned to the File 
Transfer Protocol (FTP). When you run an FTP client application, it tries to contact the FTP 
server on that port  by default. A list of all the assigned port  numbers is maintained by the 
numbering authority of the Internet (see http://www.iana.org/assignments/port-numbers). 

1.5 What  Is a Socket? 

A socket is an abstraction through which an application may send and receive data, in much 
the same way as an open file handle allows an application to read and write data to stable 
storage. A socket allows an application to plug in to the network and communicate with other 
applications that are plugged in to the same network. Information written to the socket by 
an application on one machine can be read by an application on a different machine and vice 
versa. 

Different types of sockets correspond to different underlying protocol suites and different 
stacks of protocols within a suite. This book deals only with the TCP/IP protocol suite. The 
main types of sockets in TCP/IP today are stream sockets and datagram sockets. Stream sockets 
use TCP as the end-to-end protocol (with IP underneath) and thus provide a reliable byte- 
stream service. A TCP/IP stream socket represents one end of a TCP connection. Datagram 
sockets use UDP (again, with IP underneath) and thus provide a best-effort datagram service that 
applications can use to send individual messages up to about 65,500 bytes in length. Stream 
and datagram sockets are also supported by other protocol suites, but this book deals only 
with TCP stream sockets and UDP datagram sockets. A TCP/IP socket is uniquely identified by 
an Internet address, an end-to-end protocol (TCP or UDP), and a port number. As you proceed, 
you will encounter several ways for a socket to become bound to an address. 

Figure 1.2 depicts the logical relationships among applications, socket abstractions, 
protocols, and port numbers within a single host. Note that a single socket abstraction can 
be referenced by multiple application programs. Each program that has a reference to a 
particular socket can communicate through that socket. Earlier we said that a port  identifies 
an application on a host. Actually, a port identifies a socket on a host. From Figure 1.2, we see 
that multiple programs on a host can access the same socket. In practice, separate programs 
that access the same socket would usually belong to the same application (e.g., multiple copies 
of a Web server program), although in principle they could belong to different applications. 

1.6 Exercises 

1. Can you think of a real-life example of communication that does not fit the client-server 
model? 

2. To how many different kinds of networks is your home connected? How many support  
two-way transport? 
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3. IP is a best-effort protocol,  requiring that information be broken down into datagrams, 
which may be lost, duplicated, or reordered. TCP hides all of this, providing a reliable 
service that takes and delivers an unbroken  s t ream of bytes. How might you go about 
providing TCP service on top of IP? Why would anybody use UDP when TCP is available? 
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Basic Sockets 

Y o u  are now ready to learn about writing your own socket applications. We begin by 
demonstrating how Java applications identify network hosts. Then, we describe the creation 
of TCP and UDP clients and servers. Java provides a clear distinction between using TCP and 
UDP, defining a separate set of classes for both protocols, so we treat each separately. 

2.1 Socket Addresses 

IP uses 32-bit binary addresses to identify communicating hosts. A client must  specify the 
IP address of the host running the server program when it initiates communication; the 
network infrastructure uses the 32-bit destination address to route the client's information 
to the proper machine. Addresses can be specified in Java using a string that contains ei- 
ther the dotted-quad representation of the numeric address (e.g., 169.1.1.1) or a name (e.g., 
server.example.corn). Java encapsulates the IP addresses abstraction in the InetAddress class 
which provides three static methods for creating lnetAddress instances, getByName() and 
getAllByName () take a name or IP address and return the corresponding InetAddress instance(s). 
For example, InetAddress.getByName("192.168.75.13") returns an instance identifying the IP 
address 192.168.75.13. The third method, getLocalHost (), returns an InetAddres s instance con- 
taining the local host address. Our first program example, InetAddressExample. java, demon- 
strates the use of InetAddress. The program takes a list of names or IP addresses as command- 
line parameters and prints the name and an IP address of the local host, followed by names 
and IP addresses of the hosts specified on the command line. 

InetAdd ressExam pie.java 

0 import java.net.*; // for InetAddress 
1 

2 public class InetAddressExample { 
3 

9 
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public static void main(String[] args) { 

// Get name and IP address of the local host 
try { 

InetAddress address = InetAddress.getLocalHost(); 
System.out.println("Local Host:"); 
System.out.println("\t" + address.getHostName()); 
System.out.println("\t" + address.getHostAddress()); 

} catch (UnknownHostException e) { 
System.out.println("Unable to determine this host's address"); 

} 

for (int i = O; i < args.length; i++) { 
// Get name(s)/address(es) of hosts given on command line 
try { 

InetAddress[] addressList = InetAddress.getAllByName(args[i]); 
System.out.println(args[i] + ":"); 
// Print the first name. Assume array contains at least one entry. 
System.out.println("\t" + addressList[O].getHostName()); 
for (int j = O; j < addressList.length; j++) 

System.out.println("\t" + addressList[j].getHostAddress()); 
} catch (UnknownHostException e) { 

System.out.println("Unable to find address for " + args[i]); 
} 

InetAddressExample.java 

1. Print  i n fo rma t ion  about  the local host:  lines 6-14 

�9 Create  an  InetAddress ins tance  for the local host:  line 8 

�9 Print the local hos t  informat ion:  lines 9-11 
getH0stName() and getH0stAddress() re turn  a string for the host  name and IP address,  
respectively. 

2. Reques t  i n fo rma t ion  for each  hos t  specif ied on the c o m m a n d  line: lines 16-28 

�9 Create an  a r r ay  of InetAddress ins tances  for the specif ied host:  line 19 
TnetAddress.getAllByName() re turns  an array of InetAddress instances, one for each 
of the specified host ' s  addresses.  

�9 Print the hos t  informat ion:  lines 22-24 

To use this application to find informat ion about the local host  and the publisher 's  Web server 
(www.mkp.com), do the following: 
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% java InetAddressExample www.mkp.com 

Local Host: 
t rac tor . farm.com 
169.1.1.2 

www.mkp.com: 
www.mkp.com 
216.200.143.124 

If we know the IP add re s s  of a hos t  (e.g., 169.1.1.1), we find the n a m e  of the hos t  by  

% java InetAddressExample 169. i. i. 1 

Local Host: 

tractor, farm. com 

169.1.1.2 
169.1.1.1: 

base. farm. com 
169.1.I.i 

When the name service is not available for some reason--say, the program is running on 

a mach ine  tha t  is no t  c o n n e c t e d  to any n e t w o r k - - a t t e m p t i n g  to ident i fy  a hos t  by  n a m e  m a y  
fail. Moreover,  it m a y  take a significant  a m o u n t  of t ime to do so, as the s y s t e m  tries var ious  
ways to resolve  the n a m e  to an IP address .  It is t he re fo re  good  to know tha t  you  can always 
refer  to a hos t  us ing  the IP add re s s  in d o t t e d - q u a d  nota t ion .  In any of our  examples ,  if a r e m o t e  

hos t  is specif ied by name,  the hos t  r unn ing  the example  m u s t  be conf igured  to conver t  n a m e s  

to addresses ,  or the example  won ' t  work. If you  can ping a hos t  us ing  one of its n a m e s  (e.g., 
run  the c o m m a n d  "ping server.example.corn"), t h en  the examples  shou ld  work  wi th  names .  If 
your  ping tes t  fails or the  example  hangs ,  t ry specifying the hos t  by  IP address ,  which  avoids 
the n a m e - t o - a d d r e s s  conve r s ion  a l together .  

I n e t A d d r e s s  1 

C r e a t o r s  

s ta t ic  I n e t A d d r e s s [  ] getAllByName(String host) 

Returns  the list of a d d r e s s e s  for  the specif ied host .  

host Host  n a m e  or add re s s  

1For each Java networking class described in this text, we present only the primary methods and omit 
methods that are deprecated or whose use is beyond the scope of this text. As with everything in Java, 
the specification is a moving target. This information is included to provide an overall picture of the Java 
socket interface, not as a final authority. We encourage the reader to refer to the API specifications from 
java.sun.com as the current and definitive source. 
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static InetAddress  getByName(String host) 

static InetAddress  getLocalHost0 

Returns an IP address for the specified/local host. 

host Host name or IP address 

Accessors 

byte[ ] getAddress0 

Returns the 4 bytes of the 32-bit IP address in big-endian order. 

String getHostAddress() 

Returns the IP address in dotted-quad notation (e.g., "169.1.1.2"). 

String getHostName() 

Returns the canonical name of the host associated with the address. 

boolean isMulticastAddress() 

Returns true if the address is a multicast address (see Section 4.3.2). 

Operators 

boolean equals(Object address) 

Returns true if address is non-null and represents the same address as this $netAddress 
instance. 

address Address to compare 

2.2 TCP Sockets 

Java provides two classes for TCP: Socket and ServerSocket. An instance of Socket represents 
one end of a TCP connection. A TCP connection is an abstract two-way channel whose ends 
are each identified by an IP address and port  number. Before being used for communication, 
a TCP connection must  go through a setup phase, which starts with the client's TCP sending a 
connection request to the server's TCP. An instance of ServerSocket listens for TCP connection 
requests and creates a new Socket instance to handle each incoming connection. 

2.2.1 TCPClient 

The client initiates communication with a server that is passively waiting to be contacted. The 
typical TCP client goes through three steps: 

1. Construct an instance of Socket: The constructor establishes a TCP connection to the 
specified remote host and port. 
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2. Communica te  using the socket 's  I/O streams: A connec ted  instance of Socket contains 
an InputStream and 0utputStream that  can be used  jus t  like any other  Java I/O s t ream (see 
Chapter  3). 

3. Close the connect ion  using the c lose ( )  m e t h o d  of Socket. 

Our first TCP application, called TCPEchoClient.java, is a client that  communica tes  with an 
e c h o  s e r v e r  using TCP. An echo server simply repeats  whatever  it receives back to the client. 
The string to be echoed is provided  as a command-l ine  a rgumen t  to our client. Many systems 
include an echo server for debugging and test ing purposes .  To test  if the s t andard  echo server 
is running,  try telnet t ing to por t  7 (the default  echo port) on the server (e.g., at c o m m a n d  line 
" t e lne t  server ,  example, corn 7" or use your  basic telnet  application). 

TCPEchoClient.java 
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0 import java.net.*; // for Socket 
1 import java.io.*; // for lOException and Input/OutputStream 
2 
3 public class rCPEchoClient { 
4 

public static void main(String[] args) throws IOException { 

if ((args.length < 2) II (args.length > 3)) // Test for correct # of args 
throw new lllegalArgumentException("Parameter(s): <Server> <Word> [<Port>]"); 

String server = args[0]; // Server name or IP address 
// Convert input String to bytes using the default character encoding 
byte[] byteBuffer = args[l].getBytes(); 

int servPort = (args.length == 3) ? Integer.parselnt(args[2]) : 7; 

// Create socket that is connected to server on specified port 
Socket socket = new Socket(server, servPort) ; 
System.out.println("Connected to server...sending echo string"); 

InputStream in = socket, getlnputStream() ; 
OutputStream out = socket, getOutputStream() ; 

out.write(byteBuffer); // Send the encoded string to the server 

// Receive the same string back from the server 
int totalBytesRcvd = 0; // Total bytes received so far 
int bytesRcvd; // Bytes received in last read 
while (totalBytesRcvd < byteBuffer.length) { 

if ((bytesRcvd = in.read(byteBuffer, totalBytesRcvd, 
byteBuffer.length - totalBytesRcvd)) == -I) 

throw new SocketException("Connection closed prematurely"); 
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} 
} 

totalBytesRcvd += bytesRcvd; 
} 

System.out.println("Received: " + new String(byteBuffer)) ; 

socket.close(); // Close the socket and its streams 

TCP Ec hoCI ie nt.ja va 

1. Application setup and parameter parsing: lines 0-14 

[] Convert the echo string: line 12 
TCP sockets send and receive sequences of bytes. The getBytes() method of String 
returns a byte array representat ion of the string. (See Section 3.1 for a discussion of 
character encodings.) 

[] Determine the port of the echo server: line 14 
The default echo port is 7. If we specify a third parameter,  I n t ege r .pa r se In t ( )  takes 
the string and returns the equivalent integer value. 

2. TCP socket creation: line 17 
The Socket constructor creates a socket and establishes a connection to the specified 
server, identified either by name or IP address. Note that the underlying TCP deals only 
with IP addresses. If a name is given, the implementat ion resolves it to the correspond- 
ing address. If the connection at tempt  fails for any reason, the constructor throws an 
lOBxception. 

3. Get socket input and output streams: lines 20-21 
Associated with each connected Socket instance is an InputStream and 0utputStream. We 
send data over the socket by writing bytes to the 0utputStream just  as we would any other 
stream, and we receive by reading from the InputStream. 

4. Send the string to echo server: line 23 
The wri te( )  method of 0utputStream transmits  the given byte array over the connection 
to the server. 

5. Receive the reply from the echo server: lines 25-33 
Since we know the number  of bytes to expect from the echo server, we can repeatedly 
receive bytes until we have received the same number  of bytes we sent. This particular 
form of read() takes three parameters:  1) buffer to receive into, 2) byte offset into the 
buffer where the first byte received should be placed, and 3) the maximum number  of 
bytes to be placed in the buffer, read() blocks until some data is available, reads up 
to the specified maximum number  of bytes, and returns the number  of bytes actually 
placed in the buffer (which may be less than the given maximum). The loop simply fills 
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up byteBuffer until we receive as many bytes as we sent. If the TCP connection is closed by 
the other end, read() returns -1. For the client, this indicates that the server prematurely 
closed the socket. 

Why not just  a single read? TCP does not preserve read() and wri te()  message 
boundaries. That is, even though we sent the echo string with a single wri te() ,  the echo 
server may receive it in multiple chunks. Even if the echo string is handled in one chunk 
by the echo server, the reply may still be broken into pieces by TCP. One of the most 
common errors for beginners is the assumption that data sent by a single wri te()  will 
always be received in a single read (). 

6. Print echoed string: line 35 
To print the server's response, we must  convert the byte array to a string using the default 
character encoding. 

7. Close socket: line 37 
When the client has finished receiving all of the echoed data, it closes the socket. 

We can communicate with an echo server named server.example.com with IP address 
169.1.1.1 in either of the following ways: 

% java TCPEchoClient server.example.com "Echo this!" 
Received: Echo this! 
% java TCPEchoClient 169. i. i. 1 "Echo this!" 
Received: Echo this! 

See TCPEchoClientGUI. java on the book's Web site for an implementation of the TCP echo client 

with a graphical interface. 

Socket 

Constructors  

Socket(InetAddress remoteAddr, int remotePort) 

Socket(String remoteHost, int remotePort) 
Socket(InetAddress remoteAddr, int remotePort, InetAddress  localAddr, int localPort) 

Socket(String remoteHost, int remotePort, InetAddress  localAddr, int localPort) 

Constructs a TCP socket connected to the specified remote address and port. The first 
two forms of the constructor do not specify the local address and port, so a default 
local address and some available port are chosen. Specifying the local address may be 
useful on a host with multiple interfaces. 

remoteAddr Remote host address 

remoteHost Remote host name or IP address (in dotted-quad form) 

remotePort Remote port  
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localAddr 

localPort 

Local address; use null to specify using the default local 
address 

Local port; a localPort of 0 allows the constructor to pick any 
available port 

O p e r a t o r s  

void close() 

Closes the TCP socket and its I/O streams. 

void shutdownTnput() 

Closes the input side of a TCP stream. Any unread data is silently discarded, including 
data buffered by the socket, data in transit, and data arriving in the future. Any subse- 
quent a t tempt  to read from the socket will return end-of-stream (-1); any subsequent  
call to getlnputStream() will cause an lOException to be thrown (see Section 4.5). 

void shutdown0utput() 

Closes the output  side of a TCP stream. The implementat ion will a t tempt  to deliver any 
data already written to the socket's output  s t ream to the other end. Any subsequent  
a t tempt  to write to the socket's output  s tream or to call get0utputStream() will cause 
an IOException to be thrown (see Section 4.5). 

Accessors/Mutators 

InetAddress getlnetAddress() 

int getPort() 

Returns the remote socket address/port .  

InputStream getlnputStream0 

OutputStream get0utputStream0 

Returns a s t ream for reading/writ ing bytes f rom/to  the socket. 

boolean getKeepAlive() 

void setKeepAlive(boolean on) 

Returns/se ts  keepalive message behavior. If keepalive is enabled, TCP sends a probe 
to the other end of the connection when no data has been exchanged for a system- 
dependent  amount  of time (usually two hours). If the remote socket is still alive, it 
will acknowledge the probe (invisible to the application). However, if the other end 
fails to acknowledge several probes in a row, the local TCP closes the connection, and 
subsequent  operations on it will throw an exception. Keepalive is disabled by default. 

on If true (false), enable (disable) keepalive. 
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InetAddress getLocalAddress() 

int getLocalPort() 

Returns the local socket address/port. 

int getReceiveBufferSize() 

int getSendBufferSize() 

void setReceiveBufferSize(int size) 

void setSendBufferSize(int size) 

Returns/sets the size of the send/receive buffer for the socket (see Section 4.4). 

size Number of bytes to allocate for the socket send/receive 
buffer 

int getSoLinger() 

void setSoLinger(boolean on, int linger) 

Returns/sets  the maximum amount  of time (in milliseconds) that close()  will block 
waiting for all data to be delivered, getSoLinger() returns -1 if lingering is disabled 
(see Section 5.4). Lingering is off by default. 

on If true, the socket lingers on close() ,  up to the maximum 
specified time. 

l inger The maximum amount  of time (milliseconds) a socket lingers 
on close() 

int getSoTimeout() 

void setSoTimeout(int t imeout)  

Returns/sets  the maximum amount  of time that a read() on this socket will block. If 
the specified number  of milliseconds elapses before any data is available, an In t e r -  
ruptedIOException is thrown (see Section 4.2). 

t imeout  The maximum time (milliseconds) to wait for data on a 
read().  The value 0 (the default) indicates that there is no 
time limit, meaning that a read will not return until data is 
available. 

boolean getTcpNoDelay() 

void setTcpNoDelay(boolean on) 

Returns/sets whether the Nagle algorithm to coalesce TCP packets is disabled. To avoid 
small TCP packets, which make inefficient use of network resources, Nagle's algorithm 
(enabled by default) delays packet t ransmission under  certain conditions to improve 
the opportunities to coalesce bytes from several writes into a single TCP packet. This 
delay is unacceptable to some types of interactive applications. 

on If true (false), disable (enable) Nagle's algorithm. 
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Caveat: By default, Socket is implemented on top of a TCP connection; however, in Java, 
you can actually change the underlying implementation of Socket. This book is about TCP/IP, 
so for simplicity we assume that the underlying implementation for all of the these networking 
classes is the default. 

2.2.2 TCP Server 

We now turn our attention to constructing a server. The server's job is to set up a communi- 
cation endpoint and passively wait for connections from clients. The typical TCP server goes 
through two steps: 

1. Construct a ServerSocket instance, specifying the local port. This socket listens for 
incoming connections to the specified port. 

2. Repeatedly: 

�9 Call the accept () method of ServerSocket to get the next incoming client connection. 
Upon establishment of a new client connection, an instance of Socket for the new 
connection is created and returned by accept (). 

�9 Communicate with the client using the returned Socket's InputStream and Output- 
Stream. 

�9 Close the new client socket connection using the close()  method of Socket. 

Our next example, TCPEchoServer. java, implements the echo service used by our client 
program. The server is very simple. It runs forever, repeatedly accepting a connection, receiving 
and echoing bytes until the connection is closed by the client, and then closing the client socket. 

TCPEchoServer.java 

0 import java.net.* ; / /  for Socket, ServerSocket, and InetAddress 
1 import java.io.*;  / /  for IOException and Input/0utputStream 
2 
3 public class TCPEchoServer { 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

private static final int BUFSIZE = 32; // Size of receive buffer 

public static void main(String[] args) throws lOException { 

if (args.length != i) // Test for correct # of args 
throw new lllegalArgumentException("Parameter(s): <Port>"); 

int servPort = Integer. parselnt (args [0 ] ) ; 

// Create a server socket to accept client connection requests 
ServerSocket servSock = new ServerSocket(servPort) ; 

int recvMsgSize; // Size of received message 
byte[] byteBuffer = new byte[BUFSlZE]; // Receive buffer 
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} 
} 

for (;;) { // Run forever, accepting and servicing connections 
Socket clntSock = servSock.accept() ; // Get client connection 

System.out.println("Handling client at " + 
clntSock.getInetAddress().getHostAddress() + " on port "+ 

clntSock, getPort ()) ; 

InputStream in = clntSock, getlnputStream() ; 

OutputStream out = clntSock.getOutputStream() ; 

// Receive until client closes connection, indicated by-i return 
while ((recvMsgSize = in.read(byteBuffer)) != -I) 

out.write(byteBuffer, O, recvMsgSize) ; 

clntSock, close () ; 
} 

/* NOT REACHED */ 

// Close the socket. We are done with this client! 

TCPEchoServer.java 

1. Application setup and paramete r  parsing: lines 0-12 

2. Server socket  creation: line 15 
servSock listens for client connection requests on the port specified in the constructor. 

3. Loop forever,  i terat ively handl ing incoming connections" lines 20-35 

�9 Accept  an incoming connection: line 21 
The sole purpose of a ServerSocket instance is to supply a new, connected Socket 
instance for each new TCP connection. When the server is ready to handle a client, it 
calls accept (), which blocks until an incoming connection is made to the ServerSocket's 
port. accept()  then returns an instance of Socket that is already connected to the 
remote socket and ready for reading and writing. 

�9 Report  connec ted  client: lines 23-25 
We can query the newly created Socket instance for the address and port of the 
connecting client. The getlnetAddress()  method of Socket returns an instance of 
InetAddress containing the address of the client. We call getHostAddress() to return 
the IP address as a dotted-quad String. The getPort()  method of Socket returns the 
port of the client. 

�9 Get socket  input and output streams:  lines 27-28 
Bytes written to this socket's 0utputStream will be read from the client's socket's 
InputStream, and bytes written to the client's 0utputStream will be read from this 
socket's InputStream. 
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�9 Receive and repeat data until the client closes: lines 30-32 
The while loop repeatedly reads bytes (when available) from the input s t ream and 
immediately writes the same bytes back to the output  s tream until the client closes 
the connection. The read() method of InputStream reads up to the max imum number  
of bytes the array can hold (in this case, BUFSIZE bytes) into the byte array (byteBuffer) 
and returns the number  of bytes read. read () blocks until data is available and returns 
-1 if there is no data available, indicating that the client closed its socket. In the echo 
protocol, the client closes the connection when it has received the number  of bytes 
back that it sent, so in the server we expect to receive a -1  from read().  Recall that in 
the client, receiving a -1 from read() indicates an error because it indicates that the 
server prematurely closed the connection. 

As previously mentioned, read() does not have to fill the entire byte array to 
return. In fact, it can return after having read only a single byte. The wr i te ( )  method 
of 0utputStream writes recvMsgSize bytes from byteBuffer to the socket. The second 
parameter  indicates the offset into the byte array of the first byte to send. In this case, 
0 indicates to take bytes starting from the front of byteBuffer. If we had used the 
form of wr i te ( )  that takes only the buffer argument, all the bytes in the buffer array 
would have been transmitted,  possibly including bytes that were not received from 
the client! 

�9 Close client socket: line 34 

ServerSocket 

C o n s t r u c t o r s  

ServerSocket(int localPort) 

ServerSocket(int localPort, int queueLimit) 
ServerSocket(int localPort, int queueLimit, InetAddress localAddr) 

Construct a TCP socket that is ready to accept incoming connections to the specified 
local port. Optionally, the size of the connection queue and the local address can be 
set. 

localPort Local port. A port  of 0 allows the constructor to pick any 
available port. 

queueLimit The maximum size of the queue of incomplete connections 
and sockets waiting to be accept()ed.  If a client connection 
request  arrives when the queue is full, the connection is 
refused. Note that this may not necessarily be a hard lirrdt. 
For most  platforms, it cannot be used to precisely control 
client population. 
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localAddr The IP address to which connections to this socket should be 
addressed (must be one of the local interface addresses). If the 
address is not specified, the socket will accept connections to 
any of the host 's IP addresses. This may be useful for hosts 
with multiple interfaces where the server socket should only 
accept connections on one of its interfaces. 

Operators 

Socket accept() 

Returns a connected Socket instance for the next new incoming connection to the 

server socket. If no established connection is waiting, accept() blocks until one is 
established or a timeout occurs (see setSoTimeout()). 

void close() 

Closes the underlying TCP socket. After invoking this method, incoming client con- 
nection requests for this socket are rejected. 

Accessors/Mutators 

InetAddress  getlnetAddress () 

int getLocalPort() 

Returns the local address /por t  of the server socket. 

int getSoTimeoutO 

void setSoTimeout(int timeout) 

Returns/sets  the maximum amount  of time (in milliseconds) that an accept() will 
block for this socket. If the timer expires before a connection request arrives, an 
InterruptedlOException is thrown. A timeout value of 0 indicates no timeout: calls 
to accept () will not return until a new connection is available, regardless of how much 
time passes (see Section 4.2). 

2.2.3 Input and Output  Streams 

As illustrated by the examples above, the primary paradigm for I/O in Java is the stream 
abstraction. A stream is simply an ordered sequence of bytes. Java input streams support  
reading bytes, and output streams support  writing bytes. In our TCP client and server, each 
Socket instance holds an InputStream and an 0utputStream instance. When we write to the 
output  stream of a Socket, the bytes can (eventually) be read from the input stream of the 
Socket at the other end of the connection. 

