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1 Introduction

The proposed stream cipher Achterbahn is a binary additive stream cipher. In
a binary additive stream cipher, the plaintext is given as a string mg, mq,... of
elements of the finite field Fy. The keystream zg, 21, ... is a binary pseudo-random
sequence. The sender encrypts the plaintext message according to the rule ¢; =
my + z; for all ¢ > 0. The ciphertext cg,cq,... is decrypted by the receiver by
adding bitwise the keystream zg, z1, ... to the received ciphertext sequence cg, cq, . . ..
Sender and receiver produce the keystream zj, 21, ... via identical copies of the key
stream generator.

The keystream generator (also called running key generator) is a finite state
machine having a finite number P of different internal states Sy, Si,...,S5p_1. The
next-state function A governing the state progression has the form S;; = A(S;)
fort =0,1,..., P — 2. Thus the internal state at time ¢ + 1 depends only on the
internal state at time ¢. The initial internal state S is derived from the secret key
K € F} and a public initial value IV € F,. The key length k is required to be
k = 80. The length of the initial value vector (IV-vector) can assume any integer
value between 0 and 64 that is congruent to 0 modulo eight. The restriction of the
lengths of the IV-vector to multiples of eight is imposed to facilitate a high-speed
implementation of the keystream generator. In the high-speed implementation, one
byte of keystream is generated per clock cycle.

The output function A of the keystream generator is parameterized by the key K
and the initial value vector IV. We have z; = A\(S;) = Ag v(S:) fort =0,1,..., P—
1. For any fixed pair (K, IV) of key and IV-vector, the produced keystream bit z,
at time ¢ depends only on the internal state S; at time ¢. As the keystream bits are
independently produced of the plaintext, the proposed stream cipher belongs to the
category of synchronous stream ciphers.

1.1 A brief description of the keystream generator

The basic ingredients of the keystream generator (KSG) are eight binary nonlinear
feedback shift registers (NLFSR’s) of lengths between 22 and 31, and a balanced 4th-
order correlation immune Boolean combining function R : F§ — Fy. The NLFSR’s
are such that they can produce binary sequences of period 2 — 1, where N is the
length of the shift register. Each shift register has a nonlinear feedback function,
governing the internal state of the shift register, and a modifyable linear feedforward
output function. The output functions of the eight NLFSR’s deliver the eight input
sequences for the Boolean combining function R which in turn outputs the running
key.

The initial loading of each NLFSR, as well as the configurations of all output
functions, depend on the secret key K and the public IV-vector (initial value). For
each particular configuration of the linear feedforward functions, and for all possible
initial loadings such that no shift register is loaded into the all-zero initial state, the
KSG will produce a binary periodic sequence of period > 227 and linear complexity
> 285,

Sequences produced under different configurations of the KSG are cyclically in-
equivalent. There are 254 possibilities for the configuration, so that the KSG is able



to generate an ensemble & of 254 translation distinct periodic sequences (each of
which has period > 22°7 and linear complexity > 2%). Given a fixed key K € F5,
the key-loading algorithm described below has the property that for distinct IV-
vectors the corresponding configurations of the output function of the KSG will also
be distinct. As a consequence, the produced keystream segments between any two
resynchronization steps will belong to distinct sequences of the ensemble £. Thus
any unintended re-use of key material is impossible.

The NLFSR’s have been selected under the objective to allow fast hardware
implementations of the KSG. In a straightforward implementation, the KSG emits
one bit of keystream per clock cycle. In the high-speed implementation, the KSG
generates one byte (of exactly the same keystream) within each clock cycle.

2 Preliminaries

In this section we introduce the notation and terminology that will be used through-
out the proposal. We use the symbol Fy to denote the binary finite field, and [, to
denote the general finite field of order ¢q. The ring of polynomials in the indetermi-
nate « and with coefficients from F, is designated by F,[z]. A sequence of elements
of F, is given in the form o = (s,)2°, = (S0, S1,...). The set of all sequences of
elements of IF, is designated by F°. For sequences 0 = (s,)p2 and 7 = (tn)5o,
addition ¢ + 7 and multiplication o7 are defined termwise: o+ 7 = (s, +t,)52, and
0T = (snln )5l A sequence o = (s,)p2, of F° is called periodic if there existis a
positive integer P such that s, p = s, for all n > 0. Thus here the term “periodic”
always means what some authors call “purely periodic”. If o = (s,)32, is periodic
and P > 1 is the least positive integer such that s, p = s, for all n > 0, then the
integer P is referred to as the period of o. We then write P = per(c). Thus here
the term “period of ¢” always means what some authors call “the least period of
o”.

The set F° is an F -vector space with respect to the above defined sum o + 7
and the scalar multiplication defined by co = (cs,)52, for all ¢ € F, and for all
0 = (8n)nzy € F°. The shift operator T : Fo° — F2°, defined by T'o = (sp11)p2y =
(s1,82,...) for all o = (s,)p%, € F:°, is a useful linear operator on the Fg-vector
space F°.

For nonzero polynomials f,g € F,[x] and for positive integers a, b, the greatest
common divisor of f and g, or of a and b, respectively is denoted by ged(f, g) and
ged(a, b). Similiarly, lem(f, g) and lem(a, b) denote the least common multiple of the
polynomials f and g, or of the integers a and b, respectively. Euler’s function will
be designated by the greek letter . If m is a positive integer, ¢(m) is the number
of integers k with 1 < k < m and ged(k,m) = 1.

If o = (s4)p% is a periodic sequence in F2° with per(o) = P, then the least
positive integer N such that the N-tuples's,, = (Sn, Spt1, -+ Snan-1), 0 <n < P—1,
are distinct is called the span or the mazimum order complexity of o. Equivalently,
the periodic sequence o € F° has maximum order complexity N (or span N) if o
could be generated by some feedback shift register over [F, of length N but by no
shorter feedback shift register.

Let N be a positive integer. A binary feedback shift register of length N is
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uniquely determined by its feedback function F' : FY — TF,. The shift regis-
ter consists of NV consecutive 2-state memory units called cells regulated by an
external clock. We denote the cells (or delay elements) of the shift register by
Dy_1,DnN_o,..., D1, Dy. Each cell can store the bit 0 or 1. At each clock pulse, the
bit in cell Dj is shifted one position to the right into cell D;_; for 1 < j < N — 1.
Cell Dy_; receives a new term, computed by the feedback function F' from the N
previous terms. The initial loading of the shift register can be described by a binary
N-tuple called the initial state vector. To be precise, if sg = (o, S1,.-.,5nv_1) € FY
is the initial state vector, then at the outset the right-most cell Dy will contain
the bit sg, the next cell D; will contain sq, ..., and the left-most cell Dy_; will
contain sy_;. If at each clock pulse the content of cell Dy is emitted, a binary
ultimately periodic sequence (S, S1,...,SN_1,SN,SN+1,---) is obtained. We refer
to this sequence as the standard output sequence of the given feedback shift register
corresponding to the initial state vector sp = (Sg, S1,--.,SN_1)-

The state of the shift register at time ¢ can be described by the N-tuple s, =
(Sty Sta1y .-y Stan—1) € Fév, where syy; € Dj for 0 < j < N — 1. If the next-state
function of the feedback shift register (FSR), i.e. the function that maps the state
s; of the shift register at time ¢ to the state s;; 1 of the shift register at time t 4 1, is
a bijection, then the FSR, as well as its feedback function, F' are called nonsingular.
A feedback function F' : FY — [, is nonsingular if and only if the algebraic normal
form of F' has the form

F(l’o,l’l,...,l’N_l):ZL'Q—I—G(.Z'l,...,ZL'N_l), (]_)

where G : FY ™' — T, is a polynomial in the variables z1, ..., zy_; (see Walker [35]).

If the feedback function F' of an N-stage FSR is linear, one speaks of a linear
feedback shift register (LFSR). Otherwise one speaks of a nonlinear feedback shift
register (NLFSR). All feedback shift registers used in the design of the proposed
stream cipher are nonsingular and nonlinear.

Example 1. Consider the binary 5-stage NLFSR with feedback function
F (o, 71,72, 73, 74) = To + 21 + T3 + 1173

The feedback shift register is shown in the following figure:

D
%
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N
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y

-

The standard output sequence corresponding to the initial state vector sy =
(0,0,0,0,1) for the given feedback shift register is

c=(0000101011101001101100100011111)*,
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a binary sequence of period per(c) = 31 and linear complexity L(c) = 30. Note
that the sequence o = (s,)5°, can be defined by the nonlinear recursion

Sp45 = Sn43Sn41 + Spgs + Spp1 + 5, forall n >0, (2)

together with the initial values so = s; = s = s3 = 0, and s4, = 1. One can
say that the above feedback shift register provides the hardware implementation of
recursion (2). O

Definition 1. Let F : FY — Fy be the feedback function of an N-stage feedback
shift register. The FSR is called primitive if for any nonzero initial state vector of
FY the corresponding standard output sequence of the FSR has period 2V — 1, and
if F(0) =0, where 0 is the zero vector of FY .

Note that a primitive feedback shift register must be nonsingular. The 5-stage
NLFSR considered in Example 1 is a primitive feedback shift register.
If the feedback function F': FY — F, of an N-stage FSR is linear, that is, if

F(xg,z1,...,2n-1) = aoxo + @121 + - -+ + an_1Tn_1,
then the N-degree polynomial ¢ € Fy[z]| given by
c(z) =2V + F(l,z,2*, ..., 2" ) =2 +ay_ 12V '+ -+ a x4 ag

is called the characteristic polynomial of the LFSR defined by the feedback function
F. Tt is well known (see e.g. Lidl and Niederreiter [20, Chap. 8]) that an N-stage
LFSR whose characteristic polynomial is a primitive polynomial over F,, will gen-
erate a periodic sequence of period 2% — 1 for any nonzero initial state vector. Thus
an LFSR with a primitive characteristic polynomial is a primitive FSR in the sense
of Definition 1.

There are p(2% — 1)/N primitive binary polynomials of degree N. Therefore,
there are ¢(2" —1) /N binary primitive N-stage LFSR’s. The total number of binary
primitive N-stage FSR's, linear or nonlinear, is given by

BN _ 22N71_1\7

This is the number of translation distinct (or cyclically inequivalent) binary de-
Bruijn sequences [5], and there is a one-to-one correspondence between binary de-
Bruijn sequences and sequences produced by binary primitive FSR’s. The number
of nonsingular binary N-stage FSR’s is given by

Cy=22"""

This follows immediately from equation (1), since there are Cy different functions
G : FY~™' — F,. Comparing numbers By and Cy, we find By/Cy = 1/2V. Thus,
on the average one out of 2V nonsingular binary FSR’s is primitive.

