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Abstract. We propose secret-key cryptosystems MISTY1 andMISTY2,

which are block ciphers with a 128-bit key, a 64-bit block and a variable

number of rounds. MISTY is a generic name for MISTY1 and MISTY2.

They are designed on the basis of the theory of provable security against

di�erential and linear cryptanalysis, and moreover they realize high speed

encryption on hardware platforms as well as on software environments.

Our software implementation shows that MISTY1 with eight rounds can

encrypt a data stream in CBCmode at a speed of 20Mbps and 40Mbps on

Pentium/100MHz and PA-7200/120MHz, respectively. For its hardware

performance, we have produced a prototype LSI by a process of 0.5�

CMOS gate-array and con�rmed a speed of 450Mbps. In this paper, we

describe the detailed speci�cations and design principles of MISTY1 and

MISTY2.

1 Fundamental Design Policies of MISTY

Our purpose of designing MISTY is to o�er secret-key cryptosystems that are

applicable to various practical systems as widely as possible; for example, soft-

ware stored in IC cards and hardware used in fast ATM networks. To realize

this, we began its design with the following three fundamental policies:

1. MISTY should have a numerical basis for its security,

2. MISTY should be reasonably fast in software on any processor,

3. MISTY should be su�ciently fast in hardware implementation.

For the �rst policy, we have adopted the theory of provable security against

di�erential and linear cryptanalysis [1][2][4], which was originally introduced by

Kaisa Nyberg and Lars Knudsen. As far as we know, MISTY is the �rst block

encryption algorithm designed for practical use with provable security against

di�erential and linear cryptanalysis. Although this advantage does not mean

information theoretic provable security, we believe that it is a good starting

point for discussing secure block ciphers.

Secondly, we have noticed the fact that many recent block ciphers were de-

signed so that they could be fastest and/or smallest on speci�c targets; for

example, 32-bit microprocessors. This often results in slow and/or big imple-

mentation on other types of processors. Since we regarded seeking applicability

to various systems as more important than pursuing maximum performance on
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speci�c targets, we decided to design a cipher that could be reasonably fast and

small on any platform, and hence not to adopt software instructions that are

e�ective on special processors only.

For the last policy, we should note that DES is reasonably fast in both soft-

ware and hardware, while many recent ciphers are seriously slow and/or big when

they are implemented in hardware because of their software-oriented structure.

On the other hand, since one of our target systems is a fast ATM network of

several hundreds Mbps, which cannot be reached in software for the present,

we have carefully optimized the look-up tables of MISTY from the viewpoint of

its hardware performance. It should be also noted that, in general, a choice of

substitution tables does not signi�cantly a�ect their software execution speed;

i.e. memory access time.

2 Discussions on Basic Operations

In this section we classify basic operations that are frequently used in block

ciphers into four categories and discuss their applicability to MISTY in terms of

compatibility between their security level and software/hardware e�ciency.

{ Logical Operations

Logical operations such as AND, OR and especially XOR are most com-

mon components of secret-key ciphers and are clearly small and fast in any

software or hardware system. However we cannot expect much security of

them.

{ Arithmetic Operations

Arithmetic operations such as additions, subtractions and sometimes multi-

plications are also commonly used in software-oriented ciphers because they

can be carried out by one instruction on many processors and fairly con-

tribute to their security. However, in hardware, their e�ect on data di�usion

is not necessarily high enough, considering their encryption speed, since their

delay time due to carry-spreading is often long and expensive.

{ Shift Operations

Shift operations, especially rotate-shifting, are frequently used in designing

secret-key ciphers. They indirectly improve data di�usion, and in hardware

they are obviously cheap and fast if the number of shift counts is �xed. We

should note, however, that software performance of shift operations heavily

depends on their target size; for instance, when a rotate shift of 32-bit data

is executed on 8-bit or 16-bit microprocessors, its speed may be quite slow.

{ Look-up Tables

In software, e�ciency of loop-up tables strongly depends on memory access

speed. In early microprocessors, memory access was much more expensive

than register access, while many recent processors can read from and write to

memory in one cycle (or often less than one cycle due to parallel processing)

under certain conditions. On the other hand, in hardware, the use of ROM

is slow in general, but if the tables are optimized for direct construction
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by logic gates, their delay time can be drastically reduced. Moreover, as for

the security, the look-up table method clearly contributes to data di�usion

e�ectively.

