TRIVIUM
Specifications*

Christophe De Canniere** and Bart Preneel

Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC,
Kasteelpark Arenberg 10,
B-3001 Heverlee, Belgium
{cdecanni, preneel}@esat.kuleuven.be

Abstract. This document specifies TRIVIUM, a hardware oriented syn-
chronous stream cipher which aims to provide a flexible trade-off between
speed and area. The description of the cipher is followed by some per-
formance figures and a summary of the cryptographic properties of the
algorithm. For a more theoretical discussion of the rationale behind the
design, the reader is referred to the accompanying paper [1].

1 Introduction

TRIVIUM is a hardware oriented synchronous stream cipher. It was designed
as an exercise in exploring how far a stream cipher can be simplified without
sacrificing its security, speed or flexibility. While simple designs are more likely
to be vulnerable to simple, and possibly devastating, attacks (which is why we
strongly discourage the use of TRIVIUM at this stage), they certainly inspire
more confidence than complex schemes, if they survive a long period of public
scrutiny despite their simplicity.

The next section provides a complete description of the stream cipher pro-
posal. Sect. 3 discusses the performance of the cipher, and Sect. 4 briefly touches
some security aspects of the algorithm. A more theoretical discussion of the ra-
tionale behind the design can be found in a separate paper [1].

2 Specifications

TRIVIUM is a synchronous stream cipher designed to generate up to 254 bits of
key stream from an 80-bit secret key and an 80-bit initial value (IV). As for
most stream ciphers, this process consists of two phases: first the internal state
of the cipher is initialized using the key and the IV, then the state is repeatedly
updated and used to generate key stream bits. We first describe this second
phase.

* The work described in this paper has been partly supported by the European Com-
mission under contract IST-2002-507932 (ECRYPT).
** F.W.O. Research Assistant, Fund for Scientific Research — Flanders (Belgium).

Parameters

Key size: 80 bit
1V size: 80 bit
Internal state: 288 bit

Table 1. Parameters of TRIVIUM

2.1 Key stream generation

The proposed design contains a 288-bit internal state denoted by (s1, ..., S2ss).
The key stream generation consists of an iterative process which extracts the
values of 15 specific state bits and uses them both to update 3 bits of the state
and to compute 1 bit of key stream z;. The state bits are then rotated and the
process repeats itself until the requested N < 254 bits of key stream have been
generated. A complete description is given by the following simple pseudo-code:

fori=1to N do
t1 < se6 + S93
to < S162 + S177
3 < S243 + Sass
zi < t1 + 12 + 13
t1 < t1 + S91 - S92 + S171
tg < 12 + S175 - S176 + S264
3 «— t3 + Sa2g6 - S287 + S69

(51,82,...,803) < (t3,51,...,592)

(594,595, .- ., 8177) « (t1,504, ..., 5176)

(817855279, - - ., S288) < (t2, 5178, . - ., S287)
end for

Note that here, and in the rest of this document, the ‘+’ and -’ operations
stand for addition and multiplication over GF(2) (i.e., XOR and AND), respec-
tively. A graphical representation of the key stream generation process can be
found in Fig. 1.

2.2 Key and IV setup

The algorithm is initialized by loading an 80-bit key and an 80-bit IV into
the 288-bit initial state, and setting all remaining bits to 0, except for sssg,
s287, and ssgg. Then, the state is rotated over 4 full cycles, in the same way as
explained above, but without generating key stream bits. This is summarized in
the pseudo-code below:

(51752,...7593) %(Kl,...,Kgo,O,...,O)
(894,895,...75177) — (Ivl,...,IVgo,O,...,O)
(817878279,...,8288) — (O,...,071,171)

for i =1 to 4-288 do

t1 < Se6 + So1 * S92 + S93 + S171
to < S162 + S175 * S176 + S177 + S264
t3 < 8243 + S286 - S287 + S288 + S69

(81, S92,y 893) — (tg,sl, ey 892)

(594,595, .- ., 8177) « (t1, 504, ..., 5176)

(517855279, - - -, S288) « (t2, 5178, . - ., S287)
end for

3 Implementation

3.1 Hardware

TRIVIUM is a hardware oriented design focussed on flexibility. It aims to be
compact in environments with restrictions on the gate count, power-efficient on
platforms with limited power resources, and fast in applications that require
high-speed encryption.

