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1 FEAL cipher family

FEAL-8 has been expanded to FEAL-N (N round FEAL with
64-bit key), where FEAL-N with N=4/8 is identical to FEAL-4/-
8 which have been previously published respectively. N is a user
defined parameter (N>4, N:even, N=2% z >2 is recommended).
FEAL-N has also been expanded to FEAL-NX (X: expansion, N
round FEAL with 128-bit key) that accepts 128-bit keys. When the
right half of the 128-bit key is all zeros, FEAL-NX works as FEAL-N.

Upward compatibility is an important concept of the FEAL cipher
family [1].

2 Round number N

The author believes that most cipher applications can avoid cho-
sen plaintext attacks by the countermeasures described in Annex-1.
Increased N in FEAL-N or FEAL-NX can avoid chosen plaintext at-
tacks. Where the countermeasures are applicable, small values of N
(eg. N=8) should be used. If none of the countermeasures can be
applied or their effectiveness is unclear, the value of N in FEAL-N
or FEAL-NX should be increased.

3  64-bit key and 128-bit key

The author thinks that exhaustive searches for FEAL-N 64-bit
keys may be possible if LSI technology advances sufficiently, as shown
in Annex-2. He feels that FEAL-N may weaken against exhaustive
search within one to two decades. Therefore, FEAL-NX which ac-
cepts 128-bit keys has been designed.
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Annex-3 discusses a comparison of chosen plaintext attack and
exhaustive attack.

4 Implementation

The processing speed of the FEAL-8 LSI chip is 96 Mbps (CMOS,
1.5um, f=12MHz, 88’). FEAL-N program speeds are shown in Table
1 using a 16-bit up (i80286). The number of dynamic steps per stage
of FEAL-N data randomization is about only 25 steps for both 16-
bit microprocessors (i80286) and 32-bit general purpose computers
(IBM370) if assembly programs are used (f). Programming tech-
niques are outlined in Annex-4. FEAL-N and FEAL-NX are still
efficient even when N=32 or N=64. ( : An 80286 assembly program
of DES needs about several hundred dynamic steps per stage.)

Table 1. Enciphering speed of FEAL-N program

Round number N 4 8 186 32 6 4

Speed (kilo-bps) | 1,000 670 440 220 120

CPU: 180286, f=10MHz, assembler program(430+2N bytes, N:Max value)

References [1]: S. Miyaguchi et al, "Expansion of FEAL cipher’,
Vol 2, No.6, NTT REVIEW, November 1990

Annex-1 Chosen plaintext attack
1  Flow of chosen plaintext attack

There may be two typical cases of attack possible. Here, the
cipher user is called the victim.
Case-1: The victim enciphers the chosen plaintexts

The attacker sends the chosen plaintexts to the victim through
a communication line or in storage media. The victim enciphers the
chosen plaintexts in the ECB mode (a basic mode without feedback,
see I508372) and returns the generated ciphertexts to the attacker.
This case includes the situation where the attacker provides the vic-
tim with a program to generate the chosen plaintexts.
Case-2: The attacker enciphers the chosen plaintexts

The victim provides the attacker with an enciphement tool (en-
cipherment equipment, a smart card including cipher module etc.)
that has the victim’s secret key. The attacker inputs the chosen
plaintexts into the tool and obtains the ciphertexts generated in the
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ECB mode. This case includes the situation where the attacker uses
the tool without permission of the victim.

2 Countermeasures

One of the following may be effective to prevent the attack.
(1) Elimination of cooperation and improper use

A cipher user should not encipher data from outside (possible
chosen plaintexts) in the ECB mode using his secret key, and then
return the ciphertexts so generated. He also should not provide an
encipherment tool that outputs data enciphered in the ECB mode
using the user’s secret key, i.e. eliminate user cooperation with the
attacker, improper uses of the cipher as in Case-1 or Case-2 above.
(2) Inhibitation of the ECB

ECB mode should be inhibited, and CBC or CFB modes (feed-
back modes, see ISO8372) should be used(f). Initial values of each
mode are changed with each use of the cipher. The cipher user de-
termines the initial value, IV, with his rule that is secret to others
(possible attackers). The value of IV may be revealed after the first
block of plaintexts is given. If the initial value IV must be sent to
the receiver, it can be appended to the head of the ciphertext.
t : International standards, ISO8732, 1SO9160 and IS010126, rec-
ommend the use of CBC or CFB modes in cipher communications.
(3) Key changes : The key, the target of chosen plaintext
attack should be changed after each key use (1).
it : International standard, ISO8732, recommends that the key be
changed for each communication session.
(4) Miscellaneous: Individual countermeasures can be devel-
oped for each cipher application. For instance, if the volume of cho-
sen plaintexts is 1 Mega-byte, maximum data is limited to a lesser
volume (eg. 100 kilo-byte) within one key lifetime.