Taking the above discussion into consideration, we have concluded that logical

operations and look-up tables arranged in terms of security level and hardware

performance meet our design policies and hence they are desirable as basic com-

ponents of MISTY.

3 Theory of Provable Security

This section brie
y summarizes the theory of provable security against di�eren-

tial and linear cryptanalysis. For more detail, see [4]. This theory forms a basis

of the security of MISTY.

De�nition 1. Let F

k

(x) be a function with an n-bit input x and an `-bit pa-

rameter k. We de�ne average di�erential probability DP

F

and average linear

probability LP

F

of the function F as

DP

F

def

=

1

2

`

X

k

max

�x 6=0;�y

#fxjF

k

(x)� F

k

(x ��x) = �yg

2

n

; (1)

LP

F

def

=

1

2

`

X

k

max

�x;�y 6=0

�

2

#fxjx � �x = F

k

(x) � �yg

2

n

� 1

�

2

; (2)

respectively. We also apply this de�nition to a function F (x) without the pa-

rameter k by setting ` = 0.

When F

k

(x) is an encryption function with a key k, DP

F

and LP

F

represent a

strict level of security of the function against di�erential and linear cryptanalysis,

respectively. Since we can prove that F is secure against the two attacks when

these values are small, we say that F is provably secure if DP

F

and LP

F

are

proved to be su�ciently small.

The following three theorems give relationships between average di�eren-

tial/linear probability of a \small" function and that of a \large" function that

is a combination of the small functions. That is to say, using these theorems, we

can construct a \large and strong" function from \small and strong" functions.

Theorem 2 was �rst proved for average di�erential probability by Nyberg and

Knudsen [1], and then shown for average linear probability by Nyberg [2].

Theorem2. In �gure 1, assume that each f

i

is bijective and DP

f

i

(resp. LP

f

i

)

is smaller than p. If the entire function F

k

(k = k

1

jjk

2

jjk

3

:::) shown in the �gure

has at least three rounds, then DP

F

(resp. LP

F

) is smaller than p

2

.

Note: The authors of [1] originally proved 2p

2

(not p

2

) for a cipher with bijective

f

i

and at least three rounds, and for a cipher with any f

i

and at least four rounds.

Recently Aoki and Ohta improved this bound to p

2

when f

i

is bijectvie [3].
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We proved in [4] that the above theorem is valid for the algorithm shown in

�gure 2. An essential di�erence between �gures 1 and 2 is that the functions f

i

can be processed in parallel in �gure 2, and consequently the structure of �gure

2 is faster than that of �gure 1.

Theorem3. In �gure 2, assume that each f

i

is bijective and DP

f

i

(resp. LP

f

i

)

is smaller than p. If the entire function F

k

(k = k

1

jjk

2

jjk

3

:::) shown in the �gure

has at least three rounds, then DP

F

(resp. LP

F

) is smaller than p

2

.

We found that a similar formula holds even if the input string is divided into two

strings of unequal bit length. Speci�cally, consider the algorithm shown in �gure

3, where the input string is divided into n

1

bits and n

2

bits (n

1

� n

2

). Now

assuming that in odd rounds the right n

2

-bit string is zero-extended to n

1

bits

before XOR-ed with the left n

1

-bit string, and in even rounds the right n

1

-bit

string is truncated to n

2

bits before XOR-ed with the left n

2

-bit string, we have

the following general theorem [4]:

Theorem4. In �gure 3, assume that each f

i

is bijective and DP

f

i

(resp. LP

f

i

)

is smaller than p. If the entire function F

k

(k = k

1

jjk

2

jjk

3

:::) shown in the �gure

has at least three rounds, then DP

F

(resp. LP

F

) is smaller than

maxfp

1

p

2

; p

2

p

3

; 2

n

1

�n

2

p

1

p

3

g: (3)
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Figure 1. Figure 2. Figure 3.
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4 Design of the Data Randomizing Part

In this section we discuss the structure of the data randomizing part of MISTY.

For a complete description of MISTY1 and MISTY2, see an appendix.