An N-stage binary primitive FSR decomposes the vector space FY into two dis-
joint cycles. The long cycle contains all nonzero vectors of F4. The short cycle
consists only of the zero vector 0 € FY. Any two standard output sequences of
some binary primitive FSR corresponding to distinct nonzero initial state vectors
are shifted versions of each other. Since the two sequences are periodic, both se-
quences possess the same minimal polynomial and, consequently, have the same
linear complexity (see [20, Theorem 8.48]). Therefore the following definition makes
sense.



Definition 2. Let FY — Fy be the feedback of some binary primitive N -stage FSR.
The minimal polynomial, the period, and the linear complexity of the FSR is de-
fined to be the minimal polynomial, period, and linear complexity, respectively, of
the standard output sequence of the FSR corresponding to any nonzero initial state
vector.

Consider the binary primitive 5-stage NLFSR of Example 1. We can say that
this shift register has period 31 and linear complexity 30. The minimal polynomial
of the shift register is the product of all six irreducible binary polynomials of degree
5. (See also Example 4 in Section 8).

Consider again 5-stage NLFSR of Example 1. If we apply to the stages of the
shift register a linear feedforward function, then the shift register will produce a
new output sequence 7 = (¢,)°°,. In contrast to the standard output sequence
o = (sn)5, which is obtained by emitting the content of cell Dy at any clock pulse,
the terms of sequence 7 are obtained by outputting the contents of several cells
and adding together the outputs. For instance, in the particular example illustrated

below, we have

tn = Sp+ Spg1 + Snaez forall n > 0. (3)
M M (M
2 g ¢
D4 D3 D2 D1 D0
&AL
N N T

Using the shift operator T', equation (3) can be written as
r=0c+To+T%c=(1+T+T%o0.

We call the polynomial f(x) = z3 + x + 1 the filter polynomial. The sequence
T = f(T)o is obtained by linearly filtering the standard output sequence o using
the filter polynomial f.

The concept of linearly filtering NLFSR sequences was introduced in [11]. It has
been shown that if the underlying N-stage NLFSR is primitive and the degree of the
applied filter polynomial f is small compared to IV, then the filtered sequence 7 =
f(T)o will still have good distribution properties but in general a larger maximum
order complexity as the original sequence o. We include the article [11] as a file on
the submission CD.



3 Detailed description of the keystream generator

The overall structure of the keystream generator (KSG) is depicted in the following
figure.

key \Y
| A e N
NLFSR A filter a
NLFSR B filter b
NLFSR C filter ¢ message
m
T T m t
[ [ g
NLFSR D filter d 5
: : : : g ol -
) © .
NLFSR E filter e £ | keystream  ciphertext
o i £ “t t
NLFSR F E filter f = 8
NLFSR G - filterg
NLFSR H filter h

The core of the KSG consists of eight primitive (in the sense of Definition 1)
binary NLFSR’s labeled with capital letters A, B, C', ..., H. Each NLFSR is
endowed with a linear feedforward logic described by filter polynomials a(x), b(x),
c(x), ..., h(x). The linear feedforward logics supply the Boolean combining function
R with inputs. The function R then outputs the keystream. At the outset—under
the control of the secret key K and public initial value IV, all eight NLFSR’s are
loaded and the all linear feedforward functions are adjusted.

3.1 The Boolean combining function

The Boolean combining function R : F§ — Fy has algebraic degree 3 and nonlinearity
64. The algebraic normal form of R is

R(y1, Y2, -+, Ys) = Y1 + Yo + Y3 + ya + Ysy7 + Yeyr + YeVs
+ YsYsY7 + YeY7Ys-

(4)

Alternatively, using the logical OR-symbol V, the function R can be represented in
the form

R(y1,y2, -, Ys) = Y1 + Y2 + Y3 + Ya + Ysyr V YsYr V YsUs. (5)
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Note that a Vb = a + b+ ab. The Boolean function R is balanced and 4th order
correlation immune. The latter can, for instance, be checked by evaluating the
nonlinear part of R, that is, the expression ysy; V ysyr V ygys for all 16 possibilities
for the variables ys, yg, y7, ys, and observing that the values 0 and 1 occur equally
often.

The algebraic degree 3 of the Boolean function R is large enough to guaran-
tee that the produced keystream ¢ will have linear complexity > 28. The order
of correlation immunity 4 is the maximum possible value for balanced, 8-variable,
degree-3 Boolean functions according to Siegenthaler [33]. There are other 8-variable
Boolean functions of algebraic degree 3 having order of resiliency 4. The particular
one presented in (4) was chosen mainly because its alternative representation (5)
which has a simple realization in hardware. See the following picture:

Y5
Y, Y,
ys \
z
y7
/(CD Yo Vs
y8

3.2 The feedback shift registers

The principal items of the KSG are eight binary primitive nonlinear feedback shift
registers. Throughout the proposal these NLFSR’s are labeled by the capital letters
A, B, C, ..., H. The lengths, periods, linear complexities, and nonlinearities of the
eight NLFSR’s are given in the following table. Periods and linear complexities of
a binary primitive FSR’s are understood in the sense of Definition 2.

NLFRS’s

label length period linear complexity nonlinearity
A 22 222 -1 Ly=22-13 30208
23 223 1 Lp=2% -2 245760

C 25 225 1 L¢ 499712
D 26 226 — 1 Lp 233472
E 27 227 -1 Lg 983040
F 28 228 1 Lp 237568
G 29 229 1 L¢ 999424
H 31 231 —1 Ly 999424




Of course, the listing of the periods is redundant, as a primitive binary FSR of
length N has, by definition, period 2 — 1. Note that shift registers G and H have
the same nonlinearities.

The computations of the linear complexities of the NLFSR’s are currently (25
April 2005) under process. For the NLFSR A and B we found L,y = 2% — 13
and Lp = 223 — 2, respectively. The upper bound for the linear complexity of
an N-stage binary primitive FSR is 2V — 2. This is an immediate consequence of
Theorem 16. The upper bound 2V — 2 also seems to be a typical value for the linear
complexity of N-stage binary primitive NLFSR’s. By investigating more than 100
Million randomly selected binary N-stage NLFSR’s with 4 < N < 20, we observed
that the upper bound 2V — 2 for the linear complexity was attained for more than
half the sequences produced by the NLFSR’s found. Allmost all sequences had linear
complexities close the periods.

This does not come as a surprise though in the light of the investigations carried
out by Rueppel [29], Dai and Yang [8], and Meidl and Niederreiter [22] concerning
the linear complexity of periodically repeated random strings.

At any rate, since no lower bounds for the linear complexities of binary span-V,
period-2V — 1 sequences have been published so far, the linear complexities of the
remaining seven driving NLFSR’s used in our KSG must be computed. To this
end the formula of Laksov [19] in combination with fast implementations of the
Euclidean algorithm for binary polynomials is of interest.

For the moment we shall be very conservative assuming that the linear complex-
ities of the envolved primitive NLFSR’s are greater than half the periods. Thus we
shall assume that Lo > 2%, Lp > 2% Ly > 2% Lp > 2% Lo > 2% and Ly > 2%,
We already know that L, = 2?2 —13. Lg = 223 — 2.

The feedback functions of the eight driving NLFSR’s are given by

A(.%‘O,.’L'l,...,l'gl) :$0+$5+l’6+$7+l’10+$11+Z‘12+Z‘13+l’17+l’20

+ ToX7 + X414 + TTg + T19T11 + T1T4T11 + T1T4L13T14;

B(zg,x1,...,T2) = To+ Te + X7 + Tg + T11 + T12 + T14 + T15 + T17 + T19 + T
+ X124 + X2T7 + T5T9 + TeT1o + ToTyTg + T1T3T5T10

+ T4211212213;

C(l‘o,(L’l,...,l'24) :$0+Z‘1 —|—£L'3+Z‘5—|—£L'6+$7+l’9+l‘12+l’14+l’15+l’17
+ X118 + Too + T1T6 + T4T13 + TT1g + T12T15 + T5X11T14

+ 124711215 + T2T528%10;

D(xo,x1,...,%95) = Ty + 1 + T4 + T5 + 7 + Tg + Tg + T13 + T14 + T16 + T2
+ Zog + T1Te + T4T7 + T12T16 + T15T17 + T4T15T17 + T7T9T10

+ 12371416 + T8T11T12%17;

E(xo,:cl,...,x%) :.Z'o+l'1 +Z‘2—|—£L'6+Z‘8—|—l’9+l‘10—|—l’13—|—l’14—|—l’16+l‘19
+ Xo1 + Xog + X1T8 + T3T12 + T11T17 + T15T18 + T5T6T15

+ X3T5T16T17 + T7L12T14% 155
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F(xo,x1,...,%97) = To + &1 + T2 + 27 + T15 + T17 + T19 + Too + Too + To7
+ X917 + T10T18 + T11T14 + L1213 + T5T14%19 + T6T10T12

+ TeToZT17L18 + X10L12L19L20;

G(.l'o,l'l,...,l'gg) :l’o+l‘2—|—£L'3+l‘5+$6+$9+$14+l‘15+l‘16+l‘18
+ Zo1 + To7 + T5X7 + TeTo0 + T10%14 + T13T18 + TeT19T21

+ Z11T16%18 + T1T5L15T21 + T2X7T17L20;

H(.%‘O,.%'l,...,l'go) = X +l‘3—|—l’5 +l‘7—|—l’10—|—l’16—|—l’17 +l‘18 +l‘19 +l‘20
+ Xo1 + Xog + T30 + T5T15 + 11218 + T16T22 + T17T21

+ T1T2T19 + T1212X14T17 + ToX5T13220-

There is yet another NLFSR contained in the proposed stream cipher. This
NLFSR is labeled by the capital letter V. The NLFSR V is nonsingular but not
primitive. The length of this shift register is 64. The contents of shift register V'
are not changed during encryption. It is only used during key and IV loading. The
secret key K and the public IV-vector are fed into the register V' which subsequently
performs a couple of shifts. The final contents of register V' defines the configura-
tions of the linear feedforward output logics of the driving NLFSR’s. The feedback
function of NLFSR V is

V(zo, 1, ...,263) = 1 + 20 + 23 + 27 + T10 + T12 + Tor + Tag + Tas + Tug
+ X47 + X8T90 + T17X23 + T24To5 + TogT31 + T33X34T37

+ X1T3T9x10 + T39T41T51T52-

3.3 The linear feedforward functions

Each driving NLFSR A, B, C, ..., H is endowed with a configurable linear feedfor-
ward output function. The linear feedforward output function can be described by
the filter polynomial (see Section 2). The binary filter polynomial a(z) for NLFSR
A has degree at most 6. All filter polynomials will have nonzero constant terms.
Thus the polynomial a € Fy[z] has the form

a(x) = agx® + asx® + agx* + asx® + axx? + agx + 1. (6)

There are 26 = 64 possibilities for the filter polynomial a(z), as there appear six
binary coefficients aj, as, ..., as in (6). For the NLFSR A, we depict the situation
in the following figure

11



If we enlarge the right part in the picture, we get:

If the coefficient a;, 1 < j <6, is 1, the wire is connected and the content of cell
D; contributes to the output. If a; = 0, the wire is disconnected and the content
of D; is ignored. Note that cell Dy is always connected to the output line. If all
six coefficients of a(x) are zero, in other words if the filter polynomial is equal to
the constant polynomial a(x) = 1, the standard output sequence o4 = (5,)2, is
emitted. Using the shift operator 7', we can write the output sequence 74 = (t,,)7,
in the form 74 = a(T")o4 (see Section 2).