Annex-2 Exhaustive search for 64-bit keys
1 Progress of LSI C-MOS technology

A rough approximation is that LSI processing speed is inversely
proportional to the channel width while LSI integrated transistor
density is inversely proportional to the square of the channel width.
The past decade has shown that LSI channel width has decreased
to one third of the original width; consequently, processing speeds
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have roughly tripled and the transister density has increased by a
factor of 10. It is predicted that similar LSI technology advances
will continue in the future.
2 FEAL-attack LSI chip

Assume that a special FEAL-attack LSI chip can be fabricated,
1.e., enciphering speed of the chip is 3 times the current speed, 300
Mbps ~ 3x96 Mbps (3 xspeed of current FEAL-8 chip). The chip has
ten FEAL-N processing elements, while chip price is 20 US dollars.
3 Exhaustive search equipment

The equipment includes 100,000 FEAL-attack chips. The eqip-
ment inputs one plaintext (P) and its ciphertext (C) which was en-
ciphered by a secret key, and enciphers P repeatedly and in parallel
using key K; for i from i=1 to 2%¢, producing ciphertext C; and com-
paring C; to C. Here, the key K is generated in the equipment. If
the equipment finds C'; = C, it outputs the value of ;. The encipher-
ing speed (V) of the equipment is V = 300x 10¢ (bps)x10%(chips)x 10
(FEAL-8 processing elements/chip) = 300 Tera-bps. Assume that
the equipment price is ten times the total chip cost. For reference,
the equipment cannot be re-designed to input and/or output texts at
a speed of 300 Tera-bps because it is technically impossible.
4 Equipment performance

Let p be the probability to discover the secret key. Then the
price of the equipment and the time to discover the key are given as:
(a) the price = 20 US (dollars/chip)x 100,000 (chips) x 10 (times)
= 20 million US dollars, (b) the time = ((2%¢ x 64(bits))/(300x 10°
(bps)x10°(chips)x 10 (FEAL-8 processing elements/chip) x 8.64 x 10
(sec/day) ) x p = 45 days x p).

That is: Equipment price (million dollars) x Time to discover
the key (days) ~ 20 x 45x p (million dollarsxdays)
5 Conclusion

FEAL-N (64-bit key) may weaken against exhaustive search
within one to two decades.

Reference: Exhaustive search for DES 56-bit keys
(a) the price: 20 million US dollars (the same as above)
(b) the time = ((2°¢ x 64 (bits))/(3 x 20(1)x10°(bps)x10° (chips)
x 10 (DES elements/chip)x8.64 x 10* (sec/day) ) ~ 1 days ).
t 20 Mbps (approximate speed of DES chip)
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Annex-3 Comparison of Chosen plaintext attack and Ex-
haustive search

The author believes that a chosen plaintext attack (CPA) on
2°* Dlocks is extremely ineffective, and cannot be equated with ex-
haustive search on 2°* keys, even if the countermearsures to CPA
described in Anndex-1 are ignored. The reasons are:

(a) A cipher user (victim) or attacker has to use encipherment equip-
ment that input/outputs texts at a speed of 300 Tera-bps which
cannot be realized, if the speed of CPA is comparable with that for
exhaustive search (see Clause 3 of Annex-2).

(b) The sheer volume of data to be transferred, 25 x 8 bytes (1.47 x
10%° bytes), prevents CPA within any reasonable period or price.

To the author, it seems to be questionable to compare the num-
ber of chosen plaintext attacks with that of ezhaustive search when
the number is very big such as 2%4. This comparison may lead to the
misunderstanding that both attacks might be equally strong.

Annex-4 Programming techniques for FEAL
Programming examples of . functions of FEAL are shown below.

1  Program example using 1-bit left rotation instruction

If a 1-bit (or 2-bit) left rotation is used, Sp/.S; functions can be
coded easily.  S1(Xy,X2) = Rot2( (X; + Xo 4+ 1) mod 256 ) is
given below in typical 16-bit up assembly language.

add RI,R2  ;RI — (RI) + (R2) mod 256,
where X;/X; is in R1/R2.
inc Rl ; R1 — (R1) + 1
rot Rl ; R1 « 1-bit left rotation on (R1)
rot Rl ; R1 « 1-bit left rotation on (R1)
2 Table search technique: This is suitable for processors

that have a base register to point the table. The idea is shown for

S51(X1,X3) = Rot2( (X1 + X, + 1) mod 256)
Step-1: X — X; + X, (add X; and X>, then sum is stored into X)
Step-2: Y — 2-bit left rotation on (X+1) from table pointed X

3  Note: Program coding of paired stages in FEAL data ran-

domization is very useful to decrease dynamic program steps.
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Annex-5 FEAL Specifications

This Annex uses the following conventions and notations.