The requirement for a compact implementation suggests a bit-oriented ap-
proach. It also favors the use of a nonlinear internal state, in order not to waste
all painfully built up nonlinearity at the output of the key stream generator.
In order to allow power-efficient and fast implementations, the design must also
provide a way to parallelize its operations. In the case TRIVIUM, this is done
by ensuring that any state bit is not used for at least 64 iterations after it has
been modified. This way, up to 64 iterations can be computed at once, provided
that the 3 AND gates and 11 XOR gates in the original scheme are duplicated
a corresponding number of times. This allows the clock frequency to be divided
by a factor 64 without affecting the throughput.

Based on the figures stated in [2] (i.e., 12 NAND gates per Flip-flop, 2.5 gates
per XOR, and 1.5 gates per AND), we can compute an estimation of the gate
count for different degrees of parallelization. The results are listed in Table. 2.

Components 1-bit 8-bit 16-bit 32-bit 64-bit
Flip-flops: 288 288 288 288 288
AND gates: 3 24 48 96 192
XOR gates: 11 88 176 352 704

NAND gate count: 3488 3712 3968 4480 5504

Table 2. Estimated gate counts of 1-bit to 64-bit hardware implementations

3.2 Software

Despite the fact that TRIVIUM does not target software applications, the cipher
is still reasonably efficient on a standard PC. The measured performance of the
reference C-code on an 1.5 GHz Xeon processor can be found in Table 3.

Operation

Stream generation: 12 cycles/byte
Key setup: 55 cycles

IV setup: 2050 cycles

Table 3. Measured performance on an Intel® Xeon™ CPU 1.5 GHz

4 Security

In this section we briefly discuss some of the cryptographic properties of TRIV-
1UM. For a more detailed analysis of the cipher, we refer to the paper [1].

The security requirement we impose on TRIVIUM is that any type of cryp-
tographic attack should not be significantly easier to apply to TRIVIUM than to
any other imaginable stream cipher with the same external parameters (i.e., any
cipher capable of generating up to 264 bits of key stream from an 80-bit secret
key and an 80-bit IV). Unfortunately, this requirement is not easy to verify, and
the best we can do is to provide arguments why we believe that certain common
types of attacks are not likely to affect the security of the cipher.

4.1 Correlations

When analyzing the security of a synchronous stream cipher, a cryptanalyst will
typically consider two different types of correlations The first type are corre-
lations between linear combinations of key stream bits and internal state bits,
which can potentially lead to a complete recovery of the state. The second type,
exploited by distinguishing attacks, are correlations between the key stream bits
themselves.

Obviously, linear correlations between key stream bits and internal state bits
are easy to find, since z; is simply defined to be equal to sgg + s93 + S162 + S177 +
S243 1+ s2gs. However, as opposed to LFSR based ciphers, TRIVIUM’s state evolves
in a nonlinear way, and it is not clear how the attacker should combine these
equations in order to efficiently recover the state.

An easy way to find correlations of the second type is to follow linear trails
through the cipher and to approximate the outputs of all encountered AND gates
by 0. However, the positions of the taps in TRIVIUM have been chosen in such a
way that any trail of this specific type is forced to approximate at least 72 AND
gate outputs. An example of a correlated linear combination of key stream bits
obtained this way is

21 + 216 + 228 + 243 + 246 + 255 + 261 + 273

+ 288 + 2124 + 2133 + 2142 + 2202 + 2211 + 2220 + 2289 -

If we assume that the correlation of this linear combination is completely ex-
plained by the specific trail we considered, then it would have a correlation

coefficient of 2772, Detecting such a correlation would require at least 244 bits
of key stream, which is well above the security requirement.

