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Abstract

A sequence of new pseudorandom number generators are developed:
IA, IBAA, and ISAAC. No efficient method is known for deducing their
internal states. ISAAC requires an amortized 18.75 instructions to pro-
duce a 32-bit value. There are no cycles in ISAAC shorter than 240 values.
The expected cycle length is 28295 values. Tests show that scaled-down
versions of IBAA are unbiased for their entire cycle length. No proofs of
security are given.

1 Introduction

The purpose of this paper is to introduce the new random number generators IA,
IBAA, and ISAAC. IA (Indirection, Addition) is slightly biased but it appears to
be secure. It is immune to Gaussian elimination. IBAA (Indirection, Barrelshift,
Accumulate and Add) eliminates the bias in IA without damaging security.
ISAAC (Indirection, Shift, Accumulate, Add, and Count) is faster than IBAA,
guarantees no bad seeds or short cycles, and makes orderly states disorderly
faster.

IA was designed to satisfy these goals:

• Deducing the internal state from the results should be intractable.

• The code should be easy to memorize.

• It should be as fast as possible.

More requirements were added for IBAA:

• It should by cryptographically secure [1] [12].

• No biases should be detectable for the entire cycle length.

• Short cycles should be astronomically rare.

A generator was found that had the appropriate levels of bias. It used an ac-
cumulator and barrelshifts. IBAA was formed by combining it with IA without
introducing bias or reducing the security of IA. (Any unbreakable unbiased gen-
erator which has long cycles must be cryptographically secure.)

ISAAC took away the requirement of easy memorization but added more:

• The C code should be optimized for speed.

• Orderly states should become disorderly quickly.
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Figure 1: C code for IA

typedef unsigned int u4; /* unsigned four bytes, 32 bits */
#define ALPHA (8) /* log of number of terms in m */
#define SIZE (1<<ALPHA) /* 1 time 2 to the 8, 256 */
#define ind(x) (x&(SIZE-1)) /* low order 8 bits of x */

static void ia(m,r,bb)
u4 *m; /* Memory: array of SIZE ALPHA-bit terms */
u4 *r; /* Results: the sequence, same size as m */
u4 *bb; /* the previous result */
{
register u4 b,x,y,i;

b = *bb;
for (i=0; i<SIZE; ++i)
{
x = m[i];
m[i] = y = m[ind(x)] + b; /* set m */
r[i] = b = m[ind(y>>ALPHA)] + x; /* set r */

}
*bb = b;

}

• There should be no short cycles at all.

ISAAC is similar in form and function to the alleged RC4 [11], although
the generators were developed independently. ISAAC is three times faster, less
biased, and has longer minimum and average cycle lengths. ISAAC requires
an amortized 18.75 machine instructions to produce a 32-bit value. ISAAC
should be useful as a stream cipher, for simulations, and as a general purpose
pseudorandom number generator.

The sections of this paper describe IA, IBAA, test results for IBAA, and
ISAAC.

2 IA

The new generator IA was designed to be secure, fast and easy to memorize. C
code for IA is given in figure 1.

IA operates on a secret array m of 256 values. The values in m should contain
at least 2ALPHA bits. IA uses pseudorandom indirection to determine its results.
The results given by IA are the sum of values in m, not actual values in it. IA does
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not swap values in m, instead it walks through the array adding pseudorandomly
chosen terms to the old terms.

IA is reversible: every internal state has exactly one predecessor. The aver-
age cycle length of all elements in all reversible mappings of s states is about
s/2, while the average cycle length of all elements in all irreversible mappings
is about

√
s [5] [9]. In addition to having every internal state on some cycle,

reversible generators tend to have over half the states on the same cycle, giving
the sequences a very uniform distribution.

Notice that when x is added into r[i]=b, x is no longer in m. Therefore x
came from a different pool of values than the pseudorandom term that is added
in with it. If this were not the case, IA would not be reversible and the results
would be biased in favor of even values.

