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B. Algorithm Specifications and Supporting Documentation

B.1. Introduction

FROG is a new cipher with an unorthodox structure. Any symmetrical cipher's job is to
conceal the plaintext's information through a computational process of confusion and
diffusion. The basic idea behind the design of  FROG is to conceal the definition of most
of this process in a secret internal key. The actual encryption algorithm operates as an
interpreter that regards the secret internal key as a program and executes it as if it were a
series of primitive instructions. The goal is to deny the attacker as much knowledge as
possible about the actual process being performed and therefore defeat any attack,
whether publicly known or not. The encryption and decryption operations used in FROG
are extremely simple. All the complexity lies within the internal key the details of which
are unknown to an attacker.

FROG is very easy to implement (the reference C version has only about 150 lines of
code). Much of the code needed to implement FROG is used to generate the secret
internal key, the internal cipher itself is a very short piece of code. The implementation will
run well on 8 bit processors because it uses only byte level instructions - the only
arithmetic operation used is exclusive-OR and, optionally, 1 byte modulus. Also no bit
specific operations are used. The algorithm is fairly fast, a version implemented using 8086
assembler achieves processing speeds of over 2.2 Mbytes per second when run on a 200
MHz Pentium PC. A version implemented using Pentium specific assembler would run
even faster.

The FROG reference program included in this submission allows for user keys of any
length between 5 bytes and 125 bytes (i.e. between 40 bits and 1000 bits in multiples of 8
bits). The block size is defined as a constant and is set equal to 16 bytes which is the
minimum requirement for AES. Nevertheless, this constant can be given any value (even
odd values) between 8 and 128 bytes in which case the re-compiled code will encrypt
blocks whose sizes vary from a minimum of 64 bits up to a maximum of 1024 bits.

B.1.0. Conventions and Organization of this Document

For simplicity, the description that follows is based on a block size of 16 bytes. No bit
naming convention is specified because no bit operations are required. Byte values that
appear in the examples are given as two digit Hex numbers starting with the most
significant digit, e.g. A1 corresponds to the decimal value 161. FROG only uses byte
arrays  which are represented as V[ I ] where “V” is the name of the array and “I” is the
index. An index of zero denotes the least significant byte of the array (i.e. the byte at the
lowest position in memory).
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Each part of the algorithm is formally specified using  pseudo code. The pseudo code itself
is not defined because its meaning should be clear to any programmer familiar with current
day programming languages.

The diagrams used in the document are built from two elements:  rectangular boxes that
represent data and rounded boxes that represent processes.  Figure 1, which  shows the
high level structure of FROG, illustrates the use of these elements.

Section  B.1.1.  explains how the algorithm’s internal cycle, the FROG “interpreter”
works. Sections B.1.2. - B.1.4. describe the internal key setup process of FROG. The
organization of the rest of the document closely follows the structure specified in the
NIST’s requirements for the documentation of candidate algorithms.

B.1.1. Internal cycle

FROG uses 8 iterations. Each iteration uses one record of the internal key (called
internKey), which is a data structure with eight records. Each of these records has three
fields: an array of 16 bytes (called xorBu) which are used in an initial exclusive-OR
operation with the block bytes, an array of 256 bytes (called substPermu) which represents
a substitution table for byte values, and an array of 16 bytes (called bombPermu) each of
which points to a different byte positions within the block (and therefore has a value
between 0 and 15).

Each iteration traverses sequentially the 16 byte block (from the least significant byte up to
the most significant byte) and performs four basic operations on each byte. The first two
operations implement confusion and the last two implement diffusion:
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step 1: Exclusive-OR the next byte of the block with the next byte of the xorBu field.

step 2: Replace the byte computed in step 1 by the byte in the substitution table
(substPermu) indexed by it.

step 3: Modify the next byte in the block by exclusive-ORing it with the byte computed in
step 2. When the end of the block is reached then the least significant byte of the block is
considered to be the "next" byte.

step 4: Use the next byte of the bombPermu array to define a position in the block.
Modify the byte in this position of the block by Exclusive-ORing it with the byte
computed in step 2.