0utputStream is the abstract superclass of all output  streams in Java. Using an Output- 
Stream, we can write bytes to, flush, and close the output  stream. 
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OutputStream 

data 

offset 
length 

vo id  flush() 

abstract vo id  write(int data) 

Writes a single byte to the output  stream. 

data Byte (low-order 8 bits) to write to output  s t ream 

void  write(byte[]  data) 

Writes entire array of bytes to the output  stream. 

data Bytes to write to output  s t ream 

vo id  write(byte[ ] data, int offset, int length) 

Writes length bytes from data starting from byte offset. 

Bytes from which to write to output  s tream 

Starting byte to send in data 
Number of bytes to send 

Pushes any buffered data out to the stream. 

vo id  close() 

Terminates the stream. 

InputStream is the abstract superclass of all input streams. Using an InputStream, we can 
read bytes from and close the input stream. 

InputStream 

abst rac t  int read() 

Read and return a single byte from the input stream. The byte read is in the least 
significant byte of the returned integer. This method returns -1 on end-of-stream. 

int read(byte[] data) 

Reads up to data.length bytes (or until the end-of-stream) from the input s t ream into 
data and returns the number  of bytes read. If no data is available, read () blocks until 
at least I byte can be read or the end-of-stream is detected, indicated by a return of -1. 

data Buffer to receive data from input s tream 

int read(byte[ ] data, int offset, int length) 

Reads up to length bytes (or until the end-of-stream) from the input s t ream into 
data, starting at position offset, and returns the number  of bytes read. If no data 
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is available, read() blocks until at least 1 byte can be read or the end-of-stream is 
detected, indicated by a return of -1. 

data Buffer to receive data from input stream 

offset Starting byte of data in which to write 

length Maximum number of bytes to read 

int available() 

Returns the number of bytes available for input. 

void close() 

Terminates the stream. 

2.3 UDP Sockets 

UDP provides an end-to-end service different from that of TCP. In fact, UDP performs only 
two functions: 1) it adds another layer of addressing (ports) to that of IP, and 2) it detects 
data corruption that may occur in transit and discards any corrupted messages. Because of 
this simplicity, UDP sockets have some different characteristics from the TCP sockets we saw 
earlier. For example, UDP sockets do not have to be connected before being used. Where TCP 
is analogous to telephone communication, UDP is analogous to communicating by mail: you 
do not have to "connect" before you send a package or letter, but you do have to specify 
the destination address for each one. Similarly, each message--called a datagram--carries its 
own address information and is independent of all others. In receiving, a UDP socket is like 
a mailbox into which letters or packages from many different sources can be placed. As soon 
as it is created, a UDP socket can be used to send/receive messages to / f rom any address and 
to / f rom many different addresses in succession. 

Another difference between UDP sockets and TCP sockets is the way that they deal with 
message boundaries: UDP sockets preserve them. This makes receiving an application message 
simpler, in some ways, than it is with TCP sockets. (This is discussed further in Section 2.3.4.) A 
final difference is that the end-to-end transport  service UDP provides is best-effort: there is no 
guarantee that a message sent via a UDP socket will arrive at its destination, and messages can 
be delivered in a different order than they were sent Oust like letters sent through the mail). 
A program using UDP sockets must  therefore be prepared to deal with loss and reordering. 
(We'll provide an example of this later.) 

Given this additional burden, why would an application use UDP instead of TCP? One 
reason is efficiency: if the application exchanges only a small amount  of data--say, a single 
request message from client to server and a single response message in the other direction-- 
TCP's connection establishment phase at least doubles the number of messages (and the 
number of round-trip delays) required for the communication. Another reason is flexibility: 
when something other than a reliable byte-stream service is required, UDP provides a minimal- 
overhead platform on which to implement whatever is needed. 

Java programmers use UDP sockets via the classes DatagramPacket and DatagramSocket. 
Both clients and servers use DatagramSockets to send and receive DatagramPackets. 
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2.3.1 DatagramPacket 

Instead of sending and receiving streams of bytes as with TCP, UDP endpoints exchange 
self-contained messages, called datagrams, which are represented in Java as instances of 
DatagramPacket. To send, a Java program constructs a DatagramPacket instance and passes it as 
an argument to the send() method of a DatagramSocket. To receive, a Java program constructs 
a DatagramPacket instance with preallocated space (a byte[ ]), into which the contents of a 
received message can be copied (if/when one arrives), and then passes the instance to the 
receive () method of a DatagramSocket. 

In addition to the data, each instance of DatagramPacket also contains address and port  
information, the semantics of which depend on whether the datagram is being sent or received. 
When a DatagramPacket is sent, the address and port identify the destination; for a received 
DatagramPacket, they identify the source of the received message. Thus, a server can receive 
into a DatagramPacket instance, modify its buffer contents, then send the same instance, and 
the modified message will go back to its origin. Internally, a DatagramPacket also has length 
and offset fields, which describe the location and number of bytes of message data inside the 
associated buffer. See the following reference and Section 2.3.4 for some pitfalls to avoid when 
using DatagramPackets. 

Datag ram Packet 

Constructors  

DatagramPacket(byte[ ] buffer, int length) 
DatagramPacket(byte[ ] buffer, int offset, int length) 
DatagramPacket(byte[ ] buffer, int length, InetAddress remoteAddr, int remotePort) 
DatagramPacket(byte[] buffer, int offset, int length, InetAddress  remoteAddr, int re- 

motePort) 

Constructs a datagram and makes the given byte array its data buffer. The first two 
forms are typically used to construct DatagramPackets for receiving because the desti- 
nation address is not specified (although it could be specified later with setAddress() 
and setPort ()). The second two forms are typically used to construct DatagramPackets 
for sending. 

buffer Datagram payload 

length Number of bytes of the buffer that will actually be used. 
If the datagram is sent, length bytes will be transmitted. If 
receiving into this datagram, length specifies the maximum 
number of bytes to be placed in the buffer. 

offset Location in the buffer array of the first byte of message data 
to be sent/received; defaults to 0 if unspecified. 
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remoteAddr 
remotePort 

Address (typically destination) of the datagram 

Port (typically destination) of the datagram 

Accessors/Mutators 

InetAddress getAddress() 

void setAddress(InetAddress address) 

Returns/sets the datagram address. There are other ways to set the address: 1) the 
address of a DatagramPacket instance can also be set by the constructor, and 2) 
the receive() method of DatagramSocket sets the address to the datagram sender's 
address. 

address Datagram address 

int getPort() 

void setPort(int port) 

Returns/sets the datagram port. There are other ways to set the address: 1) the port 
can be explicitly set by the constructor or the setPort()  method, and 2) the receive() 
method of DatagramSocket sets the port to the datagram sender's port. 

port Datagram port 

int getT.ength() 

void setLength(int length) 

Returns/sets the internal length of the datagram. The internal datagram length can be 
set explicitly by the constructor or by the setLength() method. Attempting to make it 
larger than the length of the associated buffer results in an IllegalArgumentException. 
The receive() method of DatagramSocket uses the internal length in two ways: 1) on 
input, it specifies the maximum number of bytes of a received message that will be 
copied into the buffer, and 2) on return, it indicates the number of bytes actually placed 
in the buffer. 

length Length in bytes of the usable portion of the buffer 

int get0ffset() 

Returns the location in the buffer of the first byte of data to be sent/received. There 
is no se t0f fse t ( )  method; however, it can be set with setData(). 

byte[] getDataO 
Returns the buffer associated with the datagram. The returned object is a reference 
to the byte array that was most recently associated with this DatagramPacket, either 
by the constructor or by setData(). The length of the returned buffer may be greater 
than the internal datagram length, so the internal length and offset values should be 
used to determine the actual received data. 
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void setData(byte[] buffer) 
void setData(byte[] buffer, int offset, int length) 

Makes the given byte array the datagram buffer. The first form makes the entire byte 
array the buffer; the second form makes bytes offset through offset + length- 1 the 
buffer. The first form never updates the internal offset and only updates the internal 
length if the given buffer's length is less than the current internal length. The second 
form always updates the internal offset and length. 

buffer Preallocated byte array for datagram packet data 

offset Location in buffer where first byte is to be accessed 

length Number of bytes to be read from/written into buffer 

2.3.2 UDPClient 

A UDP client begins by sending a datagram to a server that is passively waiting to be contacted. 
The typical UDP client goes through three steps: 

1. Construct an instance of DatagramSocket, optionally specifying the local address and port. 

2. Communicate by sending and receiving instances of DatagramPacket using the send() and 
receive() methods of DatagramSocket. 

3. When finished, deallocate the socket using the close() method of DatagramSocket. 

Unlike a Socket, a DatagramSocket is not constructed with a specific destination address. 
This illustrates one of the major differences between TCP and UDP. A TCP socket is required to 
establish a connection with another TCP socket on a specific host and port before any data can 
be exchanged, and, thereafter, it only communicates with that socket until it is closed. A UDP 
socket, on the other hand, is not required to establish a connection before communication, and 
each datagram can be sent to or received from a different destination. (The connect () method 
of DatagramSocket does allow the specification of the remote address and port, but its use is 
optional.) 

Our UDP echo client, UDPEchoClientTimeout. java, sends a datagram containing the string 
to be echoed and prints whatever it receives back from the server. A UDP echo server simply 
repeats each datagram that it receives back to the client. Of course, a UDP client only commu- 
nicates with a UDP server. Many systems include a UDP echo server for debugging and testing 
purposes. 

One consequence of using UDP is that datagrams can be lost. In the case of our echo 
protocol, either the echo request from the client or the echo reply from the server may be 
lost in the network. Recall that our TCP echo client sends an echo string and then blocks on 
read () waiting for a reply. If we try the same strategy with our UDP echo client and the echo 
request datagram is lost, our client will block forever on receive (). To avoid this problem, our 
client specifies a maximum amount of time to block on receive(), after which it tries again by 
resending the echo request datagram. Our echo client performs the following steps: 
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1. Send the echo str ing to the server. 

2. Block on r e c e i v e ( )  for up  to three  seconds,  s tar t ing over (up to five t imes) if the reply is 

not  received before  the t imeout .  

3. Termina te  the client. 

UDPEchoClientTimeout.java 

O import java.net.*; 
1 import java.io.*; // for lOBxception 
2 
3 public class UDPEchoClientTimeout { 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

/ /  for DatagramSocket, DatagramPacket, and InetAddress 

private static final int TIMEOUT = 3000; 
private static final int MAXTRIBS = 5; 

// Resend timeout (milliseconds) 
// Maximum retransmissions 

public static void main(String[] args) throws lOException { 

if ((args.length < 2) I I (args.length > 3)) // Test for correct # of args 
throw new lllegalArgumentException("Parameter(s)' <Server> <Word> [<Port>]"); 

InetAddress serverAddress = InetAddress.getByName(args[0]); // Server address 
// Convert the argument String to bytes using the default encoding 
byte[] bytesZoSend = args[l].getBytes(); 

int servPort = (args.length == 3) ? Integer.parselnt(args[2]) �9 7; 

DatagramSocket socket = new DatagramSocket() ; 

socket.setSoTimeout(TIMEOUT); // Maximum receive blocking time (milliseconds) 

DatagramPacket sendPacket = new DatagramPacket(bytesToSend, 
bytesToSend.length, serverAddress, servPort) ; 

// Sending packet 

DatagramPacket receivePacket = // Receiving packet 
new DatagramPacket(new byte[bytesToSend.length], bytesToSend.length); 

int tries = 0; // Packets may be lost, so we have to keep trying 
boolean receivedResponse = false; 
do { 

socket.send(sendPacket); // Send the echo string 
try { 

socket.receive(receivePacket); // Attempt echo reply reception 

if (!receivePacket.getAddress().equals(serverAddress)) // Check source 
throw new lOException("Received packet from an unknown source"); 

receivedResponse = true; 
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40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 

} 

} 

} catch (InterruptedlOException e) { // We did not get anything 
tries += I; 

System.out.println("Timed out, " + (~TRIES - tries) + " more tries...") ; 
} 

} while ((!receivedResponse) && (tries < ~s ; 

if (receivedResponse) 

System.out.println("Received: " + new String(receivePacket.getData())); 
else 

System. out.println("No response -- giving up.") ; 

socket.close(); 

UDPEchoClientTimeout.java 

1. Application setup and parameter parsing: lines 0-17 
Convert argument to bytes: line 15 

2. UDP socket  creation: line 19 
This instance of DatagramSocket can send datagrams to any UDP socket. We do not specify 
a local address or port so some local address and available port will be selected. We can 
explicitly set them with the setLocalAddress() and setLocalPort()  methods  or in the 
constructor. 

3. Set the socket  timeout: line 21 
The timeout for a datagram socket controls the maximum amount  of time (milliseconds) 
a call to receive()  will block. Here we set the t imeout to three seconds. Note that t imeouts 
are not precise: the call may block for more than the specified time (but not less). 

4. Create da tagram to send: lines 23-24 
To create a datagram for sending, we need to specify three things: data, destination 
address, and destination port. For the destination address, we may identify the echo 
server either by name or IP address. If we specify a name, it is converted to the actual IP 
address in the constructor. 

5. Create da tagram to receive: lines 26-27 
To create a datagram for receiving, we only need to specify a byte array to hold the 
datagram data. The address and port of the datagram source will be filled in by receive (). 

6. Send the datagram: lines 29-44 
Since datagrams may be lost, we must  be prepared to retransmit  the datagram. We loop 
sending and at tempting a receive of the echo reply up to five times. 

�9 Send the datagram: line 32 

send() t ransmits  the datagram to the address and port specified in the datagram. 
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�9 Handle da tagram reception: lines 33-43 
receive()  blocks until it either receives a datagram or the timer expires. Timer expi- 
ration is indicated by an InterruptedlOException. If the timer expires, we increment 
the send at tempt  count (tries) and start over. After the maximum number  of tries, 
the while loop exits without receiving a datagram. If receive()  succeeds, we set the 
loop flag receivedResponse to true, causing the loop to exit. Since packets may come 
from anywhere, we check the source address of the recieved datagram to verify that 
it matches the address of the specified echo server. 

7. Print recept ion results: lines 46-49 
If we received a datagram, receivedResponse is true, and we can print the datagram data. 

8. Close the socket: line 51 

We invoke the UDP client using the same parameters  as used in the TCP client. 

DatagramSocket 

Constructors 

DatagramSocket() 

DatagramSocket(int localPort) 
DatagramSocket(int localPort, InetAddress  localAddr) 

Constructs a UDP socket. Either or both the local port  and address may be specified. 
If the local port is not specified, the socket is bound to any available local port. If the 
local address is not specified, one of the local addresses is chosen. 

localPort Local port; a localPort of 0 allows the constructor to pick any 
available port. 

localAddr Local address 

Operators 

void close() 

After closing, datagrams may no longer be sent or received using this socket. 

void connect(InetAddress remoteAddr, int remotePort) 

Sets the remote address and port of the socket. Attempting to send datagrams with 
a different address will cause an exception to be thrown. The socket will only receive 
datagrams from the specified port and address. Datagrams from any other port or 
address are ignored. This is strictly a local operation because there is no end-to-end 
connection. Caveat: A socket that is connected to a multicast or broadcast  address can 
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only send datagrams, because a datagram source address is always a unicast address 
(see Section 4.3). 

remoteAddr Remote address 

remotePort Remote port 

void disconnect() 

Removes the remote address and port specification of the socket (see connect()). 

void receive(DatagramPacket packet) 

Places data from the next received message into the given DatagramPacket. 

packet Receptacle for received information, including source 
address and port as well as message data. (See the 
DatagramPacket reference for details of semantics.) 

void send(DatagramPacket packet) 

Sends a datagram from this socket. 

packet Specifies the data to send and the destination address and 
port. If packet does not specify a destination address, the 
DatagramSocket must be "connected" to a remote address 
and port (see connect ()). 

Accessors/Mutatots 

InetAddress getlnetAddressO 

int getPort0 

Returns the remote socket address/port.  

InetAddress getLocalAddress0 

int getLocalPort0 

Returns the local socket address/port.  

int getReceiveBufferSize0 

int getSendBufferSize0 

void setReceiveBufferSize(int size) 

void setSendBufferSize(int size) 

The DatagramSocket has limits on the maximum datagram size that can be sent/  
received through this socket. The receive limit also determines the amount of message 
data that can be queued waiting to be returned via receive(). That is, when the amount 
of buffered data exceeds the limit, arriving packets are quietly discarded. Setting the 
size is only a hint to the underlying implementation. Also, the semantics of the limit 
may vary from system to system: it may be a hard limit on some and soft on others. 

size Desired limit on packet and/or queue size (bytes) 
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int getSoTimeout() 
void setSoTimeout(int timeout) 

Returns/sets  the maximum amount  of time that a receive () will block for this socket. 
If the specified time elapses before data is available, an InterruptedlOException is 
thrown. 

timeout The maximum amount  of time (milliseconds) that receive()  
will block for the socket. A t imeout of 0 indicates that a 
receive will block until data is available. 

2.3.3 UDPServer 

Like a TCP server, a UDP server's job is to set up a communicat ion endpoint and passively 
wait for the client to initiate the communication; however, since UDP is connectionless, UDP 
communication is initiated by a datagram from the client, without going through a connection 
setup as in TCP. The typical UDP server goes through four steps: 

1. Construct an instance of DatagramSocket, specifying the local port  and, optionally, the 
local address. The server is now ready to receive datagrams from any client. 

2. Receive an instance of DatagramPacket using the receive()  method of DatagramSocket. 
When receive()  returns, the datagram contains the client's address so we know where 
to send the reply. 

3. Communicate by sending and receiving DatagramPackets using the send() and receive()  
methods of DatagramSocket. 

4. When finished, deallocate the socket using the close()  method of DatagramSocket. 

Our next program example, UDPEchoServer. java, implements  the UDP version of the echo 
server. The server is very simple: it loops forever, receiving datagrams and then sending the 
same datagrams back to the client. Actually, our server only receives and sends back the first 
255 (ECHOMAX) characters of the datagram; any excess is silently discarded by the socket 
implementat ion (see Section 2.3.4). 

U D P Ec h oSe rye  r .ja va  

O import java.net .*;  / /  for DatagramSocket, DatagramPacket, and InetAddress 
1 import java. io .*;  / /  for IOException 
2 
3 public class UDPEchoServer { 
4 
5 private s ta t ic  f inal  int ECHO~X = 255; / /  Maximum size of echo datagram 
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6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

public static void main(String[] args) throws lOF, xception { 

if (args.length != i) // Test for correct argument list 
throw new lllegalArgumentException("Parameter(s) : <Port>") ; 

int servPort = Integer.parselnt(args[O]); 

DatagramSocket socket = new DatagramSocket (servPort) ; 
DatagramPacket packet = new DatagramPacket(new byte[ECHOMAX], ECHOMAX); 

for (;;) { // Run forever, receiving and echoing datagrams 
socket.receive(packet); // Receive packet from client 
System.out.println("Handling client at " + 

packet.getAddress().getHostAddress() + " on port " + packet.getPort()); 
socket.send(packet); // Send the same packet back to client 
packet.setLength(ECHOMAX); // Reset length to avoid shrinking buffer 

} 

/* NOT REACHED */ 

U D P Ec h oSe rye  r . ja va  

1. Application setup and parameter parsing: lines 0-12 
UDPEchoServer takes a single parameter ,  the local por t  of the echo server socket. 

2. Create and set up datagram socket: line 14 
Unlike our UDP client, a UDP server mus t  explicitly set its local por t  to a n u mb e r  known 
by the client; otherwise,  the client will not  know the des t inat ion por t  for its echo reques t  
datagram.  When the server receives the echo da tagram f rom the client, it can find out  the 
client 's address  and por t  f rom the datagram. 

3. Create datagram: line 15 
UDP messages  are conta ined in datagrams.  We cons t ruc t  an instance of DatagramPacket 
with a buffer  of ECHOMAX (255) bytes. This da tagram will be used  bo th  to receive the echo 
reques t  and to send the echo reply. 

4. Iteratively handle incoming echo requests: lines 17-23 
The UDP server uses  a single socket for all communicat ion,  unlike the TCP server, which 

creates a new socket with every successful  accept (). 

�9 Receive an echo request datagram: lines 18-20 
The r ece ive ( )  m e t h o d  of DatagramSocket blocks until  a da tagram is received f rom a 
client (unless a t imeout  is set). There is no connection,  so each da tagram may come 
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from a different sender. The datagram itself contains the sender 's (client's) source 

address and port. 

�9 Send echo reply: line 21 
packet already contains the echo string and echo reply destination address and port, 
so the send() method of DatagramSocket can simply transmit  the datagram previously 
received. Note that when we receive the datagram, we interpret the datagram address 
and port as the source address and port, and when we send a datagram, we interpret 
the datagram's  address and port as the destination address and port. 

�9 Reset buffer  size: line 22 
The internal length of packet was set to the length of the message just  processed, 
which may have been smaller than the original buffer size. If we do not reset the 
internal length before receiving again, the next message will be truncated if it is longer 
than the one just  received. 

2.3.4 Sending and Receiving with UDP Sockets 

A subtle but important  difference between TCP and UDP is that UDP preserves message 
boundaries. Each call to receive()  returns data from at most  one call to send() Moreover, 
different calls to receive()  will never return data from the same call to send(). 

When a call to wr i te( )  on a TCP socket's output  s tream returns, all the caller knows is 
that the data has been copied into a buffer for transmission; the data may or may not have 
actually been t ransmit ted yet. (This is covered in more detail in Chapter 5.) UDP, however, does 
not provide recovery from network errors and, therefore, does not buffer data for possible 
retransmission. This means that by the time a call to send() returns, the message has been 
passed to the underlying channel for t ransmission and is (or soon will be) on its way out the 
door. 

Between the time a message arrives from the network and the time its data is returned via 
read() or receive() ,  the data is stored in a first-in, first-out (FIFO) queue of received data. With 
a connected TCP socket, all received-but-not-yet-delivered bytes are treated as one continuous 
sequence of bytes (see Chapter 5). For a UDP socket, however, the received data may have come 
from different senders. A UDP socket's received data is kept in a queue of messages, each with 
associated information identifying its source. A call to receive()  will never return more than 
one message. However, if receive()  is called with a DatagramPacket containing a buffer of size 
n, and the size of the first message in the receive queue exceeds n, only the first n bytes of 
the message are returned. The remaining bytes are quietly discarded, with no indication to the 

receiving program that information has been lost! 
For this reason, a receiver should always supply a DatagramPacket with a buffer big enough 

to hold the largest message allowed by its application protocol at the time it calls receive() .  
This technique will guarantee that no data will be lost. The maximum amount  of data that can 
be t ransmit ted in a DatagramPacket is 65,507 bytes-- the  largest payload that can be carried in 
a UDP datagram. It is important  to remember  here that each instance of DatagramPacket has an 
internal notion of message length that may be changed whenever a message is received into 
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that instance (to reflect the number of bytes in the received message). Applications that call 
receive() more than once with the same instance of DatagramPacket should explicitly reset the 
internal length to the actual buffer length before each subsequent call to receive().  

Another potential source of problems for beginners is the getData() method of Data- 
gramPacket, which always returns the entire original buffer, ignoring the internal offset and 
length values. Receiving a message into the DatagramPacket only modifies those locations of 
the buffer into which message data was placed. For example, suppose buf is a byte array of 
size 20, which has been initialized so that each byte contains its index in the array: 

0 ] 1 I 2 I 3 I 4 I 5 1 0 1  ~ I ~ I 9 I 1 0 1 1 1 1 1 2 1 1 3 1 1 4 1 1 5 1 1 6 1 1 7 1 1 8 1 1 9  I 

Suppose also that dg is a DatagramPacket, and that we set dg's buffer to be the middle 10 bytes 
of buf : 

dg. setData(buf, 5,10) ; 

Now suppose that dgsocket is a DatagramSocket, and that somebody sends an 8-byte message 
containing 

I 41 I 42 143 I 44 I 45 I 46 I 47148 I 
to dgsocket. The message is received into dg: 

dgsocket .receive(dg) ; 

Now, calling dg. getData() returns a reference to the original byte array buf, whose contents 
are now 

0 I 11 2 I 3 I 4 I 411 421 431 441 451 461 471 481 131 141 151 161 171 181 19 I 

Note that only bytes 5-12 of buf have been modified and that, in general, the application 
needs to use get0ffset ( )  and getData() to access just the received data. One possibility is to 
copy the received data into a separate byte array, like this: 

byte[] destBuf = new byte[dg.getLength()]; 
System.arraycopy(dg.getData(), dg.getOffset(), destSuf, O, destSuf.length); 

2.4 Exercises 

1. For TCPF.choServer. java, we explicitly specify the port to the socket in the constructor. 
We said that a socket must have a port for communication, yet we do not specify a port 
in TCPY.choClient. java. How is the echo client's socket assigned a port? 

2. When you make a phone call, it is usually the callee that answers with "Hello." What 
changes to our client and server examples would be needed to implement this? 