Other more complicated types of linear trails with larger correlations might
exist, but at this stage it seems unlikely that these correlations will exceed 2749,
This issue is discussed in more details in the paper [1].

4.2 Period

Because of the fact that the internal state of TRIVIUM evolves in a nonlinear
way, its period is hard to determine. Still, a number of observations can be made.
First, if the AND gates are omitted (resulting in a completely linear scheme),
one can show that any key/IV pair would generate a stream with a period of at
least 296=3 — 1. This has no immediate implications for TRIVIUM itself, but it
might be seen as an indication that the taps have been chosen properly.

Secondly, TRIVIUM’s state is updated in a reversible way, and the initializa-
tion of (s17s, .. ., Sass) prevents the state from cycling in less than 111 iterations.
If we believe that TRIVIUM behaves as a random permutation after a sufficient
number of iterations, then all cycle lengths up to 2288 would be equiprobable,
and hence the probability for a given key/IV pair to cause a cycle smaller than
280 would be 27208,

4.3 Guess and Determine attacks

In each iteration of TRIVIUM, only a few bits of the state are used, despite
the general rule-of-thumb that sparse update functions should be avoided. As a
result, guess and determine attacks are certainly a concern. A straightforward
attack would guess (sa25, . .., S93), (S97,...,8177), and (Sa44, - . ., S2ss), 195 bits in
total, after which the rest of the bits can immediately be determined from the
key stream. Further research should be conducted to examine to which extent
more sophisticated attacks can reduce this number.

4.4 Algebraic attacks

TRIVIUM seems to be a particularly attractive target for algebraic attacks. The
complete scheme can easily be described with extremely sparse equations of low
degree. However, its state does not evolve in a linear way, and hence the efficient
linearization techniques used to solve the systems of equations generated by
LFSR based schemes will be hard to apply. However, other techniques might
be applicable and their efficiency in solving this particular system of equations
needs to be investigated.

4.5 Resynchronization attacks

Another type of attacks are resynchronization attacks, where the adversary is
allowed to manipulate the value of the IV, and tries to extract information about

the key by examining the corresponding key stream. TRIVIUM tries to preclude
this type of attacks by cycling the state a sufficient number of times before pro-
ducing any output. It can be shown that each state bit depends on each key and
IV bit in a nonlinear way after two full cycles (i.e., 2-288 iterations). We expect
that two more cycles will suffice to protect the cipher against resynchronization
attacks.

5 Conclusion

TRIVIUM is a simple synchronous stream cipher which seems to be particularly
well suited for application which require a flexible hardware implementation.
It is clearly in an experimental stage though, and further research will reveal
whether it meets its security requirements or not.

Remarks concerning the name. The word trivium is Latin for “the three-fold
way”, and refers to the three-fold symmetry of TrRIviUM. The adjective trivial,
which was derived from it, has a connotation of simplicity, which is also one
of the characteristics of TRIVIUM. Moreover, with some imagination, one might
recognize the shape of a Trivial Pursuit board in Fig. 1 (while we admit that in
this respect “Merecedes” would have been a more appropriate name). Finally, the
name provides a nice title for a subsequent cryptanalysis paper: “Three Trivial
Attacks on Trivium?”.

References

1. C. De Canniére and B. Preneel, “TRiviUM — A Stream Cipher Construction In-
spired by Block Cipher Design Principles,” to be uploaded to http://www.ecrypt.
eu.org/stream soon.

2. J. Lano, N. Mentens, B. Preneel, and 1. Verbauwhede, “Power Analysis of Syn-
chronous Stream Ciphers with Resynchronization Mechanism,” in ECRYPT Work-
shop, SASC — The State of the Art of Stream Ciphers, pp. 327-333, 2004.