4.1 The Framework

Our basic strategy in designing the data randomizing part of MISTY is to build

the entire algorithm from small components using the methods shown in the

previous section recursively. This enables us to easily evaluate the security level

of the total algorithm by that of the small ones. For instance, let us apply the

structure of �gure 2 recursively to all f

i

functions given in �gure 2. In this case,

if the average di�erential/linear probability of the smallest function is less than

p, we can prove from theorem 3 that the probability of the entire algorithm is

less than p

4

.

Now by applying theorem 2 or theorem 3 to a 64-bit block cipher, where

theorems 2 and 3 correspond to MISTY1 and MISTY2, respectively, we have a

\small" function with 32-bit input/output, which is called an FO function in

MISTY (�gure 4). Next by applying theorem 2 again to the FO function, we

have a \smaller" function with 16-bit input/output, which is referred to as an

FI function in MISTY. Since the size of the FI function is still big to use as a

look-up table, we have divided the 16-bit string into 9 bits and 7 bits, not 8 bits

and 8 bits, using the algorithm given in �gure 3.

This unequal division is due to the fact that bijective functions of odd size are

generally better than those of even size from the viewpoint of provable security

against di�erential and linear cryptanalysis. More speci�cally, when the size n

of a function is odd, the possible minimal value of its average di�erential/linear

probability is proved to be 2

�n+1

, but when it is even, it is only conjectured that

the possible minimal value is 2

�n+2

(an open problem). Therefore, if we divide

the 16-bit into 8 bits and 8 bits, the average di�erential/linear probability of the

entire 64-bit cipher is proved to be less than (((2

�8+2

)

2

)

2

)

2

=2

�48

(on condition

that the above conjecture is correct), while if we divide it into 9 bits and 7 bits,

then we can guarantee that the probability is less than ((2

�9+1

2

�7+1

)

2

)

2

=2

�56

from theorem 4 whenever all subkey bits are independent.

This shows that an unequal division generally has an advantage for secu-

rity against di�erential and linear cryptanalysis. On the other hand, it has two

penalties in implementation; the �rst is an obstruction to parallel computation,

and the second is a decrease in software performance caused by handling data

with an odd number of bits. We have nevertheless adopted the unequal division

because of its security. In the following, we refer to the �rst and third functions

of the lowest level as S

9

, and the second function as S

7

, which are \smallest"

components of MISTY. For reducing the size of software, we use the same table

in the �rst and third rounds.

In both MISTY1 andMISTY2, for the sake of 
exibility of their security level,

the number of rounds n of level 1 (see �gure 4) is variable on condition that n

is a multiple of four, while that of levels 2 and 3 is �xed to three rounds. Now
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compare encryption/decryption speed of MISTY1 and MISTY2. If we do not

take any parallel processing into consideration, the total complexity of MISTY1

and MISTY2 with the same number of rounds is clearly the same; however if

we allow parallel computations, their encryption speed is not the same. This is

mainly because MISTY1 can carry out two FI's at a time, while MISTY2 can

execute four FI's in parallel.

Table 1 gives encryption/decryption time of MISTY1 and MISTY2, where

each entry shows the number of calculations of S

9

assuming the computation

time of S

7

is the same as that of S

9

. For simplicity we have ignored the time

for XOR operations. It is clearly seen from table 1 that MISTY2 is faster than

MISTY1 in encryption, but MISTY1 is faster in ECB and CBC decryption.

This is because parallel computations are impossible in inverse calculation of

MISTY2. MISTY2 is therefore suitable for OFB and CFB modes.

Encryption Decryption Decryption

ECB,CBC,OFB,CFB ECB,CBC OFB,CFB

n-round MISTY1 3n 3n 3n

n-round MISTY2 1:5n 9n 1:5n

Table 1. Encryption/Decryption time of MISTY1 and MISTY2

(number of calculations of S

9

).

FI

FI

FI

S9

S7

S9

FO

FO

FO

FO

FO

FO

MISTY1 Level1 MISTY2 Level1

FO Level2

FI Level3

32 32 32 32

16 16

9 7

(n rounds) (n rounds)

(3 rounds)

(3 rounds)

Figure 4: Recursive structure of MISTY
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4.2 S

7

and S

9

In selecting S

7

and S

9

, we have the following three criteria:

1. Their average di�erential/linear probability must be minimal,

2. Their delay time in hardware is as short as possible,

3. Their algebraic degree is high, if possible.

For the �rst criterion, a sequence of power functions over �nite �elds is known

to attain the minimal value (that is, 2

�6

for S

7

and 2

�8

for S

9

), and as far as we

know, this is the only example that can be obtained in a systematic way. Hence

we �rst planned to investigate the hardware delay, whose exact de�nition we

adopted will be given below, for all functions that have the form S

i

(x) = A�x

�

�B

(i = 7; 9), where A and B are arbitrary bijective linear transformations and � is

an integer such that (2

i

�1; �) = 1. The last equality is a necessary and su�cient

condition that a power function can be bijective.