3. What happens if a TCP server never calls accept()? What happens if a TCP client sends 
data on a socket that has not yet been accept ()ed at the server? 
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4. Servers are supposed to run for a long time without stopping--therefore,  they must  be 
designed to provide good service no mat ter  what their clients do. Examine the server 
examples (TCPEchoServer. java and UDPEchoServer. java) and list anything you can think 
of that a client might do to cause it to give poor service to other clients. Suggest 
improvements  to fix the problems that you find. 

5. Modify TCPEchoServer. java to read and write only a single byte at a time, sleeping one 
second between each byte. Verify that TCPEchoClient.java requires multiple reads to 
successfully receive the entire echo string, even though it sent the echo string with one 
wri te() .  

6. Modify TCPEchoServer. java to read and write a single byte and then close the socket. 
What happens when the TCPEchoClient sends a multibyte string to this server? What is 
happening? (Note that the response could vary by OS.) 

7. Modify UDPEchoServer. java so that it only echoes every other datagram it receives. Verify 
that UDPEchoClientTimeout. java retransmits  datagrams until it either receives a reply or 
exceeds the number  of retries. 

8. Modify UDPEchoServer. java so that ECHOMAX is much shorter (say, 5 bytes). Then use 
UDPEchoClientTimeout. java to send an echo string that is too long. What happens? 

9. Verify experimentally the size of the largest message you can send and receive using a 
DatagramPacket. 

10. While UDPEchoServer. java explicitly specifies its local port in the constructor, we do not 
specify the local port in UDPEchoClientTimeout. java. How is the UDP echo client's socket 
given a port number? Hint: The answer is different for TCP. 
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Sending and Receiving Messages 

W h e n  writing programs to communicate via sockets, you will generally be implementing 
an application protocol of some sort. Typically you use sockets because your program needs to 
provide information to, or use information provided by, another program. There is no magic: 
sender and receiver must  agree on how this information will be encoded, who sends what 
information when, and how the communicat ion will be terminated. In our echo example, the 
application protocol is trivial: neither the client's nor the server's behavior is affected by the 
contents of the bytes they exchange. Because most  applications require that the behaviors of 
client and server depend upon the information they exchange, application protocols are usually 
more complicated. 

The TCP/IP protocols t ransport  bytes of user data without examining or modifying them. 
This allows applications great flexibility in how they encode their information for transmission. 
For various reasons, most  application protocols are defined in terms of discrete messages 
made up of sequences of fields. Each field contains a specific piece of information encoded 
as a sequence of bits. The application protocol specifies exactly how these sequences of bits 
are to be formatted by the sender and interpreted, or parsed, by the receiver so that the latter 
can extract the meaning of each field. About the only constraint imposed by TCP/IP is that 
information must  be sent and received in chunks whose length in bits is a multiple of eight. So 
from now on we consider messages to be sequences of bytes. Given this, it may be helpful to 
think of a t ransmit ted message as a sequence of numbers,  each between 0 and 255, inclusive 
(that being the range of binary values that can be encoded in 8 bits--1 byte). 

As a concrete example for this chapter, let's consider the problem of transferring price 
quote information between vendors and buyers. A simple quote for some quantity of a 
particular i tem might include the following information: 

I tem number :  A large integer identifying the i tem 

Item description: A text string describing the i tem 

Unit price: The cost per i tem in cents 

Quantity: The number  of units offered at that price 

37  
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Discounted?:  Whether the price includes a discount  

In stock?: Whether  the i tem is in stock 

We collect this informat ion  in a class ItemQuote. java. For convenience in viewing the informa- 
t ion in our p r o g r a m  examples,  we include a t oS t r i ng ( )  method.  Throughout  this chapter,  the 
variable item refers  to an instance of ItemQuote. 

ItemQuote.java 

6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

0 public class ItemQuote { 

public long itemNumber; // Item identification number 
public String itemDescription; // String description of item 
public int quantity; // Number of items in quote (always >= i) 
public int unitPrice; // Price (in cents) per item 
public boolean discounted; // Price reflect a discount? 
public boolean inStock; // Item(s) ready to ship? 

public ItemQuote(long itemNumber, String itemDescription, 
int quantity, int unitPrice, boolean discounted, boolean inStock) 

this itemNumber = itemNumber; 
this itemDescription = itemDescription; 
this quantity = quantity; 
this unitPrice = unitPrice; 
this discounted = discounted; 
this inStock = inStock; 

public String toString() { 
final String EOLN = java.lang.System.getProperty("line.separator"); 
String value = "Item#=" + itemNumber + EOLN + 

"Description=" + itemDescription + EOLN + 
"Quantity=" + quantity + BOLN + 
"Price(each)=" + unitPrice + BOLN + 
"Total=" + (quantity * unitPrice); 

if (discounted) 
value += " (discounted)"; 

if (inStock) 
value += BOLN + "In Stock" + EOLN; 

else 
value += EOLN + "Out of Stock" + EOLN; 

return value; 

ItemQuote.java 
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3.1 Encoding Information 

What if a client program needs to obtain quote information from a vendor program? The two 
programs must  agree on how the information contained in the ItemQuote will be represented 
as a sequence of bytes "on the wire"--sent  over a TCP connection or carried in a UDP datagram. 
(Note that everything in this chapter also applies if the "wire" is a file that is written by one 
program and read by another.) In our example, the information to be represented consists of 
primitive types (integers, booleans) and a character string. 

Transmitt ing information via the network in Java requires that it be written to an Out- 
putStream (of a Socket) or encapsulated in a DatagramPacket (which is then sent via a Data- 
gramSocket). However, the only data types to which these operations can be applied are bytes  
and arrays of bytes.  As a strongly typed language, Java requires that other types--Str ing,  int, 
and so on--be explicitly converted to these transmittable types. Fortunately, the language has 
a number  of built-in facilities that make such conversions more convenient. Before dealing 
with the specifics of our example, however, we focus on some basic concepts of representing 
information as sequences of bytes for transmission. 

3.1.1 Text 

Old-fashioned text--s tr ings of printable (displayable) characters--is  perhaps the most  com- 
mon form of information representation. When the information to be t ransmit ted is natural 
language, text is the most  natural representation. Text is convenient for other forms of in- 
formation because humans  can easily deal with it when printed or displayed; numbers,  for 
example, can be represented as strings of decimal digits. 

To send text, the string of characters is translated into a sequence of bytes according 
to a character set. The canonical example of a character encoding system is the venerable 
American Standard Code for Information Interchange (ASCII), which defines a one-to-one 
mapping between a set of the most  commonly used printable characters in English, and binary 
values. For example, in ASCII the digit 0 is represented by the byte value 48, 1 by 49, and so 
on up to 9, which is represented by the byte value 57. ASCII is adequate for applications that 
only need to exchange English text. As the economy becomes increasingly globalized, however, 
applications need to deal with other languages, including many that use characters for which 
ASCII has no encoding, and even some (e.g., Chinese) that use more than 256 characters and 
thus require more than I byte per character to encode. Encodings for the world's languages are 
defined by companies and by standards bodies. Unicode is the most  widely recognized such 
character encoding; it is s tandardized by the International Organization for Standardization 
(ISO). 

Fortunately, Java provides good support  for internationalization, in several ways. First, 
Java uses Unicode to represent  characters internally. Unicode defines a 16-bit (2-byte) code 
for each character and thus supports  a much larger set of characters than ASCII. In fact, the 
Unicode standard currently defines codes for over 49,000 characters and covers "the principal 
written languages and symbol systems of the world." [21] Second, Java supports  various other 
standard encodings and provides a clean separation between its internal representat ion and 
the encoding used when characters are input or output. 
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The getBytes() methods of class String implement this internal-to-external conversion, 
returning the sequence of bytes that represent the given string in some external encoding-- 
either the default encoding or an explicitly named one. (This type of conversion may also 
happen implicitly--for example, by writing a string to an instance of 0utputStreamWriter.) 
Similarly, String provides constructors that take a byte array and the name of a particular 
encoding, and return a String instance containing the sequence of characters represented by 
the byte sequence according to the encoding. (If no encoding is explicitly requested, the default 
encoding for the platform is used.) 

Suppose the value of i tem.itemNumber is 123456. Using ASCII, that part of the string 
representation of item produced by toString()  would be encoded as 

1105111611011109L 1611491501511 21 31 4 I 
'i' 't' 'e' 'm' '#' '=' 'i' '2' '3' '4' '5' '6' 

Using the "ISO8859_1" encoding would produce the same sequence of byte values, because the 
International Standard 8859-1 encoding (which is also known as ISO Latin 1) is an extension 
of ASCII--it maps the characters of the ASCII set to the same values as ASCII. However, if we 
used the North American version of IBM's Extended Binary Coded Decimal Interchange Code 
(EBCDIC), known in Java as the encoding "Cp037," the result would be rather different: 

11371163L 1331148112311261241124212431244124 12461 
' i '  ' t '  'e '  'm' '#' '=' '1' '2'  '3' '4' '5'  '6' 

If we used Unicode, the result would use 2 bytes per character, with i byte containing zero and 
the other byte containing the same value as with ASCII. Obviously the primary requirement in 
dealing with character encodings is that the sender and receiver must agree on the code to be 
used. 

3.1.2 Binary Numbers 

Transmitting large numbers as text strings is not very efficient: each character in the digit string 
has one of only 10 values, which can be represented using, on average, less than 4 bits per 
digit. Yet the standard character codes invariably use at least 8 bits per character. Moreover, it 
is inconvenient to perform arithmetic computation and comparisons with numbers encoded 
as strings. For example, a receiving program computing the total cost of a quote (quantity 
times unit price) will generally need to convert both amounts to the local computer's native 
(binary) integer representation before the computation can be performed. For a more compact 
and computation-friendly encoding, we can transmit the values of the integers in our data as 
binary values. To send binary integers as byte sequences, the sender and receiver need to agree 
on several things: 

�9 Integer size: How many bits are used to represent the integer? The sizes of Java's integer 
types are fixed by the language definition--shorts are 2 bytes, ints are 4, longs are 
8--so a Java sender and receiver only need to agree on the primitive type to be used. 
(Communicating with a non-Java application may be more complex.) The size of an integer 



i 3.1 Encoding Information ~ | 

type, along with the encoding (signed/unsigned, see below), determines the maximum 
and min imum values that can be represented using that type. 

�9 Byte order: Are the bytes of the binary representat ion written to the s t ream (or placed in 
the byte array) from left to right or right to left? If the most  significant byte is t ransmit ted 
first and the least significant byte is t ransmit ted last, that 's  the so-called big-endian order. 
Little-endian is, of course, just  the opposite. 

�9 Signed or unsigned: Signed integers are usually t ransmit ted in two's-complement repre- 
sentation. For k-bit numbers,  the two's-complement encoding of the negative integer - n ,  
1 < n < 2 k-l ,  is the binary value of 2 k - n; and the non-negative integer p, 0 < p < 2 k-1 - 1, 
is encoded simply by the k-bit binary value of p. Thus, given k bits, two's complement  can 
represent values in the range - 2  k-1 through 2 k-1 - 1, and the most  significant bit (msb) 
tells whether the value is positive (msb = 0) or negative (msb = 1). On the other hand, a 
k-bit unsigned integer can encode values in the range 0 through 2 k - 1 directly. 

Consider again the itemNumber. It is a long, so its binary representat ion is 64 bits (8 
bytes). If its value is 12345654321 and the encoding is big-endian, the 8 bytes sent would be 
(with the byte on the left t ransmit ted first): 

0 0 0 2 223 219 188 49 

If, on the other hand, the value was sent in little-endian order, the t ransmit ted byte values 
would be: 

If the sender uses big-endian when the receiver is expecting little-endian, the receiver will end 
up with an itemNumber of 3583981154337816576! Most network protocols specify big-endian 
byte order; in fact it is sometimes called network byte order. 

Note that the most  significant bit of the 64-bit binary value of 12345654321 is O, so its 
signed (two's-complement) and unsigned representat ions are the same. More generally, the 
distinction between k-bit signed and unsigned values is irrelevant for values that lie in the 
range 0 through 2 k-1 - 1. Unfortunately, protocols often use unsigned integers; Java's lack of 
unsigned integer types means that some care is required in dealing with such values, especially 
in decoding. (See program ItemQuoteDecoderBin. java in Section 3.4.2 for an example.) 

As with strings, Java provides mechanisms to turn primitive integer types into sequences 
of bytes and vice versa. In particular, s treams that support  the Data0utput interface have 
methods writeShort (), wr i te In t  (), and writeLong(), which allow those types to be written 
out directly. These methods all write out the bytes of integer primitive types in big-endian byte 
order using two's-complement representation. Similarly, implementat ions of the DataInput 
interface have methods  readInt ( ) ,  readShort(),  and so on. The next section describes some 
ways to compose instances of these classes. 
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DataOutputStream BufferedOutputStream 

writeDouble(3.14) -'-- ~ 1 ~ - I 3.14 (8 bytes) ~ 3.14 

343 (4 bytes) ~ 343 
writelnt(343) < ,  I 800 (2 bytes) ~ 800 I 

writeShort(800) --~ 

DatalnputStream BufferedlnputStream 

readDouble ()=readlnt ( ) I I ~ I ~ ~____1 3.14 (8 bytes) ~ =  I ~ 3.14 

343 (4 bytes) ~ 343 i = 
[ Z soo readShort() = I 800 (2 bytes) = I ! 

F i g u r e  3.1 : Stream composition. 

OutputStream 

L 

InputStream 

I 

3.2 Composing I / 0  Streams 

Java's stream classes can be composed to provide powerful encoding and decoding facilities. 
For example, we can wrap the 0utputStream of a Socket instance in a Buffered0utputStream 
instance to improve performance by buffering bytes temporarily and flushing them to the 
underlying channel all at once. We can then wrap that instance in a Data0utputStream to send 
primitive data types. We would code this composition as follows: 

Socket socket = new Socket(server, port) ; 
DataOutputStream out = new DataOutputStream( 

new BufferedOutputStream(socket. getOutputStream( ) ) ) ; 

Figure 3.1 demonstrates this composition. Here, we write our primitive data values, one by 
one, to Data0utputStream, which writes the binary data to Buffered0utputStream, which buffers 
the data from the three writes and then writes once to the socket 0utputStream, which controls 
writing to the network. We create a parallel composition for the InputStream on the other 
endpoint to efficiently receive primitive data types. 

A complete description of the Java I/O API is beyond the scope of this text; however, Table 
3.1 provides a list of some of the relevant Java I/O classes as a starting point for exploiting its 
capabilities. 

3.3 Framing and Parsing 

Converting data to wire format is of course only half the story; the original information must 
be recovered at the receiver from the transmitted sequence of bytes. Application protocols 
typically deal with discrete messages, which are viewed as collections of fields. Framing refers 
to the problem of enabling the receiver to locate the beginning and end of the message in 
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I/O Class Function 

Buffered[Input/Output ]Stream 
Checked[Input/Output ]Stream 
Data[Input/Output]Stream 
Digest[Input/Output]Stream 
GZIP[Input/Output]Stream 
Object[Input/Output ]Stream 
PushbackInputStream 
PrintOutputStream 
ZIP[Input/Output]Stream 

Performs buffering for I/O optimization. 

Maintains a checksum on data. 

Handles read/write for primitive data types. 

Maintains a digest on data. 

De/compresses a byte stream in GZIP format. 

Handles read/write objects and primitive data types. 

Allows a byte or bytes to be "unread." 

Prints string representation of data type. 

De/compresses a byte stream in ZIP format. 

Table 3.1 : Java I/O Classes 

the stream, and of the fields within the message.  Whether  in format ion  is encoded  as text, as 
mult ibyte binary numbers ,  or as some combinat ion  of the two, the applicat ion protocol  mus t  
enable the receiver of a message  to de termine  when  it has received all of the message  and to 
parse  it into fields. 

If the fields in a message  all have fixed sizes and the message  is made  up of a fixed 
number  of fields, then  the size of the message  is known in advance and the receiver can 
simply read the expected number  of bytes  into a by te [ ]  buffer. This technique was used  in 
TCPEchoClient. java, where  we knew the number  of bytes  to expect  f rom the server. However, 
when  some field (and/or  the whole message)  can vary in length, as with the itemDescription in 
our example, we do not  know be fo rehand  how many  bytes to read. 

Marking the end of the message  is easy in the special case of the last message  to be 
sent  on a TCP connection: the sender  simply closes the sending side of the connect ion  (using 
shutdown0utput() or c lose( ) )  after sending the message.  After the receiver reads  the last byte 
of the message,  it receives an end-of-s t ream indicat ion (i.e., read()  re turns  -1), and thus  can 
tell that  it has as much  of the message  as there will ever be. The same principle applies to the 
last field in a message  sent as a DatagramPacket. 

In all o ther  cases, the message  itself mus t  contain  addit ional  f raming informat ion  en- 
abling the receiver to parse  the f ie ld/message.  This in format ion  typically takes one of the 
following forms: 

�9 Delimiter: The end of the variable-length field or message  is indicated by a unique marker, 
an explicit byte sequence that  immedia te ly  follows, but  does not  occur in, the data. 

�9 Explicit length: The variable-length field or message  is p receded  by a (fixed-size) length 
field that  tells how many  bytes it contains.  

The del imiter-based approach  is of ten used  with variable-length text: A part icular  char- 
acter or sequence of characters  is defined to mark  the end of the field. If the entire message  
consists  of text, it is s t ra ight forward  to read in characters  using an instance of Reader (which 
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handles the byte-to-character translation), looking for the delimiter sequence, and returning 
the character string preceding it. 

Unfortunately, the Reader classes do not support reading binary data. Moreover, the 
relationship between the number of bytes read from the underlying InputStream and the 
number of characters read from the Reader is unspecified, especially with multibyte encodings. 
When a message uses a combination of the two framing methods mentioned above, with some 
explicit-length-delimited fields and others using character markers, this can create problems. 

The class Framer, defined below, allows an InputStream to be parsed as a sequence of 
fields delimited by specific byte patterns. The static method Framer.nextToken() reads bytes 
from the given InputStream until it encounters the given sequence of bytes or the stream ends. 
All bytes read up to that point are then returned in a new byte array. If the end of the stream is 
encountered before any data is read, null is returned. The delimiter can be different for each 
call to nextToken(), and the method is completely independent of any encoding. 

A couple of words of caution are in order here. First, nextToken() is terribly inefficient; 
for real applications, a more efficient pattern-matching algorithm should be used. Second, 
when using Framer.nextToken() with text-based message formats, the caller must convert the 
delimiter from a character string to a byte array and the returned byte array to a character 
string. In this case the character encoding needs to distribute over concatenation, so that it 
doesn't matter whether a string is converted to bytes all at once, or a little bit at a time. 

To make this precise, let E() represent an encoding--that is, a function that maps 
character sequences to byte sequences. Let a and b be sequences of characters, so E(a) 
denotes the sequence of bytes that is the result of encoding a. Let "+" denote concatenation 
of sequences, so a + b is the sequence consisting of a followed by b. This explicit-conversion 
approach (as opposed to parsing the message as a character stream) should only be used with 
encodings that have the property that E(a + b)= E(a)+ E(b); otherwise, the results may be 
unexpected. Although most encodings supported in Java have this property, some do not. 
In particular, UnicodeBig and UnicodeLittle encode a String by first outputting a byte-order 
indicator (the 2-byte sequence 254-255 for big-endian, and 255-254 for little-endian), followed 
by the 16-bit Unicode value of each character in the String, in the indicated byte order. Thus, 
the encoding of "Big fox" using UnicodeBig is as follows: 

12 412 510 166 I o 11051 0 11031 0 1 321 0 11021 0 Ii111 0 11201 
[mark] 'B' 'i' 'g' ' ' 'f' 'o' 'x' 

while the encoding of "Big" concatenated with the encoding of "fox", using the same encoding, 
is as follows" 

12 4J2  1 o 166 I o j l051 0 11o312 4125 1 0 132 I o 11o21 o i Xlll 0 112ol 
[ mark ] ' B' ' i' ' g' [mark ] ' ' ' f' ' o' ' x' 

Using either of these encodings to convert the delimiter results in a byte sequence that 
begins with the byte-order marker. Moreover, if the byte array returned by nextToken() does not 
begin with one of the markers, any attempt to convert it to a String using one of these encodings 
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will throw an exception. The encodings UnicodeBigUnmarked and UnicodeLittleUnmarked 
(supported in JDK as of 1.3) omit the byte-order marker, so they are suitable for use with 
Framer. nextToken(). 

Framerjava 

0 import java.io.*; 
1 

2 public class Framer { 
3 
4 
5 
6 
7 
8 

9 
i0 
Ii 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 } 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 } 
36 } 

// for InputStream and ByteArrayOutputStream 

public static byte[] nextToken(InputStream in, byte[] delimiter) 
throws lOException { 

int nextByte ; 

// If the stream has already ended, return null 
if ((nextByte = in.read()) == -i) 

return null; 

ByteArrayOutputStream tokenBuffer = new ByteArrayOutputStream(); 
do { 

tokenBuffer.write(nextByte); 
byte[] currentToken = tokenBuffer.toByteArray(); 
if (endsWith(currentToken, delimiter)) { 

int tokenLength = currentToken.length - delimiter.length; 
byte[] token = new byte[tokenLength]; 
System.arraycopy(currentToken, O, token, O, tokenLength); 
return token; 

} 
} while ((nextByte = in.read()) != -i); // Stop on end-of-stream 
return tokenBuffer.toByteArray(); // Received at least 1 byte 

// Returns true if value ends with the bytes in suffix 
private static boolean endsWith(byte[] value, byte[] suffix) { 

if (value.length < suffix.length) 
return false; 

for (int offset = i; offset <= suffix.length; offset++) 
if (value[value.length- offset] != suffix[suffix.length- offset]) 

return false; 
return true; 

Framerjava 
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1. nextToken(): lines 4-24 
Read f rom input  s t ream until  delimiter or end-of-stream. 

�9 Tes t  for  end-of-s t ream:  lines 8-10 
If the input  s t ream is already at end-of-stream, re tu rn  null .  

�9 Create  a buf fe r  to ho ld  the  b y t e s  of  the  token:  line 12 
We use a ByteArray0utputStream to collect the data byte by byte. The ByteArray[Input I 
Output ]Stream classes allow a byte array to be handled  like a s t ream of bytes. 

�9 Put the  last  by t e  r ead  into the  buf fe r  �9 line 14 

�9 Get a by t e  a r r ay  con ta in ing  the inpu t  so far: line 15 
It is very inefficient to create a new byte array on each iteration, but  it is simple. 

�9 Check  w h e t h e r  the  de l imi te r  is a suffix of the  cu r r en t  token:  lines 16-21 
If so, create a new byte array containing the bytes read so far, minus  the delimiter  
suffix, and re tu rn  it. 

�9 Get nex t  byte:  line 22 

�9 Re tu rn  the  cu r r en t  t o k e n  on  end-of-s t ream:  line 23 

2. endswith():  lines 26-35 

�9 C o m p a r e  lengths:  lines 28-29 
The candidate  sequence mus t  be at least as long as the delimiter  to be a match.  

�9 C o m p a r e  by tes ,  r e t u r n  f a l s e  on  a n y  difference:  lines 31-33 
Compare  the last delim.length bytes of the token to the delimiter. 

�9 If no  dif ference,  r e t u r n  true: line 34 

3.4 Implementing Wire Formats in Java 

To emphas ize  the fact that  the same informat ion  can be r ep resen ted  "on the wire" in different 
ways, we define an interface ItemQuoteEncoder, which has a single m e t h o d  that  takes an 
ItemQuote instance and converts  it to a by te[ ]  that  can be wri t ten to an 0utputStream or 
encapsu la ted  in a DatagramPacket. 

ItemQuoteEncoder.java 

0 public interface ItemQuoteEncoder { 
1 byte[] encode(ItemQuote item) throws Exception; 
2 } 

ItemQuoteEncoder.java 

The specification of the cor responding  decoding functionali ty is given by the ItemQuot- 
eDecoder interface, which has me thods  for pars ing messages  received via s t reams or in Data- 
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gramPackets. Each method performs the same function: extracting the information for one 
message and returning an ItemQuote instance containing the information. 

ItemQuoteDecoder.java 

0 import java.io.* ; // for InputStream and IOException 
1 import java.net.*; // for DatagramPacket 
2 
3 public interface ItemQuoteDecoder { 
4 ItemQuote decode(InputStream source) throws IOException; 
5 ItemQuote decode(DatagramPacket packet) throws IOException; 
6 } 

ItemQuoteDecoder.java 

Sections 3.4.1 and 3.4.2 present two different implementations for these interfaces: one using 
a text representation, the other, a hybrid encoding. 

3.4.1 Text-Oriented Representation 

Clearly we can represent the ItemQuote information as text. One possibility is to simply 
transmit the output of the toStr ing()  method using a suitable character encoding. To simplify 
parsing, the approach in this section uses a different representation, in which the values of 
itemNumber, itemDescription, and so on are transmitted as a sequence of delimited text fields. 
The sequence of fields is as follows: 

<Item Number> <Description> <Quantity> <Price> (Discount?) (In Stock?> 

The Item Number field (and the other integer-valued fields, Quantity and Price) contain a 
sequence of decimal digit characters followed by a space character (the delimiter). The Descrip- 
tion field is just  the description text. However, because the text itself may include the space 
character, we have to use a different delimiter; we choose the newline character, represented 
as \n in Java, as the delimiter for this field. 