The filter polynomials that will determine the output values of the eight NLFSR’s
A, B, C, ..., H are designated by a(z), b(z), c¢(z), ..., h(z), respectively. For each
filter polynomial, the maximum permissible degree is given in the following table.

The Filter Polynomials

NLFSR filter polynomials maximum degrees
A a(x) 6

T QMmO QW
m VamnS
/—\/\/\/gr\
© © o0 oo N I

10

Note that the sum of the maximum permissible degrees of all eight filter poly-
nomials is 64. As a consequence, the KSG has 2% different configurations for its
output function.
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Theorem 1. If the NLFSR’s A, B, C, ..., H are loaded with any nonzero initial
state vectors, then for all filter polynomials a(x), b(x), c(x), ..., h(x), the produced
output sequences T, Tg,...,Tuy have periods 2N — 1, where N is the length of the
corresponding NLFSR.

Proof. Let my(x), mp(x),...,mg(x) be the minimal polynomials associated with
the NLFSR’s A, B, C, ..., H, respectively. By [11, Proposition 1] it suffices to
check that each of the polynomials ma(x), mg(x),...,my(z) is divisible by a bi-

nary primitive polynomial of degree N, where N is the length of the corresponding
shift register. Given a periodic binary sequence o of period P = 2V — 1, it can
be checked whether or not a given binary polynomial f of degree N divides the
minimal polynomial m, of o without actually knowing the minimal polynomial m,,.
One merely has to check whether the polynomial g(z) = (¥ — 1)/f(x) is still a
characteristic polynomial of ¢. The polynomial f divides m, precisely if g is not
a characteristic polynomial of . See Corollary 1. In this manner we verified that
all minimal polynomials m4(x), mg(z),..., my(z) are divisible by some primitive
binary polynomials of the the required degrees. O

Theorem 2. If the NLFSR’s A, B, C, ..., H are loaded with any nonzero initial
state vectors, then for all filter polynomials a(x), b(z), c(z), ..., h(x), the pro-
duced output sequences T4, Tg,Tc, - .., Tr have linear complexities greater or equal to
Ly, Ly, L, ..., Ly, where these numbers are given in the table below.

Proof. Recall that by definition the linear complexity of NLFSR A, say, is equal to
the linear complexity of the standard output sequence o4 obtained from any nonzero
initial state vector. In other words, Ly = L(c4). The filter-output sequence 74 is
related to o4 by 74 = a(T)o 4, where a € Fy[z] is the applied filter polynomial. The
assertion now follows from Theorems 12 and 15. 0

NLFSR linear complexity lower bound for linear complexity
of NLFSR of NLFSR-output sequence 7

A Ly L'y=Lj—2
B Lgp Ly=Lg

C L¢ Ly =Lc—5
D Lp L'y=Lp—2
E Lg Ly, =Lg—6
F Lp Ly =Lp—9
G Lg Ly = Lg

H Ly Ly =Ly

13



3.4 Linear complexity and period of the keystream

Suppose that each NLFSR A, B, ..., H is loaded with a nonzero initial state vector.
Let a(z), b(x), ..., h(x) be filter polynomials fulfilling the requirements mentioned
in the preceding section. Let o4, op, ..., oy be the standard output sequences for
the shift registers corresponding to the applied nonzero initial state vectors. Let 74,
7B, --., Ty be the NLFSR-output sequences produced by applying the above filter
polynomials. Using the shift operator T, we can write 74 = a(T)oa, 75 = b(T )03,

.., 7g = h(T)oy. The sequences 74, T, ..., Ty are combined by the Boolean
combining function

R(y1,y2, .- ¥s) = y1 + Y2 + Y3 + ya + Ysyr + Yoy + YoYs
+ YsYeY7 + YeyrYs-
to produce the keystream ¢ = (2,,)0,.

The NLFSR outputs are assigned to the Boolean function inputs according to
the following mapping:

Input variable | y1 %2 Y3 Y14 Ys Yo Yr Ys
NLFSR A C D E B G H F

Therefore

¢ = R(Ta,7c,TD, TE, TB, TG, TH, TF) = TA + T + Tp + Tg + TBTH 7)
+T7¢TH + TFTGg + TBTGTH + TFTGTH-

We want to determine the minimal polynomial m¢ of ¢, which then will yield
the linear complexity L(¢) = deg(m¢) and the period per(¢) = ord(m() of the
keystream (. To this end we first consider the minimal polynomials of the nine
summands in (7).

Applying Theorems 15 and 16, we conclude that the minimal polynomial of the
sequence T4, for instance, has a canonical factorization over Iy of the form

Mry = H hj> (8)
j=1

where hq, ..., h, are distinct irreducible binary polynomials whose degrees divide 22
and are greater than 1. Thus all irreducible polynomials appearing in equation (8)
have degrees 2, 11, or 22. Similiarly, we conclude that the minimal polynomial of 75
contains only irreducible binary polynomials of degree 23, that the minimal polyno-
mial of 7 contains only irreducible factors of degrees 5 or 25, and so on. Applying
Theorems 13 and 17, we find all possible degrees for the irreducible polynomials
appearing in the canonical factorizations of the minimal polynomials of the product
sequences that appear in (7). We summarize the results in the following table and
the succeeding theorem.
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NLFSR-output degrees of irreducible polynomials that
sequence may occur in the canonical factorization
of the minimal polynomial of the sequence
TA 2,11, 22
e 5, 25
™ 2,13, 26
TE 3,9, 27
TBTH 713
TaTH 899
TFTG 58, 116, 203, 406, 812
TBTGTH 20677
TFTGTH 1798, 3596, 6293, 12586, 25172

Theorem 3. The canonical factorization of the minimal polynomial of the keystream
¢ consists only of irreducible binary polynomauals of degrees 2, 3, 5, 9, 11, 13, 22,
25, 26, 27, 58, 116, 203, 406, 713, 812, 899, 1798, 3596, 6293, 12586, 20677, and
25172.

Note that the minimal polynomials of 74 and 7 may both contain the irreducible
factor h(x) = 2 + x + 1, which is the only irreducible binary polynomial of degree
2. Apart from that the minimal polynomials of the nine sequences listed in the
above table are pairwise relatively prime. Using Theorem 11, we find that m is the
product of the minimal polynomials 74, 7¢, Tp, T, TBTH, T¢TH, TFTG, TBTGTH, and
Tr7qTy divided by the polynomial (22 + z + 1), where k € {0, 1, 2}.

Theorem 4. For all 2% configurations of the output function of the KSG corre-
sponding to all possible combinations of the filter polynomials a(x), b(x), ..., h(x),
and for all initializations of the eight NLFSR’s with nonzero initial state vectors,
the linear complezity L(C) of the produced keystream ( satisfies

L) > L+ Ly+ L+ L+ LpLy + L Ly
b LoD+ Dy LDy + DL Ly — 4,
where the primed numbers are related to the linear complexities Ly, Lg, ..., Ly of
the underlying NLFSR’s by the equations L'y = La—2 = 2*2—15, L'y = L = 2?32,
Ly,=Lc—-5Ly=Lp—2 Ly=Lg—6, Ly=Lpr—9, L =Lg, and Ly = Ly.
Under the assumption made at the end of Section 3.2 we obtain

L(¢) > 2.

Theorem 5. For all 2%* configurations of the output function of the KSG corre-
sponding to all possible combinations of the filter polynomials a(x), b(x), ..., h(x),
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and for all initializations of the eight NLFSR’s with nonzero initial state vectors,
the produced keystream ¢ has period

per(() = - (2% —-1) (2 —-1) (2*° - 1) (2*° - 1)

(227 —1) (2% —1) (2 —1) (2°' —1).

Nl

(9)

This implies that
per(C) = 2.

Proof. By Theorem 8, we have per(¢) = ord(m¢). From Theorems 15 and 17, we
know that the minimal polynomial m, has no repeated factors. Let m¢ = g1,..., gx
be the canonical factorization of m, over Fy. By Theorem 9

ord(m¢) = lem (ord(gy), ..., ord(gg)) . (10)

In Section 3.3, we pointed out that the minimal polynomial of each sequence 74, 75,
..., Ty contains a primitive binary polynomial of degree N, where N is the length of
the corresponding NLFSR. Recall that the order of an irreducible binary polynomial
of degree N always divides 2V — 1. If the polynomial is primitive, its order is equal
to 2V — 1. Putting these facts together and using Theorem 14, we conclude that
equation (10) is equivalent to

ord(m¢) =lem (2% — 1,2 —1,2% —1,2%0 —1,2*" — 1,2 —1,2% —1,2° —1).

Using Lemma 2 and the relation lem(u, v) ged(u, v) = uv, we obtain

lem (2% — 1,20 —1,2% —1) =~ (2% - 1) (2 - 1) (2* - 1).

Ol =

Another application of Lemma 2 now yields equation (9). O

3.5 The reduced keystream generator

In a reduced form of the KSG, the ability of changing the configuration of the output
function of the KSG after each resynchronisation is removed. No linear feedforward
logics are implemented in the reduced KSG. Instead the standard output function for
each shift register is used. In the standard output function at each clock pulse, the
content of cell Dy is forwarded to the Boolean combiner R. Note that the standard
output function of the reduced KSG corresponds to the special configuration of the
linear feedforward logics in the full-fledged KSG in which all eight filter polynomials
are equal 1. That is a(z) =1, b(z) =1, ..., h(z) = 1.