The encryption process can be represented by the following pseudo code, in which “<=”
denotes the assignment operation,  and blockSize is the size in bytes of the block to be
encrypted.
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Procedure FROGencrypt ( plainText, cipherText, internKey)
// convert plaintext into ciphertext
copy plainText into cipherText
for each of the eight records in internKey do
    begin
    //xorBuf, substPermu, bombPermu denote the fields of the current record
    for each byte in cipherText do [I <= 0 to blockSize-1]
        begin
        cipherText[I] <= cipherText[I] XOR xorBu[I]
        cipherText[I] <= substPermu[ cipherText[I] ]
        if I<blockSize-1
            then cipherText[I+1] <= cipherText[I+1] XOR cipherText[I]
            else cipherText[0] <= cipherText[0] XOR cipherText[I]
        K  <= bombPermu[I]
        cipherText[K] <=  cipherText[K]  XOR cipherText[I]
        end
    end
End Procedure

The following example will clarify this very simple process. All values are in HEX starting
with the least significant byte. First we define an internal key record with the following
values (starting with the less significant byte indexed by zero):

xorBu: 05 f0 a3 ...
substPermu: a2 16 08 bb 03 f1 ...
bombPermu: 03 0f 00 ...

Let us now start encrypting the following plaintext block:
00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0f

and show the intermediate states of the block after each step:

Processing byte in position 0:

1. step: 05 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0f
2. step: f1 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0f
3. step: f1 f0 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0f
4. step: f1 f0 02 f2 04 05 06 07 08 09 0a 0b 0c 0d 0f

Processing byte in position 1:

1. step: f1 00 02 f2 04 05 06 07 08 09 0a 0b 0c 0d 0f
2. step: f1 a2 02 f2 04 05 06 07 08 09 0a 0b 0c 0d 0f
3. step: f1 a2 a0 f2 04 05 06 07 08 09 0a 0b 0c 0d 0f
4. step: f1 a2 a0 f2 04 05 06 07 08 09 0a 0b 0c 0d ad



7

Processing byte in position 2:

1. step: f1 a2 03 f2 04 05 06 07 08 09 0a 0b 0c 0d ad
2. step: f1 a2 bb f2 04 05 06 07 08 09 0a 0b 0c 0d ad
3. step: f1 a2 bb 49 04 05 06 07 08 09 0a 0b 0c 0d ad
4. step: 4a a2 bb 49 04 05 06 07 08 09 0a 0b 0c 0d ad

And so on. The confusion and diffusion process is fast and after only 3 iterations any
statistical redundancies in the plaintext are obscured. Eight iterations were chosen as the
basis for the FROG algorithm so as to ensure that the ciphertext generated has very good
random properties.

Observe that the first two steps in the process are equivalent to using 16 different
substitution tables for each of the 16 bytes in the block, which increases confusion
achieved by these steps. The last two steps diffuse the result of this substitution process
throughout the block. Two such operations were chosen so as to achieve an exponential
speed of diffusion.

Notice that all the steps in the process are simple invertible operations. The decryption
process traverses the internal key and the ciphertext block in the opposite direction,
"undoing" all primitive operations performed during the encryption process, and thus
recovering the plaintext. The internal key used in the decryption process is identical,
except that all substitution tables (fields substPermu) are replaced by their inverse:

Procedure FROGdecrypt ( cipherText, plainText, internKey)
// convert ciphertext into plaintext
copy cipherText into plainText
for each of the eight records in internKey traversed in opposite direction do
    begin
    //xorBuf, substPermu, bombPermu denote the fields of the current record
    for each byte in plainText do [I <= blockSize-1 down to 0]
        begin
        K  <= bombPermu[I]
        plainText[K] <=  plainText[K]  XOR plainText[I]
        if I<blockSize-1
            then plainText[I+1] <= plainText[I+1] XOR plainText[I]
            else plainText[0] <= plainText[0] XOR plainText[I]
         plainText[I] <= substPermu[ plainText[I] ]
         plainText[I] <= plainText[I] XOR xorBu[I]
        end
    end
End Procedure
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The bompPermu field is used to rapidly diffuse any change in the input throughout the
block. In order to speed up as much as possible this diffusion process the bombPermu
field should satisfy three conditions:

a). It must be a permutation, i.e. each of the block positions should be pointed at least
once. In this way all positions in the block are exclusive OR-ed (bombed) with values that
come from the substitution table indexed by another byte.