Boolean values can be encoded in several different ways. One possibility is to include the 
string "true" or the string "false", according to the value of the variable. A more compact 
approach (and the one used here) is to encode both values (discounted and inStock) in a single 
field; the field contains the character '8'  if discounted is true, indicating that the item is 
discounted, and the c h a r a c t e r ' s '  if inStock is true, indicating that the item is in stock. The 
absence of a character indicates that the corresponding boolean is false, so this field may be 
empty. Again, a different delimiter (\n) is used for this final field, to make it slightly easier to 
recognize the end of the message even when this field is empty. A quote for 23 units of item 
number 12345, which has the description "AAA Battery" and price $14.45, and which is both 
in stock and discounted, would be represented as 

12345 AAA Battery\n23 1445 ds\n 
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Constants needed by both the encoder and the decoder are defined in the ItemQuoteText- 
Const interface, which defines "ISO8859_1" as the default encoding (we could just  as easily 
have used any other encoding as the default) and 1024 as the maximum length (in bytes) of 
an encoded message. Limiting the length of an encoded message limits the flexibility of the 
protocol, but it also provides for sanity checks by the receiver. 

I te  m Q u  o t e T e x t C o  n s t . j a  v a  

O public interface ItemOuoteTextConst { 
1 public static final String DEFAULT_ENCODING = "IS0_8859_I"; 
2 public static final int MAX_WIRE_LENGTH = 1024; 
3 } 

ItemQuoteEncoderText implements the text encoding. 

I t e m Q u o t e E n c o d e r T e x t . j a v a  

I te  m Q u  o t e T e x t C o  n s t . j a  v a  

7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

O import java.io.*; // for ByteArrayOutputStream and OutputStreamWriter 
1 
2 public class ItemQuoteEncoderText implements ItemOuoteEncoder, ItemOuoteTextConst { 

private String encoding; // Character encoding 

public ItemQuoteEncoderText() { 
encoding = DEFAULT_ENCODING; 

} 

public ItemQuoteEncoderText(String encoding) { 
this.encoding = encoding; 

} 

public byte[] encode(ItemQuote item) throws Exception { 
ByteArrayOutputStream buf = new ByteArrayOutputStream(); 
OutputStreamWriter out = new OutputStreamWriter(buf, encoding); 
out.write(item.itemNumber + .... ); 
if (item.itemDescription.indexOf('\n') != -i) 

throw new lOException("Invalid description (contains newline)"); 
out.write(item.itemDescription + "\n" + item.quantity + .... + 

item.unitPrice + .... ); 
if (item.discounted) 

out.write('d'); // Only include 'd' if discounted 
if (item.inStock) 

out.write('s'); // Only include 's' if in stock 
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26 
27 
28 
29 
30 
31 
32 

} 
} 

out.write( '\n'); 
out. flush() ; 
if (buf.size() > MAX_WIRE_LENGTH) 

throw new lOException("Bncoded length too long"); 
return buf. toByteArray() ; 

ItemQuoteEncoderText.java 

1. Constructors:  lines 6-12 
If no encoding is explicitly specified, we use the default encoding specified in the constant 
interface. 

2. encode() method:  lines 14-31 

�9 Create an output  buffer: lines 15-16 
A ByteArray0utputStream collects the bytes to be returned. Wrapping it in an Out- 
putWriter allows us to take advantage of the latter's methods for converting strings 
to bytes. 

�9 Write the first integer, followed by  a space delimiter: line 17 

�9 Check for delimiter: lines 18-19 
Make sure that the field delimiter is not contained in the field itself. If it is, throw an 
exception. 

�9 Output  itemDescription and other integers:  lines 20-21 

�9 Write the flag characters  if the b o o l e a n s  are true: lines 22-25 

�9 Write the del imiter  for the flag field: line 26 

�9 Flush the output  stream: lines 27-29 
Flush everything to the underlying stream, and call s ize()  to check that the resulting 
byte sequence is not too long. The length restriction allows the receiver to know how 
big a buffer is needed to receive into a DatagramPacket. (For stream communication, 
this is not necessary, but it is still convenient.) 

�9 Return the byte  array f rom the output  stream: line 30 

The decoding class ItemQuoteDecoderText simply inverts the encoding process. 

ItemQuoteDecoderText.java 

0 import java.io.*; // for InputStream, ByteArrayInputStream, and IOException 
1 import java.net.*; // for DatagramPacket 
2 
3 public class ItemQuoteDecoderText implements ItemQuoteDecoder, ItemQuoteTextConst { 
4 
5 private String encoding; // Character encoding 
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6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
3O 
31 
32 
33 
34 
35 
36 

public ItemOuoteDecoderText() { 
encoding = DEFAULT_ENCODING; 

} 

public ItemOuoteDecoderText(String encoding) { 
this.encoding = encoding; 

} 

public ItemQuote decode(InputStream wire) throws lOException { 
String itemNo, description, quant, price, flags; 
byte[] space = " ".getBytes(encoding); 
byte[] newline = "\n".getBytes(encoding); 
itemNo = new String(Framer.nextToken(wire, space), encoding); 
description = new String(Framer.nextToken(wire, newline), encoding); 
quant = new String(Framer.nextToken(wire, space), encoding); 
price = new String(Framer.nextToken(wire, space), encoding); 
flags = new String(Framer.nextToken(wire, newline), encoding); 
return new ItemQuote(Long.parseLong(itemNo), description, 

Integer.parselnt(quant), 
Integer.parselnt(price), 
(flags.indexOf('d') != -i), 
(flags.indexOf('s') != -i)); 

public ItemQuote decode(DatagramPacket p) throws lOException { 
ByteArraylnputStream payload = 

new ByteArraylnputStream(p.getData(), p.getOffset(), p.getLength()); 
return decode(payload); 

} 

ItemQuoteDecoderText.java 

1. Var iables  and  cons t ruc to r s :  lines 5-13 

�9 Encoding: line 5 

The encoding used  in the decoder  mus t  be the same as in the encoder! 

�9 Cons t ruc tors :  lines 7-13 
If no encoding is given at const ruct ion time, the default  defined in TtemQuoteDecoder- 

TextConst is used. 

2. S t ream decode(): lines 15-29 

�9 Conver t  delimiters" lines 17-18 

We get the encoded form of the delimiters  ahead of time, for efficiency. 
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�9 Call the nextToken() method for each field: lines 19-23 
For each field, we call Framer. nextToken() with the appropriate delimiter and convert 
the result according to the specified encoding. 

�9 Construct  ItemQuote: lines 24-28 
Convert to native types using the wrapper conversion methods and test for the 
presence of the flag characters in the last field. 

3. Packet decode(): lines 31-35 
Extract the data, convert to a stream, and call the stream decode() method. 

3.4.2 Combined Data Representation 

Our next encoding represents the integers of the ItemQuote as fixed-size, binary numbers: 
itemNumber as 64 bits, and quantity and unitPrice as 32 bits. It encodes the boolean values as 
flag bits, which occupy the smallest possible space in an encoded message. Also, the variable- 
length string itemDescription is encoded in a field with an explicit length indication. The binary 
encoding and decoding share coding constants in the ItemQuoteBinConst interface. 

Ite mQuote Bi nCon s t .ja va 

O public interface ItemQuoteBinConst { 
public static final String DEFAULT_ENCODING = "IS0_8859_i"; 
public static final int DISCOUNT_FLAG = 1 << 7; 
public static final int IN_STOCK_FLAG = 1 << 0; 
public static final int MAX_DESC_LEN = 255; 
public static final int MAX_WIRE_LENGTH = 1024; 

ItemQuoteEncoderBin implements the binary encoding. 

I temQuoteBinConst . java 

Ite mQuote E ncode r Bi n . java 

0 import java.io.*; 
I 

2 
3 
4 
5 
6 
7 
8 

9 

// for ByteArrayOutputStream and DataOutputStream 

public class ItemQuoteEncoderBin implements ItemQuoteEncoder, ItemQuoteBinConst { 

private String encoding; // Character encoding 

public ItemQuoteEncoderBin() { 
encoding = DEFAULT_ENCODING; 

} 
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public ItemQuoteEncoderBin(String encoding) { 
this.encoding = encoding; 

} 

public byte[] encode(ItemQuote item) throws Exception { 

ByteArrayOutputStream buf = new ByteArrayOutputStream(); 
DataOutputStream out = new DataOutputStream(buf); 
out.writeLong(item.itemNumber); 
out .writeInt(i tem.quanti ty);  
out .writeInt(i tem.unitPrice);  
byte flags = O; 
i f  (item.discounted) 

flags ]= DISCOUNT_FLAG; 
i f  (item.inStock) 

flags I= IN_STOCK_FLAG; 
out.writeByte(flags); 
byte[] encodedDesc = item.itemDescription.getBytes(encoding); 
if (encodedDesc.length > MAX_DESC_LEN) 

throw new IOException("Item Description exceeds encoded length limit"); 
out.writeByte(encodedDesc.length); 
out.write(encodedDesc); 
out.flush(); 
return buf.toByteArray(); 

I te m Qu o te  E n c o d e  r Bi n . ja  v a  

1. Constants,  variables,  and constructors:  lines 4-12 

2. encode(): lines 14-34 

�9 Set up Output: lines 16-17 
Again, a ByteArray0utputStream collects the bytes of the encoded message. Encapsu- 
lating the ByteArray0utputStream in a Data0utputStream allows use of its methods for 
writing binary integers. 

�9 Write integers" lines 18-20 
The writeLong() method writes the long's 8 bytes to the stream in big-endian order. 
Similarly, wr i teIn t  () outputs 4 bytes. 

�9 Write booleans as flags: lines 21-26 
Encode each boolean using a single bit in a flag byte. Initialize the flag byte to O, then 
set the appropriate bits to 1, if either discounted or inStock is true. (The bits are defined 
in the ItemQuoteBinConst interface to be the most and least significant bits of the byte, 
respectively.) Write the byte to the stream. 

�9 Convert  descr ipt ion string to bytes: line 2 7 
Although Data0utDutStream nrovides methods for writing Strings, it SUDDOrts only one 
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fixed encoding, namely, UTF-8. Because we want to support  alternative encodings, we 
convert the string to bytes explicitly. 

�9 Check description length: lines 28-29 
We are going to use an explicit length encoding for the string, with a single byte giving 
the length. The biggest value that byte can contain is 255 bytes, so the length of the 
encoded string must  not exceed 255 bytes. If it does, we throw an exception. 

�9 Write encoded string: lines 30-31 
Write the length of the encoded string, followed by the bytes in the buffer. 

�9 Flush output stream, return bytes: line 32 
Ensure that all bytes are flushed from the Data0utputStream to the underlying byte 
buffer. 

ItemQuoteDecoderBin implements the corresponding decoder function. 

I te  m Q u  o t e  D e c o d  e r Bi n . ja  v a  

0 import java.io.*; // for ByteArrayInputStream 
1 import java.net.*; // for DatagramPacket 
2 
3 public class ItemQuoteDecoderBin implements ItemQuoteDecoder, ItemQuoteBinConst { 
4 
5 private String encoding; // Character encoding 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

public ItemQuoteDecoderBin() { 
encoding = DEFAULT_ENCODING; 

} 

public ItemQuoteDecoderBin(String encoding) { 
this.encoding = encoding; 

} 

public ItemQuote decode(InputStream wire) throws lOException { 
boolean discounted, inStock; 
DatalnputStream src = new DataInputStream(wire); 
long itemNumber = src.readLong(); 
int quantity = src.readInt(); 
int unitPrice = src.readlnt(); 
byte flags = src.readByte(); 
int stringLength = src.read(); // Returns an unsigned byte as an int 
if (stringLength == -i) 

throw new EOFException(); 
byte[] stringBuf = new byte[stringLength]; 
src.readFully(stringBuf); 
String itemDesc = new String(stringBuf,encoding); 
return new ItemQuote(itemNumber,itemDesc, quantity, unitPrice, 

((flags & DISCOUNT_FLAG) == DISCOUNT_FLAG), 
((flags & IN_STOCK_FLAG) == IN_STOCK_FLAG)); 
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32 
33 
34 
35 
36 
37 
38 

public ItemQuote decode(DatagramPacket p) throws lOException { 
ByteArrayInputStream payload = 

new ByteArraylnputStream(p.getData(), p.getOffset(), p.getLength()); 
return decode(payload); 

} 

ItemQuoteDecoderBin.java 

1. Constants, variables, and constructors: lines 5-13 

2. Stream decode: lines 15-31 

�9 Wrap the InputStream: line 17 
Using the given InputStream, construct a DataInputStream so we can make use of the 
methods readLong() and readInt( )  for reading binary data types from the input. 

�9 Read integers: lines 18-20 
Read the integers back in the same order they were written out. The readLong() 
method reads 8 bytes and constructs a (signed) long using big-endian byte ordering. 
The readInt( )  method reads 4 bytes and does the same thing. Either will throw an 
EOFException if the stream ends before the requisite number of bytes is read. 

�9 Read flag byte: line 21 
The flag byte is next; the values of the individual bits will be checked later. 

�9 Read string length: lines 22-24 
The next byte contains the length of the encoded string. Note that we use the read() 
method, which returns the contents of the next byte read as an integer between 0 and 
255 (or -1), and that we read it into an int. If we read it into a byte  (which is signed), 
we would not be able to distinguish between the case where the length is 255 and 
the case where the stream ends prematurely--both  would return -1, since the signed 
interpretation of the 8-bit binary representation of 255 is -1. 

�9 Allocate buffer and read encoded string: lines 25-26 
Once we know how long the encoded string is, we allocate a buffer and call readFully() ,  
which does not return until enough bytes have been read to fill the given buffer. 
readFully()  will throw an F,0FException if the stream ends before the buffer is filled. 
Note the advantage of the length-prefixed String representation: bytes do not have to 
be interpreted as characters until you have them all. 

�9 Check flags: lines 29-30 
The expressions used as parameters in the call to the constructor illustrate the stan- 
dard method of checking whether a particular bit is set (equal to 1) in an integer type. 

3. Packet decode:dines 33-37 
Simply wrap the packer's data in a ByteArrayInputStream and pass to the stream-decoding 
method. 
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3.4.3 Sending and Receiving 
The encodings p re sen ted  above can be used  with bo th  Sockets and DatagramSockets. We show 
the TCP usage first. 

SendTCP.java 

0 import java . io .* ;  / /  for Input/0utputStream 
1 import java .ne t .* ;  / /  for Socket 
2 
3 public class SendTCP { 
4 
5 public s t a t i c  void main(String args[])  throws Exception { 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 } 

i f  (args . length != 2) / /  Test for correct  # of args 
throw new IllegalArgumentException("Parameter(s): <Destination> <Port>"); 

InetAddress destAddr = InetAddress. getByName(args[O]) ; 
int destPort = Integer.parselnt(args[l]); 

// Destination address 
// Destination port 

Socket sock = new Socket(destAddr, destPort) ; 

ItemQuote quote = new ItemQuote(1234567890987654L, "5mm Super Widgets", 
1000, 12999, true, false); 

// Send text-encoded quote 
ItemQuoteEncoder coder = new ItemQuoteEncoderText(); 
byte[] codedQuote = coder.encode(quote); 
System.out.println("Sending Text-Encoded Quote (" + 

codedQuote.length + " bytes): "); 
System.out.println(quote); 
sock.getOutputStream().write(codedQuote); 

// Receive binary-encoded quote 
ItemQuoteDecoder decoder = new ItemQuoteDecoderBin(); 
ItemQuote receivedQuote = decoder.decode(sock.getlnputStream()); 
System. out. println("Received Binary-Encode Quote :") ; 
System. out. println(receivedQuote) ; 

sock.close(); 

SendTCP.java 
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1. Socket setup:  line 13 

2. Send using text encoding: lines 18-24 

3. Receive using binary encoding: lines 26-30 

RecvTCP.java 

0 import java.io.*; 
1 import java.net.*; 
2 
3 
4 
5 
6 
7 
8 
9 

i0 
ii 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 clntSock, close() ; 
28 servSock, close() ; 
29 } 
30 } 

// for Input/OutputStream 
// for Socket and ServerSocket 

public class RecvTCP { 

public static void main(String args[]) throws Exception { 

if (args.length != i) // Test for correct # of args 
throw new IllegalArgumentException("Parameter(s): <Port>"); 

int port = Integer.parseInt(args[O]); // Receiving Port 

ServerSocket servSock = new ServerSocket(port) ; 
Socket clntSock = servSock, accept () ; 

// Receive text-encoded quote 
ItemQuoteDecoder decoder = new ItemQuoteDecoderText(); 
ItemQuote quote = decoder.decode(clntSock.getInputStream()) ; 
System.out.println("Received Text-Encoded Quote:"); 
System.out.println(quote); 

/ /  Repeat quote with binary encoding, adding 10 cents to the price 
ItemQuoteEncoder encoder = new ItemQuoteEncoderBin(); 
quote.unitPrice +: 10; / /  Add 10 cents to unit price 
System.out.println("Sending (b inary) . . .  "); 
clntSock, getOutputStream(), write (encoder. encode (quote)) ; 

RecvTCP.java 

1. Socket setup: line 12 

2. Accept client connection: line 13 
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3. Receive  and print out a text-encoded message:  lines 15-19 

4. Send a binary-encoded message:  lines 21-25 
Note that  before sending, we add 10 cents to the unit  price given in the original message.  

To demons t r a t e  the use of the encoding and decoding classes with datagrams,  we include 

a simple UDP sender  and receiver. Since this is very similar to the TCP code, we do not include 

any code description. 

SendUDP.java 

0 import java.net.*; 
1 import java.io.*; 
2 
3 
4 
5 
6 
7 
8 
9 

I0 
ii 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 sock. close() ; 

30 } 
31 } 

/ /  for DatagramSocket, DatagramPacket, and InetAddress 
/ /  for IOF.xception 

public class SendUDP { 

public static void main(String args[]) throws Exception { 

if (args.length != 2 && args.length != 3) // Test for correct # of args 
throw new lllegalArgumentException("Parameter(s)' <Destination>" + 

" <Port> [<encoding]") ; 

InetAddress destAddr = InetAddress. getByName (args [ 0 ] ) ; 
int destPort = Integer. parseInt (args [ i] ) ; 

// Destination address 
// Destination port 

ItemQuote quote = new ItemQuote(1234567890987654L, "5mm Super Widgets", 
1000, 12999, true,  fa l se) ;  

DatagramSocket sock = new DatagramSocket(); // UDP socket for sending 

ItemQuoteEncoder encoder = (args . length == 3 ? 
new ItemQuoteEncoderText(args[2]) ' 
new ItemQuoteEncoderText()); 

byte[] codedQuote = encoder.encode(quote); 

DatagramPacket message = new DatagramPacket(codedQuote, codedQuote.length, 
destAddr, destPort) ; 

sock. send(message) ; 

i 

SendUDP.java 
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RecvUDP.java 

7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

O import java.net.*; / /  for DatagramSocket and DatagramPacket 
1 import java.io.*;  / /  for 10Exception 
2 
3 public class RecvUDP implements ItemQuoteTextConst { 
4 
5 public s ta t ic  void main(String[] args) throws Exception { 
6 

i f  (args.length != 1 && args.length != 2) / /  Test for correct # of args 
throw new lllegalArgumentException("Parameter(s): <Port> [<encoding>]"); 

int port = Integer.parselnt(args[O]); // Receiving Port 

DatagramSocket sock = new DatagramSocket(port); / /  UDP socket for receiving 
ItemQuoteDecoder decoder = (args.length == 2 ? / /  Which encoding 

new ItemquoteDecoderText(args[1]) : 
new ItemQuoteDecoderText() ); 

DatagramPacket packet = new DatagramPacket( 
new byte [MAX_WIRE_LENGTH], MAX_WIRE_LENGTH) ; 

sock.receive(packet) ; 

ItemQuote quote = decoder.decode(packet); 
System.out.println(quote); 

sock.close(); 

RecvUDP.java 

3.5 Wrapping Up 

We have seen how Java data types can be encoded in different ways, and how messages can 
be constructed from various types of information. You may be aware that recent versions of 
Java include serialization capabilities--the Ser ia l izable  and Externalizable interfaces--which 
provide for instances of supporting Java classes to be converted to and from byte sequences 
very easily. It might seem that having these interfaces available would eliminate the need for 
what has been described above, and that is to some extent true. However, it is not always the 
case, for a couple of reasons. 

First, the encoded forms produced by Ser ia l izable  may not be very efficient. They may 
include information that is meaningless outside the context of the Java Virtual Machine (JVM), 
and may also incur overhead to provide flexibility that may not be needed. Second, Ser ia l izable  
and External izable cannot be used when a different wire format has already been specified-- 
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for example, by a standardized protocol. And finally, custom-designed classes have to provide 
their own implementations of the serialization interfaces anyway. 

A basic tenet of good protocol design is that the protocol should constrain the imple- 
mentor as little as possible and should minimize assumptions about the platform on which the 
protocol will be implemented. We therefore avoid the use of Ser ia l izable  and Externalizable 
in this book, and instead use more direct encoding and decoding methods. 

3.6 Exercises 

1. What happens if the Encoder uses a different encoding than the Decoder? 

2. Positive integers larger than 231- 1 cannot be represented as ints in Java, yet they can 
be represented as 32-bit binary numbers. Write a method to write such an integer to a 
stream. It should take a long and an OutputStream as parameters. 

3. Rewrite the binary encoder so that the Item Description is terminated by " \ r \n"  instead 
of being length encoded. Use Send/RecvTCP to test this new encoding. 

4. The nextToken() method of DelimitedInputStream assumes that either the delimiter or an 
end-of-stream (EoS) terminates a token; however, finding the EoS may be an error in some 
protocols. Rewrite nextToken() to include a second, boolean parameter. If the parameter 
value is true, then the EoS terminates a token without error; otherwise, the EoS generates 
an error. 
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Beyond the Basics 

The client and server examples in Chapter 2 demonstrate  the basic model for program- 
ming with sockets in Java. The next step is to apply these concepts in various programming 
models, such as multitasking, nonblocking I/O, and broadcasting. 

4.1 Multitasking 

Our basic TCP echo server from Chapter 2 handles one client at a time. If a client connects 
while another is already being serviced, the server will not echo the new client's data until 
it has finished with the current client, although the new client will be able to send data as 
soon as it connects. This type of server is known as an iterative server.  Iterative servers handle 
clients sequentially, finishing with one client before servicing the next. They work best for 
applications where each client requires a small, bounded amount  of server connection time; 
however, if the time to handle a client can be long, the wait experienced by subsequent  clients 
may be unacceptable. 

To demonstrate  the problem, add a 10-second sleep using Thread. sleep( ) after the Socket 
constructor call in TCPEchoClient. java and experiment with several clients simultaneously 
accessing the TCP echo server. Here the sleep operation simulates an operation that takes 
significant time, such as slow file or network I/O. Note that a new client must  wait for all 
already-connected clients to complete before it gets service. 

What we need is some way for each connection to proceed independently, without 
interfering with other connections. Java threads provide exactly that: a convenient mechanism 
allowing servers to handle many clients simultaneously. Using threads, a single application 
can work on several tasks concurrently. In our echo server, we can give responsibility for each 
client to an independently executing thread. All of the examples we have seen so far consist 
of a single thread, which simply executes the main() method. 

In this section we describe two approaches to coding concurren t  servers, namely, thread- 

per-client, where a new thread is spawned to handle each client connection, and thread pool, 
where a fixed, prespawned set of threads work together to handle client connections. 

61 
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4.1.1 Java Threads 

Java provides two approaches for performing a task in a new thread: 1) defimng a subclass 
of the Thread class with a run() method that performs the task, and instantiating it; or 2) 
defining a class that implements  the Runnable interface with a run() method that performs the 
task, and passing an instance of that class to the Thread constructor. In either case, the new 
thread does not begin execution until its s t a r t ( )  method is invoked. The first approach can 
only be used for classes that do not already extend some other class; therefore, we focus on the 
second approach, which is always applicable. The Runnable interface contains a single method 
prototype: 

public void run(); 

When the s t a r t  () method of an instance of Thread is invoked, the JVM causes the in- 
stance's run() method to be executed in a new thread, concurrently with all others. Meanwhile, 
the original thread returns from its call to s t a r t  () and continues its execution independently. 
(Note that directly calling the run() method of a Thread or Runnable instance has the normal 
procedure-call semantics: the method is executed in the caller's thread.) The exact interleaving 
of thread execution is determined by several factors, including the implementat ion of the JVM, 
the load, the underlying OS, and the host configuration. For example, on a uniprocessor sys- 
tem, threads share the processor sequentially; on a multiprocessor system, multiple threads 
from the same application can run simultaneously on different processors. 

In the following example, ThreadExample. java implements  the Runnable interface with a 
run() method that repeatedly prints a greeting to the system output  stream. 

ThreadExample.java 

0 public class ThreadExample implements Runnable { 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

private String greeting; / /  Message to print to console 

public ThreadExample(String greeting) { 
this.greeting = greeting; 

} 

public void run() { 
for (;;) { 

System.out.println(Thread.currentThread().getName() + ": " + greeting); 
try { 

Thread.sleep((long) (Math.random() * i00)); // Sleep 0 to i00 milliseconds 
} catch (InterruptedException e) {} // Will not happen 

} 

public static void main(String[] args) { 
new Thread (new ThreadExample ("Hello")). start ( ) ; 
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19 
20 
21 
22 

} 
} 

new Thread(new ThreadExample("Aloha")).start(); 
new Thread(new ThreadExample("Ciao")).start(); 

Th read Exam pie.java 

1. Declaration of implementa t ion  of the Runnable interface: line 0 
Since ThreadExample implements  the Runnable interface, it can be passed to the construc- 
tor of Thread. If ThreadExample fails to provide a run() method, the compiler will complain. 