The motivation of considering besides the full-fledged KSG also a reduced version
of the KSG originates in hardware savings. For instance, the NLFSR V' with its 64
flip-flops can be saved in the reduced KSG. A comparison between the full-fledged
KSG and the reduced KSG in terms of hardware costs is given in Section 7.
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4 The key-loading algorithm

In this Section we are going to describe a method for initializing the various feedback
shift registers in the KSG. An important design criteria of the key loading algorithm
was its resistance against side-channel attacks, especially against differential power
analaysis.

In the key-loading algorithm, the eight driving NLFSR’s are initialized using the
k = 80 bits of the secret key K and the bits derived from the public initial value
vector I'V. In the full-fledged KSG, in addition, the configuration feedback shift
register V' is loaded using the key bits and the bits of the initial value vector. Let
K = (ko, k1, ..., ks) be the secret key, and let IV = (ig,i1,...,%_1) be the initial
value vector (IV-vector for short). The length [ of the IV-vector can be any value
in {0, 8, 16,24, 32,40, 48,56,64}. Here [ = 0 means that no IV-vector exists.

We first concatenate the key K and the IV-vector I'V to obtain the interim key

u, = (K7IV) - (k07k17'"ak797i07i1a"'7il—1)-

The length r of the interim key is given by r» = k + 1 = 80 + [, and can thus take
on any value in {80, 88,96, 104,112,120, 128,136, 144}. The key-loading algorithm
consists of several steps.

Phase 1. Load the first bits of the interim key u, into the cells of the eight
driving NLFSR’s A, B, ..., H, as well as into the cells of the configuration feedback
shift register V. If the relevant shift register has length N, it receives the N bits
Ug, U1, - - ., un—1. Cell D; will contain the element u; for 0 < j < N —1.

The loading of the shift register cells is performed in parallel. All 211 cells of the
eight driving shift registers and the 64 cells of the configuration register are loaded
simultaneously in order to avoid the leakage of side channel information.

After completion of Phase 1, the cells Dy, Dy, ..., Dy of the NLFSR A (to give
a concrete example), will contain the bits wug, uq, . .., us1, in this order.
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NLFSR A

Upq | Ugp [ Ugg [ Usg | Uq7 Ug [ Ug [ Uy | Uy Uy

D2‘I D20 D19 D18 D17 D4 D3 D2 D1 D()

NLFSR B | uy, | Uy [ Uy [ Usg u, | ug | u,

u18|u17 Uy | Uy |

D22 D21 D20 D19 D18 D17 D4 D3 D2 D1 DO

NLFSR C | uy, | Uos [ U, [, [usy | Usg | usg |u u, {u, fu, fu fu

24 23 22 21 20 19 18 17 “nn 4 3 2 1 0
D24 D23 D22 D21 DZO D19 D18 D17 D4 D3 DZ D1 DO

NLFSR D Upg | Upg [ Ugg [ Upy | Upq | Ugg [Ugg [Ugg | Uz | [ | Ug | Uz | Uy [ Uy | Ug

D25 D24 D23 D22 D21 DZO D19 D18 D17 D4 D3 D2 D1 DO
NLFSR E |U26|u25|u24|uz3|U22|U21|U20|U19|u18|u17| I |u4|u3|u2|u1|uo|
D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D4 D3 D2 D1 DO

NLFSR F Up7 | Ugg | Ups | Upgq | Ung | Ugp [ Upq [ Ugg | Ugg | Uyg [ Uy7 Ug | Uz | Uy | Uy | Up

D27 D26 D25 D24 D23 D22 D21 DZO D19 D18 D17 D4 D3 D2 D1 DO

NLFSR G Upg | Up7 [ Ugp | Ugs | Upg | Upg | Upp [ Upq | Upg | Ugg | Ugg [Ugz | [, | Us [ U | Up | Uy | Ug

D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D4 D3 D2 D1 DO
NLFSR H |U30|U29|U28|U27|U26|u25|uz4|uz3|uzz|uz1|U20|U19|u18|u17| - |u4|u3|u2|u1|uo|
D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D4 D3 D2 D1 DO

Phase 2 and 3. Feed-in into each FSR all bits of the interim key u, = (ug, u1, ..., uy_1)

that have not already been loaded into the register in Phase 1. If the regarded shift
register has length N, the bits uy,uny_1,...,u,_1 are fed into the register. The
feeding-in of the bits into the FSR’s is now performed serial. (See the discussion
of the feeding-in procedure for FSR’s below.) For instance, NLFSR A will get the
inputs usgg, Usg, ..., Upr_1.

The designation of this step of the algorithm with “Phase 2 and Phase 3” origi-
nates in the accompanying computer program. In the program the feeding-in of key
bits takes place in “Phase 2”7, while the feeding-in of IV-vector bits takes place in
“Phase 3”. Here, however, it is not necessary to separate the two phases.

Phase 4. In each of the eight FSR’s A, B, ..., H, overwrite the content of cell D,
with the bit 1. This operation makes sure that no driving NLFSR will be loaded into
the all-zero state. For the configuration register V', the all-zero state is acceptable.
The all-zero state is as good as all other states. Thus the content of cell Dy of the
register V' is not changed.

Phase 5. This phase could be called warm-up phase. Each of the eight FSR’s A,
B, ..., H performs N + 32 shifts, where N is the length of the shift register. For
instance, NLFSR A performs 54 warm-up shifts. The longest shift register, NLFSR
H | performs 63 warm-up shifts. The given number of warm-up shifts for each shift
register has the consequence that all eight driving NLFSR’s achieve their final states
simultaneously. The configuration register V' performs 48 warm-up shifts.
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If the keystream generator is the reduced KSG, all mentions concerning the
configuration register V' in the above key-loading algorithm can be ignored. For the
full-fledged KSG, the final state of the register V' is used to setup the configuration of
the output function of the KSG. (In the accompanying C-program, the configuration
setup is described under the title “Phase 6”.)

Let the final state of the register V' be given in accordance with the following
assignments:

c3 co c1 by be bs by b3 b b1 ae as aq as a2 ai

D3y | D3o | D29 | Dag | Dar | D2s | Da2s | D24 | Da2g | D22 | D21 | D2o | D19 | Dis | D17 | Dis

eq es3 e2 e1 dg dr de ds dy ds d2 d1 cr c6 cs cq

Dy7 | Dgs | Das | Daa | Das | Daz | Dar | Dao | D39 | Dss | D37 | D3sg | D35 | D3sa | D33 | D32

g3 g2 g1 fo fs f7 fe f5 fa f3 f2 fi es er €6 es

Dgs | De2 | De1 | Deo | Dsg | Dss | Ds7 | Dse | Dss | Dsa | Dss | Ds2 | Ds1 | Dso | Dag | Das

h1o ho hs hr he hs ha h3 ha h1 g9 gs gr g6 gs g4

The filter polynomials a(x), b(z), ..., h(z) which define the linear feedforward
functions of the NLFSR’s A, B, ..., H, are definded by

a(r) = agx® + a5z’ + agz* + azz® + apr® + ayw + 1,

b(z) = byx” + bga® + bsa® + byx* + b3a® + ber® + byx + 1,

c(r) = 0791?7 + 06336 + 05335 + 649174 + ch3 + eox? + ey + 1,

d(l‘) = deS + d7.]]7 + d6x6 + d533'5 + d4x4 + dgl'g + dzl’z + dll' + 1,

6(95) = @8908 + €7$7 + €6$6 + €5$5 + 64:704 + 63:703 + €2£L‘2 +ex+1,

f(@) = for + fsa® + fra” + foa® + fs2® + faa' + f32° + for? + iz + 1,

g(:l?) = ggl'g -+ g8x8 -+ 971'7 —+ 961'6 —+ 951’5 -+ g4x4 + gg.’L’g + g2$2 + g1x + 1,

h(ZL‘) = hl()l'lo + hg[L‘g + hg[L‘S + h7fE7 + h6$6 —+ h5[L‘5 —+ h4$‘4 —+ h3fL‘3 + h2$2 —+ hlx + 1.

Here are some remarks to justify the described key-loading algorithm. We first
discuss the operation of feeding-in a finite bit string into a binary FSR. Let F
be the feedback function of an arbitrary binary FSR of length N > 1. Let v =
(v_1,v_9,...,v_x) € FY. We use the vector v to initialize the FSR defined by the
given feedback function F'. After loading v into the register, cell Dy_; contains the
element v_; for 1 < j < N. Consider the r-tuple u, = (ug, u1,...,u,—1) € F}, where
r > N. The bits of u, are fed into the FSR according to the following figure.
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F(Xoq0- - %4:Xo)
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<

t-N

The process can be described by the recursion
v =up + F(v_1,0-9,...,0_n) for 0 <t <r—1.
Consider the following mapping.

Upy, : F, — TFY

u, = (an Uy .- 7ur—1) — v = (UT—Na Ur—N+15- - avr—l)

(11)

Lemma 1. Let 1 < N <r. For each N-stage FSR defined by some feedback function
F(xn_1,...,21,70), and for each initial state vector v € FY  the mapping in (11)
has the property

H{a €T,y :Vp,(a)=b} =2"" foral beTFy.
Proof. See Rueppel, Lai, and Woollven [18]. O
Lemma 1 implies the following theorem.

Theorem 6. Consider any one of the eight driving FSR’s of the KSG. Let N be
the length of that shift register. Then for each of the 2N~ possible states of the
shift register, where the content of cell Dy is 1 and the contents of all other cells are
arbitrary, there are exactly 2"~N*1 different r-tuples u, = (ug, uy, . .., u,_1) that will
be mapped onto the given state of the shift register by applying the first two steps of
the above key-loading algorithm.

5 Security properties

Various attacks are known on stream ciphers based on linear feedback shift registers.
See for instance [23], [7], [14], [6]. One reason for choosing nonlinear feedback shift
registers as building blocks in our stream cipher was to avoid such attacks. The
working factor for applying a classical correlation attack is larger than 2'% given
the lengths of the underlying NLFSR’s and since the used Boolean function is 4th
order correlation immune. As the linear complexity of the keystream is larger than
285 an attack based on the Berlekamp-Massey algorithm lies beyond the complexity
of a brute force attack.

20



As already pointed out, the proposed KSG is able to produce 2% translation
distinct sequences, each of which has period larger than 22°7 and linear complexity
larger than 2%5. We refer to the last chapter of the dissertation of Jansen [15]
for security evaluation of keystream generators capable to produce an ensemble of
different keystreams.

We hereby state that we are not aware of any hidden weaknesses of the proposed
stream cipher.

Furthermore, the stream cipher does not seem to have any weak keys.