b). Second, the permutation should have a cycle length equal to the size of the block (16
in this case), that is to say if one regards the permutation of N numbers as a pointer chain,
all N positions should be traversed before cycling back into the initial position. This is
normally not the case with random permutations. For example, if we take a permutation of
length 5, "4,0,3,2,1" and start at the first element (a 4 in position 0) we cycle back after
only 3 transitions:  4 -> 1 -> 0 ->4. An example of a permutation with cycle length 5 is:
"3,4,0,1,2". The rationale here is that if one uses a permutation with a cycle length smaller
than the length of the block then the "bombing" effect is limited within sub-groups of
elements in the block.

c). An element in the permutation must never point to the next element, i.e. the i-th
element of the array must never contain the value i+1. In this way one guarantees the
fourth step in the process (as described above) will not invert the diffusing effect of the
third step.

It is interesting to note that the most important condition is the third one. A version of
FROG that completely omits the implementation of the first and second conditions works
almost as well as the standard version, and is simpler to implement.

Section B.1.3. describes the algorithm that generates permutations required by the first
condition , and section B.1.4. describes the algorithms used to implement the second and
third conditions. Section B.7 about possible future developments of FROG also refers to
these conditions.

Observe that the block size is not a limiting factor for the operation of  the FROG
algorithm. For example, if we want to use a block size of 17 bytes, then the algorithm
would still work as long as we reserve 17 arbitrary bytes for the xorBu array, and 17 bytes
with values between 0 and 16 for the bombPermu array.
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B.1.2 Key Setup

FROG computes the internal key as a function of the user key. As explained above each of
the eight iterations uses a record that has 16 bytes for the xorBuf field, 256 bytes for the
substPermu field and 16 bytes for the bombPermu field, so therefore the internal key
contains  2,304 bytes. The Key Setup process of FROG is recursive: first it builds a simple
internal key, then it uses FROG encryption in CBC (Cipher Block Chaining) mode to
produce the definitive internal key. Figure 3 illustrates this process:
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As you can see in Fig 3, the large internal key is produced recursively, using the following
two algorithms:

The first algorithm (function makeInternalKey) takes an unstructured, arbitrary array of
2,304 bytes and transforms it into a valid internal key. Specifically, it computes the
permutation arrays substPermu and bombPermu for each of the eight records. To do this
an algorithm is used (function makePermutation described in section B.1.3) that takes an
array of N arbitrary bytes and returns a permutation with values 0 to N-1. If the internal
key is to be used for decryption, then substPermu is inverted. The field bombPermu is
further validated (see section B.1.4) in order to fulfill the special conditions described in
the previous section.

The makeInternalKey algorithm in the key creation process can be represented by the
following pseudo code:

Procedure makeInternalKey (internKey)
// convert internKey into a valid FROG internal key
    for each of the eight records in internKey do
    begin // xorBuf, substPermu, bombPermu denote the current records’ fields
    makePermutation of 256 bytes (substPermu)
    if internal key is for decryption  then invert(substPermu)
    makePermutation of blockSize bytes (bombPermu)
    Validate( bombPermu)
    end
End Procedure

The  functions makePermutation and Validate are defined in sections B.1.3 and B.1.4
respectively.

The second algorithm (function hashKey) takes a key (with size between 5 and 125 bytes)
and produces a 2,304 bytes long array (called randomKey) without loosing any entropy
and filling it with data which statistically appears to be  random. This is done in three steps
as follows:

Step 1. A 2,304 bytes long array (called simpleKey) is filled with data that depends on
both the user key and an internal constant (called randomSeed) which is filled with 251
true random bytes. simpleKey is first filled sequentially with copies of the user key, and
then copies of the randomSeed are sequentially exclusive-ORed on top of this. Any
trailing bytes are ignored. The resulting array is then processed by the function
makeInternalKey and transformed into a valid internal key for FROG.
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Step 2. An IV (Initialization Vector) is created using the less significant 16 bytes of the
user key (if the key has less then 16 bytes, then the rest is filled with zeros). Then a value
corresponding to the length of the user key in bytes (e.g. 16, 24 or 32 correspond to the
128-, 192- and 256-bit key sizes) is exclusive-ORed with the least significant byte of the
IV (this is to ensure that different sizes of user key always produce different ciphertexts).