2. Member  var iables  and constructor:  lines 2-6 
Each instance of ThreadExample contains its own greeting string. 

3. run ( ): lines 8-15 
Loop forever performing: 

�9 Print the thread  name and instance greeting: line 10 
The static method Thread.currentThread() returns a reference to the thread from 
which it is called, and getName() returns a string containing the name of that thread. 

�9 Suspend thread: lines 11-13 
After printing its instance's greeting message, each thread sleeps for a random amount  
of time (between 0 and 100 milliseconds) by calling the static method Thread. sleep(),  
which takes the number  of milliseconds to sleep as a parameter.  Math. random() returns 
a random double between 0.0 and 1.0. Thread. sleep() can be interrupted by another 
thread, in which case an InterruptedException is thrown. Our example does not include 
an interrupt call, so the exception will not happen in this application. 

4. main(): lines 17-21 
Each of the three s tatements  in main() does the following: 1) creates a new instance 
of ThreadExample with a different greeting string, 2) passes this new instance to the 
constructor of Thread, and 3) calls the new Thread instance's s t a r t  () method. Each thread 
independently executes the run() method of ThreadExample, while the main() thread 
terminates.  Note that the JVM does not terminate until all nondaemon (see Threads API) 
threads terminate. 

Upon execution, an interleaving of the three greeting messages is printed to the console. 
The exact interleaving of the numbers  depends upon the factors mentioned earlier. 

4.1.2 Server Protocol 

Since the two server approaches we are going to describe (thread-per-client and thread pool) 
are independent  of the particular client-server protocol, we want to be able to use the same 
protocol code for both. The code for the echo protocol is given in the class EchoProtocol, 
which encapsulates the implementat ion of the server side of the echo protocol. The idea is 
that the server creates a separate instance of EchoProtocol for each connection, and protocol 
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execut ion begins when  run() is called on an instance.  The code in run() is a lmost  identical  to 
the connec t ion  handl ing code in TCPEchoServer. java, except  that  a logging capabili ty (descr ibed 
shortly) has been  added.  The class imp lemen t s  the Runnable interface, so we can create a th read  
that  i ndependen t ly  executes run() ,  or we can invoke run()  directly. 

EchoProtocol.java 
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import java.net. *; 
import java. io. * ; 
import java.util. *; 

// for Socket 
// for lOException and Input/OutputStream 
// for ArrayList 

class EchoProtocol implements Runnable { 
static public final int BUFSIZE = 32; // Size (in bytes) of I/O buffer 

private Socket clntSock; 
private Logger logger; 

// Connection socket 
// Logging facility 

public EchoProtocol(Socket clntSock, Logger logger) { 
this.clntSock = clntSock; 
this.logger = logger; 

} 

public void run() { 
ArrayList entry = new ArrayList(); 
entry.add("Client address and port = " + 

clntSock.getlnetAddress().getHostAddress() + ":" + 
clntSock.getPort()); 

entry.add("Thread = " + Thread.currentThread().getName()); 

try { 
// Get the input and output I/O streams from socket 
InputStream in = clntSock, getInputStream() ; 
OutputStream out = clntSock.getOutputStream() ; 

int recvUsgSize; // Size of received message 
int totalBytesEchoed = 0; // Bytes received from client 
byte[] echoBuffer = new byte[BUFSIZE]; // Receive Buffer 
// Receive until client closes connection, indicated by -i 
while ((recvUsgSize = in.read(echoBuffer)) != -i) { 

out.write(echoBuffer, O, recvMsgSize); 
totalBytesEchoed += recvUsgSize; 

} 

entry.add("Client finished; echoed " + totalBytesEchoed + " bytes."); 
} catch (IOException e) { 

entry.add("Exception = " + e.getMessage()); 
} 



m 4.1 Multitasking 65 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

} 
} 

try { // Close socket 
clntSock.close(); 

} catch (IOException e) { 
entry.add("Exception = " + e.getMessage()); 

} 

logger, writeEntry(entry) ; 

EchoProtocol.java 

1. Declaration of implementa t ion  of the Runnable interface: line 4 

2. Member variables and constructor:  lines 7-13 
Each instance of EchoProtocol contains a socket for the connection and a reference to the 
logger. 

3. run(): lines 15-48 
Implement the echo protocol: 

�9 Write the client and thread informat ion to a buffer: lines 16-20 
ArrayList is a dynamically sized container of Objects. The add() method of ArrayList 
inserts the specified object at the end of the list. In this case, the inserted object is a 
String. Each element of the ArrayList represents a line of output  to the logger. 

�9 Execute the echo protocol: lines 22-45 

�9 Write the elements  (one per line) of the ArrayList instance to the logger: line 47 

The logger allows for synchronized reporting of thread creation and client completion, 
so that entries from different threads are not interleaved. This facility is defined by the Logger 
interface, which has methods for writing strings or object collections. 

Logger.java 

0 import java.util.*; // for Collection 
1 

2 public interface Logger { 
3 public void writeEntry(Collection entry); // Write list of lines 
4 public void writeEntry(String entry); // Write single line 
5 } 

Logger.java 
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wr i teEnt ry( )  logs the given string or object collection. How it is logged depends  on the 
implementat ion.  One possibility is to send the log messages  to the console. 

Con soleLogge r ja va 
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import java.util.*; // for Collection and Iterator 

class ConsoleLogger implements Logger { 
public synchronized void writeEntry(Collection entry) { 

for (Iterator line = entry.iterator(); line.hasNext();) 
System.out.println(line.next()); 

System.out.println(); 
} 

public synchronized void writeEntry(String entry) { 
System. out. println(entry) ; 
System. out. println() ; 

} 

Con sole Log ge r .ja va 

Another  possibility is to write the log messages  to a file specified in the constructor,  as 
in the following: 

Fi leLogger . java 

0 import java.io.*; 
1 import java.util.*; 
2 
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// for PrintWriter and FileWriter 
// for Collection and Iterator 

class FileLogger implements Logger { 

PrintWriter out; // Log file 

public FileLogger(String filename) throws lOException { 
out = new PrintWriter(new FileWriter(filename), true) ; 

} 

public synchronized void writeEntry(Collection entry) { 
for (Iterator line = entry.iterator() ; line.hasNext();) 

out. println(line, next ()) ; 
out. println() ; 

} 

// Create log file 
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public synchronized void writeEntry(String entry) { 
out. println(entry) ; 
out. println() ; 

} 

Fi leLogger. java 

We are now ready to in t roduce some different approaches  to concurrent  servers. 

4.1.3 Thread-per-Client 
In a thread-per-client server, a new thread is created to handle  each connection. The server 
executes a loop that  runs  forever, l istening for connect ions on a specified por t  and repeatedly  
accepting an incoming connect ion f rom a client and then spawning a new thread  to handle 
that  connection. 

TCPEchoServerThread. j ava implements  the thread-per-cl ient  architecture.  It is very similar 

to the iterative server, using a single indefinite loop to receive and process  client requests .  The 

main difference is that  it creates a thread to handle the connect ion ins tead of handling it 
directly. (This is possible because EchoProtoeol implements  the Runnable interface.) 

TCP Ec hoSe rye rTh read .ja va 

0 import java.net.*; // for Socket, ServerSocket, and InetAddress 
1 import java.io.*; // for IOException and Input/0utputStream 
2 
3 public class TCPEchoServerThread { 
4 
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public s t a t i c  void main(String[] args) throws 10Exception { 

if (args.length != I) // Test for correct # of args 
throw new IllegalArgumentException("Parameter(s) : <Port>") ; 

int echoServPort = Integer.parselnt(args[O]); // Server port 

// Create a server socket to accept client connection requests 
ServerSocket servSock = new ServerSocket (echoServPort) ; 

Logger logger = new ConsoleLogger() ; // Log messages to console 

// Run forever, accepting and spawning threads to service each connection 
for (; ;) { 

try { 
Socket clntSock = servSock.accept(); // Block waiting for connection 
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} 
} 

EchoProtocol protocol = new EchoProtocol(clntSock, logger); 

Thread thread = new Thread(protocol); 

thread.start(); 

logger.writeEntry("Created and started Thread = " + thread.getName()); 

} catch (lOException e) { 

logger.writeEntry("Exception = " + e.getMessage()); 
} 

} 
/* NOT REACHED */ 

TCP EchoSe rve rTh read .ja va  

1. P a r a m e t e r  pa r s ing  and server  s o c k e t / l o g g e r  creation: lines 7-15 

2. Loop forever ,  hand l ing  incoming  connec t ions :  lines 17-28 

�9 Accep t  an  incoming  connect ion" line 20 

�9 Create  a p ro toco l  ins tance  to handle  n e w  connect ion:  line 21 
Each connect ion  gets its own instance of EchoProtocol. Each instance mainta ins  the 
state of its part icular  connection.  The echo protocol  has little internal  state, but  more  
sophis t ica ted  protocols  may require substant ia l  amoun t s  of state. 

�9 Create,  start ,  and  log a n e w  thread for the connec t ion :  lines 22-24 
Since EchoProtocol implements  the Runnable interface, we can give our new instance 
to the Thread constructor ,  and the new thread  will execute the run()  m e t h o d  of 
EchoProtocol when  s t a r t ( )  is invoked. The getName() m e t h o d  of Thread re turns  a 
S t r ing  containing a name for the new thread. 

�9 Handle  excep t ion  f r o m  accept() :  lines 25-27 
If some I/O error  occurs, accept () throws an IOException. In our earlier iterative echo 
server (TCPEchoServer. java), the except ion is not  handled,  and such an error  te rminates  
the server. Here we handle  the except ion by logging the error  and cont inuing execution. 

4.1.4 Factoring the Server 

Our th readed  server does what  we want  it to, but  the code is not  very reusable  or extensible. 
First, the echo protocol  is hard-coded in the server. What if we want  an HTTP server instead? We 
could write an HTTPProtocol and replace the ins tant ia t ion of EchoProtocol in main(); however,  
we would  have to revise main() and have a separate  main  class for each different protocol  that  
we implement .  

We want  to be able to instant iate  a protocol  instance of the appropr ia te  type for each 
connect ion  wi thout  knowing any specifics about  the protocol,  including the name of a con- 
structor.  This p rob lem-- ins tan t i a t ing  an object wi thout  knowing details about  its type- -a r i ses  
f requent ly  in object-or iented programming,  and there is a s tandard  solution: use a factory. A 
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factory object supplies instances of a particular class, hiding the details of how the instance 
is created, such as what constructor is used. 

For our protocol factory, we define the ProtocolFactory interface to have a single method, 
createProtocol() ,  which takes Socket and Logger instances as arguments and returns an 
instance implementing the desired protocol. Our protocols will all implement the Runnable 
interface, so that once we have an instance we can simply call run() (or s t a r t ( )  on a Thread 
constructed from the protocol instance) to execute the protocol for that connection. Thus, our 
protocol factory returns instances that implement the Runnable interface: 

ProtocolFactory.java 

0 import java.net.*; // for Socket 
1 

2 public interface ProtocolFactory { 
3 public Runnable createProtocol(Socket clntSock, Logger logger); 
4 } 

Protocol Factory.java 

We now need to implement a protocol factory for the echo protocol. The factory class is 
simple. All it does is return a new instance of EchoProtocol whenever createProtocol  () is called. 

EchoProtocolFactory.java 

0 import java.net.*; // for Socket 
1 

2 public class EchoProtocolFactory implements ProtocolFactory { 
3 public Runnable createProtocol(Socket clntSock, Logger logger) { 
4 return new EchoProtocol(clntSock, logger); 
5 } 
6 } 

EchoProtocolFactory.java 

We have factored out some of the details of protocol instance creation from our server, 
so that the various iterative and concurrent servers can reuse the protocol code. However, 
the server approach (iterative, thread-per-client, etc.) is still hard-coded in the main(). These 
server approaches deal with how to dispatch each connection to the appropriate handling 
mechanism. To provide greater extensibility, we want to factor out the dispatching model from 
the main() of TCPEchoServerThread. java so that we can use any dispatching model with any 
protocol. Since we have many potential dispatching models, we define the Dispatcher interface 
to hide the particulars of the threading strategy from the rest of the server code. It contains a 
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single method, startDispatching(),  which tells the dispatcher to start handling clients accepted 
via the given ServerSocket, creating protocol instances using the given ProtocolFactory, and 
logging via the given Logger. 

Dispatcher.java 

0 import java.net.*; // for ServerSocket 
1 
2 public interface Dispatcher { 
3 public void startDispatching(ServerSocket servSock, Logger logger, 
4 ProtocolFactory protoFactory) ; 
5 } 

Dispatcher.java 

To implement the thread-per-client dispatcher, we simply pull the for loop from main() 
in TCPEchoServerThread. java into the startDispatching() method of the new dispatcher. The 
only other change we need to make is to use the protocol factory instead of instantiating a 
particular protocol. 

Th read PerDi s patc he r .ja va 
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0 import java.net.*; // for Socket and ServerSocket 
1 import java.io.*; // for IOException 
2 
3 class ThreadPerDispatcher implements Dispatcher { 
4 
5 public void startDispatching(ServerSocket servSock, Logger logger, 
6 ProtocolFactory protoFactory) { 

// Run forever, accepting and spawning threads to service each connection 
for (;;) { 

try { 
Socket clntSock = servSock.accept(); // Block waiting for connection 
Runnable protocol = protoFactory.createProtocol(clntSock, logger); 
Thread thread = new Thread(protocol); 
thread.start(); 
logger.writeEntry("Created and started Thread = " + thread.getName()); 

} catch (IOException e) { 
logger.writeEntry("Exception = " + e.getMessage()); 

} 
} 
/* NOT REACHED */ 

} 
} 

ThreadPerDispatcher. java 
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We demonstrate the use of this dispatcher and protocol factory in ThreadMain. java, which 
we introduce after discussing the thread-pool approach to dispatching. 

4.1.5 Thread Pool 

Every new thread consumes system resources: spawning a thread takes CPU cycles and each 
thread has its own data structures (e.g., stacks) that consume system memory. In addition, 
the scheduling and context switching among threads creates extra work. As the number 
of threads increases, more and more system resources are consumed by thread overhead. 
Eventually, the system is spending more time dealing with thread management  than with 
servicing connections. At that point, adding an additional thread may actually increase client 
service time. 

We can avoid this problem by limiting the total number of threads and reusing threads. 
Instead of spawning a new thread for each connection, the server creates a thread pool on start- 
up by spawning a fixed number of threads. When a new client connection arrives at the server, 
it is assigned to a thread from the pool. When the thread finishes with the client, it returns to 
the pool, ready to handle another request. Connection requests that arrive when all threads in 
the pool are busy are queued to be serviced by the next available thread. 

Like the thread-per-client server, a thread-pool server begins by creating a ServerSocket. 
Then it spawns N threads, each of which loops forever, accepting connections from the 
(shared) ServerSocket instance. When multiple threads simultaneously call accept() on the 
same ServerSocket instance, they all block until a connection is established. Then the system 
selects one thread, and the Socket instance for the new connection is returned only in that 
thread. The other threads remain blocked until the next connection is established and another 
lucky winner is chosen. 

Since each thread in the pool loops forever, processing connections one by one, a thread- 
pool server is really a set of iterative servers. Unlike the thread-per-client server, a thread-pool 
thread does not terminate when it finishes with a client. Instead, it starts over again, blocking 
on accept (). 

A thread pool is simply a different model for dispatching connection requests, so all we 
really need to do is write another dispatcher. PoolDispatcher. java implements our thread-pool 
dispatcher. To see how the thread-pool server would be implemented without dispatchers and 
protocol factories, see TCPEchoServerPool. java on the book's Web site. 

Pool Di s patc he r . ja va  

import java.net. *; 
import java. io. * ; 

// for Socket and ServerSocket 
// for lOException 

class PoolDispatcher implements Dispatcher { 

static final String NUMTHREADS = "8"; 
static final String THREADPROP = "Threads"; 

// Default thread-pool size 
// Name of thread property 

private int numThreads; // Number of threads in pool 
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public PoolDispatcher() { 
// Get the number of threads from the System properties or take the default 
numThreads = Integer. parselnt (System. getProperty(THREADPROP, NUMTHREADS)) ; 

} 

public void startDispatching(final ServerSocket servSock, final Logger logger, 
final ProtocolYactory protoFactory) { 

// Create N-I threads, each running an iterative server 
for (int i = O; i < (numThreads - i); i++) { 

Thread thread = new Thread() { 
public void run() { 

dispatchLoop(servSock, logger, protoFactory); 
} 

}; 
thread.start(); 
logger.writeEntry("Created and started Thread = " + thread.getName()); 

logger.writeEntry("Iterative server starting in main thread " + 
Thread. currentThread(), getName ()) ; 

// Use main thread as Nth iterative server 
dispatchLoop(servSock, logger, protoFactory) ; 
/* NOT REACHED */ 

private void dispatchLoop(ServerSocket servSock, Logger logger, 
ProtocolFactory protoFactory) { 

// Run forever, accepting and handling each connection 
for (;;) { 

t ry  { 
Socket clntSock = servSock.accept(); / /  Block waiting for connection 
Runnable protocol = protoFactory.createProtocol(clntSock,  logger); 
protocol . run() ;  

} catch (lOException e) { 
logger.writeEntry("Exception = " + e.getMessage()); 

} 

PoolDispatcher.java 

1. PoolDispatcher() :  lines 10-13 
The thread-pool  solut ion needs  an addit ional  piece of information:  the n u mb e r  of threads  
in the pool. We need  to provide this in format ion  to the instance before  the thread  pool  is 
const ructed.  We could pass the number  of threads  to the constructor ,  but  this limits our 
opt ions  because  the cons t ruc tor  interface varies by dispatcher.  We use sys tem proper t ies  
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to specify the number of threads to PoolDispatcher. The call to System.getProperty() 
returns a String containing the value of the "Threads" property or the default value if 
the property is not defined. The string is then converted to an integer. (See the discussion 
of system properties in the text below.) 

2. s tar tDispatching() :  lines 15-32 

�9 Spawn N -  1 threads  to execute dispatchLoop(): lines 17-26 
For each loop iteration, an instance of an anonymous class that extends Thread is cre- 
ated. When the s t a r t  () method is called, the thread executes the run() method of this 
anonymous class. The run() method simply calls dispatchLoop(), which implements 
an iterative server. 

�9 Execute dispatchLoop() in the main thread: lines 27-30 
The original calling thread serves as the Nth thread of the pool. 

3. dispatchLoop(): lines 34-46 

�9 Accept an incoming connection: line 39 
Since there are N threads executing dispatchLoop(), up to N threads can be blocked 
on servSock's accept (), waiting for an incoming connection. The system ensures that 
only one thread gets a Socket for any particular connection. If no threads are blocked 
on accept() when a client connection is established, the new connection is queued 
until the next call to accept() (see Section 5.4.1). 

�9 Create a protocol  instance to handle new connection: line 40 

�9 Run the protocol  for the connection: line 41 

�9 Handle except ion f rom accept(): lines 42-44 

Since threads are reused, the thread-pool solution only pays the overhead of thread 
creation N times, irrespective of the total number of client connections. Since we control the 
maximum number of simultaneously executing threads, we can control scheduling overhead. 
Of course, if we spawn too few threads, we can still have clients waiting a long time for 
service; therefore, the size of the thread pool should be tuned so that client connection time 
is minimized. 

In PoolDispatcher. java, we used system properties to specify the number of threads in 
the pool. Here, we give a brief description of how system properties work.. The System class 
contains a Propert ies  instance that holds a set of externally defined property/value pairs (e.g., 
class path and JVM version). We can also define our own properties. For example, we might 
want to know a user's favorite color. We could place this information in the "user.favoritecolor" 
property. The following code demonstrates how to fetch and print out all system properties, 
using the getProper t ies()  method of System, and how to find a particular property value, 
using System.getProperty(). The second parameter to getProperty()  specifies a value ("None"), 
to be used if the property is not found. (See Lis tProper t ies .  java on the book's Web site for a 
complete example.) 

System.getProperties().list(System.out); // Print all System properties 
System.out.println("\nFavorite Color: " + // Print favorite color property 

System. getProperty("user, favoritecolor", "None") ) ; 
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When running Java programs from the command line, we simply use the -D option to set 
a property value. For example, to set the property "user.favoritecolor" to "blue," we would try 

% java-Duser.favoritecolor=blue ListProperties 

Note that properties are typically defined with hierarchical (general to specific) names, such as 
java.class.path. For brevity's sake, we did not use such a name, but in a production application 
hierarchical names should be used to avoid collisions. 

The main() of ThreadUain. java demonstrates  how to use either the thread-per-client or 
thread-pool server. This application takes three parameters:  1) the port number  for the server, 
2) the protocol name (use "Echo" for the echo protocol), and 3) the dispatcher name (use 
"ThreadPer" or "Pool" for the thread-per-client and thread-pool servers, respectively). The 
number  of threads for the thread pool defaults to 8. However, this can be changed to 4, for 
example, by setting a system property using the -DThreads=4 option to the JVM. 

% java-DThreads=4 ThreadMain 5000 Echo Pool 

Note that you must compile EchoProtocolFactory. java, ThreadPerDispatcher. java, and Pool- 
Dispatcher.java explicitly before running ThreadMain.java. Failure to do so will result in a 

ClassNotFoundException. Those classes are not referenced by name in ThreadMain (that's the 

idea!), so they will not be automatically compiled with ThreadMain. 

ThreadMain.java 
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import java.net. *; 
import java. io. * ; 

// for ServerSocket 
// for IOException 

public class ThreadMain { 

public static void main(String[] args) throws Exception { 

if (args.length != 3) // Test for correct # of args 
throw new lllegalArgumentException("Parameter(s) : [<Optional properties>]" 

+ " <Port> <Protocol> <Dispatcher>"); 

int servPort = Integer.parselnt(args[0]); 
String protocolName = args[l] ; 
String dispatcherName = args[2]; 

// Server Port 
// Protocol name 
// Dispatcher name 

ServerSocket servSock = new ServerSocket(servPort); 
Logger logger = new ConsoleLogger(); // Log messages to console 
ProtocolYactory protoFactory = (ProtocolFactory) // Get protocol factory 

Class.forName(protocolName + "ProtocolFactory").newlnstance(); 
Dispatcher dispatcher = (Dispatcher) // Get dispatcher 

Class.forName(dispatcherName + "Dispatcher").newlnstance(); 
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} 
} 

dispatcher, startDispatching(servSock, logger, protoFactory) ; 
/* NOT REACHED */ 

ThreadMain.java 

1. Application setup and parameter parsing: lines O-13 

2. Create server  socket and logger: lines 15-16 

3. Instantiate a protocol factory: lines 17-18 
The protocol name is passed as the second parameter. We adopt the naming convention 
of <ProtocolName>ProtocolFactory for the class name of the factory for the protocol 
name <ProtocolName>. For example, if the second parameter is "Echo," the corresponding 
protocol factory is EchoProtocolFactory. The static method Class.forName() takes the 
name of a class and returns a Class object. The newInstance() method of Class creates 
a new instance of the class using the parameterless constructor, protoFactory refers to 
this new instance of the specified protocol factory. 

4. Instantiate a dispatcher: lines 19-20 
The dispatcher name is passed as the third parameter. We adopt the naming convention 
of <DispatcherType>Dispatcher for the class name of the dispatcher of type <Dispatcher- 
Type>. For example, if the third parameter is "ThreadPer," the corresponding dispatcher 
is ThreadPerDispatcher. dispatcher refers to the new instance of the specified dispatcher. 

5. Start dispatching clients: line 22 

ThreadMain. java makes it easy to use other protocols and dispatchers. The book's Web 
site contains some additional examples. For example, see TimeProtocolFactory.java for an 
implementation of the time protocol where clients can get the server time by simply connecting 
to the server on the time port. 

See GUIThreadUain. j ava on the book's Web site for an example of server integration with 
a GUI. This application lists the currently connected client. You will need a protocol-specific 
GUI implementation (see GUIEchoProtocolFactory. java). 1 The parameters to this application 
are the same as for ThreadMain. For this application to work, you must  specify the GUI version 
of the protocol factory on the command line (e.g., GUIEcho instead of Echo). 

4.2 Nonblocking I/O 

Socket I/O calls may block for several reasons. Data input methods read() and receive()  block 
if data is not available. A wri te( )  on a TCP socket may block if there is not sufficient space to 
buffer the transmitted data. The accept () method of ServerSocket and the Socket constructor 

1 Clearly, more decomposition is possible, but it is beyond the scope of this book. 
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both block until a connection has been established (see Section 5.4). Meanwhile, long round- 
trip times, high error rate connections, and slow (or deceased) servers may cause connection 
establishment to take a long time. In all of these cases, the method returns only after the request 
has been satisfied. Of course, a blocking method call halts the execution of the application. 

What about a program that has other tasks to perform while waiting for call com- 
pletion (e.g., updating the "busy" cursor or responding to user requests)? These programs 
may have no time to wait on a blocked method call. Or what about lost UDP datagrams? In 
UDPEchoClientTimeout. java, the client sends a datagram to the server and then waits to receive 
a response. If a datagram is not received before the timer expires, receive () unblocks to allow 
the client to handle the datagram loss. Here we describe the general nonblocking approaches 
(where they exist) for various I/O methods. (Note: As this book goes to press, additional non- 
blocking I/O features have been proposed for version 1.4 of the JDK. Because these features 
are still under development, we do not cover them here.) 