6 Parallel implementation

In a straightforward implementation of the KSG, one bit of keystream is generated
per clock cycle. In order to increase the speed of generation, it is advisable to
implement the underlying FSR’s in a certain way described below. In the standard
implementation of a FSR, the content of each cell is shifted one position to the right
(or left). Using the terminology introduced in Section 2, we can say that the content
of cell D; is shifted into cell D;_;. In a fast implementation of the FSR, the content
of cell D; is shifted into cell D;_;, where k is a positive integer less than N, the
length of the FSR.

For practical reasons, we are here mainly interested in step sizes k = 2,4, or
8. Let us assume that the step size k equals 2 for the moment. Then the content
of cell D; is forwarded to cell D;_5. The increase of the step size by a factor of
2 requires the feedback logic to be duplicated. The number of cells (flip-flops),
however, remains the same. In total the hardware area increases by the factor 1.15
for the NLFSR’s used in our KSG. If the step size k = 4 is chosen, the feedback
logic must be implemented four times. The number of flip-flops remains the same.
The hardware area increases roughly by the factor 1.5. If k = 8, the hardware area
is increased by the factor 2.5, a relatively small price to pay, considering that now
one byte is output from the FSR per clock cycle.

The concept of increasing the performance of a FSR, by choosing larger step
sizes, is best illustrated on an example. Consider the 9-stage NLFSR defined by the
feedback function

F(l’o,l‘l, Ce ,l’g) = To+ X7 + T1To.

The regular implementation of this FSR is depicted in the following figure.

v
v
»(D
Y y
v
v
Y
v
1
v
]
y
[
[
(2]

If we choose step size k = 2, the corresponding fast implementation looks like
this:
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The increased performance of the underlying FSR’s correspond to an equivalent
increase of speed of the keystream generation. Thus by implementing the eight
driving NLFSR’s appropriately, the KSG can produce 2, 4, or 8 bits of keystream
per clock cycle.

The case k = 8 is probably the one of most practical interest. Think of a
eight bit broad bus. At any rate, in its so-called high-speed implementation of the
KSG, one byte of keystream is generated per clock cycle. If ( = (z)2, is the
keystream, then the first byte has the form (zo, 21, 29, 23, 24, 25, 26, 27), the second
byte is (zs, 29, 210, 211, 212, 213, 214, 215), and so on. From a cryptographical point of
view it is important that in the high-speed implementation of the KSG exactly
the same keystream bits are used as before. No new buildings blocks like vectorial
Boolean functions are inserted in the design in order to increase speed.

In the high-speed implemention of the KSG not only the encryption rate is
increased. The key-loading algorithm is also accelerated.
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7 Comparison of hardware designs

In this section we will compare the Achterbahn stream cipher with some stream
ciphers from different fields of applications with respect to several figures of merit.
A5/1, EO and RC4 are well known stream ciphers, because they are used in stan-
dards. A5/1 is specified for GSM applications, E0 is used in Bluetooth wireless
communication, and RC4 in the IEEE 802.11b WLAN standard. We also consider
the AES (Rijndael) block cipher standard which can be operated in the output
feedback mode (OFB) as a keystream generator.

When evaluating the implementation properties of a certain algorithm in hard-
ware it is important to define the figures of merit precisely. In general the ultimate
figure will be a performance/cost ratio. The cost function is not easy to describe,
because it depends on several factors which must be weighted differently in different
applications. The most important common factors, however, are the size of the
implementation, the power consumption, the throughput, the implementation effi-
ciency, and the capability of the algorithm to trade off one factor against another.
The latter property is often termed scalability.

7.1 Area and power

The size of the implementation of an algorithm depends strongly on the minimum
feature size of the technology, which is the dimension of the smallest feature actually
constructed in the manufacturing process. It also depends on the specific circuit
design style, such as CMOS or DCVSL [28], and the number of available metal
layers for wire routing. Hence, it is necessary to resort to an approximate, technology
and circuit style independent measure. A commonly used measure for the size of
a design is the number of NAND gate equivalents (GE). This is the area of the
circuit implementation divided by the area of the smallest NAND gate in the used
standard CMOS cell library. Table 1 shows the sizes of some gates in units of GE for
contemporary standard cell library. All CMOS standard cell libraries contain gates
with more than two inputs, which generally reduces area, power consumption, and
gate propagation delay of a circuit. Examples are AND and OR gates with three
or four inputs or XOR gates with three inputs. Obviously, a 4-input NAND gate
is smaller than the equivalent circuit built from three 2-input AND gates. Thus
the gate equivalent count of a design will always reflect the optimized mixture of
available multi-input cells, but not the count of binary operations in the algorithm.

The power consumption of a CMOS design is also related to the gate equivalent
count. However, the dynamic power consumption of the implementations of two dif-

gate size [GE] | gate size [GE]
2-input NAND 1 2-bit MUX 2.50
2-input AND 1.25 2-input XOR 2.25
3-input AND 1.50 3-input XOR 4.00
4-input AND 1.75 register bit 6.00

Table 1: Typical sizes of some gates in units of NAND gate equivalents (GE).
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ferent algorithms which have approximately the same gate count can differ strongly.
Power consumption estimations for an algorithm require a detailed analysis of the
dynamic switching activity of the gates.

7.2 Throughput

The throughput of a stream cipher is conveniently defined as the average number of
output ciphertext bits per second, which is in a synchroneous design equivalent to
the average number (N) of output bits per clock cycles times the clock frequency f,

P = (N)f. (12)

Hence, the throughput can be either increased by increasing the clock frequency, or
by increasing the average number of output bits per clock cycle. The maximum clock
frequency a circuit can be operated at is determined by several factors, such as the
feature size of the available technology and the operating voltage. Here we can hope,
that for the next years Moore’s Law will contribute to speed up existing algorithms.
However, there is an important factor which is under full control of the algorithm
designer. The number of gate propagation delays in the longest combinational path
of the design, the so-called critical path, will ultimately limit the maximally reachable
clock frequency. The gate propagation delay is the time required for switching the
output of a gate after an input signal has changed. Generally, the sum of the gate
propagation delays of the gates in the critical path must be smaller than the cycle
time (1/f). An algorithm allowing an implementation with a smaller number of
gate propagation delays in the critical path can be operated at higher frequencies.
Pipelining techniques can be used to cut down the critical path to some degree.
This usually leads to a rapidly increasing number of gates in the design. For the
application of a stream cipher in a hardware design it is important that the cipher
itself does not contain the critical path of the design. Hence the number of gate
propagation delays in the critical path of the cipher (without already implementing
pipelining) is an important technology independent figure of merit which determines
the maximally reachable throughput.

Another significant factor determining the effective throughput in practice is
the overhead time for setting up the encryption in the communication protocol.
In the majority of applications the communication is packet-oriented: the message
text is split into small packets, which are separately encrypted and transmitted.
Typical packet lengths are, e.g., 224 bits in GSM applications, 512 bits for most of
the TCP/IP packets in the internet, or up to 2745 bits in the Bluetooth wireless
communication standard. To achieve a resynchronization after a transmission error
the packets are marked with a frame number and other public information (like
time stamps). To prevent the reuse of key material this block of public information,
called the initialization value vector, is combined with the secret key. The period of
time, starting with the processing of the initialization vector, until the first output of
cipher text, is called the resynchronization time. Hence, the throughput is reduced
by a factor which depends on the resynchronization time and the size of the packets.
Consequently, an important figure of merit is a small resynchronization time.
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7.3 Implementation efficiency

It is well known that different algorithms can be more or less well suited for a
hardware implementation. In order to express, how efficiently a stream cipher design
uses the gates to achieve a certain throughput, we introduce the implementation
efficiency £ of a stream cipher. Normalizing the average number N of generated
key stream bits per cycle by the number of gate equivalents G of the implementation,
we define

/\/[ bit

EIE cyc- kGE

For convenience the number of gate equivalents is given in units of 1000 GE = 1 kGE.
This figure reflects how many kGE are necessary to generate one bit of keystream
per cycle on average.

7.4 Scalability

To cover a broad range of possible applications a stream cipher algorithm should be
suitable for a very small implementation with small throughput requirements, as well
as for high throughput applications, where a larger area and power consumption can
be tolerated. Examples for the first kind are mobile and smartcard applications. Fu-
ture pervasive computing applications, such as RFID tags or sensor networks, will
pose even more restrictive area and power constraints on the implementation of
cryptographic primitives. Hence, the minimal implementation size of an algorithm
is certainly an important figure of merit. Examples for applications with an in-
termediate bandwidth are video signals with serial bit rates between 143.18 Mbps
(NTSC standard) and 1.458 Gbps (high definition video standard SMPTE 292M).
On the high-end scale there are Gigabit ATM networks and I/O interconnections
for distributed computing with bandwidths between 1 Gbps and 30 Gbps (e.g. In-
finiBand). In these fields of applications the mazimum throughput is the important
figure of merit.

7.5 Discussion

We implemented the Achterbahn stream cipher in VHDL and synthesized the design
for a 0.13 CMOS standard cell library. The design is configurable for a 1-bit-serial,
and 2-bit, 4-bit, or 8-bit parallelization. Additiontally to the full-fledged KSG,
we will also consider the reduced version of the KSG described in Section 3.5. In
the design of the stream cipher we strived for minimum area without introducing
pipelining to increase the maximum frequency. In the first four columns of Table
2 the figures of merit for the eight different implementation versions of Achterbahn
are reported. The figures in parenthesis refer to the reduced version of the KSG.
The 1-bit-serial implementation has a comparably small minimal implementation
size. The size of the design is approximately 3000 GE and the resynchronization time
is given by 112 cycles plus the length [ of the initial value V. This implementation
is suitable for securing the communication in pervasive computing applications, like
RFID tags, for contactless or contact-based smartcard applications, or for wireless
communications with moderate throughput requirements. It is also appropriate
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for securing serial data links in multi-chip solutions, for masking on-chip signals
in security devices, or as a pseudorandom generator. The small number of gate
propagation delays in the critical path allows very high target frequencies. In a
0.13pum CMOS technology a frequency of more than 1 GHz can be achieved.