The two indirections bracket the user’s result. r[i] is the old value of m[i],
but with a pseudorandomly chosen value added. The new value of m[i] is the
user’s previous result, but with a different pseudorandomly chosen value added.
There is no equation which does not contain a new pseudorandomly chosen
value. If the pseudorandom values are treated as unknowns, this is enough to
thwart Gaussian elimination. Guessing what the choice was means guessing 8
bits of information per value.

There are windows into the internal state of IA. The relationship ind(m[i]) =
ind(r[i]-i) is 1/256 too probable, as is ind(m[i-SIZE]>>8) = ind((r[i]>>8)-i).
They happen when a pseudorandom indirection chooses itself. Each relationship
holds 1/128 of the time.

It is possible to avoid these windows by limiting each pseudorandom choice to
the half of the array which does not include the value used for the pseudorandom
choice (x or y). This would leave only 128 values for each pseudorandom choice,
giving 256 relationships that are correct 1/128 of the time (as opposed to the
two relationships we have now). The proposed modification also makes the code
slower, more complicated, and more biased, so it was not done.

Biases can be detected in IA using the correlated gap test. These biases are
similar in nature to those seen in lagged-Fibonacci and add-with-carry gener-
ators [7]. The biases are smaller than the previously noted windows into the
internal state.

No efficient attack is known against IA. The guess-and-generate attack,
which applies the equations of IA to an arbitrary initial guess but sets b to
the real results of IA, converges to the true state of IA after about 217 val-
ues when ALPHA = 3. The attack cannot be extended to ALPHA = 4, let alone
ALPHA = 8. Attacks on the alleged RC4 [11] usually can be applied to IA, and
vice versa.

Proving the security of IA would require showing that no algorithm could
efficiently deduce its internal state. No algorithm examined so far can deduce
its internal state, and Gaussian elimination is one of the algorithms that has
been examined. This is not a proof by any means, but it is a start.
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3 IBAA

IA was extended to IBAA. In addition to being fast, easy to memorize, and
immune to Gaussian elimination, IBAA was required to have no detectable bias
for the entire cycle length. Short cycles must be very rare. C code for IBAA is
given in figure 2. The next section gives the results of statistical tests on IBAA;
it does seem to be unbiased.

The lack of bias in IBAA comes from the accumulator a. The term added to
a is m[ind(i+(SIZE/2))]. Why were x or y not used instead, seeing how they
are already in registers? This decision was made based on a single series of tests.
(See the testing section for more detailed descriptions of the terms and methods
here.) The tests were on IBAA, except m[ind(x)] and m[ind(y>>ALPHA)] were
replaced with 0 and 0. The generator was scaled down to have 8 terms (not 256)
of 3 bits apiece (not 32). With a total of 30 bits of state, it had a maximum
cycle length of 230 calls. ind(i+(SIZE/2)) was replaced with ind(i+j), for
each j ∈ 0 . . . 7. Each of these eight generators produced a sequence of 227

calls, or 230 values. No cycles were detected. The low-order bit was removed
from each value, leaving sequences of 2-bit values. The gap test was applied
to each of these sequences, tracking gaps of length 0 . . . 63. The expected χ2

result was 63, but the actual results (ordered by j) were 684, 412, 208, 201,
212, 203, 682, and 13584. The difference from 63 is proportional to the amount
of bias detected. In all cases the first bad gap was of length 10. No other
tests detected significant amounts of bias, so the decision had to be based on
this alone. It appears that the bias decreases with the distance from either
endpoint, so m[ind(i+(SIZE/2))] was chosen.

barrel(a) is a permutation of a, and is nonlinear when combined with
addition. Permutations help assure that all values are equally likely. Nonlinear
systems are less prone than linear systems to mixing values then spontaneously
unmixing them after they have been churned for awhile. The security of IBAA,
however, does not depend upon this nonlinearity. The security depends upon
the indirections m[ind(x)] and m[ind(y>>ALPHA)].