4.2.1 accept(), read(), and receive() 

For these methods, we can set a bound on the maximum time (in milliseconds) to block, using 
the setSoTimeout() method of Socket, ServerSocket, and DatagramSocket. If the specified time 
elapses before the method returns, an InterruptedIOException is thrown. For Socket instances, 
we can also use the avai lable( )  method of the socket's InputStream to check for available data 
before calling read (). 

4.2.2 Connecting and Writing 

The Socket constructor attempts to establish a connection to the host and port  supplied as 
arguments, blocking until either the connection is established or a system-imposed timeout 
occurs. Unfortunately, the system-imposed timeout is long (on the order of minutes), and Java 
does not provide any means of shortening it. 

A wri te( )  call blocks until the last byte written is copied into the TCP implementation's 
local buffer; if the available buffer space is smaller than the size of the write, some data must  be 
successfully transferred to the other end of the connection before the call to wri te()  will return 
(see Section 5.1 for details). Thus, the amount of time that a wri te()  may block is controlled 
by the receiving application. Unfortunately, Java currently does not provide any way to cause 
a wri te()  to time out, nor can it be interrupted by another thread. Therefore, any protocol 
that sends a large enough amount of data over a Socket instance can block for an unbounded 
amount  of time. (See Section 5.2 for further discussion on the consequences.) 

4.2.3 Limiting Per-Client Time 

Suppose we want to implement the Echo protocol with a limit on the amount of time taken to 
service each client. That is, we define a target, TIMELIMIT, and implement the protocol in such 
a way that after TIMELIMIT milliseconds, the protocol instance is terminated. One approach 
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simply has the protocol  instance keep track of the amoun t  of the remaining time, and use 
setSoTimeout () to ensure  that  no read()  call blocks for longer than  that  time. Unfortunately,  
there is no way to b o u n d  the dura t ion  of a wr i t e ( )  call, so we cannot  really guarantee  that  the 
time limit will hold. TimelimitEchoProtocolFactory. java implements  this approach.  

TimelimitEchoProtocolFactory.java 

0 import java .net .* ;  
1 import j ava . io .* ;  
2 import j a v a . u t i l . * ;  
3 
4 
5 
6 
7 
8 

9 } 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

/ /  for Socket 
/ /  for IOException and Input/OutputStream 
/ /  for ArrayList 

public class TimelimitEchoProtocolFactory implements ProtocolFactory { 

public Runnable createProtocol(Socket clntSock, Logger logger) { 
return new TimelimitEchoProtocol(clntSock, logger); 

} 

class TimelimitEchoProtocol implements Runnable { 
private static final int BUFSIZE = 32; // Size (in bytes) of receive buffer 
private static final String TIMELIMIT = "i0000"; // Default time limit (ms) 
private static final String TIMELIMITPROP = "Timelimit"; // Thread property 

private int timelimit; 
private Socket clntSock; 
private Logger logger; 

public TimelimitEchoProtocol(Socket clntSock, Logger logger) { 
this.clntSock = clntSock; 
this.logger = logger; 
/ /  Get the time l imit  from the System propert ies  or take the default  
t imelimit = Integer.parseInt(System.getProperty(TIMELIMITPROP, TIMELIMIT)); 

} 

public void run() { 
ArrayList entry = new ArrayList(); 
entry.add("Client address and port = " + 

clntSock.getInetAddress().getHostAddress() + ":" + 
clntSock.getPort ( ) ) ;  

entry.add("Thread = " + Thread'currentThread() 'getName()); 

t ry  { 
/ /  Get the input and output I/O streams from socket 
InputStream in = clntSock, getInputStream() ; 
OutputStream out = clntSock, getOutputStream() ; 
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39 
40 
41 
42 
43 
44 
45 
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48 
49 
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53 
54 
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56 
57 
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59 
6O 
61 
62 
63 
64 
65 
66 
67 
68 
69 
7O 
71 

} 
} 

int recvMsgSize; // Size of received message 
int totalBytesEchoed = O; // Bytes received from client 
byte[] echoBuffer = new byte[BUFSIZE]; // Receive buffer 
long endTime = System.currentTimeMillis() + timelimit; 
int timeBoundMillis = timelimit; 

clntSock, setSoTimeout (timeBoundMillis) ; 

// Receive until client closes connection, indicated by -i 
while ((timeBoundMillis > O) && // catch zero values 

((recvMsgSize = in.read(echoBuffer)) != -i)) { 
out.write(echoBuffer, O, recvMsgSize); 
totalBytesEchoed += recvMsgSize; 
timeBoundMillis = (int) (endTime - System.currentTimeMillis()) ; 
clntSock.setSoTimeout(timeBoundMillis); 

} 

entry.add("Client finished; echoed "+ totalBytesEchoed + " bytes,"); 
} catch (InterruptedlOException dummy) { 

entry.add("Read timed out"); 
} catch (lOException e) { 

entry,add("Exception = " + e,getMessage()); 
} 

try { // Close socket 
clntSock.close(); 

} catch (IOException e) { 
entry.add("Exception = "+ e.getMessage()); 

} 

logger, writeEntry(entry) ; 

TimelimitEchoProtocolFactory.java 

TimelimitF, choProtocolFactory.java contains both  the factory and protocol instance 
classes. The factory is exactly like EchoProtocolFactory, with the exception that  it instant iates  
TimelimitEehoProtoeol instead of EchoProtocol. The TimelimitEchoProtoeol class is similar to 
the EchoProtocol class, except that  it a t tempts  to bound  the total time an echo connection can 
exist. The default  time is 10 seconds; the total number  of milliseconds per connection can be 
set using the "Timelimit" property.  

Another  approach  to limiting client service time involves starting two threads  per client: 
one that  executes the protocol and another  that  acts as a "watchdog," sleeping until TIMELIMIT 
mill iseconds pass  or the other (protocol) thread finishes and interrupts  it, whichever comes 
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first. If the watchdog awakens and the protocol thread has not finished, the watchdog termi- 
nates the protocol thread. Unfortunately, threads killing other threads is deprecated in Java, 
because the victim thread's  abrupt termination might leave some objects in an inconsistent or 
unrecoverable state. Since there is no other way to interrupt a blocking wri te( ) ,  this solution 
usually will not work. 

Finally, note that we could at tempt  to use nonblocking I/O instead of threads. Be warned, 
however, that these solutions typically involve polling loops employing busy-waiting. While 
adding threads does consume extra CPU and memory resources, the overhead is generally 
small, especially compared to that of busy-waiting. 

4.3 Multiple Recipients 

So far all of our sockets have dealt with communication between exactly two entities, usually 
a server and a client. Such one-to-one communication is sometimes called unicast. Some 
information is of interest to multiple recipients. In such cases, we could unicast a copy of 
the data to each recipient, but this may be very inefficient. Unicasting multiple copies over a 
single network connection wastes bandwidth by sending the same information multiple times. 
In fact, if we want to send data at a fixed rate, the bandwidth of our network connection defines 
a hard limit on the number  of receivers we can support. For example, if our video server sends 
1Mbps streams and its network connection is only 3Mbps (a healthy connection rate), we can 
only support  three simultaneous users. 

Fortunately, networks provide a way to use bandwidth more efficiently. Instead of making 
the sender responsible for duplicating packets, we can give this job to the network. In our 
video server example, we send a single copy of the s tream across the server's connection 
to the network, which then duplicates the data only when appropriate. With this model of 
duplication, the server uses only 1Mbps across its connection to the network, irrespective of 
the number  of clients. 

There are two types of one-to-many service: broadcast and multicast. With broadcast,  all 
hosts on the (local) network receive a copy of the message. With multicast, the message is sent 
to a multicast address, and the network delivers it only to those hosts that have indicated that 
they want to receive messages sent to that address. In general, only UDP sockets are allowed 
to broadcast  or multicast. 

4.3.1 Broadcast 
Broadcasting UDP datagrams is similar to unicasting datagrams, except that a broadcast ad- 
dress is used instead of a regular (unicast) IP address. The local broadcast address (255.255.255 
.255) sends the message to every host on the same broadcast  network. Local broadcast  mes- 
sages are never forwarded by routers. A host on an Ethernet network can send a message to 
all other hosts on that same Ethernet, but the message will not be forwarded by a router. IP 
also specifies directed broadcast addresses, which allow broadcasts  to all hosts on a specified 
network; however, since most  Internet routers do not forward directed broadcasts,  we do not 
deal with them here. 
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There is no networkwide broadcast  address that can be used to send a message to all 
hosts. To see why, consider the impact of a broadcast to every host on the Internet. Sending 
a single datagram would result in a very, very large number of packet duplications by the 
routers, and bandwidth would be consumed on each and every network. The consequences of 
misuse (malicious or accidental) are too great, so the designers of IP left such an Internetwide 
broadcast  facility out on purpose. 

Even so, local broadcast  can be very useful. Often, it is used in state exchange for network 
games where the players are all on the same local (broadcast) network. In Java, the code for 
unicasting and broadcasting is the same. To play with broadcasting applications, simply run 
SendUDP. java using a broadcast  destination address. Run RecvUDP. java as you did before (except 
that you can run several receivers at one time). Caveat: Some operating systems do not give 
regular users permission to broadcast, in which case this will not work. 

4.3.2 Multicast 

As with broadcast, the main difference between multicast and unicast is the form of the 
address. A multicast address identifies a set of receivers. The designers of IP allocated a range 
of the address space (from 224.0.0.0 to 239.255.255.255) dedicated to multicast. With the 
exception of a few reserved multicast addresses, a sender can send datagrams addressed 
to any address in this range. In Java, multicast applications generally communicate using 
an instance of MulticastSocket, a subclass of DatagramSocket. It is important  to unders tand 
that a MulticastSocket is actually a UDP socket (DatagramSocket), with some extra multicast- 
specific attributes that can be controlled. Our next example implements the multicast version 
of SendUDP. java (see page 57). 

SendUDPMulticast.c 

0 import java.net.*; / /  for MulticastSocket, DatagramPacket, and InetAddress 
1 import java.io.*;  / /  for 10Exception 
2 
3 public class SendUDPMulticast { 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

public static void main(String args[]) throws Exception { 

if ((args.length < 2) II (args.length > 3)) // Test for correct # of args 
throw new lllegalArgumentException( 

"Parameter(s): <Multicast Addr> <Port> [<TTL>]"); 

InetAddress destAddr = InetAddress.getByName(args[0]); // Destination address 
if (!destAddr.isMulticastAddress()) // Test if multicast address 

throw new lllegalArgumentException("Not a multicast address"); 

int destPort = Integer.parselnt(args[l]); // Destination port 
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16 
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30 
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37 
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} 
} 

int TTL; // Time To Live for datagram 
if (args.length == 3) 

TTL = Integer. parselnt (args [ 2 ] ) ; 
else 

TTL = i; // Default TTL 

ItemQuote quote = new ItemQuote(1234567890987654L, "5mm Super Widgets", 
i000, 12999, true, false); 

MulticastSocket sock = new MulticastSocket(); // Multicast socket to sending 
sock.setTimeToLive(TTL); // Set TTL for all datagrams 

ItemQuoteEncoder encoder = new ItemQuoteEncoderText() ; 
byte[] codedQuote = encoder.encode(quote) ; 

/ /  Text encoding 

// Create and send a datagram 
DatagramPacket message = new DatagramPacket(codedQuote, codedQuote.length, 

destAddr, destPort) ; 
sock. send (message) ; 

sock.close(); 

SendUDPMulticast.c 

The only significant differences be tween  our unicast  and mult icast  senders  are that  1) we 
verify that  the given address  is multicast ,  and 2) we set the initial Time To Live (TTL) value for 
the mult icast  datagram.  Every IP da tagram contains  a TTL, initialized to some defaul t  value and 
dec remen ted  (usually by one) by each router  that  forwards  the packet.  When the TTL reaches 
zero, the packet  is discarded.  By sett ing the initial value of the TTL, we limit the distance a 
packet  can travel f rom the sender.  2 

Unlike broadcast ,  ne twork  mult icast  duplicates  the message  only to a specific set of 
receivers. This set of receivers, called a mult icas t  group,  is identif ied by a shared  mult icast  
(or group) address .  Receivers need  some m e c h a n i s m  to notify the ne twork  of their interest  in 
receiving data sent  to a part icular  mult icast  address ,  so that  the ne twork  can forward packets  
to them. This notification, called jo in ing  a group,  is accompl ished  with the joinGroup() m e t h o d  
of Mult icastSocket .  Our mult icast  receiver joins a specified group, receives and pr ints  a single 
mult icast  message  f rom that  group,  and exits. 

2 The rules for multicast TTL are actually not quite so simple. It is not necessarily the case that a packet 
with TTL = 4 can travel four hops from the sender; however, it will not travel more than four hops. 
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RecvU DPM u Iticas t. java 

0 import java.net.*; 
1 import java.io.*; 
2 
3 
4 
5 
6 
7 
8 

9 
lO 
ii 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 sock.close(); 
29 } 
30 } 

// for MulticastSocket, DatagramPacket, and InetAddress 
// for lOException 

public class RecvUDPMulticast implements ItemQuoteTextConst { 

public static void main(String[] args) throws Exception { 

if (args.length != 2) // Test for correct # of args 
throw new lllegalArgumentException("Parameter(s): <Multicast Addr> <Port>"); 

InetAddress address = InetAddress.getByName(args[0]); // Multicast address 
if (!address.isMulticastAddress()) // Test if multicast address 

throw new lllegalArgumentException("Not a multicast address"); 

int port = Integer.parselnt(args[l]); // Multicast port 

MulticastSocket sock = new MulticastSocket(port) ; / /  Multicast receiving socket 
sock.joinGroup(address); / /  Join the multicast group 

// Create and receive a datagram 
DatagramPacket packet = new DatagramPacket( 

new byte[MAX_WIRE_LENGTH], MAX_WIRE_LENGTH); 
sock.receive(packet) ; 

ItemQuoteDecoder decoder = new ItemQuoteDecoderText(); 
ItemQuote quote = decoder.decode(packet); 
System. out. println(quote) ; 

// Text decoding 

RecvUDPMulticast. java 

The only significant difference between our multicast  and unicast receiver is that the 
multicast  receiver must  join the multicast group by supplying the desired multicast  address. 
The book's Web site also contains another example of a sender and receiver multicast  pair. 
UultieastImageSender. java transmits  a set of images (JPEG or GIF) specified on the command 
line, in three-second intervals. UulticastImageReceiver. java receives each image and displays 
it in a window. 

Multicast datagrams can, in fact, be sent from a DatagramSoeket by simply using a 
multicast  address. You can test this by using SendUDP. java (see page 57) to send to the multicast  
receiver. However, a MulticastSocket has a few capabilities that a DatagramSocket does not, 
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including 1) allowing specification of the datagram TTL, and 2) allowing the interface through 
which datagrams are sent to the group to be specified/changed (an interface is identified by its 
Internet address). A multicast receiver, on the other hand, must use a MulticastSocket because 
it needs the ability to join a group. 

MulticastSocket is a subclass of DatagramSocket, so it provides all of the DatagramSocket 
methods. We only present methods specific to or adapted for MulticastSocket. 

MulticastSocket 

Constructors 

MulticastSocketO 

MulticastSocket(int localPort) 

Constructs a datagram socket that can perform some additional multicast operations. 
The second form of the constructor specifies the local port. If the local port is not 
specified, the socket is bound to any available local port. 

localPort Local port. A localPort of 0 allows the constructor to pick 
any available port. 

Operators 

void joinGroup(InetAddress groupAddress) 
void leaveGroup(InetAddress groupAddress) 

Join/leave a multicast group. A socket may be a member of multiple groups simulta- 
neously. Joining a group of which this socket is already a member or leaving a group 
of which this socket is not a member may generate an exception. 

groupAddress Multicast address identifying group 

void send(DatagramPacket packet, byte TTL) 

Send a datagram from this socket with the specified TTL. 

packet Packet to transmit. Either the packet must  specify a 
destination address or the UDP socket must  have a specified 
remote address and port (see connect()). 

TTL Time to live for this packet 

Accessors 

InetAddress  getInterface() 

void se t Interface(InetAddress  interface) 

Returns/sets  the interface to use for multicast operations on this socket. This is 
primarily used on hosts with multiple interfaces. Join/leave requests and datagrams 
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will be sent and da tagrams will be received using this interface. The default  mult icast  
interface is p la t form dependent .  

interface Address  of one of host ' s  mult icast  interfaces 

int getTimeToLive0 

void setTimeToLive(int TTL) 

Returns/sets the Time To Live for all datagrams sent on this socket. This can be 

overridden on a per-datagram basis using the send() method that takes the TTL as 
a parameter. 

TTL Time To Live for this packet 

The decision to use broadcas t  or mult icast  depends  on several factors, including the 
ne twork  location of receivers and the knowledge of the communicat ing parties. The scope of a 
broadcas t  on the Internet  is restr icted to a local broadcas t  network, placing severe restr ict ions 
on the location of the broadcas t  receivers. Multicast communicat ion  may include receivers 
anywhere in the network, 3 so mult icast  has the advantage that  it can cover a dis t r ibuted set 
of receivers. The disadvantage of IP mult icast  is that  receivers mus t  know the address  of a 
mult icast  group to join. Knowledge of an address  is not required to receive broadcast .  In some 
contexts,  this makes  broadcas t  a bet ter  mechan i sm than mult icast  for discovery. All hosts  can 
receive broadcas t  by default, so it is simple to ask all hosts  on a single network a quest ion like 
"Where's the printer?" 

UDP unicast,  multicast,  and broadcas t  are all implemented  using an underlying UDP 
socket. The semantics  of most  implementa t ions  are such that  a UDP da tagram will be delivered 
to all sockets bound  to the dest inat ion port  of the packet. That is, a DatagramSoeket or 
Mult ieastSoeket  instance bound to a local port  X (with local address  not specified, i.e., a wild 
card), on a host  with address  Y will receive any UDP da tagram dest ined for port  X that  is 
1) unicast  with dest inat ion address  Y, 2) mult icast  to a group that  any application on Y has 
joined, or 3) broadcas t  where it can reach host  Y. A receiver can use connect() to limit the 
da tagram source address  and port. Also, a DatagramSoeket can specify the local unicast  address,  
which prevents  delivery of mult icast  and broadcas t  packets.  See UDPEehoClientTimeout. java 
for an example of dest inat ion address  verification and Section 5.5 for details on da tagram 
demultiplexing. 

4.4 Socket Options 

The TCP/IP protocol developers spent  a good deal of time thinking about  the default  behaviors 
that  would satisfy mos t  applications. (If you doubt  this, read RFCs 1122 and 1123, which 
describe in excruciating detail the r ecommended  behaviors - -based  on years of exper ience--  

3 At the time of writing of this book, there are severe limitations on who can receive multicast traffic on 
the Internet; however, multicast availability should improve over time. Multicast should work if the sender 
and receivers are on the same LAN. 
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for implementa t ions  of the TCP/IP protocols.) For mos t  applications, the designers did a good 
job; however, it is se ldom the case that  "one size fits all" really fits all. We have already seen 
an example in our UDP echo client. By default, the rece ive ( )  me thod  of DatagramSocket blocks 
indefinitely waiting on a datagram. In our example, we change that  behavior by specifying a 
t imeout  for receives on the UDP socket using setSoTimeout(). In socket parlance, each type 
of behavior we can change is called a socket option. In Java, the socket type (e.g., Socket, 
ServerSocket, DatagramSocket, and MulticastSocket) determines the applicable socket options, 
which are typically queried and controlled using accessor methods like getSoTimeout() and 
setSoTimeout(). Unfortunately, the Java API allows access to only a subset of the options in 
the underlying sockets API. This is at ]east partly because options tend to vary in availability 
from platform to platform, and Java is all about portability. However, as the versions wear 
on, access to more and more socket options is being added in Java. Check the latest official 
documentation for the various socket types to see the available options. 

4.5 Closing Connections 

You've probably never given much  thought  to who closes a connection. In phone conversations,  
either side can start  the process  of terminat ing the call. It typically goes something like this: 

"Well, I guess I'd bet ter  go." 
"OK. Bye." 
"Bye." 

Network protocols, on the other hand, are typically very specific about  who "closes" first. 
In the echo protocol, Figure 4.1(a), the server dutifully echoes everything the client sends. When 
the client is finished, it calls c lose( ) .  After the server has received and echoed all of the data 
sent before the client's call to c lose( ) ,  its read operat ion re turns  a -1, indicating that  the client 
is finished. The server then calls close ( ) on its socket. The close is a critical par t  of the protocol 
because without  it the server doesn ' t  know when the client is finished sending characters  to 
echo. In HTTP, Figure 4.1(b), it's the server that  initiates the connection close. Here, the client 
sends a request  ("GET") tO the server, and the server responds  by sending a header  (normally 

"To Be . . . .  Get/Guide.html ..." 

"To Be . . . .  200 OK ... 

"Or Not To Be" <HTML> ... 

"Or Not To Be" ... </HTML>" 

Closed Closed 

Closed Closed 

(a) (b) 

Figure 4.1: Echo (a) and HTTP (b) protocol termination. 
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starting with "200 OK"), followed by the requested file. Since the client does not know the size 
of the file, the server must  indicate the end-of-file by closing the socket. 

Calling close()  on a Socket terminates both directions (input and output) of data flow. 
(Subsection 5.4.2 provides a more detailed description of TCP connection termination.) Once an 
endpoint  (client or server) closes the socket, it can no longer send or receive data. This means 
that c lose()  can only be used to signal the other end when the caller is completely finished 
communicating. In the echo protocol, once the server receives the close from the client, it 
immediately closes. In effect, the client close indicates that the communicat ion is completed. 
HTTP works the same way, except that the server is the terminator. 

Let's consider a different protocol. Suppose you want a compression server that takes a 
s t ream of bytes, compresses them, and sends the compressed stream back to the client. Which 
endpoint  should close the connection? Since the s t ream of bytes from the client is arbitrarily 
long, the client needs to close the connection so that the server knows when the s t ream of 
bytes to be compressed ends. When should the client call c lose()? If the client calls c lose()  on 
the socket immediately after it sends the last byte of data, it will not be able to receive the last 
bytes of compressed data. Perhaps the client could wait until it receives all of the compressed 
data before it closes, as the echo protocol does. Unfortunately, neither the server nor the client 
knows how many bytes to expect, so this will not work either. What is needed is a way to tell 
the other end of the connection "I am through sending," without losing the ability to receive. 

Fortunately, sockets provide a way to do this. The shutdownTnput () and shutdown0utput () 
methods  of Socket allow the I/O streams to be closed independently. After shutdownlnput(), 
the socket 's input s tream can no longer be used. Any undelivered data is silently discarded, 
and any a t tempt  to read from the socket's input s tream will return -1. After shutdown0utput () 
is called on a Socket, no more data may be sent on the socket's output  stream. Attempts  to 
write to the s t ream throw an IOException. Any data written before the call to shutdown0utput () 
may be read by the remote socket. After this, a read on the input s tream of the remote socket 
will re turn -1. An application calling shutdown0utput() can continue to read from the socket 
and, similarly, data can be written after calling shutdownInput (). 

In the compression protocol (see Figure 4.2), the client writes the bytes to be compressed, 
closing the output  s tream using shutdown0utput() when finished sending, and reads the 
compressed byte s t ream from the server. The server repeatedly reads the uncompressed  data 

<Uncompressed ~ 

<Compressed bytes> 

Closed 

Figure 4.2: Compression protocol termination. 
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and writes the compressed  data until the client per forms  a shutdown,  causing the server read 
to re turn  -1, indicating an end-of-stream. The server then closes the connect ion and exits. 
After the client calls shutdown0utput (), it needs to read any remaining compressed  bytes f rom 
the server. 

Our compress ion  client, CompressClient. java, implements  the client side of the compres- 
sion protocol. The uncompres sed  bytes are read f rom the file specified on the command  line, 
and the compressed  bytes are wri t ten to a new file. If the uncompressed  filename is "data", the 
compressed  filename is "data. gz". Note that  this implementa t ion  works for small files, but  that  
there is a flaw that  causes deadlock for large files. (We discuss and correct this shor tcoming 
in Section 5.2.) 