However, because it was time-consuming for us to calculate the delay for all

functions above, we next restricted our search to the functions that have the form

S

i

(x) = A � x

�

(i = 7; 9) and have a polynomial basis or a normal basis over

GF (2). In other words, we investigated all possible linear transformations for

A and a limited number of linear transformations for B. Note that the average

di�erential/linear probability does not depend on a selection of A or B, but the

delay does. Now the following is our formal de�nition of the hardware delay and

the algebraic degree of S

i

(x):

De�nition 5. For a function y = f (x) with an i-bit input x = (x

0

; x

1

; x

2

; :::; x

i�1

)

and a j-bit output y = (y

0

; y

1

; y

2

; :::; y

j�1

), we call the following equation an al-

gebraic normal form of the a-th output bit y

a

of f :

y

a

= e

(a;0)

+

X

0�k

1

<i

e

(a;1)

k

1

x

k

1

+

X

0�k

1

<k

2

<i

e

(a;2)

k

1

;k

2

x

k

1

x

k

2

+

X

0�k

1

<k

2

<k

3

<i

e

(a;3)

k

1

;k

2

;k

3

x

k

1

x

k

2

x

k

3

+ ::::; (4)

where e

(a;0)

,e

(a;1)

k

1

,e

(a;2)

k

1

;k

2

, e

(a;3)

k

1

;k

2

;k

3

.... are binary values, and the sum

P

denotes

an XOR operation.

The hardware length of y

a

is de�ned as the number of non-zero terms of

equation 4, and the hardware length of the function f is the maximal hardware

length of all output bits of f . Also, the algebraic degree of y

a

is de�ned as the

maximal degree of equation 4, and the algebraic degree of the function f is the

maximal algebraic degree of all output bits of f .

Note that the hardware length of y

a

minus 1 is equivalent to the number of two-

input XOR gates required for constructing y

a

from x

k

(0 � k � i) in hardware,

and the logarithm of the hardware length of f indicates its hardware delay time.

Although we have to count the number of AND gates and fan-outs to see the

exact delay time in hardware, we have adopted the above de�nition for simplicity.

Also note that the algebraic degree of S

i

(x) = A �x

�

�B agrees with the binary

hamming weight of �.
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Selection of S

7

For all functions having the form A � x

�

over GF (2

7

) with a polynomial or

normal basis and (2

7

� 1; �) = 1, we �rst calculated the algebraic degree and

hardware length of each output bit; as a result, we obtained the following:

{ If the algebraic degree is at least 4, then the hardware length of any output

bit is at least 21.

{ If the algebraic degree is equal to 3, then the hardware length of any output

bit is at least 10.

{ If the algebraic degree is equal to 2, then the hardware length of any output

bit is at least 7.

Since we regarded the length as too long when the algebraic degree is four or

more, we decided to adopt a function whose algebraic degree is equal to three.

Then for all functions whose algebraic degree is three, we calculated their entire

hardware length, and found that the minimal length is 13 and the function that

attains this length is unique up to the order of output bits. Lastly, by adding a

constant value to its output, we determined the �nal form of S

7

, whose concrete

logic is as follows:

y
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= x
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Selection of S

9

Similarly, for all functions having the form S

9

(x) = A � x

�

over GF (2

9

) with a

polynomial or normal basis and (2

9

� 1; �) = 1, we �rst calculated the algebraic

degree and hardware length of each output bit; as a result, we had the following:

{ If the algebraic degree is at least 3, then the hardware length of any output

bit is at least 27.

{ If the algebraic degree is equal to 2, then the hardware length of any output

bit is at least 9.