Step 3. FROG encryption function is then called to encrypt a zero filled array of 2,304
bytes in CBC (Cipher Block Chaining) mode using the internal key computed in step (a)
and the IV computed in step (b). The result of this encryption process is an array (called
randomKey) with very good statistical randomness.

Finally, this  array is processed by the function makeInternalKey and transformed into the
valid internal key. This completes the creation of  the internal key which is then used to
drive the encryption or decryption process.

The hashKey algorithm can be represented by the following pseudo code:
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Procedure hashKey ( userKey, keyLen, randomKey )
// hash userKey into a randomKey array of internalKeySize bytes (normally 2,304)
// keyLen is the user key’s length in bytes
//
// Step a: create simpleKey
//
declare simpleKey array of  internalKeySize bytes
S <= 0
K <= 0
for each byte in simpleKey do [I <= 0 to internalKeySize-1]
    begin
    simpleKey[I] <= randomSeed[S] XOR userKey[K]
    if S < 250 then S <= S+1 else S <= 0
    if K < keyLen-1 then K <= K+1 else K <= 0
    end
// convert simpleKey into valid FROG internal key
makeInternalKey for encryption (simpleKey)
//
// Step b: create buffer to be used subsequently as IV
//
declare buffer array of blockSize bytes and initialize with zeros
last <= keyLen-1
if last greater or equal blockSize then last <= blockSize-1
for I <= 0 to last do buffer[I] <= buffer[I] XOR  userKey[I]
buffer[0] <= buffer[0] XOR keyLen
//
// Step c: call FROG encryption in CBC mode and produce randomKey
//
I <= 0
repeat    
   begin
   FROGencrypt (buffer, simpleKey, buffer)
   size <= internalKeySize - I
   if size > blockSize then size <= blockSize
   copy size bytes of buffer into randomKey[I]
   I <= I+size
   end
until I equal internalKeySize
End Procedure
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The 251 bytes of randomSeed is the only constant table used in FROG. Its definition is
based on the initial sequence of numbers included in "A Million Random Digits" published
by the RAND corporation in 1955. These are listed in groups of five decimal digits.
randomSeed is initialized with the modulo 256 value of the numbers represented by the
first 251 groups in this table. For example, the first group is 10097, which modulo 256
equals 113, the second group is 32533 which modulo 256 equals 21, etc. Here are the
values (in decimal notation) of the randomSeed table, starting with the least significant
byte:

113, 21,232, 18,113, 92, 63,157,124,193,166,197,126, 56,229,229,
156,162, 54, 17,230, 89,189, 87,169,  0, 81,204,  8, 70,203,225,
160, 59,167,189,100,157, 84, 11,  7,130, 29, 51, 32, 45,135,237,
139, 33, 17,221, 24, 50, 89, 74, 21,205,191,242, 84, 53,  3,230,
231,118, 15, 15,107,  4, 21, 34,  3,156, 57, 66, 93,255,191,  3,
 85,135,205,200,185,204, 52, 37, 35, 24, 68,185,201, 10,224,234,
  7,120,201,115,216,103, 57,255, 93,110, 42,249, 68, 14, 29, 55,
128, 84, 37,152,221,137, 39, 11,252, 50,144, 35,178,190, 43,162,
103,249,109,  8,235, 33,158,111,252,205,169, 54, 10, 20,221,201,
178,224, 89,184,182, 65,201, 10, 60,  6,191,174, 79, 98, 26,160,
252, 51, 63, 79,  6,102,123,173, 49,  3,110,233, 90,158,228,210,
209,237, 30, 95, 28,179,204,220, 72,163, 77,166,192, 98,165, 25,
145,162, 91,212, 41,230,110,  6,107,187,127, 38, 82, 98, 30, 67,
225, 80,208,134, 60,250,153, 87,148, 60, 66,165, 72, 29,165, 82,
211,207,  0,177,206, 13,  6, 14, 92,248, 60,201,132, 95, 35,215,
118,177,121,180, 27, 83,131, 26, 39, 46, 12

B.1.3 The Permutation Generation Algorithm

makePermutation is a general purpose algorithm that takes an input array of bytes and
returns a permutation of the same length. In this context permutation means an array of
length N that holds all values between 0 and N-1 without any repetition.