CompressClient.java 
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0 import java.net.*; // for Socket 
1 import java.io.*; // for lOException and [File]Input/0utputStream 
2 
3 public class CompressClient { 
4 

public static final int BUFSIZE = 256; // Size of read buffer 

public static void main(String[] args) throws 10Exception { 

if (args.length != 3) // Test for correct # of args 
throw new lllegalArgumentException("Parameter(s): <Server> <Port> <File>"); 

String server = args [0] ; 
int  port = In teger .parse ln t (args[1] ) ;  
String filename = args[2]; 

// Server name or IP address 
// Server port 
// File to read data from 

// Open input and output file (named input.gz) 
FilelnputStream fileln = new FilelnputStream(filename); 
FileOutputStream fileOut = new FileOutputStream(filename + " .gz"); 

// Create socket connected to server on specified port 
Socket sock = new Socket(server, port) ; 

// Send uncompressed byte stream to server 
sendBytes(sock, fileln); 

// Receive compressed byte stream from server 
InputStream sockIn = sock.getInputStream(); 
int bytesRead; // Number of bytes read 
byte[] buffer = new byte[BUFSIZE]; // Byte buffer 
while ((bytesRead = sockIn.read(buffer)) != -i) { 

fileOut.write(buffer, O, bytesRead); 
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32 
33 
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5O 
51 
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System. out. print ("R") ; 
} 
System. out. println() ; 

// Reading progress indicator 

// End progress indicator line 

sock.close(); 
fileln.close(); 
fileOut.close(); 

// Close the socket and its streams 
// Close file streams 

private static void sendBytes(Socket sock, InputStream fileIn) 
throws IOException { 

OutputStream sockOut = sock.getOutputStream(); 
int bytesRead; // Number of bytes read 
byte[] buffer = new byte[BUYSIZE]; // Byte buffer 
while ((bytesRead = fileIn.read(buffer)) != -1) { 

sockOut.write(buffer, O, bytesRead); 
System.out.print("W"); // Writing progress indicator 

} 
sock.shutdownOutput(); // Finished sending 

} 

CompressClient.java 

1. Application setup and parameter  parsing: lines 0-14 

2. Create socket and open files: lines 16-21 

3. Invoke sendBytes() to t ransmit  bytes: lines 23-24 

4. Receive the compressed  data stream: lines 26-34 
The while loop receives the compressed data stream and writes the bytes to the output  
file until an end-of-stream is signaled by a -1 from read (). 

5. Close socket  and file streams: lines 36-38 

6. sendBytes(): lines 41-51 
Given a socket connected to a compression server and the file input stream, read all of 
the uncompressed bytes from the file and write them to the socket output  stream. 

�9 Get socket  output  stream: line 43 

�9 Send uncompres sed  bytes  to compress ion  server: lines 44-49 
The while loop reads from the input stream (in this case from a file) and repeats the 
bytes to the socket output  stream until end-of-file, indicated by -1 from read().  Each 
write is indicated by a "W" printed to the console. 
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�9 Shut down the socket  output stream: line 50 
After reading and sending all of the bytes from the input file, shut down the output 
stream, notifying the server that the client is finished sending. The close will cause a 
-1 return from read() on the server. 

To implement the compression server, we simply write a protocol and factory for our 
threaded server architecture. Our protocol implementation, CompressProtocolFactory.java, 
implements the server-side compression protocol using the GZIP compression algorithm. The 
server receives the uncompressed bytes from the client and writes them to a GZIP0utputStream, 
which wraps the socket's output stream. 

Com pres s Protocol  Fac tory . java  

0 import java.net.*; 
1 import java.io.* ; 
2 import java.util.*; 
3 import java.util.zip.*; 
4 
5 
6 
7 
8 
9 

lO 
ll 
12 
13 
14 
15 } 
16 
17 
18 
19 
2O 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

// for Socket 
// for lOBxception and Input/OutputStream 
// for ArrayList 
// for GZIPOutputStream 

public class CompressProtocolFactory implements ProtocolFactory { 

public static final int BUFSIZE = 1024; // Size of receive buffer 

public Runnable createProtocol(final Socket clntSock, final Logger logger) { 
return new Runnable() { 

public void run() { 
CompressProtocolFactory.handleClient(clntSock, logger); 

} 
}; 

public static void handleClient(Socket clntSock, Logger logger) { 
ArrayList entry = new ArrayList(); 
entry.add("Client address and port = " + 

clntSock.getlnetAddress().getHostAddress() + ":"+ 
clntSock.getPort()); 

entry.add("Thread = "+ Thread.currentThread().getName()); 

try { 
// Get the input and output streams from socket 
InputStream in = clntSock, getInputStream() ; 
GZIPOutputStream out = new GZIPOutputStream(clntSock. getOutputStream()) ; 

byte[] buffer = new byte[BUFSIZE]; // Allocate read/write buffer 
int bytesRead; // Number of bytes read 
// Receive until client closes connection, indicated by-i return 
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32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 } 

while ((bytesRead = in.read(buffer)) != -i) 
out.write(buffer, O, bytesRead) ; 

out.finish(); // Flush bytes from GZIPOutputStream 
} catch (lOException e) { 

logger.writeEntry("Exception = " + e.getMessage()); 

try { // Close socket 
clntSock.close(); 

} catch (lOException e) { 
entry, add("Exception = " + e. getMessage()) ; 

logger, writeEntry(entry) ; 

CompressProtocolFactory.java 

1. Factory me thod  for compress ion  protocol: lines 9-15 
createProtocol( )  returns an anonymous class instance that implements  the Runnable 
interface. The run() method of this instance simply calls the static method CompressPro- 
tocolFactory .handleCl ient ( ) ,  which implements  the server-side compression protocol. 
Note that we do n o t  need a separate CompressProtocol class, because createProtocol( )  
returns the type of instance (one that implements  Runnable) that we need. 

2. handleClient() :  lines 17-38 
Given a socket connected to the compression client, read the uncompressed  bytes from 
the client and write the compressed bytes back. 

�9 Get socket  I /O streams:  lines 26-27 
The socket's output  s tream is wrapped in a GZlP0utputStream. The sequence of bytes 
writ ten to this s tream is compressed, using the GZIP algorithm, before being writ ten 
to the underlying output  stream. 

�9 Read u n c o m p r e s s e d  and write compressed  bytes:  lines 29-33 
The while loop reads from the socket input s t ream and writes to the GZlP0utputStream, 
which in turn writes to the socket output stream, until the end-of-stream indication is 
received. 

�9 Flush and close: lines 35-44 
Calling f in i sh ( )  on the GZlP0utputStream is necessary to flush any bytes that may be 
buffered by the compression algorithm. 

A simple iterative version of the server can be found in CompressServer. java on the book's 
Web site. 
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4.6 Applets 

Applets can perform network communication using TCP/IP sockets, but there are severe 
restrictions on how and with whom they can converse. Without such restrictions, unsuspecting 
Web browsers might execute malicious applets that could, for example, send fake email, 
at tempt to hack other systems while the browser user gets the blame, and so on. These security 
restrictions are enforced by the Java security manager, and violations by the applet result in 
a SecurityException. Typically, browsers only allow applets to communicate with the host 
that served the applet. This means that applets are usually restricted to communicating with 
applications executing on that host, usually a Web server originating the applet. The list of 
security restrictions and general applet programming is beyond the scope of this book. It is 
worth noting, however, that the default security restrictions can be altered, if allowed by the 
browser user. 

Suppose that you wanted to implement an applet that allowed users to type and save notes 
to themselves on their browser. Browser security restrictions prevent applets from saving data 
directly on the local file system, so you would need some other means besides local disk I/O 
to save the notes. FileClientApplet .  java (available from the book's Web site) is an applet that 
allows the user to type text into an editor window and, by clicking the "Save" button, copy the 
text over the network to a server (running on port 5000). The server, YCPFileServer. java (also 
on the book's Web site), saves the data to a file. It takes a port (use 5000 to work with the applet) 
and the name of the file. The server must  execute on the Web server that serves the applet to 
the browser. Note that there is nothing applet specific about the server. FileClientApplet .html 
on the Web site demonstrates how to integrate the applet into a Web page. Be warned that the 
applet is based on Swing, and most  browsers don't  have the Swing library. The HTML file should 
download the necessary file to make this work, but it is not guaranteed. 

4.7 Wrapping Up 

We have discussed some of the ways Java provides access to advanced features of the sockets 
API, and how built-in features such as threads can be used with socket programs. In addition 
to these facilities, Java provides several mechanisms that operate on top of TCP or UDP and 
at tempt to hide the complexity of protocol development. For example, Java Remote Method 
Invocation (RMI) allows Java objects on different hosts to invoke one another 's methods as 
if the objects all reside locally. The URL class and associated classes provide a framework 
for developing Web-related programs. Many other standard Java library mechanisms exist, 
providing an amazing range of services. These mechanisms are beyond the scope of this book; 
however, we encourage you to look at the book's Web site for descriptions and code examples 

for some of these libraries. 

4.8 Exercises 

1. State precisely the conditions under which an iterative server is preferable to a multipro- 
cessing server. 
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2. Would you ever need to implement  a t imeout  in a client or server that  uses TCP? 

3. How can you determine the min imum and m a x i m u m  allowable sizes for a socket 's  send 
and receive buffers? Determine the min imums  for your system. 

4. Write an iterative dispatcher  using the dispatching f ramework f rom this chapter.  

5. Write the server side of a r andom-number  server using the protocol factory f ramework  
f rom this chapter.  The client will connect  and send the upper  bound, B, on the r a n d o m  
number  to the server. The server should re turn  a r andom number  be tween 1 and B, 
inclusive. All numbers  should be specified in binary format  as 4-byte, two's-complement ,  
big-endian integers. 

6. Modify TCPEehoClient.java so that  it closes its output  side of the connect ion before 
a t tempt ing  to receive any echoed data. 



chapter 5 

Under the. Hood 

S o m e  of the subtleties of network programming are difficult to grasp without some 
understanding of the data structures associated with the socket implementat ion and certain 
details of how the underlying protocols work. This is especially true of TCP sockets (i.e., 
instances of Socket). This chapter describes some of what goes on under  the hood when you 
create and use an instance of Socket or ServerSocket. (The initial discussion and Section 5.5 
apply as well to DatagramSocket and UultieastSocket.  However, most  of this chapter focuses 
on TCP sockets, that is, Socket and ServerSocket.) Please note that this description covers only 
the normal sequence of events and glosses over many details. Nevertheless, we believe that 
even this basic level of unders tanding is helpful. Readers who want the full story are referred 
to the TCP specification [13] or to one of the more comprehensive treatises on the subject [3, 
22]. 

Figure 5.1 is a simplified view of some of the information associated with a Socket 
instance. The classes are supported by an underlying implementat ion that is provided by 
the JVM and/or  the platform on which it is running (i.e., the "socket layer" of the host 's  OS). 
Operations on the Java objects are translated into manipulat ions of this underlying abstraction. 
In this chapter, "Socket" refers generically to one of the classes in Figure 5.1, while "socket" 
refers to the underlying abstraction, whether it is provided by an underlying OS or the JVM 
implementat ion itself (e.g., in an embedded system). It is important  to note that other (possibly 
non-Java) programs running on the same host may be using the network via the underlying 
socket abstraction, and thus competing with Java Socket instances for resources such as ports. 

By "socket structure" here we mean the collection of data structures in the underlying 
implementat ion (of both the JVM and TCP/IP, but primarily the latter) that contain the informa- 
tion associated with a particular Socket instance. For example, the socket structure contains, 
among other information 

�9 The local and remote Internet addresses and port  numbers  associated with the socket. 
The local Internet address (labeled "Local IP" in the figure) is one of those assigned to 
the local host; the local port is set at Socket creation time. The remote address and port 
identify the remote socket, if any, to which the local socket is connected. We will say more 

93  
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Figure 5.1: Data structures associated with a socket. 

about how and when these values are determined shortly (Section 5.5 contains a concise 
summary). 

�9 A FIFO queue of received data waiting to be delivered and a queue for data waiting to be 
transmitted. 

�9 For a TCP socket, additional protocol state information relevant to the opening and 
closing TCP handshakes. In Figure 5.1, the state is "Closed"; all sockets start out in the 
Closed state. 

Knowing that these data structures exist and how they are affected by the underlying 
protocols is useful because they control various aspects of the behavior of the various Socket 
objects. For example, because TCP provides a reliable byte-stream service, a copy of any data 
written to a Socket's 0utputStream must  be kept until it has been successfully received at the 
other end of the connection. Writing data to the output stream does not imply that the data has 
actually been sent--only that it has been copied into the local buffer. Even f lush() ing a Socket's 
0utputStream doesn't  guarantee that anything goes over the wire immediately. Moreover, the 
nature of the byte-stream service means that message boundaries are not preserved in the 
input stream. As we saw in Section 3.3, this complicates the process of receiving and parsing 
for some protocols. On the other hand, with a DatagramSoeket, packets are not buffered for 
retransmission, and by the time a call to the send () method returns, the data has been given to 
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the network subsystem for transmission. If the network subsystem cannot handle the message 
for some reason, the packet is silently dropped (but this is rare). 

The next three sections deal with some of the subtleties of sending and receiving with 
TCP's byte-stream service. Then, Section 5.4 considers the connection establishment and ter- 
mination of the TCP protocol. Finally, Section 5.5 discusses the process of matching incoming 
packets to sockets and the rules about binding to port numbers. 

5.1 Buffering and TCP 

As a programmer, the most  important  thing to remember when using a TCP socket is this: 

You cannot  assume any  correspondence between writes to the output  s tream at one end 

o f  the connection and reads from the input s tream at the other end. 

In particular, data passed in a single invocation of the output  stream's wri te()  method at 
the sender can be spread across multiple invocations of the input stream's read() method at 
the other end; and a single read() may return data passed in multiple wri te()s .  To see this, 
consider a program that does the following: 

byte [ ] buffer0 = new byte [ I000 ] ; 
byte[] bufferl = new byte[2000]; 
byte[] buffer2 = new byte[S000]; 
, 

Socket s = new Socket(destAddr, destPort) ; 
0utputStream out = s. get0utputStream() ; 

out .write(buffer0) ; 

, 

out .write(bufferl) ; 

out. write (buffer2) ; 

s.close() ; 

where the ellipses represent code that sets up the data in the buffers but contains no other 

calls to out. write(). Throughout this discussion, "in" refers to the InputStream of the receiver's 

Socket, and "out" refers to the 0utputStream of the sender's Socket. 

This TCP connection transfers 8000 bytes to the receiver. The way these 8000 bytes are 

grouped for delivery at the receiving end of the connection depends on the timing between 

the out.write()s and in.read()s at the two ends of the connection--as well as the size of the 

buffers provided to the in. read() calls. 
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Figure 5.2: State of the three queues after three writes. 

We can think of the sequence of all bytes sent (in one direction) on a TCP connection up 
to a particular instant in time as being divided into three FIFO queues: 

1. SendQ: Bytes buffered in the underlying implementation at the sender that have been 
written to the output stream but not yet successfully transmitted to the receiving host. 

2. RecvQ: Bytes buffered in the underlying implementation at the receiver waiting to be 
delivered to the receiving program--that  is, read from the input stream. 

3. Delivered: Bytes already read from the input stream by the receiver. 

A call to out .wri te()  at the sender appends bytes to SendQ. The TCP protocol is responsible 
for moving bytes--in order--from SendQ to RecvQ. It is important to realize that this transfer 
cannot be controlled or directly observed by the user program, and that it occurs in chunks 
whose sizes are more or less independent of the size of the buffers passed in write()s.  Bytes 
are moved from RecvQ to Delivered as they are read from the Socket's InputStream by the 
receiving program; the size of the transferred chunks depends on the amount of data in RecvQ 
and the size of the buffer given to read(). 

Figure 5.2 shows one possible state of the three queues after the three out .wri te()s  in 
the example above, but before any in. reads ()s at the other end. The different shading patterns 
denote bytes passed in the three different invocations of write() shown above. 

Now suppose the receiver calls read() with a byte array of size 2000. The read() call 
will move all of the 1500 bytes present in the waiting-for-delivery (RecvQ) queue into the byte 
array and return the value 1500. Note that this data includes bytes passed in both the first and 
second calls to write().  At some time later, after TCP has completed transfer of more data, the 
three partitions might be in the state shown in Figure 5.3. 

If the receiver now calls read () with a buffer of size 4000, that many bytes will be moved 
from the waiting-for-delivery (RecvQ) queue to the already-delivered (Delivered) queue; this 
includes the remaining 1500 bytes from the second write(),  plus the first 2500 bytes from the 
third write().  The resulting state of the queues is shown in Figure 5.4. 

The number of bytes returned by the next call to read() depends on the size of the 
buffer and the timing of the transfer of data over the network from the send-side socket/TCP 
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implementation to the receive-side implementation. The movement of data from the SendQ to 
the RecvQ buffer has important  implications for the design of application protocols. We have 
already encountered the need to parse messages as they are received via a Socket when in- 
band delimiters are used for framing (see Section 3.3). In the following sections, we consider 
two more subtle ramifications. 

5.2 Buffer Deadlock 

Application protocols have to be designed with some care to avoid deadlock--that is, a state 
in which each peer is blocked waiting for the other to do something. For example, it is 
pretty obvious that if both client and server try to receive immediately after a connection 
is established, deadlock will result. Deadlock can also occur in less immediate ways. 

The buffers SendQ and RecvQ in the implementation have limits on their capacity. 
Although the actual amount  of memory they use may grow and shrink dynamically, a hard 
limit is necessary to prevent all of the system's memory from being gobbled up by a single 
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TCP connection under  control of a misbehaving program. Because these buffers are finite, they 
can fill up, and it is this fact, coupled with TCP's flow control mechanism,  that  leads to the 
possibility of another  form of deadlock. 

Once RecvQ is full, the TCP flow control mechan i sm kicks in and prevents  the t ransfer  of 
any bytes f rom the sending host ' s  SendQ, until space becomes available in RecvQ as a result  
of the receiver calling the input  s t ream's  read()  method.  (The purpose  of the flow control 
mechan i sm is to ensure that  the sender does not t ransmit  more data than the receiving sys tem 
can handle.) A sending p rogram can continue to call send until SendQ is full; however, once 
SendQ is full, a call to ou t .wr i t e ( )  will block until space becomes available, that  is, until  some 
bytes are t ransfer red  to the receiving socket 's  RecvQ. If RecvQ is also full, everything stops 
until the receiving p rogram calls in. read () and some bytes are t ransferred  to Delivered. 

Let's assume the sizes of SendQ and RecvQ are SQS and RQS, respectively. A wr i t e ( )  call 
with a byte array of size n such that  n > SQS will not re turn  until at least n - SQS bytes have 
been t ransfer red  to RecvQ at the receiving host. If n exceeds (SQS + RQS), wri t e ( )  cannot  
re turn  until  after the receiving p rogram has read at least n -  (SQS + RQS) bytes f rom the 
input  stream. If the receiving p rogram does not call read() ,  a large send() may not complete 
successfully. In particular,  if both  ends of the connection invoke their respective output  
s t reams '  wr i t e ( )  me thod  s imultaneously with buffers greater  than SQS + RQS, deadlock will 
result: nei ther  write will ever complete, and both  programs will remain blocked forever. 

As a concrete example, consider a connection between a p rogram on Host A and a p rogram 
on Host B. Assume SQS and RQS are 500 at both  A and B. Figure 5.5 shows what  happens  
when bo th  p rograms  try to send 1500 bytes at the same time. The first 500 bytes of data in the 
p rogram at Host A have been t ransferred  to the other end; another  500 bytes have been copied 
into SendQ at Host A. The remaining 500 bytes cannot  be sen t - - and  therefore out .wr i t e ( )  will 
not re tu rn- -un t i l  space frees up in RecvQ at Host B. Unfortunately, the same si tuation holds 
in the p rogram at Host B. Therefore, nei ther  program's  wr i t e ( )  call will ever complete. 

send(s,buffer,1500,O); send(s,buffer ,1500,0) ; 

To be sent Se nd Q R ecvQ Delivered 

Delivered RecvQ SendQ 

I I I 
I I I I I 

To be sent 

! 
I I I 

Program Implementation Implementation Program 

I I I I 
Host A Host B 

Figure 5.5: Deadlock due to simultaneous write()s to output streams at opposite ends of the connection. 
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The moral of the story: Design the protocol carefully to avoid sending large quantities of 
data simultaneously in both directions. 

Can this really happen? Let's review the compression protocol example in Section 4.5. Try 
running the compression client with a large file that is still large after compression. The precise 
definition of "large" here depends on your system, but a file that is already compressed and 
exceeds 2MB should do nicely. For each read/write,  the compression client prints an "R"/"W" 
to the console. If both the uncompressed  and compressed versions of the file are large enough, 
your client will print a series of Ws and then stop without terminating or printing any Rs. 

Why does this happen? The program CompressClient. java sends all of the uncompressed 
data to the compression server before it a t tempts  to read anything from the compressed 
stream. The server, on the other hand, simply reads the uncompressed  byte sequence and 
writes the compressed sequence back to the client. (The number  of bytes the server reads before 
it writes some compressed data depends on the compression algorithm it uses.) Consider the 
case where SendQ and RecvQ for both client and server hold 500 bytes each and the client 
sends a 10,000-byte (uncompressed) file. Suppose also that for this file the server reads about 
1000 bytes and then writes 500 bytes, for a 2:1 compression ratio. After the client sends 2000 
bytes, the server will eventually have read them all and sent back 1000 bytes, and the client's 
RecvQ and the server's SendQ will both be full. After the client sends another 1000 bytes and 
the server reads them, the server's subsequent  a t tempt  to write will block. When the client 
sends the next 1000 bytes, the client's SendQ and the server's RecvQ will both fill up. The next 
client write will block, creating deadlock. 

How do we solve this problem? The easiest solution is to execute the client writing and 
reading loop in separate threads. One thread repeatedly reads a buffer of uncompressed  bytes 
from a file and sends them to the server until the end of the file is reached, whereupon it calls 
shutdown0utput() on the socket. The other thread repeatedly reads a buffer of compressed 
bytes from the server and writes them to the output  file, until the input s t ream ends (i.e., the 
server closes the socket). When one thread blocks, the other thread can proceed independently. 
We can easily modify our client to follow this approach by putt ing the call to SendBytes() in 
CompressClient. java inside a thread as follows: 

Thread thread = new Thread() { 
public void run() { 

try { 
SendBytes(sock, fileIn); 

} catch (Exception ignored) {} 
} 

}; 
thread.start(); 

See CompressClientNoDeadlock.java on the book's Web site for the complete example. Can 
we solve this problem without using threads? To guarantee deadlock avoidance in a single 

threaded solution, we need nonblocking writes, which are not available in the current version 
of Java (see Section 4.2). 
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5.3 Performance Implications 

The TCP implementation's need to copy user data into SendQ for potential retransrnission 
also has implications for performance. In particular, the sizes of the SendQ and RecvQ buffers 
affect the throughput  achievable over a TCP connection. Throughput refers to the rate at which 
bytes of user data from the sender are made available to the receiving program; in programs 
that transfer a large amount of data, we want to maximize this rate. In the absence of network 
capacity or other limitations, bigger buffers generally result in higher throughput.  

The reason for this has to do with the cost of transferring data into and out of the buffers 
in the underlying implementation. If you want to transfer n bytes of data (where n is large), 
it is generally much more efficient to call wri te()  once with a buffer of size n than it is to 
call it n times with a single byte. 1 However, if you call wri te()  with a size parameter  that is 
much larger than SQS, the system has to transfer the data from the user address space in SQS- 
sized chunks. That is, the socket implementation fills up the SendQ buffer, waits for data to 
be transferred out of it by the TCP protocol, refills SendQ, waits some more, and so on. Each 
time the socket implementation has to wait for data to be removed from SendQ, some time 
is wasted in the form of overhead (a context switch occurs). This overhead is comparable to 
that incurred by a completely new call to wri te() .  Thus, the effective size of a call to wri te( )  
is limited by the actual SQS. For reading from the InputStream, the same principle applies: 
however large the buffer we give to read(), it will be copied out in chunks no larger than RQS, 
with overhead incurred between chunks. 

If you are writing a program for which throughput  is an important  performance metric, 
you will want to change the send and receive buffer sizes using the setSendBufferSize() 
and setReceiveBufferSize() methods of Socket. Although there is always a system-imposed 
maximum size for each buffer, it is typically significantly larger than the default on modern 
systems. Remember that these considerations apply only if your program needs to send an 
amount  of data significantly larger than the buffer size, all at once. Note also that these factors 
may make little difference if the program deals with some higher-level stream derived from 
the Socket's basic input stream (say, by using it to create an instance of Fil ter0utputStream or 
PrintWriter), which may perform its own internal buffering or add other overhead. 

5.4 TCP Socket Life Cycle 

When a new instance of the Socket class is created--either via one of the public constructors or 
by calling the accept () method of a ServerSocket--it can immediately be used for sending and 
receiving data. That is, when the instance is returned, it is already connected to a remote 
peer and the opening TCP message exchange, or handshake, has been completed by the 
implementation. 

1 The same thing generally applies to reading data from the Socket's InputStream, although calling read() 
with a larger buffer does not guarantee that more data will be returned. 
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Let us therefore consider in more detail how the underlying structure gets to and from the 
connected, or "Established," state; as you'll see later (see Section 5.4.2), these details affect the 
definition of reliability and the ability to create a Socket or ServerSocket bound to a particular 
port. 

5.4.1 Connecting 

The relationship between an invocation of the Socket constructor and the protocol events 
associated with connection establishment at the client are illustrated in Figure 5.6. In this and 
the remaining figures of this section, the large arrows depict external events that cause the 
underlying socket structures to change state. Events that occur in the application program--  
that is, method calls and returns--are  shown in the upper part of the figure; events such as 
message arrivals are shown in the lower part of the figure. Time proceeds left to right in these 
figures. The client's Internet address is depicted as A.B.C.D, while the server's is W.X.Y.Z; the 
server's port  number is Q. 

When the client calls the Socket constructor with the server's Internet address, W.X.Y.Z, 
and port, Q, the underlying implementation creates a socket instance; it is initially in the Closed 
state. If the client did not specify the local address /por t  in the constructor call, a local port 
number (P), not already in use by another TCP socket, is chosen by the implementation. The 
local Internet address is also assigned; if not explicitly specified, the address of the network 
interface through which packets will be sent to the server is used. The implementation copies 
the local and remote addresses and ports into the underlying socket structure, and initiates 
the TCP connection establishment handshake. 