Since we regarded the length as too long if the algebraic degree is three or more,

we decided to adopt a function whose algebraic degree is equal to two. Then for

all functions whose algebraic degree is two, we calculated their entire hardware

length, and found that the minimal length is 12 and there are nine functions

that attain this length up to the order of output bits. Lastly by selecting one of

them randomly and adding a constant value to its output, we determined the

�nal form of S

9

, whose concrete logic is as follows:
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4.3 The function FL

For the purpose of avoiding possible attacks other than di�erential and linear

cryptanalysis, we have supplemented an additional simple function FL, whose

design criteria are (1) to be a linear function for any �xed key and (2) to have

a variable form depending on a key value.

Since this function is linear as long as the key is �xed, it does not a�ect

the average di�erential/linear probability of the entire algorithm. Moreover, this

function is obviously fast in both software and hardware since it is constructed

by logical operations such as AND, OR and XOR only.

5 Design of the Key Scheduling Part

In designing the key scheduling part of MISTY, we set up the following criteria

from the viewpoint of compatibility between its security level and applicability

to various systems:

1. The size of key is 128 bits,

2. The size of subkey is 256 bits,

3. Every round is a�ected by all key bits,

4. Every round is a�ected by as many subkey bits as possible.

For security reasons we have adopted the 128-bit key, and for practical reasons

we have limited the size of the subkey to 256 bits. Reducing the size of subkey has

two important performance advantages. The �rst advantage can be obtained in

systems whose resources are limited such as in IC cards. In these systems, since

RAM size for temporary use is usually strictly limited, it is generally impossible

to store all subkey bits in RAM if its size is large; hence we have to carry out

the key scheduling part in every data block, which could be a heavy penalty on

performance. We decided to choose subkeys of 256 bits, so that all the bits could

be stored in RAM even for extremely restricted software environments.

The second advantage comes from the fact that in microprocessors with many

integer registers such as RISC processors, the 256-bit subkey can be loaded

completely into the registers. In most implementation of block ciphers, all subkey

bits are written into memory in key scheduling process, and in encryption process

they are read from the memory round by round. Hence if all the subkey bits are
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kept in the registers during the entire encryption process, the total performance

is expected to be signi�cantly improved.

On the other hand, in compensation for this small number of subkey bits

and simple key scheduling algorithm, we have established the third and fourth

design criteria. In MISTY, an FO function and an FL function use 112 subkey

bits and 32 subkey bits, respectively. To generate the 112 subkey bits, all of 128

key bits are required. The number of total independent subkey bits of MISTY1

or MISTY2 with eight rounds, for example, is 1216.

6 Examples of Implementation of MISTY

In this section we show two examples of our software implementation and one

example of our hardware implementation of MISTY1 with eight rounds.

6.1 Pentium

Pentium has two independent integer execution units called U-pipe and V-pipe,

where the U-pipe is usually used for carrying out instructions. However some in-

structions can be also executed in the V-pipe while the U-pipe is being occupied

by special \pairable" instructions. Though the number of these pairable instruc-

tions is small, if we write a program so that these two pipes can be e�ciently

used, the performance of the software is extremely improved, possibly twice or

more due to resolution of register contentions.

We wrote an assembly language program of MISTY1 with eight rounds on

Pentium 100MHz, which encrypts an input plaintext stream in CBC mode at a

speed of 20Mbps. This is 30% faster than hightly optimized DES for Pentium.

The program heavily uses V-pipe because of the highly parallel structure of

MISTY; it takes approximately 300 cycles to process one block, where the U-

pipe has no idle time and the V-pipe is used in more than 95% of the 300 cycles.

6.2 PA-7200

PA-7200 can also execute two integer instructions at a time under various re-

strictions. Moreover PA-RISC series microprocessors have 32 integer registers,

almost all of which can be used freely by users; this means that it is easy to load

all 256-bit subkey information of MISTY, even every 16 bits in each register.

PA-7200 has 512KB on-chip cache (256KB for code and 256KB for data),

which enables us to reduce computational time of MISTY by having a big pre-

de�ned table. That is to say, we can make a 128KB table that represents the

�rst two rounds of the FI function in advance. By doing this, calculation of FI

is signi�cantly simpli�ed. Note that this technique cannot be used in Pentium

because Pentium has only small cache (8KB for data) which generally causes

serious penalty cycles due to cache misses.