The algorithm works as follows:

An array called "use" is initialized sequentially with all values between 0 and N-1. The
permutation is created sequentially one byte at a time taking bytes from the "use" array.
When a byte is used it is removed from the "use" array and the length of the array is
decreased by 1. In this way it is guaranteed that the same value will never used twice in
the permutation. The values of the input array are used to compute an index into the "use"
array. When computing the i-th element of the permutation this index is computed by
adding the previous index used with the i-th byte of the input array:

index_i = ( index_(i-1) + input[i] ) mod (length of "use" array)

The modulo operation is necessary to guarantee that the index computed will point to a
valid position. For the first iteration, the "previous index" is initialized to zero.

The function for creating permutations can be represented by the following pseudo code:
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Procedure makePermutation (input, lastElem)
// inputs an array of latsElem+1 bytes and converts it into a permutation
declare array use of lastElem+1 bytes
for I <= 0 to lastElem do use[I] <= I
last <= lastElem
index <= 0
for all bytes of input [ I <= 0 to lastElem-1 ] do
    begin
    index <= (index+input[I]) mod (last+1)
    input[I] <= use[index]
    if index < last then remove element pointed by index from the use array
    last <= last - 1
    if index > last then index <= 0
   end
input[lastElem] <= use[0]
End Procedure

The following example shows the conversion of the input array (101,34,61,208) into a
permutation (numbers are given in decimal notation).

In the first iteration
index = (0 + 101) mod 4 = 1.

In the second iteration
index = (1 + 34) mod 3 = 2.

And so on:

input array           index        use array   value

101  34  61 208         1          0 1 2 3         1
  1  34  61 208         2          0 2 3           3
  1   3  61 208         1          0 2             2
  1   3   2 208         0          0               0
  1   3   2   0

The resulting permutation is (1,3,2,0).
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B.1.4 The Implementation of the bombPermu Restrictions

The first restriction on the permutation bombPermu is that it must have a cycle length
equal to the block size (16 in this case). If the permutation is regarded as a pointer list then
it can interpreted as a single closed linked list or as a group of closed linked lists. The task
at hand is to create a permutation that correspond to single closed linked list. To achieve
this the algorithm proceeds as follows: starting at the first element it traverses the list. If it
arrives back to the first element before having used up all values of the permutation then it
looks for the fist position in the permutation that it has not yet traversed. This position
holds a value that can serve as the start of another linked list. The algorithm then merges
these two lists into one. This process is repeated until all the elements have been traversed,
that is to say until only one list remains.

For example, the permutation 3,0,5,1,2,4 can be interpreted as to two closed linked lists,
as follows: the element in position 0 is 3 which indexes the position in the permutation
which holds a 1, which indexes the position in the permutation that holds a 0, which
indexes the starting position. In this way we get the first closed linked list: 3->1->0->3.
The last position traversed is position 1 which holds the value 0. The fist position not yet
traversed is the position 2 that holds a 5. This value forms the start of the second linked
list which is 5->4->2->5. These two lists are now merged together in a two step process.
First change the value in position 1 from to 0 to 2. Now we have an incomplete list: 3->1-
>2->5->4->2->5. To close this list the value in position 4 is changed from 2 to 0: 3->1-
>2->5->4->2->0->3. The resulting permutation  3,2,5,1,0,4 has a cycle length of 6 so we
have finished. Fig 4 clarifies this operation:
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The second restriction on the permutation bombPermu is that no element should point to
the next position in the list. This requirement is fulfilled by traversing the permutation
array from the least significant byte to the most significant byte and testing whether
P(i)=(i+1) mod (block size). If this is so P(i) is simply redefined to point one position
further to the right P(i)=  (i+2) mod (block size).      

This last process is very fast but, unfortunately, it will normally destroy the carefully
crafted permutation. Even so FROG retains its excellent diffusion speed which is the goal
of both these processes.