As described in the previous sections the Achterbahn consists only of simple
building blocks: feedback shift registers, filter functions, and a Boolean combining
function. In Sec. 6 we showed that this construction principle allows a straight-
forward throughput scaling by applying a parallelization technique. Paradoxically
the bit sequential nature of a nonlinear feedback shift register neither prohibits an
efficient parallelization nor a pipelined implementation. The implementation with
2-fold parallelization is only 15% larger, whereas the throughput is increased by a
factor of 2, and the resynchronization time is also reduced by a factor of 2. The
implementation with 8-fold parallelization is 2.5 times larger and the resynchroniza-
tion time is 8 times smaller (i.e. 22 clock cycles for an initial value of length | = 64,
respectively 24 clock cycles for an initial value of length [ = 80). It is important
to note that the number of gate delays in the critical path is not increased by the
parallelization. Hence the 8-bit parallel design can be operated with the same max-
imum frequency as the bit serial design - correspondingly the maximum throughput
is 8 times as big. In a 0.13pum CMOS technology a throughput of more than 8 Gbps
can be achieved. If a higher thoughputs is required one or two pipeline stages in
the feedback functions of the NLFSR’s, the linear feedforward functions, and the
combining function can be introduced. The resulting reduction of the number of
gate delays in the critical path will increase the maximum throughput to values be-
tween 15 Gbps and 30 Gbps. It is also possible to push the degree of parallelization
beyond the step size k = 8, say up to k = 16, to further increase the throughput.
We mention that the step size k is not limited to powers of 2 but £ can be any
integer value between 1 and 16, say. Thus the throughput can be fine-tuned.

We implemented Achterbahn also on an FPGA (of type Stratix-I). In the full-
fledged 8-bit parallel version, the design was operated at a frequency of 240 MHz.

We now compare Achterbahn with three implementations of the AES with 128
bit key length, for which figures are publically available. We assume that the AES
is operated in the OFB mode. Hence, it has a state of 128 bits which is updated by
repeated encryption operations, starting with a 128 bit IV. The resynchronization
time for this configuration is then given by the time required by one encryption
operation. For the area comparison with the genuine stream ciphers we have to
add to the reported areas the gates necessary to implement the state. According to
Table 1 the implementation of the state corresponds to 768 GE. The considered AES
implementations are not protected against side channel attacks, such as differential
power analysis (DPA). The well-known masking approaches [1, 4] for the nonlinear
operations of the S-Boxes lead to additional hardware costs of roughly 200 GE for
each S-box [34]. Furthermore, the masking leads to a significant increase of the
propagation delay of the critical path. In [34] fifteen additional gate delay times
for a specific implementation are reported. To have a basis for comparison with
the Achterbahn stream cipher, whose key-loading algorithm is presumably robust
against side-channel attacks, the figures for the AES implementations are corrected
by the corresponding overhead areas and delay time penalties. In the footnotes of
Table 1 the original figures are reported. Masking of the AES is also necessary
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during the keystream generation, because the key is inserted in each encryption of
the state. It is believed that stream ciphers are in general robust against DPA during
keystream generation. The other three reference stream ciphers implementations,
EO0, A5/1, and RC4, do not contain specific DPA counter measures. Although the
key and IV lengths are different for the considered stream ciphers, the comparison
gives an indication about strengths and scalability of the different designs. Some
designs (EO, A5/1, RC4) have already been attacked successfully.

The proposed stream cipher has a comparably high implementation efficiency.
The efficiency grows with the degree of the applied parallelizaton (at least up to
k = 8). The efficiency of the 8-bit parallel version is approximately two times
greater than the efficiency of the high speed AES implementation. At a frequency
of approximatly 190 MHz the 8-bit parallel Achterbahn implementation reaches the
maximum throughput of 1.5 Gbps of the high speed AES implementation. However,
the frequency of the Achterbahn design can still be increased by more than a factor
of 5. The introduction of pipeline stages, and the parallelization beyond step size
k = 8, are options to further increase the throughput.
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Achterbahn AES EO A5/1 RC4
1 ‘ 2 ‘ 4 ‘ 8 minimal ‘ small ‘ high speed
reference [9] \ 30, 24] [16] 2] [17]
key/IV size [bit] 80/0,8,. ..,64 128/128 128/74 64/22 8,...,128¢
state size [bit] 275 (211 for reduced version)® 128 132 64 2064
word size [bit] 1 2 4 8 128 1 1 8
notes serial 2 bit 4 bit 8 bit 1 S-box 4 S-boxes 20 S-boxes
parallel parallel parallel 1016 cyc/enc 54 cyc/enc 11 cyc/enc 3 cyc/byte

resync. time
[cyc] 1124+ 1(IV) | 56 + l(IZ—V) 28 + @ 14 + @ 1016 54 11 239 188 7687
design size 2988 3427 4633 7547
[GE| (2173) (2412) (3113) (4778) 4563° 6966° 261057 1902 932 12952
throughput ()
[bit/cyc] 1 2 4 8 0.13 2.37 11.64 1 1 2.66
efficiency & 0.33 0.58 0.86 1.06
[bit/cyc/kGE] (0.46) (0.83) (1.28) (1.67) 0.028 0.34 0.45 0.53 1.07 0.21
critical path9
[#gate delays] 8 8 8 8 nn 50" 35k 2 3 nn
max. frequency >1 GHz™ | >1 GHz™ | >1 GHz™ | >1 GHz™ 100 kHz 95 MHz" | 130 MHz? | >3 GHz | >2 GHz nn
max. throughput | >1 Gbps™ | >2 Gbps™ | >4 Gbps™ | >8 Gbps™ || 12.5 kbps | 220 Mbps™ | 1.5 Gbps? | >3 Gbps | >3 Gbps nn

nn: not known, cyc: clock cycle, kGE: 1000 gate equivalents, {(IV'): length of IV,
%all values for Achterbahn given in parenthesis refer to the reduced keystream generator, see Sec. 3.5,

bwe added to the reported size of 3595 GE the 128 bit state with 768 GE and 200 GE for DPA protection (masking, see [34]),
“we added to the reported size of 5398 GE the 128 bit state with 768 GE and 800 GE for DPA protection (masking, see [34]),

dwe added to the reported size of 21337 GE the 128 bit state with 768 GE and 4000 GE for DPA protection (masking, see [34]),
“the 8-bit word implementation of RC4 allows key+IV sizes from 8 to 2048 bits using various resynchronization schemes,

Ffollowing the recommendations of dropping the first 512 bytes [12] will increase the setup time to 2304 cycles,

9the critical path is calculated assuming the use of multi-input gates,

h
k

we estimate a critical path of approx. 35 gate delays and add 15 gate delays for DPA protection (masking, see [34]),
we estimate a critical path of approx. 20 gate delays and add 15 gate delays for DPA protection (masking, see [34]),

Mfor a 0.13p CMOS process (with a pipelined implementation the throughput can be further increased by a factor of 2 to 4),

"estimated reduction of the reported throughput of 311Mbps at 131MHz (for a 0.11um CMOS process) due to DPA counter measures,
Pestimated reduction of the reported throughput of 2.6Gbps at 224MHz (for a 0.11um CMOS process) due to DPA counter measures.




8 Mathematical Background

Let IF, be the finite field of order g. The set of all sequences of elements of F, is
denoted by F°. If we define for 0 = (s,)52, € F° and 7 = (t,)72, € F° and
for ¢ € F, the sum o + 7 = (s, + )52, and the scalar product co = (csp)5y,
then F° becomes a vector space over F,. An important linear operator on the
vector space F¢° is the shift operator 7', defined by To = (sn41)52, for all sequences
0= (8n)nzo € F°.

A sequence o = (s,)52, in F° is called ultimately periodic if there are integers
ng > 0 and P > 1 such that s, p = s, for all n > ny. The smallest such integers
ng and P are called the length of the preperiod and the period of o, respectively.
We then write per(o) = P. If s,,p = s, for all n > 0, then the sequence is called
periodic. Note that the expression ultimately periodic allows the possibility that the
sequence is actually periodic.

Any ultimately periodic sequence o of Fy® possesses a unique polynomial m, €
F,[z], called the minimal polynomial of o. There are various approaches to the
minimal polynomial, one uses ideal theory. If ¢ € F,[z] is a polynomial over F,
then g(7") defines a linear operator on the vector space Fg°. For instance, let g(z) =
234+x+1. Then g(T)o =T?0+To+0 = (Spaz+Sni1+5n)52, for all 0 = (5,)22, of
Fy°. We say that a polynomial g € F, [z] annulates o, if g(T)o is the zero sequence
0 = (0,0,...). For instance, if 0 = (s,)52, € Fg° is ultimately periodic such that
Snip = Sy for all n > ng, then g(z) = a™ " — g € F [z] annulates o. Thus, for
every ultimately periodic sequence o € F°,

Jo = {9 € F,Ja] : g(T) = 0}

is a nonzero ideal in the principal ideal domain F,[z]. The minimal polynomial m,,
of o is the unique monic polynomial over [, generating .J,, that is,

Jy = (my) = {hm, : h € F [z]}.

Theorem 7. Let o be an ultimately periodic sequence in Fy°. Any polynomial g €
F,[z] that annulates o is called a characteristic polynomial of 0. A polynomial
g € F,[x] is a characteristic polynomial of o if and only if m, divides g.

Proof. The assertion follows directly from the fact that the minimal polynomial of

o generates the ideal J, and from the definition of the characteristic polynomial of
0. U

Corollary 1. Let o be a periodic sequence in Fy° with minimal polynomial m, €
F,[z]. Let c € F,[x] be a characteristic polynomial of o without multiple roots, and
let f € F,lx] be an irreducible factor of c. Then f divides m, if and only if the
polynomial g = ¢/ f is not a characteristic polynomial of o.

Proof. Since the minimal polynomial divides any characteristic polynomial we have
¢ = bm, for some b € F [z]. Clearly, g = ¢/f is a multiple of m, if and only if f
divides b. Thus g is not a multiple of m, if and only if f divides m,. O

The minimal polynomial m,, of an ultimately periodic sequence o € Fg° contains
a lot of information about o.
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1. The multiplicity of the element 0 as a root of m, coincides with the length of
the preperiod of . In particular, o is periodic if and only if m,(0) # 0.

2. The polynomial m, is the characteristic polynomial of the shortest linear feed-
back shift register that can generate ¢ when appropriately initialized.

3. By definition, the linear complexity of ¢ is equal to the degree of m,,.

4. The order of the polynomial m, coincides with the period of o.

For future reference we restate the last property as a theorem.

Theorem 8. Let o be an ultimately periodic sequence in Fo® with minimal poly-
nomial m, € F,lx]. Then the period of o is equal to the order of the minimal
polynomial of o, denoted by ord(m,).

Proof. See Lidl and Niederreiter [20, Theorem 8.44]. O

The order of a polynomial f is sometimes also called the period of f or the
exponent of f. We quote another theorem from [20] concerning the order of a
polynomial.