(1) AAr,...: blocks
(2) (A, .): concatenation of blocks in this order
(3) A B: exclusive-or operation of A and B
(4) ¢ : zero block, 32-bits long
(5) =

)

(6

: Transfer from left side to right side

Bit position: 1,2,3,... from the first left side bit (MSB) in a
block towards the rlght.

1 FEAL options

(1) Round number (N): Determines the round number (N) for FEAL
data randomization, where N > 4 and even. 2%, x>2 is recom-

mended.
(2) Key parity: Indicates: (a) Use of key parity bits in a key-block,
or (b) Non-use of key parity bits in a key-block

2  Enciphering algorithm

Plaintext P is separated into Lo and Ry of equal lengths (32 bits),
le., P=(Lg, Ry).
First, (Lo, Ro) = (Lo, Ro) & (Kn, Kny1, KNy, Kngs)
Next, (Lo, Ro) = (Lo, Ro) @ (¢, Lo)
Next, and calculate the equations below for r from 1 to N iteratively,
R.=L,_1® f(R,—1,K,_1)
L,=R,_

where extended keys K;s are defined in Clause 4, and function f is
defined in Clause 5. Output of r-th round is (L,, R, ).
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Interchange the final output of the iterative calculation, (Ly, Rn),
into (Ry, Ly). Next calculate:

(Rn,Ly) = (Rn,LN) @ (¢, RN)
Lastly, (RnyLy) = (RN, LN)® (KNga, Kngs, Knte, KngT)

Ciphertext is given as (Ry, Ly ).

3 Deciphering algorithm

Ciphertext (Ry, Ly ) is separated into Ry and Ly of equal lengths.
First, (Rn,Ln) = (RN, LN) ® (Knya, Kngs, Knve, Knst)
Next, (Rn,Ln)=(RNn,LN) & (¢, RN)

Next, calculate the equations below for r from N to 1 iteratively,
Li_1=R, & f(Ly, K1)
R,y =1L,
Interchange the final output of the iterative calculation, (Rg,Lg),
into (Lg, Rp). Next calculate:

(Lo, Ro) = (Lo, Ro) & (¢, Lo)
Lastly, (Lo, Ro) = (Lo, Ro) & (K, Kny1, Kny2, Kngts)

Plaintext is given as (Lg, Ry). Data randomization for the encipher-

ing / deciphering algorithms is shown in Figure 1.

4 Key schedule

First , the key schedule of FEAL-NX is described, where the
functions used are defined in clause 5. The key schedule yields the
extended key K; (i=0,1,2,...,N+7) from the 128-bit key.

4.1  Definition of left key K; and right key Kz

Inputted 128-bit key is equally divided into a 64-bit left key, Kz,
and a 64-bit right key, K, i.e., (K;,Kg) is the inputted 128-bit
key.
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4.2 Parity bit processing

(1) Non-use of key parity bits: There is no special processing here.

(2) Use of key parity bits: Bit positions, 8, 16, 24, 32, 40, 48, 56,
64, of both A'; and K i are set to zeros, i.e., all parity bits in
the key block are set to zero.

Note: How to use parity bits is outside the scope of the FEAL-NX.

4.3 Iterative calculation

(1) Processing of the right key Kp

Kg is divided into left half K'r; and right half Kgo,
(Kp = (Ng1,KRr2)) and the temporary variable, Q,, is defined
as: Q.= HKp1 & RKpy forr=14,7,..., (r=3i+1; i=0,1,...)
Q.= Kpg1 forr=258,..., (1=3i+2; i=0,1,...)
Q= Kpy forr=3,69,..., (r=3i+3; i=0,1,...)
Where 1 <r < (N/2)+4. (N> 4, N:even)
Note: For FEAL-N, K'p = (¢, ¢) (64 zeros) and Q, = ¢ (32 zeros).
(2) Processing of the left key I

Let Ag be the left half of K and let By be the right half, i.e.,
K1 = (Ao, Bo) and Dy = ¢. Then calculate K;( i = 0 to N+7 ) for
r=1to(N/2)+4, (N>4, N:even)
D,=4,.,, A,=B,,
B, = fx(a,B) = fk(Ar1,(Brc1 @ D1 @ Qr))
K3(r—1) = (Bro, Br1), Kjr—1)41 = (Br2, By3)
where A,,B,, D, and Q,are auxiliary variables. B, = (B,9, B,

B2, Br3). Byg,..., By are each 8 bits long. Function fx is the same
as in FEAL-N. The key schedule of FEAL-NX is shown in Figure 2.