The function for applying the bombPermu conditions can be represented by the following
pseudo code:

Procedure Validate (bombPermu)
// make certain that bombPermu has a cycle length of  blockSize
declare used array of blockSize bytes
fill array used with false
index<=0
for all but last element in bombPerm [ I <= 0 to blockSize-2 ] do
    begin
    if bombPermu[index]=0 then // short cycle found
        begin
        K <=  index
        repeat K<=(K+1) mod blockSize until NOT used[k] //first position not yet traversed
        bombPermu[index] <= K
         L <= K
         while bombPermu[L] not equal K do L <= BombPermu[L] //find who points to K
         bombPermu[L] <= 0 // now cycles are merged
         end
     used[index] <= true
     index <= BombPermu[index] // continue searching
     end
// now make certain that no element of bombpermu  points to next element
for all elements in bombPermu [I<=0 to blockSize-1] do
    if bombPermu[I] equal (I+1) mod  blockSize
       then bombPermu[I] <= (I+2) mod  blockSize
End Procedure
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B.2 Estimate of the Computational Efficiency

The following data is based on the optimized ANSI C version of FROG as submitted in
the present package. When running on the NIST AES analysis platform (a 200 MHz
Pentium PC) it encrypts 1.3 Mbytes per second and decrypts 1.7 Mbytes per second. The
key setup takes a relatively long 10 msec. An implementation that includes 16 bit 8086
assembler code for the inner cycle encrypts over 2.2 Mbytes per second on the same
platform. An implementation that uses Pentium specific instruction set should encrypt and
decrypt over 3.0 Mbytes per second (approximately 50 cycles per byte).

FROG’s inner cycle processes each 16 byte block in a sequential manner. Even so a
hardware implementation of FROG should be able to implement one iteration in
approximately 20 clock cycles. A pipelined IC would then be able to process 0.8 bytes per
cycle, e.g. a 200 MHz chip would process 160 Mbytes per second  (1.3 Gbps).

The size of the user key (128, 196, or 256 bits) does not affect the speed of the algorithm
because the user key is used only to initialize the internal key during the setup process.
Also observe that the same computational effort must invested in key setup and in key
change. There are no tradeoffs between speed and memory in the implementation of
FROG.

B.2.1. On a Pentium platform

Program: ANCI C optimized version included in this
submission.

Platform: 200 MHz Pentium PC, 64 MB of RAM, Windows 95

Speed estimate in clock cycles

Key/Block size               128/128    192/128    256/128

Encrypt one data block         2,600      2,600      2,600
Decrypt one data block         1,980      1,980      1,980
Key setup                  1,960,000  1,960,000  1,960,000
Algorithm setup                  125        125        125
Key change                 1,960,000  1,960,000  1,960,000

In FROG encryption and decryption represent identical workload. The fact that a Pentium
decrypts faster than it encrypts is related to internal CPU optimizations.
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B.2.2. On a 8-bit computer

Program: Z80 assembly for internal cycle.

Platform: 2.5 MHz Z80, 64 kB of memory running under CP/M.

Speed estimate in clock cycles

Key/Block size               128/128    192/128    256/128

Encrypt one data block        17,900     17,900     17,900
Decrypt one data block        17,900     17,900     17,900
Key setup                 15,000,000 15,000,000 15,000,000
Algorithm setup                  200        200        200
Key change                15,000,000 15,000,000 15,000,000

B.3. Known Answer Tests and Monte Carlo Tests

These are submitted as text files on a separate  diskette. The hexadecimal numbers that
appear in the tests use the convention that the leftmost character represents the most
significant hexadecimal digit, i.e. the 4 most significant bits. For example the decimal
number 1000 is represented by 3e8.

The NIST specifications for the test were interpreted by taking bit 1 as the most
significant bit and bit 128 as the least significant bit of a 128 bit block.

B.4. Expected Strength of the Algorithm

No attacks more efficient than exhaustive key search are known. The expected workfactor
of the algorithm is therefore O(2^(N-1)) where N is number of bits in the user key, i.e.
O(2^127) for a 128 bit key, O(2^191) for a 192 bit key and O(2^255) for a 256 bit key.

B.5. Algorithm Analysis

The design of FROG was guided by the goal to implement a cipher which is as simple as
possible algorithmically but as complex as possible to model mathematically. The first
characteristic produces efficiency and design transparency; the second produces strength,
because in the absence of a mathematical model, the attacker can only search for statistical
weaknesses in the algorithm which in the case of FROG are believed to be absent.

Most internal transformations, including the substitution tables and the tables that guide
the diffusion process depend on the internal key and are therefore unknown. The internal
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key is itself built by calling the FROG algorithm recursively and depends therefore on the
user key in a very complex manner. No known or chosen plaintext attacks are expected to
work.