We wrote an assembly language program of MISTY1 with eight rounds on

PA-7200 120MHz using the above techniques. It can encrypt an input plaintext

stream in CBC mode at a speed of 40Mbps.
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6.3 Hardware

We have also designed a prototype LSI of MISTY1 with eight rounds, which has

the following speci�cations:

Encryption Speed: 450Mbps (typical)

Clock: 14MHz

I/O: 32-bit parallel � 3 (plaintext, ciphertext, key)

Supported Modes: ECB,CBC,OFB-64,CFB-64

Design Process: 0.5� CMOS gate-array

Number of Gates: 65K gates

Package: 208-pin 
at package

This LSI has no repetition structure; that is, it contains the full hardware of

eight FO functions and ten FL functions. It takes two cycles to encrypt a 64-bit

plaintext. It also has three independent 64-bit registers that store a plaintext,

an intermediate text after the fourth round, and a ciphertext, respectively. This

structure makes the following pipeline data processing possible:

plaintext 1 plaintext 2 plaintext 3 plaintext 4

Cycles 1 and 2 Input

Cycles 3 and 4 Encryption Input

Cycles 5 and 6 Output Encryption Input

Cycles 7 and 8 Output Encryption Input

7 Conclusions

This paper proposed new secret-key block cryptosystems MISTY1 and MISTY2.

At present, the author recommends to use MISTY1 with eight rounds, and to

use MISTY2, which has a newer structure, with twelve rounds. The next four

pages show a complete and self-contained description of MISTY1 and MISTY2.
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This document shows a complete description of encryption algorithms MISTY1

and MISTY2, which are secret-key ciphers with a 64-bit data block, a 128-bit

secret key and a variable number of rounds n, where n is a multiple of four.

Data Randomizing Part

{ Figure A and B show the data randomizing part of MISTY1 and MISTY2,

respectively: The 64-bit plaintext P is divided into the left 32-bit string and

the right 32-bit string, which are transformed into the 64-bit ciphertext C

by means of bitwise XOR operations denoted by � and sub-functions FO

i

(1 � i � n) and FL

i

(1 � i � n+2). FO

i

uses a 64-bit subkey KO

i

and a

48-bit subkey KI

i

. FL

i

uses a 32-bit subkey KL

i

.

{ Figure C shows the structure of FO

i

: The input is divided into the left 16-bit

string and the right 16-bit string, which are transformed into the output by

means of bitwise XOR operations and sub-functions FI

ij

(1� j�3), where

KO

ij

(1�j�4) and KI

ij

(1�j�3) are the j-th (from left) 16 bits of KO

i

and KI

i

, respectively.

{ Figure D shows the structure of FI

ij

: The input is divided into the left 9-bit

string and the right 7-bit string, which are transformed into the output by

means of bitwise XOR operations and substitution tables S

7

and S

9

. In the

�rst and third XORs, the 7-bit string is zero-extended to 9 bits, and in the

second XOR, the 9-bit string is truncated to 7 bits by discarding its highest

two bits. KI

ij1

and KI

ij2

are the left 7 bits and the right 9 bits of KI

ij

,

respectively.

{ Figure E shows the structure of FL

i

. The input is divided into the left 16-bit

string and the right 16-bit string, which are transformed into the output by

means of bitwise XOR operations, a bitwise AND operation denoted by \

and a bitwise OR operation denoted by [, where KL

ij

(1�j�2) is the j-th

(from left) 16 bits of KL

i

.

{ In the next page, the substitution tables S

7

and S

9

are shown in decimal

form.

Key Scheduling Part

{ Figure F shows the key scheduling part of MISTY1 and MISTY2: K

i

(1�

i� 8) is the i-th (from left) 16 bits of the secret key K, and K

0

i

(1� i� 8)

is the output of FI

ij

when the input of FI

ij

is assigned to K

i

and the key

KI

ij

is set to K

i+1

, where K

9

is identi�ed with K

1

.