Theorem 9. Let gy,..., g, be pairwise relatively prime nonzero polynomials over
F,, and let f = g1---gr. Then

ord(f) = lem (ord(gy), ..., ord(gx)) -
Proof. See Lidl and Niederreiter [20, Theorem 3.9]. O

Another interesting approach to the minimal polynomial of an ultimately peri-
odic sequence o € Fg° makes use of generating functions. Following Niederreiter [26],
we assign to an arbitrary sequence o = (s,)52, of elements of IF, the generating func-
tion

Go(r) = 807 + 851272+ 5927 2 4 -+

regarded as an element of the field F,((z™')) of formal Laurent series in the inde-
terminate x~!. The field F,((2™')) contains the field F,(z) of rational functions as
a subfield. A sequence o € Fg° is ultimately periodic if and only if the associated
generating function G, belongs to the subfield F,(z).

Theorem 10. Let m € F,x] be a monic polynomial, and let 0 = (5,)22, be a
sequence of elements of F,. Then o is ultimately periodic and m is the minimal
polynomial of o if and only if

= h

Z Snxfnfl _ (l’)

n=0 m(:v)
with a polynomial h € F,[x] with deg(h) < deg(m) and ged(h,m) = 1.

Proof. See Niederreiter [26], [20, p. 218]. O
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Theorem 11. For each j = 1,...,k, let o; be an ultimately periodic sequence in
o with minimal polynomial m; € F, [x]. If the polynomials my, ..., my are pairwise
relatively prime, then the minimal polynomial of the sum o = o1 + -+ -+ o is equal
to the product my - --my,.

Conversely, let o be an ultimately periodic sequence in F° whose minimal poly-
nomial m € F,[z] is the product of pairwise relatively prime monic polynomials
ma,...,my € Fylx]. Then, for each j = 1,... k, there exists a uniquely deter-
mined ultimately periodic sequence o; with minimal polynomial m; € F,[x] such that
o=01+: -+ 0.

Proof. A proof of the first part of the theorem can be found on page 426 in [20]. To
prove the second part, let h/m € F,(z) be the generating function of ¢ in the sense
of Theorem 10. Let

h:ﬁ+...+& (13)
m o my mg

be the partial fraction decomposition of h/m. By Theorem 10, deg(h) < deg(m)
and ged(h, m) = 1. This implies deg(h;) < deg(m;) and ged(hj,m;) = 1 for 1 <
j < k. The rational functions h;/m; correspond to uniquely determined ultimately
periodic sequences o; € F® with minimal polynomials m; according to Theorem 10.
Equation (13) implies that o = o1 + -+ - + o%. O

Let o be an ultimately periodic sequence of F°, and let f be a nonconstant
polynomial over F,. We call the sequence 7 = f(T")o a linearly filtered sequence
derived from o. The polynomial f is called the filter polynomial. Note that the
sequence T is a linear combination of shifted versions of o.

Theorem 12. Let o be an ultimately periodic sequence of elements of F, with min-
imal polynomial m, € Fy[x], and let f be a nonzero polynomial over F,. Then the
sequence T = f(T)o is again ultimately periodic and has minimal polynomial

my = —7
T ged(me, f)
Proof. See Niederreiter [25], or Blackburn [3], or Géttfert [13, Chap. 2]. O

If o € F® is periodic and f € F, [x] is arbitrary, then 7 = f(T)o is also periodic.
This is trivial if f is the zero polynomial. Otherwise, recall that ¢ is periodic if
and only if m,(0) # 0. Since m,, the minimal polynomial of 7, divides m,, by
Theorem 12, we have m,(0) # 0, so that 7 is periodic.

A periodic sequence o in Fy® of span N and period ¢V — j, where j is a small
nonnegative integer (say j = 0, 1, or 2) has automatically almost ideal k-tuple
distribution for all & < N. (Such sequences can always be produced by suitable
N-stage feedback shift registers over F,.) If the sequence is linearly filtered, using
a filter polynomial f of relatively small degree (compared to N), then the resulting
sequence will still have good distribution properties. On the other hand, if the linear
complexity of the original sequence is large enough, the application of the operator
f(T) to the original sequence, where d = deg(f) < N, cannot effect the period and
will decrease the linear complexity at most by d according to Theorem 12. For more
information on linear filtering see [11].
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We recall some results from Selmer [31, Chap.4], and Zierler and Mills [36].
Let f,g,...,h € F,[z] be nonconstant polynomials without multiple roots in their
respective splitting fields over [, and with nonzero constant terms. (The latter
restriction is meant to exclude the irreducible polynomial p(z) = z.) Then fV gV
-+ V h is defined to be the monic polynomial whose roots are the distinct products
af -+ -, where « is a root of f, 3 a root of g, and v a root of h. The polynomial
fVgV---Vhis again a polynomial over the ground field F,. This follows from
the fact that all conjugates (over F,) of a root of fV gV ---V h are roots of
fVgV---Vh. The importance of the polynomial fV gV ---Vh stems from the fact
that if 0 = (5,)0%0, T = (tn)%, - - -, U = (un)5, are periodic sequences of elements
of F, with characteristic polynomials f, g, ..., h, respectively, then fV gV ---V his
a characteristic polynomial of the product sequence o7 - v = (Suty - up)0 -
Theorem 13. Let f,g,...,h € F,[z] be polynomials over F, without multiple roots
and with nonzero constant terms. The polynomial fNV gV---Vh € F,[z] is irreducible
if and only if the polynomials f, g, ..., h are all irreducible and of pairwise relatively
prime degrees. In this case

deg(fVgV---Vh)=deg(f)deg(g)---deg(h). (14)

If o,7,...,v are periodic sequences in F, with irreducible minimal polynomials f, g,
..., h € F,lz] of pairwise relatively prime degrees and with f(0)g(0)---h(0) # 0,
then fV gV ---V h is the minimal polynomial of the product sequence o7 -+ -v.

Proof. See Selmer [31, Chap. 4]. O
Example 3. Consider the binary irreducible polynomials f(x) = 2? + x + 1 and
g(z) = 23 + 2 + 1. Over the splitting field Fgy of fg € Fylx] we can write

fr)=2>4+z+1=(x—a)(lz—a?) =2>+ (a+a)r + o,
g(z) ="+ 2 +1=(z—p)x— -5
In particular, for the root a € Fy of f we have
at+a’*=1 and o’=1.
Using these identities, we obtain
(fV9)(2) = (z - af)(z — af®)(z — af')(z — ?B)(x — o®4%)(z — a*F")

1 sz x x 1 /2 x x
s NG GGG -7) (G-
=g<§>g(%> = (" + o’z +1) (2° + oz + 1)
=2+t +27+a+ 1

Let 0 = (s,)5%, be the periodic binary sequence defined by the linear recursion
Spio = Sp+1 + Sy for all n > 0 and the initial values so = 0 and s; = 1. Similiarly,
let 7 = (t,)22, be the periodic binary sequence defined by t,13 = t,4+1 + t,, for all
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n > 0and tp = 1 and t; = t, = 0. Then ¢ has minimal polynomial f and period
ord(f) = 3 whereas the sequence 7 has minimal polynomial g and period ord(g) = 7.

c=011011011011011011011...
7=100101110010111001011...
cTr=000001010010011001011...

One readily checks that the product sequence o7 = (w,,)%, satisfies the 6th-order
linear recursion

Wpi6 = Wpad + Wpyo + Wpi1 +w,  forall n>0.

Note that the first five terms of (w,)32, are zero, so that the sequence o7 cannot
satisfy any shorter linear recursion. Thus (f V g)(z) = 2° + 2% + 2% + x + 1 is the
minimal polynomial of o7. O

The following Lemma will be needed in the sequel. We skip its rather simple
proof here.

Lemma 2. Let a and b be positive integers. Then
ged(20 — 1,20 — 1) = g8cd@d) _ 1, (15)
In particular, 2* — 1 and 2° — 1 are relatively prime if and only if a and b are.
From now on we restrict ourselves to the binary case ¢ = 2.

Theorem 14. Let f, g, ..., h € Fy[z]| be irreducible binary polynomials without mul-
tiple roots, of pairwise relatively prime degrees, and with nonzero constant terms.
Then

ord(fVgV---Vh)=ord(f)ord(g)---ord(h). (16)

Proof. Tt suffices to prove the assertion for two polynomials f,g € Fylx]. Let
deg(f) = a, and let o € Faa be a root of f. Since f is irreducible, ord(f) coin-
cides with the order of o as an element of the group 3., the multiplicative group
formed by all nonzero elements of Foa. The order of any element of F3, divides the
order of the group Fj. which is 2* — 1. Let deg(g) = b, and let 3 € Fy be a root of
g. Then, by the same argument, we conclude that the order of 3 in [}, is equal to
ord(g) and both numbers divide 2° — 1. By hypothesis, the greatest common divisor
ged(a, b) of a and b is 1, so that, by Lemma 2, ged(2¢ —1,2° — 1) = 1. It follows that
a and 3 are elements of relatively prime orders in the group IF},,. By Theorem 13,
the polynomial f V g is irreducible over 5. Thus the order of the polynomial f V g
is equal to the order of v = af in F},,. It is well known (see e.g. McEliece [21,
p.38]) that the order of the product of two elements in a commutative group is the

product of the orders of the two elements if these orders are relatively prime. Hence
ord(f V g) = ord(af) = ord(«) ord(3) = ord(f) ord(g). O

For the binary polynomials f(z) = 2> +z + 1, g(z) = 23 + 2 + 1, and h(x) =
(fVg)(x) = 2% + 2* + 22 + 2 + 1 appearing in Example 1, we find ord(f) = 3,
ord(g) = 7, and ord(h) = 21. Thus 21 = ord(f V g) = ord(f)ord(g) = 3 -7, in
agreement with equation (16). The imposed restriction in Theorem 14 to the binary
field Fy is necessary. Consider, for instance, the two polynomials f(x) = z+1 = F3|x]
and g(x) = 2?41 € F3[z] over the finite field of order 3. Then ord(f) = 2, ord(g) = 4,
and fV g = g, and equation (16) does not hold in this case.
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Theorem 15. Let N be a positive integer, and let o = (s,)7, be a binary periodic
sequence with period P = 2N — 1. The canonical factorization of the minimal poly-
nomial m, € Fylx] of o over Fy consists of distinct irreducible polynomials whose
degrees all divide N. In particular, m, contains no repeated factors.

Proof. Since o has period P, the polynomial ¢(z) = ¥ —1 € Fy[z] is a characteristic
polynomial of o. By Theorem 7, m,(z) divides ¢(x). Consequently, m,(z) divides

22" — z, which is the product of all irreducible binary polynomials whose degrees

divide N (see [20, Theorem 3.20]). O

Theorem 16. Let N > 1, and let 0 = (s,)22, be a binary periodic sequence of
period P =2Y — 1 and of span N. If the zero vector 0 € FY does not occur among
the N-tuples s, = (S, Sni1s- -+ Snin-1), 0 <n < P—1, then x — 1 does not divide
the minimal polynomial m, of o.