4.4 Key schedule of FEAL-N

The FEAL-N key schedule is equivalent to the FEAL-NX key
schedule when Ky, is the 64-bit key of FEAL-N and Kg is all zeros,
where the temporary variable Qr=¢.
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Let Ag be the left half of the 64-bit key and let By be the right,
l.e., the 64-bit key= (Aq, By) and Dy = ¢. Then calculate A;(i= 10
to N+7 ) forr =1 to (N/2)+4, (N > 4, N:even)

D, =A,1, A,=B,
B, = fic(a,8) = fic(Ar_1 (Brey & Dy_y))
Ko(r—1) = (Bro, Br1), Ky(r—1)+1 = (Br2, Br3)

5 Functions

5.1 Function f (see also Figure 3)
f(a, B) is shortened to f. o and /3 are divided as follows, where a;,
and 3; are 8-bits long. Functions Sy and S; are defined in clause 5.3.
a = (ao, a1, a,03), 3= (fo,B)
f = (fo, f1, f2, f3) are calculated in the sequence (1) to (8).
(1) i=a1® B, (2) =02
B)fi=fiva, “)fo=frda;
(5) f1 = S1(f1, f2), (6) fa =So(fa, [1)
(7) fo = So(ao, f1), (8) f3 = Si(as, f2)
Ezample in hex: Inputs: o = 00FF FF00, 3 = FFFF,
Output: f = 1004 1044

5.2 Function fy (see also Figure 4)
Inputs of function fx, a and 3, are divided into four 8-bit blocks as:
a = (ao,a1,09,03), B = (Bo,01,02, ).

fx(a,B) is shortened to f. fr = (fro, fc1, frc2, f i3) are calculated
in the sequence (1) to (6).

(1) fra=a1 @ ag, (2) fre = a2 ® a3

(3) fr1 = S51(fr1, (fr2 ® Bo)),  (4) frz = So(frz2, (fx1 ® B1))

(8) fro = So(ao,(fr1 ® B2)),  (6) frs = Si(es, (fx2 D B3))
Ezample in hex: Inputs: a = 0000 0000, 5 = 0000 0000.

fie = 1004 1044
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5.3 Function S

So and S; are defined as follows:
So(X1, X2)=Rot2((X; + X;) mod 256)
S51(X1,X2)=Rot2((X; + X, + 1) mod 256)
where X;andX, are 8-bit blocks and Rot2(T) is the result of a 2-bit
left rotation operation on 8-bit block, 7.
Ezrample: Suppose X; = 00010011, X, = 11110010 then
T =(X; + X5+ 1) mod 256= 00000110
S1(X1,X2) = Rot2(T) = 00011000

6 Example of working data in hex

(1) Working data for FEAL-8

Parameters: Round number N=8 and non-use of key parity bits.
(a) Key: ' = 0123 4567 89AB CDEF
(b) Extended key:
Koy = DF3B, K} = CA36, Ny = F17C, '3 = 1AEC
K, = 45A5, K5 = B9C7, Ks = 26EB, K7 = AD25
Kg = 8B2A, Ky = ECB7, Ko = AC50, h'j; = 9D4C
Ky, = 220D, 13 = 4T9B, K, = A8DS.L ;s = OCB5
(c) Plaintext: P = 0000 0000 0000 0000
(d) Ciphertext: C' = CEEF 2C86 F249 0752
(2) Working data for FEAL-4X/-8X/-16X/-32X/-64X
Parameters: N=4,8,16,32,64 and non-use of key parity bits.
(a) Key: K =0123 4567 89AB CDEF 0123 4567 89AB CDEF
(b) Plaintext: P = 0000 0000 0000 0000
(c) Ciphertext:
(C’y = DF7B EDD3 D59C 7C4B , Cs = 92BE B65D OE93 82FB

C'i6 = 01A9 4383 EB19 BA07 , (3o = 9C9B 5497 3DF6 85F8
Ce4 = E2BO F1C2 98EB 5030
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B8
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X2 : 8 bits
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X1 ad
Y = Sa( X1,X2 ) = Rot2((X1+X2) mod256)
Y = S;( X1,X2 ) = Rot2((X1+4X2+1) mod256)

Y: output(8 bits), X1/X2(8 bits): inputs,
Rot2(Y): a 2-bit left rotation on 8-bit data Y

Fig. 3 f-function
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Fig. 4 fk-function
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