No weak keys or equivalent keys or keys with complementation properties are known and
none are expected to exist. There are no restrictions at all on key selection.

The simplicity of the structure of FROG and the absence of any constant tables preclude
the possibility of a trap-door. The code  in FROG has clear goals: the inner cycle
implements two primitive operations for confusion and two more for diffusion. The
internal key is constructed recursively and the structure chosen for the internal key obeys
either design requirements or were chosen to accelerate the diffusion process. The only
rather arbitrary code in FROG is the creation of the simple internal key (simpleKey) during
the key setup process, in which as many copies as needed of the user key are just linked
together. This happens to be the simplest way to create this key. However, a more
significant argument is that the way simpleKey is initialized is not important to the strength
of the cipher; in fact it can be changed deliberately so as to produce non-standard versions
of FROG (the advantage of doing this is explained in B.6.)

One constant table (randomSeed) is included in FROG but its definition is based on
random data that have been publicly known for the last 40 years (the RAND tables) and
therefore no trapdoor can be hidden in this table. Moreover, the values in this table do not
seriously affect the strength of the algorithm, you can fill this table with any random values
and the resulting variant of FROG will work well. The purpose of this table is to increase
the flexibility of the algorithm because it can be used to implement a master key (also see
B.6).

There are no published materials relating to FROG.

B.6. Advantages and Limitations

FROG displays several positive characteristics:

• Simplicity of design
• Speed of operation
• Flexibility of  key and block sizes
• Variability (it can easily be customized)

These advantages are described below.

Its only limitation that may be significant  for some applications is its relatively long setup
time (see section B. 7 for ideas on how the setup time might be reduced).



20

B.6.A. Different Uses

FROG can be used to implement a stream cipher with no loss of security.

FROG can be used to implement a MAC (Message Authentication Code), for example by
encrypting a message in CFB (Cipher Feedback Mode). FROG's flexibility to allow for any
plaintext sizes between 64 and 1024 bits can be helpful in this case, for example if you
need an 80 bit MAC for an 800 bit long message. There are no known weaknesses when
FROG is used to implement a hash algorithm or a MAC but, no tests have so far been
conducted to check this experimentally.

During the design of FROG, powerful statistical analysis tools were used to determine
whether FROG produces good pseudo-random output even when implemented with low
iteration counts. FROG can certainly be used as a pseudo-random number generator, for
example by initializing a plaintext with the generator's seed, exclusive OR-ing this plaintext
with a sequential counter, and encrypting the resulting block to produce the next block of
pseudorandom bits.

No other limitations of FROG relating to different potential uses of the cipher are known.

B.6.B. Implementation of FROG in Various Environments

FROG is very well suited for implementation on 8 bit processors (such as the ones
included in smart cards or other embedded applications). It uses only byte instructions and
can be implemented by a short program.

FROG is not very well suited for a pure IC (Integrated Circuit) hardware implementation,
as its design flows from software engineering concepts. It certainly can be implemented in
an ASIC (Application Specific Integrated  Circuit), however a gate count cannot be
estimated at this time and might be high.

A better solution, would be to implement a simple ASIC for the encryption and decryption
processes only and to implement the key setup by software for an embedded processor.
The algorithm's inner cycle operations on each byte of the block are so simple that they
can be implemented in about 7 assembly language instructions using the 8086 assembly
set. If FROG becomes the AES, future microprocessors designers might want to consider
implementing these as a single machine instruction. This would allow pure software
implementations of FROG to reach speeds of about 10 CPU cycles per byte.
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ATM, HDTV and B-ISDN are fast communication technologies and in this context
FROG's speed is an advantage. However, FROG is relatively slow during the key setup
process which could limit its usefulness in some situations. The time needed for the key
setup process is proportional to the encryption speed, because typically over one hundred
encryptions must be executed to create the internal key. If the encryption speed is further
optimized (for example, by implementing the internal cycle in hardware), then the key
setup speed will increase very significantly. In some cases, such as smart-card applications
or pre-paid cellular phones, the large internal key could be pre-computed and pre-loaded.
FROG needs very little memory to operate efficiently, typically less than 2,500 bytes if a
pre-loaded internal key is used and less than 5,000 bytes when key setup is included in the
algorithm.