Proof. The N-tuples s,, 0 < n < P — 1, run through all nonzero vectors of FY.
Therefore, the element 1 occurs exactly 2V~ times among the first coordinates of
these N-tuples. Thus

80+81+"'+SP_1:O.

Since o is periodic with period P, we get
Sn+ Spi1+ ...+ Spp1 =0 forall n>0,
which means that
o) =2 +2" 2+ 42+ 1€ Fya]

is a characteristic polynomial of ¢. Since ¢(1) # 0, the polynomial ¢(z) is not
divisible by z—1, nor is the minimal polynomial m, (x) which is a divisor of ¢(z). O

Theorem 17. Let S,T,...,U be pairwise relatively prime integers greater than 1.
Let 0 = (50)2%0, T = (tn)X0, -, U = (u)2, be binary periodic sequences of

periods per(c) = 2% —1, per(t) =27 —1, ..., per(v) = 2V — 1, respectively. Assume
that the canonical factorizations over Fy of the minimal polynomials of o,7,... v

are
s t u
mU:Hfia mT:ng7 R mU:Hhk (17>
i—1 j=1 k=1

Then the minimal polynomial of the product sequence o7 ---v = (Sptp -+ Up)0 18

gen by
s t u
S |} IO ) (TAVP VARV (18)
k=1

i=1 j=1

In fact, (18) represents the canonical factorization of the minimal polynomial of
o7 ---v over [Fy.

Proof. Tt suffices to carry out the details of the proof for the product of two such
sequences o and 7. The general statement then follows by induction. Consider
the canonical factorization of the minimal polynomials m, and m, in (17). By
Theorem 15, the irreducible polynomials fi, ..., fs € Fa[z] are distinct and deg( f;)
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divides S for 1 < i < s. Similiarly, the irreducible polynomials g1, ..., g; are distinct
and deg(g;) divides T for 1 < j < ¢. Since the sequences o and 7 are periodic,
their minimal polynomials m, and m, are not divisible by x. Thus, the first-degree
irreducible polynomial p(x) = x does not occur among the polynomials fi,..., fs

and g1,..., 0.
By Theorem 11, the sequences o and 7 possess unique representations

s t
o= E o, and 7= E 5,
i=1 j=1

where o; is a binary periodic sequence with minimal polynomial f; for 1 < i < s,
and 7; is a binary periodic sequence with minimal polynomial g; for 1 < 57 <¢. It

follows that L,
oT = Z Z 0;Tj.
i=1 j=1

By hypothesis, ged(S,T) = 1. It follows that for each i € {1,...,s} and j €
{1,...,t}, the corresponding irreducible polynomials f; and g; have relatively prime
degrees. Invoking Theorem 13, we conclude that for each i € {1,... s} and j €
{1,...,t}, the sequence o;7; has the irreducible minimal polynomial f; V g; € Fy[z].

As will be shown below, the irreducible polynomials f;Vg;, 1 <i¢<s,1<j<t,
are distinct. Another application of Theorem 11 therefore shows that the minimal
polynomial of o7 has the form

s

HH fiV gj)- (19)

It remains to show that the polynomials f;Vg;, 1 <7 <s,1 < j <{, are distinct.
To see this, let f; and f] be any two factors from the canonical factorization of m,,
and let g; and g} be any two factors from the canonical factorization of m.. Assume
to the contrary that the two irreducible polynomials f; V g; and f/ V g; are equal.
Note that two irreducible polynomials over the finite field IF, are equal if and only if
they have a common root (in some extension field of F,). Let v be a common root
of fi V g; and f; V g;. Then we can write v in the form

vy=af=df, (20)

where a, 3, o/, and 3" are roots of the polynomials f;, g;, f;, and g/, respectively.
Since « is a root of the irreducible polynomial f;, we have o € Fyaeq(s;), which is
a subfield of Fys, as deg(f;) divides S. Similiarly, we conclude that o/ € Fys and
B, € Fyr. From (20) we obtain

a
PR (21)
Clearly, a/a/ € Fys and '/ € Fyr. Since S and T are relatively prime, we have
Fys N Fyr = Fy, so that both sides of (21) must be equal to 1. Hence a = o’ and

B = ('. This, however, implies f; = f/ and g; = g. O
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Corollary 2. Let 0 = (5,)5,, T = (tn)00, -+, U = (un)s, be binary periodic
sequences of periods per(o) = 25 — 1, per(r) =27 — 1, ..., per(v) = 2V — 1, and
linear complezities L(c), L(T), ..., L(v) respectively. If the integers S, T, ..., U be
pairwise relatively prime and greater than 1, then the product sequence ot ---v =
(Sntn - un)oy has linear complezity

L(oT---v) = L(o)L(7) - - - L(v), (22)

and period
per(or---v) = (25 -1) (2" —1)--- (2 = 1). (23)
Proof. Let the minimal polynomials of o, 7, ..., v be given by the expressions in (17).

Then, by Theorem 17 and equation (14), we obtain

L(oT - v) = deg(meyr..,) ZZ Zdeg (fivgiV---Vhg)

11]1

_ZZ Zdeg fi) deg(g;) - - - deg(hx))

=1 j=1

= (; deg(fz-)) <Z_} deg(gj)) e (kzu; deg(’%))
— L(o)L(r) - L(UJ)_. :

This proves equation (22). For the proof of (23), recall that over an arbitrary finite
field F,, the period of a periodic sequence of field elements is equal to the order of
the sequence’s minimal polynomial (Theorem 8). Using Theorems 17, 9, and 14, we
get

per(or---v) = ord(Mmyr...,,)
=lem{ord(fiVg;V---Vhy):1<i<s, 1<j<t...,1<k<u}
= lem{ord(f;) ord(g;) ---ord(hy) : 1 <i<s, 1<j<t,...,1<k<u}
= lem{ord(f;) : 1 <i < s}lem{ord(g;) : 1 <j <t}---lem{ord(hg): 1 < k < u}
= ord(m, ) ord(m,) - - -ord(m,)
— per(o) per(r) - per(v)
=2°-1)(2"-1)--- (2" —-1).

To justify the fourth equality in the above argument we note that ord(f;) divides
2% —1, ord(g;) divides 27 —1, and ord(hs) divides 2V —1 forall 1 <i <s,1 < j <,
and 1 < k < u, and that the numbers 2° — 1, 27 — 1, ..., 2V — 1 are pairwise
relatively prime according to Lemma 2. O

Example 4. Consider the 4-stage NLFSR with feedback function F'(xzg, z1, 2, x3) =
To + 1 + x9 + 129, and the H-stage NLFSR defined by the feedback function
G(xg, 71, %2, 3, T4) = To + 1 + o3 + x123. Using any nonzero initial state vector
of F4, the first feedback shift register will produce a periodic binary sequence o of
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period per(c) = 15 and linear complexity L(o) = 14. For instance, if we use the
initial state vector (0,0,0, 1), we get

c=(000101101001111)
The minimal polynomial of ¢ is
my(z) =2 + 2P+ w+ 1= fi(x) fo(2) fa@) falw),

where fi(z) = 22 + 2+ 1, folz) = 2t + 22 + 22 + 2 + 1, f3(z) = 2* + 2 + 1,
fi = x* + 23+ 1. Similiarly, if we initialize the second shift register with the nonzero
vector (0,0,0,0,1), it generates the periodic sequence

7=(0000101011101001101100100011111)*

of period per(7) = 31 and linear complexity L(7) = 30. The corresponding minimal
polynomial is

me(z) =2 + 2% + -+ 2+ 1= g1(2)g2(2) g3(x) 94(x) g5 () g (),

where g1, ..., g¢ are the six irreducible (and primitive) polynomials in Fay[z] of degree
5. The product sequence o7 has period per(o7) = 15-31 = 465 and linear complexity
L(o7) = 14-30 = 420. The canonical factorization of the minimal polynomial of o
consists of 4 - 6 = 24 irreducible binary polynomials. Of these polynomials six have
degree 10 and order 93, six have degree 20 and order 155, and twelve have degree
20 and order 465.

The irreducible factors:

g1 92 93 94 9s 3

il hva [iVg AiVg f[iVva fiveg [iVge
2| oVar faVg f2Vgs faVagr [2Vgs faVge
fs | [a3Va f3Vga f3Vgs fsVar f3Vgs [f3Vge
Jo | JaVar fiVga faNVgs faVgs faVgs faVge

The degrees of the irreducible factors:

5 5 5 5 5 5
10 10 10 10 10 10
20 20 20 20 20 20
20 20 20 20 20 20
20 20 20 20 20 20

=~ ke R N

The orders of the irreducible factors:
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31 31 31 31 31 31
93 93 93 93 93 93
5 | 155 155 155 155 155 155
15 | 465 465 465 465 465 465
15| 465 465 465 465 465 465

Note that there are exactly ¢(93)/10 = 6 irreducible binary polynomials of
degree 10 and order 93, ¢(155)/20 = 6 irreducible binary polynomials of degree
20 and order 155, and ¢(465)/20 = 12 irreducible binary polynomials of degree 20
and order 465 (compare [20, Theorem 3.5]). All these polynomials appear in the
canonical factorization of m,,. This is a consequence of the fact that the sequences o
and 7 have maximum linear complexities L(o) = 2*—2 = 14 and L(7) = 2°—2 = 30,
respectively. O

9 Conclusion

We proposed a new additive stream cipher called ACHTERBAHN. The keystream
generator is based on eight binary primitive NLFSR’s that can produce sequences
of period 2V — 1, where N is the length of the shift register. The NLFSR’s are
endowed with configurable linear feedforward functions. The output sequences of
the feedforward functions are combined by a balanced 4th order correlation immune
Boolean function. The keystream generator is able to produce an ensemble of 264
translation distinct binary sequences. Each sequence has a period larger than 2207
and linear complexity larger than 2%. Due to fast hardware implementations of the
underlying feedback shift registers, the keystream generator permits a high-speed
implementation in which one byte of keystream is generated per clock cycle. The
eight bits generated in each clock cycle can be used to encrypt all eight lines of a
bus in real time.

It was this latter feature that gave the stream cipher its name. There is yet
another more subtle reason for choosing the name Achterbahn for the proposed
stream cipher. The reason has something to do with the with human psychology
and human physiology. If people ride a state of the art roller coaster—the american
expression for the german word Achterbahn—some become addicted to it while
others get sick. We hope that the same will happen to the cryptographer who
studies our stream cipher and to the cryptanalyst who aims to break it.
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