The TCP opening handshake is known as a 3-way handshake because it typically involves 
three messages: a connection request from client to server, an acknowledgment from server 
to client, and another acknowledgment from client back to server. The client TCP considers 
the connection to be established as soon as it receives the acknowledgment from the server. 
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In the normal  case, this happens  quickly. However, the Internet  is a best-effort  network, and 
either the client's initial message or the server 's response can get lost. For this reason, the TCP 
implementa t ion  re t ransmi ts  handshake  messages  multiple times, at increasing intervals. If the 
client TCP does not  receive a response f rom the server after some time, it times out and gives 
up. In this case the constructor  throws an IOExeeption. The connection t imeout  is generally 
long, and thus it can take on the order of minutes  for a Socket ( ) constructor  to fail. If the server 
is not  accepting connect ions--say,  if there is no p rogram associated with the given port  at the 
des t ina t ion- - the  server-side TCP will send a rejection message instead of an acknowledgment ,  
and the const ructor  will throw an IOException almost  immediately.  

The sequence of events at the server side is ra ther  different; we describe it in Figures 5.7, 
5.8, and 5.9. The server first creates an instance of ServerSocket associated with its well-known 
port  (here, Q). The socket implementa t ion  creates an underlying socket s t ructure for the new 
ServerSocket instance, and fills in Q as the local port  and the special wildcard address C*" 
in the figures) for the local IP address.  (The server may also specify a local IP address  in the 
constructor,  but  typically it does not. In case the server host  has more than one IP address,  
not  specifying the local address  allows the socket to receive connections addressed  to any of 
the server host ' s  addresses.)  The state of the socket is set to "Listening", indicating that  it is 
ready to accept incoming connection requests  addressed  to its port. This sequence is depicted 
in Figure 5.7. 

The server can now call the ServerSocket 's accept () method,  which blocks until  the TCP 
opening handshake  has been completed with some client and a new connection has been 
established. We therefore focus in Figure 5.8 on the events that  occur in the TCP implementa t ion  
when a client connect ion request  arrives. Note that  everything depicted in this figure happens  
"under the covers," in the TCP implementat ion.  
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Figure 5.8: Incoming connection request processing. 

When the reques t  for a connect ion  arrives f rom the client, a new socket s t ructure  is 
created for the connection.  The new socket 's  addresses  are filled in based  on the arriving packet: 
the packet ' s  des t ina t ion  Internet  address  and por t  (W.X.Y.Z and Q, respectively) become the 
local Internet  address  and port; the packet ' s  source address  and por t  (A.B.C.D and P) become 
the remote  Internet  address  and port.  Note that  the local por t  n u m b e r  of the new socket is 
always the same as that  of the ServerSocket.  The new socket 's  state is set to "Connecting", 
and it is added  to a list of not -qui te-connected  sockets  associa ted with the socket s t ructure  of 
the ServerSocket.  Note that  the ServerSocket itself does  not  change state, nor  does any of its 

address  in format ion  change. 
In addi t ion to creating a new under ly ing socket  s tructure,  the server-side TCP implemen-  

tat ion sends an acknowledging TCP handshake  message  back to the client. However, the server 
TCP does not  consider  the handshake  complete  unti l  the third message  of the 3-way handshake  
is received f rom the client. When that  message  eventually arrives, the new s t ructure ' s  state is 
set to "Established", and it is then  (and only then) moved  to a list of socket s t ructures  asso- 
ciated with the ServerSocket s tructure,  which represen t  es tabl ished connect ions  ready to be 
accept ( ) ed  via the ServerSoeket.  (If the third handshake  message  fails to arrive, eventually the 

"Connecting" s t ructure  is deleted.) 
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Now we can cons ider  (in Figure 5.9) what  h a p p e n s  w h e n  the server p r o g r a m  calls the 

ServerSoeket ' s  accept () me thod .  The call unblocks  as soon  as there  is some th ing  in its associ- 

a ted  list of socket  s t ruc tures  for new connect ions .  (Note that  this list may  already be n o n - e m p t y  

w h e n  accept () is called.) At that  time, one of the new connec t ion  s t ruc tures  is r e m o v e d  f rom 

the list, and  an ins tance  of Socket is c rea ted  for it and  r e t u r n e d  as the resul t  of the accept (). 

It is i m p o r t a n t  to note  that  each s t ruc ture  in the ServerSocket 's  assoc ia ted  list r ep re sen t s  

a fully es tab l i shed  TCP connec t ion  with a client at the o ther  end. Indeed,  the client can send  

da ta  as soon  as it receives the second message  of the opening  h a n d s h a k e - - w h i c h  may  be long 

before  the server  calls accept () to get a Socket ins tance  for it. 

5.4.2 Closing aTCP Connection 

TCP has  a graceful close m e c h a n i s m  that  allows appl icat ions to t e rmina te  a connec t ion  wi thou t  

having to worry  about  loss of data  that  might  still be in transit .  The m e c h a n i s m  is also 

des igned  to allow data  t ransfers  in each di rect ion to be t e rmina t ed  independen t ly ,  as in the 
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compression example of Section 4.5. It works like this: the application indicates that it is 
finished sending data on a connected socket by calling c lose ( )  or by calling shutdown0utput (). 
At that point, the underlying TCP implementation first transmits any data remaining in SendQ 
(subject to available space in RecvQ at the other end), and then sends a closing TCP handshake 
message to the other end. This closing handshake message can be thought of as an end-of- 
transmission marker: it tells the receiving TCP that no more bytes will be placed in RecvQ. 
(Note that the closing handshake message itself is not passed to the receiving application, 
but that its position in the byte stream is indicated by read() returning -1.) The closing TCP 
waits for an acknowledgment of its closing handshake message, which indicates that all data 
sent on the connection made it safely to RecvQ. Once that acknowledgment is received, the 
connection is "Half closed." It is not completely closed until a symmetric handshake happens 
in the other direction--that is, until both ends have indicated that they have no more data to 
send. 

The closing event sequence in TCP can happen in two ways: either one application calls 
c lose ( )  (or shutdown0utput()) and completes its closing handshake before the other calls 
c lose ( ) ,  or both call c lose ( )  simultaneously, so that their closing handshake messages  cross 
in the network. Figure 5.10 shows the sequence of events in the implementation when the 
application invokes c lose ( )  before the other end closes. The closing handshake message is 
sent, the state of the socket structure is set to "Closing", and the call returns. After this 
point, further reads and writes on the Socket are disallowed (they throw an exception). When 
the acknowledgment for the close handshake is received, the state changes to "Half closed", 
where it remains until the other end's close handshake message is received. Note that if the 
remote endpoint goes away while the connection is in this state, the local underlying structure 
will stay around indefinitely. When the other end's close handshake message arrives, an 
acknowledgment is sent and the state is changed to "Time-Wait". Although the corresponding 
Socket instance in the application program may have long since vanished, the associated 
underlying structure continues to exist in the implementation for a minute or more; the reasons 
for this are discussed on page 107. 
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Figure 5.11 shows the simpler sequence of events at the endpoint that does not close first. 
When the closing handshake message arrives, an acknowledgment is sent immediately, and the 
connection state becomes "Close-Wait." At this point, we are just  waiting for the application 
to invoke the Socket's c lose()  method. When it does, the final close handshake is initiated 
and the underlying socket structure is deallocated, although references to its original Socket 
instance may persist  in the Java program. 

In view of the fact that both close()  and shutdown0utput() return without waiting for 
the closing handshake to complete, you may wonder how the sender can be assured that sent 
data has actually made it to the receiving program (i.e., to Delivered). In fact, it is possible 
for an application to call c lose()  or shutdown0utput() and have it complete successfully (i.e., 
not throw an Exception) while there is still data in SendQ. If either end of the connection then 
crashes before the data makes it to RecvQ, data may be lost without the sending application 
knowing about it. 

The best solution is to design the application protocol so that the side that calls c lose()  
first does so only after receiving application-level assurance that its data was received. For 
example, when our TCPEehoClient program receives the echoed copy of the data it sent, there 
should be nothing more in transit in either direction, so it is safe to close the connection. 

Java does provide a way to modify the behavior of the Socket's c lose()  method, namely, 
the setSoLinger() method, setSoLinger() controls whether close()  waits for the closing hand- 
shake to complete before returning. It takes two parameters,  a boolean that indicates whether 
to wait, and an integer specifying the number  of seconds to wait before giving up. That is, 
when a t imeout is specified via setSoLinger(), c lose()  blocks until the closing handshake is 
completed, or until the specified amount  of time passes. At the time of this writing, how- 
ever, c lose()  provides no indication that the closing handshake failed to complete, even if 
the time limit set by setSoLinger() expires before the closing sequence completes. In other 
words, setSoLinger() does not provide any additional assurance to the application in current 
implementat ions.  
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The final subtlety of closing a TCP connection revolves around the need for the Time- 
Wait state. The TCP specification requires that when a connection terminates, at least one of 
the sockets persists in the Time-Wait state for a period of time after both closing handshakes 
complete. This requirement  is motivated by the possibility of messages being delayed in the 
network. If both ends' underlying structures go away as soon as both closing handshakes 
complete, and a new connection is immediately established between the same pair of socket 
addresses, a message from the previous connection, which happened to be delayed in the 
network, could arrive just  after the new connection is established. Because it would contain 
the same source and destination addresses, the old message could be mistaken for a message 
belonging to the new connection, and its data might (incorrectly) be delivered to the application. 

Unlikely though this scenario may be, TCP employs multiple mechanisms to prevent it, 
including the Time-Wait state. The Time-Wait state ensures that every TCP connection ends 
with a quiet time, during which no data is sent. The quiet time is supposed to be equal to 
twice the maximum amount  of time a packet can remain in the network. Thus, by the time a 
connection goes away completely (i.e., the socket structure leaves the Time-Wait state and is 
deallocated) and clears the way for a new connection between the same pair of addresses, no 
messages from the old instance can still be in the network. In practice, the length of the quiet 
time is implementat ion dependent,  because there is no real mechanism that limits how long a 
packet can be delayed by the network. Values in use range from 4 minutes down to 30 seconds 
or even shorter. 

The most  important  consequence of Time-Wait is that as long as the underlying socket 
structure exists, no other socket is permit ted to be associated with the same local port. In 
particular, any at tempt  to create a Socket instance using that port  will throw an TOException. 

5.5 Demultiplexing Demystihed 

The fact that different sockets on the same machine can have the same local address and 
port number  is implicit in the discussions above. For example, on a machine with only one 
IP address, every new Socket instance accept ()ed via a ServerSocket will have the same local 
port number  as the ServerSocket. Clearly the process of deciding to which socket an incoming 
packet should be delivered--that  is, the demul t ip lex ing process--involves looking at more than 
just the packet 's  destination address and port. Otherwise there could be ambiguity about which 
socket an incoming packet is intended for. The process of matching an incoming packet to a 
socket is actually the same for both TCP and UDP, and can be summarized  by the following 
points: 

�9 The local port in the socket structure m u s t  match the destination port number  in the 
incoming packet. 

�9 Any address fields in the socket structure that contain the wildcard value (*) are consid- 
ered to match a n y  value in the corresponding field in the packet. 

�9 If there is more than one socket structure that matches an incoming packet for all four 
address fields, the one that matches using the fewest wildcards gets the packet. 
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For example, consider a host with two IP addresses, 10.1.2.3 and 192.168.3.2, and with a 
subset of its active TCP socket structures, as shown in Figure 5.12. The structure labeled 0 is 
associated with a ServerSocket and has port  99 with a wildcard local address. Socket structure 1 
is also for a ServerSocket on the same port, but with the local IP address 10.1.2.3 specified (so 
it will only accept connection requests to that address). Structure 2 is for a connection that 
was accepted via the ServerSocket for structure 0, and thus has the same local port  number, 
but also has its local and remote Internet addresses filled in. Other sockets belong to other 
active connections. Now consider a packet with source IP address 172.16.1.10, source port  
56789, destination IP address 10.1.2.3, and destination port 99. It will be delivered to the 
socket associated with structure 1, because that one matches with the fewest wildcards. 

When a program attempts to create a socket with a particular local port number, the 
existing sockets are checked to make sure that no socket is already using that local port. A 
Socket () constructor will throw an exception if any  socket matches the local port  and local IP 
address (if any) specified in the constructor. This can cause problems in the following scenario: 

1. A client program creates a Socket with a specific local port number, say, P, and uses it to 
communicate with a server. 

2. The client closes the Socket, and the underlying structure goes into the Time-Wait state. 

3. The client program terminates and is immediately restarted. 

If the new incarnation of the client at tempts to use the same local port number, the Socket 
constructor will throw an IOException, because of the other structure in the Time-Wait state. 
As of this writing, the only way around this is to wait until the underlying structure leaves the 
Time-Wait state. 

So what determines the local/foreign address/port? For a ServerSocket, all constructors 
require the local port. The local address may be specified to the constructor; otherwise, the 
local address is the wildcard (*) address. The foreign address and port  for a ServerSocket are 
always wildcards. For a Socket, all constructors require specification of the foreign address 
and port. The local address and/or  port may be specified to the constructor. Otherwise, the 
local address is the address of the network interface through which the connection to the 
server is established, and the local port is a randomly selected, unused port  number greater 
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than 1023. For a Socket instance returned by accept(),  the local address is the destination 
address from the initial handshake message from the client, the local port is the local port of 
the ServerSocket, and the foreign address /por t  is the local address /por t  of the client. For a 
DatagramSocket, the local address and/or  port may be specified to the constructor. Otherwise 
the local address is the wildcard address, and the local port is a randomly selected, unused 
port number greater than 1023. The foreign address and port  are initially both wildcards, and 
remain that way unless the connect () method is invoked to specify particular values. 

5.6 Exercises 

1. The TCP protocol is designed so that simultaneous connection at tempts will succeed. 
That is, if an application using port P and Internet address W.X.Y.Z attempts to connect 
to address A.B.C.D, port Q, at the same time as an application using the same address 
and port  tries to connect to W.X.Y.Z, port  P, they will end up connected to each other. 
Can this be made to happen when the programs use the sockets API? 

2. The first example of "buffer deadlock" in this chapter involves the programs on both 
ends of a connection trying to send large messages. However, this is not necessary for 
deadlock. How could the TCPEchoClient from Chapter 2 be made to deadlock when it 
connects to the TCPEchoServer from that chapter? 
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defaults, socket, 84-85 
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79 
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Domain Name System (DNS), 5 
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framing, 42-46 
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58-59 
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UDP socket implementation, 

57-58 
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end-of-stream, 22, 43, 45, 46, 

59,87 
end-to-end transport protocols, 

3 
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address, 108 
security, 91 
thread errors, 68 

explicit-length fields, 43 

factories, 68-71, 75, 89-90 
factoring servers, 68-71 
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FileLogger. java, 66-67 
File Transfer Protocol (FTP), 6 
flow control mechanism, TCP, 

98 
flush() method, 22 
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framing, 42-46 

getByName() method, 9-12 
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getData() method, 25, 33-34 
getInetAddress() method, 19 
getLocalHost() method, 9-12 
getPort () method, 19 
getProperties() method, 73 
graceful close mechanism, 

104-107 
GZIPOutputStream, 43, 89, 90 

Half closed state, 105 

handshake messages 
closing, 105-107 
defined, 3 
establishing connections, 

100-104 
hosts, 1 
Hypertext Transfer Protocol 

(HTTP) 
closing connections, 85-86 
purpose of, 2 

images, multicasting, 82 
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definition of, 2 
encoding of. See encoding of 

information 
InetAddress class, 9-12 
InetAddressExample. java, 9-11 
input/output (I/O) 

buffering, 42 
closing. See close() method 
input. See input streams 
nonblocking, 75-79 
output. See output streams 
shutdown methods, 86-89, 

105-106 
input streams 

closing. See close() method 
composing, 42 
creating, 21-23 
framing, 42-46 
Java classes, table of, 43 
shutdownInput (), 86-89 
TCP implementation, 55-56 
write/read relationship, 96 

InputStream, 13-14, 19, 21-23, 
42 

integer types, 40-41 
internationalization, Java 

support for, 39 
Internet addresses, 4, 9-12, 

93-94 
Internet Protocol (IP), 2-3 
IP addresses, 9-12, 93-94 
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51 
ItemQuoteDecoderSin. java, 

53-54 
ItemQuoteDecoder. java, 47 
ItemQuoteDecoderText. java, 

49-51 
ItemQuoteEncoderBin. java, 

51-53 
TtemQuoteEncoder. java, 46 
It emQuot eEnc oderText, java, 

48-49 
ItemQuote. java, 38 
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iterative servers, 61 
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joinGroup() method, 81.83 
joining a group, 81-82 

keepalive message behavior, 16 

layers of TCP/IP, 2-3 
leaveGroup() method, 83 
length of datagrams, setting, 25 
lengths of messages, 43 
lingering, 17 
little-endian byte order, 41, 44 
local broadcast addresses, 79 
local host IP addresses, 

obtaining, 9-10 
Logger. j ava, 65-66 
logging, 64-67 
loopback address, 4 

memory limitations, deadlocks 
from, 97-98 

message boundaries 
not preserved by TCP, 15 
preserved by UDP, 23 

messages 
defined, 3 7 
delimiters, 43-44, 47 
encoding. See encoding of 

information 
framing, 42-43 

multicast groups, 81-82 
multicasting, 80-84 
MulticastSoeket class, 80-84 
multiplexing, demultiplexing 

process, 107-109 
multitasking, 61-75 

factoring servers, 68-71, 
74-75 

nonblocking I/O, 75-79 
pooled threads, 61, 71-75 
server protocol, 63-67 
thread-per-client, 67-68 
threads. See threads 

Nagle's algorithm, 17 
names of Internet hosts, 4-5, 

10-11 
network byte order, 41 
network layer, 3 
network protocols. See 

protocols; Transmission 
Control Protocol (TCP); 
User Datagram Protocol 
(UDP) 

networks, 1 
nextToken() method, 44-46 
nonblocking I/O, 75-79 
numbers, transmitting, 40-42 

options, socket, 84-85 

output streams 
composing, 42 
defined, 21-23 
flushing, 94 
framing, 42-46 
Java classes, table of, 43 
shutdown0utput (), 86-89 
TCP implementation, 55-56 
write/read relationship, 

95-96 
0utputStream, 13-14, 19, 21-23, 

42 
OutputStreamWriter, 40 

packets 
addresses, 3 
defined, 2 
message boundaries, 15, 23 
Time To Live (TTL) values, 81, 

83 
parsing, 37, 43-45 
peers, 5 
PoolDispatcher. java, 71-73 
port numbers 

defined, 3-4 
finding by client, 5-6 
getPort () method, 19 
multiple sockets with, 

107-109 
socket structures, 93-94 

price quote information 
example, 37-38 

PrintWriter, 1 O0 
properties, 73 
ProtocolFactory. java, 69, 

77-79 
protocols 

closing connections, 85-90 
compression. See 

compression protocol 
defined, 2 
factoring, 68-71, 74-75 
HTTP, 2, 85-86 
IP, 2-3 
TCP. See Transmission 

Control Protocol (TCP) 
in TCP/IP suite, 2 
timing out, 76-77 
UDP. See User Datagram 

Protocol (UDP) 

queues, data, 94-99 

read () method 
blocking by, 75-76 
correspondence with write(),  

96 
data at server, 20 
end-of-stream indication, 43 

grouping data with TCP 
socket, 96 

maximum timeout, setting, 
17 

message boundaries, 15 
performance vs. buffer size, 

100 
syntax, 22 

Reader class delimiters, 43-44 
receive() method, 24, 26, 

29-34, 75-76 
receiving data. See input stream 
RecvQ, 96-99, 105-106 
RecvTCP. java, 56-57 
RecvUDP. java, 58 
RecvUDPMulticast. java, 82-83 
reliable byte-stream channels, 3, 

94-97, 100 
Remote Method Invocation 

(RMI), 91 
retransmission of packets. 

See reliable byte-stream 
channels 

routers, 1-2 
run() method, 62-65 
Runnable interface, 62-65, 69 

security of applets, 91 
send () method 

buffer limits, 98 
DatagramSocket class, 24, 26, 

28, 31-34 
sending data. See output streams 
SendQ, 96-99, 105-106 
SendTCP. java, 55-56 
SendUPD. j ava, 57 
SendUDPMulticast. java, 80-81 
Serializable interface, 58-59 
serialization capabilities, 58-59 
servers 

closing connections, 85-90 
compression, 86-90 
concurrent. See multitasking 
defined, 5 
factoring, 68-71, 74-75 
handshake events, 102-104 
iterative, 61 
loggers, 64-67 
port numbers, 5-6 
TCP. See TCP servers; TCP 

sockets 
text-encoded messages, 

receiving, 56-57 
thread-pool, 71-75 
UDP, 31-33. See also UDP 

sockets 
ServerSocket class 

accept() method, 18-19, 
75-76, 103-104, 109 
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ServerSocket class (continued) 
constructing server with, 

18-21 
constructors, 20-21 
demultiplexing, 107-109 
establishment of connections, 

103 
methods, 21 
purpose of, 12 

setReceiveBufferSize() method, 
100 

setSendBufferSize() method, 
100 

setSoLinger() method, 106 
setSoTimeout() method, 76-77 
shutdownlnput () method, 86 
shutdown0utput () method, 

86-89, 105-106 
signed integers, 41 
Socket class, 12-18 
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18-19 

accessors, 16-17 
blocked I/O, 76 
buffer size, methods for 

setting, 100 
connection establishment 
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constructors, 15-16, 108 
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13-14, 18-19 
demultiplexing, 107-109 
getlnetAddress() method, 19 
getPort() method, 19 
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18 
instantiation by accept () at 

server, 18 
methods, 16 
shutdown methods, 86-89 

socket options, 84-85 
sockets 

addresses, 9-12 
creating, 13-14, 18-19 
defaults, 84-85 
defined, 6 
identification, 6 
servers. See ServerSocket 

class 
UDP. See UDP sockets 

stream sockets, 6 
streams 

composition, 42 
decoding, 54 
encoding. See encoding of 

information 
end-of-stream indication, 43 
input. See input streams 

interface integer methods, 41 
output. See output streams 

structures, socket 
connection establishment 

events affecting, 101-104 
fields, multiplexing, 107-108 
Half closed state, 105 
Internet addresses of sockets, 

93-94 
ports of sockets, 93-94 
protocol state information, 

94 
queues of data, 94 
Socket instances, 93-94 
wildcard values, 107-109 

system properties, 73-74 

TCP clients, 12-18 
TCP connections 

closing, 15, 85-90, 104-10 7 
defined, 12 
end-of-stream indication, 43 
establishing, 12-13 
TCPEchoClient. java, 13-15 

TCP servers, 18-21 
TCP sockets 

buffering, 94-97 
closing connections, 104-107 
data structures, 94 
input/output streams, 21-23 
reliable service requirements, 

3, 94-97, 100 
ServerSocket class, 20-21 
socket class, 15-18 
TCP clients, 12-18 
TCP servers, 18-21 
write/read relationship, 96 

TCPEchoClient. java, 13-15 
TCPEchoServer. java, 18-20 
TCPEchoServerThread. java, 

67-68 
TfiPFileServer. java, 91 
text data, 39-40, 47-51 
thread pools, 61, 71-75 
ThreadExample. java, 62-63 
ThreadMain. java, 74-75 
thread-per-client, 61, 67-68 
ThreadPerDispatcher. java, 70 
threads, 61- 75 

creating, 62, 68 
deadlock, avoiding with, 99 
exceptions, 68 
nonblocking I/O, 75-79 
resources consumed, 71 
reusing. See thread pools 
Runnable interface, 62-65, 69 
server protocol, 63-67 
suspending, 63 

thread-per-client, 61, 67-68 
time, maximum blocking, 

76-79 
watchdog, 78-79 

TimeLimitEchoProtocol, 77-78 
Time Limi tEcho Pro t oc o IF a c tory. java, 

77-79 
time, maximum blocking, 76-79 
Time To Live (TTL) values, 8 i, 83 
Time-Wait state, 105,107 
timing out of handshakes, 102 
Transmission Control Protocol 

(TCP), 2-3. See also TCP 
sockets 

transport layer, 3 
two's-complement 

representation, 41 

UDP clients, 26-31 
UDP sockets, 23-35 

creating, 28 
DatagramPacket class, 24-26 
encoding information for, 

57-58 
getData() method, 25, 33-34 
I/O with, 33-34 
lost datagrams, 26 
multicasting, 80-84 
sending datagrams, 28-29 
UDP clients, 26-31 
UDP servers, 31-33 
UDPEchoClientTimeout. java, 
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UDPEchoServer. java, 31-33 
vs. TCP sockets, 23 

UDPEchoClientTimeout. java, 
27-29 

UDPEchoServer. java, 31-33 
unicast, 79 
Unicode encodings, 39, 44-45 
unsigned integers, 41 
User Datagram Protocol (UDP) 

datagram sockets, 6 
functions of, 23 
part of TCP/IP, 2 
purpose of, 3 

wildcard values, 107-109 
write() method 

blocking by, 75-77, 98 
buffer parameters, 20 
correspondence with read (), 
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message boundaries, 15 
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syntax, 22 
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