No other advantages or limitations concerning the implementation of FROG for use with
ATM, HDTV or B-ISDN are known at present.

B.6.C. Other Key and Block Lengths

In this context FROG is extremely flexible. The reference code included here allows for
key lengths between 40 and 1000 bits in 8 bit (1 byte) increments. Even though the code
submitted sets the size block to a constant 16 bytes (or 128 bits which is the minimum
requirement), this constant (CODE_SIZE) can be modified and set to any value between 8
and 128 (bytes) and the code can be recompiled to produce instances of FROG that
encrypt blocks from 64 bits up to 1024 bits.

It is a simple programming task to produce a source code that allows for variable key and
block sizes with up to 16,254 combinations of key and block sizes. It is important to note
that a larger block size results in a larger internal key and thus longer setup times. The
speed per byte of the encryption or decryption process does not depend significantly on
the block size.

A 256 bit (32 bytes) key length is sufficient for defense against exhaustive key searching
even under the most extreme assumptions. The fact that FROG allows up to 125 byte long
keys means that the application can directly input the user's pass-word or passphrase
without any previous pre-processing.

Variable block sizes can be extremely useful sometimes. For example, in the
implementation of a confidential, random-access data base. The 1 byte increment of the
block size permitted by FROG, means that such a data base can be encrypted without
increasing the size of its records, resulting in higher speed encryption and greater ease of
integration with existing applications. Another related example would be to encrypt only
specific fields (columns) of a data base, regardless of their size.

Finally, it should be noted that FROG can implement directly the 64 bit block size and 112
bit key size of 3DES.
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B.6.D. Other Advantages

There is no speed penalty when using FROG with larger user key sizes (neither the key
setup time nor the encryption/decryption speed depend on the user key size).

The relative complexity of the key setup process can be useful as a defense mechanism
against dictionary attacks. If this is deemed useful then a version of FROG can be
produced that executes more than one CBC encryption pass in the key setup process,
which would produce arbitrarily long (variable) setup times.

A better defense against dictionary attacks is to modify the standard values of the
randomSeed table. This can be done by initializing this table with a master key. Normally
the master key would be administered centrally and end users would not need not  know
its value. In this case an attacker must find a way to obtain the master key before being
able to mount a dictionary attack. Even in the case where the master key is simply stored
on the end user's hard disk, the attacker's workload is significantly increased.

A defense that will work with all imaginable attack methods (except ciphertext only
attacks which are exceedingly weak) is to use non standard versions of FROG where the
actual code is different from the reference version.  Then the  attacker will have to find a
way to steal a working copy of the cipher, disassemble it and then cryptanalyze it. This is
clearly an enormously more difficult proposition than cryptanalyzing a publicly available
standard version of the cipher. This kind of defense may be appropriate for applications
that work within the confines of an organization, or applications for very sensitive point to
point communications, etc.

Customization of the algorithm can be achieved in the following manner: the FROG cipher
contains a small part that initializes the initial version of the internal key (simpleKey) as a
function of both the user key and the randomSeed (or master key). This code fragment
can be freely and easily be changed, even by a programmer who is not specialized in
encryption technology, without affecting the strength of the algorithm. The only
requirements are: a) the entropy of the user key is not lost in the process (which means,
simply, that a different user key should always produce a different simpleKey); and b) that
the user key contents are well spread out through the resulting initial internal key. In this
way, an unlimited number of non standard versions of FROG can be produced, which are
stronger than the standard version as long as the attacker does not gain access to them,
and are as strong as the standard version in the worst case.
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B.7. Possible Future Developments

The simpler a cipher is the easier it is to detect a design flaw or a trap door. In this context
it is considered important to investigate whether a version of FROG that omits the
implementation of the first two conditions for the bombPermu array is not preferable even
though it diffuses information a little slower. Changing the algorithm in this way would
also have the effect of reducing the key setup time.

The key setup process can also be speeded up by using four iterations in the internal
encryption process instead of eight (which are used to encrypt user data). This would
practically double the speed of the setup process, and would probably not reduce the
strength of the cipher.

Yet another possibility for speeding up the key setup process (at least on a Pentium
processor) would be to use decrypts instead of encrypts in the process used to generate
the internal key.