{ The correspondence between the round subkeys KO

ij

,KI

ij

,KL

ij

and the

actual subkeys K

i

,K

0

i

is as follows, where i is identi�ed with i�8 when i>8:

Round KO

i1

KO

i2

KO

i3

KO

i4

KI

i1

KI

i2

KI

i3

KL

i1

KL

i2

Actual K

i

K

i+2

K

i+7

K

i+4

K

0

i+5

K

0

i+1

K

0

i+3

K
i+1

2

(odd i) K

0

i+1

2

+6

(odd i)

K

0

i

2

+2

(even i) K i

2

+4

(even i)
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Test Data of MISTY1 with eight rounds

Key (K

1

to K

8

): 00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff

Subkey (K

0

1

to K

0

8

): cf 51 8e 7f 5e 29 67 3a cd bc 07 d6 bf 35 5e 11

Plaintext: 01 23 45 67 89 ab cd ef

Ciphertext: 8b 1d a5 f5 6a b3 d0 7c

Table of S7

27, 50, 51, 90, 59, 16, 23, 84, 91, 26,114,115,107, 44,102, 73,

31, 36, 19,108, 55, 46, 63, 74, 93, 15, 64, 86, 37, 81, 28, 4,

11, 70, 32, 13,123, 53, 68, 66, 43, 30, 65, 20, 75,121, 21,111,

14, 85, 9, 54,116, 12,103, 83, 40, 10,126, 56, 2, 7, 96, 41,

25, 18,101, 47, 48, 57, 8,104, 95,120, 42, 76,100, 69,117, 61,

89, 72, 3, 87,124, 79, 98, 60, 29, 33, 94, 39,106,112, 77, 58,

1,109,110, 99, 24,119, 35, 5, 38,118, 0, 49, 45,122,127, 97,

80, 34, 17, 6, 71, 22, 82, 78,113, 62,105, 67, 52, 92, 88,125

Table of S9

451,203,339,415,483,233,251, 53,385,185,279,491,307, 9, 45,211,

199,330, 55,126,235,356,403,472,163,286, 85, 44, 29,418,355,280,

331,338,466, 15, 43, 48,314,229,273,312,398, 99,227,200,500, 27,

1,157,248,416,365,499, 28,326,125,209,130,490,387,301,244,414,

467,221,482,296,480,236, 89,145, 17,303, 38,220,176,396,271,503,

231,364,182,249,216,337,257,332,259,184,340,299,430, 23,113, 12,

71, 88,127,420,308,297,132,349,413,434,419, 72,124, 81,458, 35,

317,423,357, 59, 66,218,402,206,193,107,159,497,300,388,250,406,

481,361,381, 49,384,266,148,474,390,318,284, 96,373,463,103,281,

101,104,153,336, 8, 7,380,183, 36, 25,222,295,219,228,425, 82,

265,144,412,449, 40,435,309,362,374,223,485,392,197,366,478,433,

195,479, 54,238,494,240,147, 73,154,438,105,129,293, 11, 94,180,

329,455,372, 62,315,439,142,454,174, 16,149,495, 78,242,509,133,

253,246,160,367,131,138,342,155,316,263,359,152,464,489, 3,510,

189,290,137,210,399, 18, 51,106,322,237,368,283,226,335,344,305,

327, 93,275,461,121,353,421,377,158,436,204, 34,306, 26,232, 4,

391,493,407, 57,447,471, 39,395,198,156,208,334,108, 52,498,110,

202, 37,186,401,254, 19,262, 47,429,370,475,192,267,470,245,492,

269,118,276,427,117,268,484,345, 84,287, 75,196,446,247, 41,164,

14,496,119, 77,378,134,139,179,369,191,270,260,151,347,352,360,

215,187,102,462,252,146,453,111, 22, 74,161,313,175,241,400, 10,

426,323,379, 86,397,358,212,507,333,404,410,135,504,291,167,440,

321, 60,505,320, 42,341,282,417,408,213,294,431, 97,302,343,476,

114,394,170,150,277,239, 69,123,141,325, 83, 95,376,178, 46, 32,

469, 63,457,487,428, 68, 56, 20,177,363,171,181, 90,386,456,468,

24,375,100,207,109,256,409,304,346, 5,288,443,445,224, 79,214,

319,452,298, 21, 6,255,411,166, 67,136, 80,351,488,289,115,382,

188,194,201,371,393,501,116,460,486,424,405, 31, 65, 13,442, 50,

61,465,128,168, 87,441,354,328,217,261, 98,122, 33,511,274,264,

448,169,285,432,422,205,243, 92,258, 91,473,324,502,173,165, 58,

459,310,383, 70,225, 30,477,230,311,506,389,140,143, 64,437,190,

120, 0,172,272,350,292, 2,444,162,234,112,508,278,348, 76,450
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