If m[i], m[ind(x)] and m[ind(y>>ALPHA)] are treated as separate un-
knowns, then every set of equations has at least 4/3 as many unknowns as
equations. Let a set of 3n equations (n setting a, n setting m, and n setting r) be
given. It will produce at least 4n unknowns: n each of a, m[i], m[ind(x)], and
m[ind(y>>ALPHA)]. Eliminating any subset of these equations only increases
the ratio of unknowns to equations.

If an arbitrary reversible mapping has N possible values, then the chance of
an arbitrary starting point being on a cycle of length N/x or less is 1/x. The
number of internal states of IBAA is 28264, so the chances of arbitrarily choosing
a cycle shorter than 240 are about 2−8224. About 2140 protons could fit in the
known universe [10]. The state of all zeros forms a cycle of length 256 though;
after i passes through 0 . . . 255 the state maps back to all zeros.
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Figure 2: C code for IBAA

/*
* ^ means XOR, & means bitwise AND, a<<b means shift a by b.
* barrel(a) shifts a 19 bits to the left, and bits wrap around
* ind(x) is (x AND 255), or (x mod 256)
*/
typedef unsigned int u4; /* unsigned four bytes, 32 bits */
#define ALPHA (8)
#define SIZE (1<<ALPHA)
#define ind(x) ((x)&(SIZE-1))
#define barrel(a) (((a)<<19)^((a)>>13)) /* beta=32,shift=19 */

static void ibaa(m,r,aa,bb)
u4 *m; /* Memory: array of SIZE ALPHA-bit terms */
u4 *r; /* Results: the sequence, same size as m */
u4 *aa; /* Accumulator: a single value */
u4 *bb; /* the previous result */
{
register u4 a,b,x,y,i;

a = *aa; b = *bb;
for (i=0; i<SIZE; ++i)
{
x = m[i];
a = barrel(a) + m[ind(i+(SIZE/2))]; /* set a */
m[i] = y = m[ind(x)] + a + b; /* set m */
r[i] = b = m[ind(y>>ALPHA)] + x; /* set r */

}
*bb = b; *aa = a;

}
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4 Tests

Tests run against random number generators with 256-term internal states often
will not fail no matter how long they are run. The cycle lengths of such random
number generators are more than astronomical. In order for statistical tests
to be of use, generators need to be scaled down. The number of terms in
the array and the size of the terms must be reduced. This has a number of
advantages.

• Flaws are magnified because boundary cases occupy a larger percentage
of the total number of states.

• The tests run faster because the arrays are shorter.

• If the internal state is small enough, all internal states can be enumerated
and cycle lengths can be reached. There is clearly no point in running
tests longer than the cycle length.

The tests run were Knuth’s frequency, gap, and run tests [3]. The frequency
test counts how many times each value appears. The gap test measures the
gaps between occurances of values in the results. For example, the sequence
“abcdeaf” has a gap of 4 between occurances of “a”. The gap test measured
gaps up to four times the length of the internal array. The run test counts the
lengths of strictly increasing subsequences. The expected distribution of values
for a truly random sequence is known for each of these tests, and was compared
against the sample distributions using the standard χ2 formula [3].

Two types of values were used, “normal” and “correlated”. Random number
generators are designed to produce lots of random values. These are the “nor-
mal” values. “Correlated” values were derived from groups of normal values.
There is one correlated value per call to the generator; it has as many bits as
the normal values but is composed of the low-order bit of the first few normal
values. Correlated values could identify patterns that occurred between calls.

The initial seed in all cases was m[i]=i, a=1, b=1. Each generator was
warmed up by making ten calls before statistics were gathered. ALPHA (a) is
the log of the length of m, BETA (b) is the number of bits in each value, and
SHIFT (s) is the amount of the barrelshift (relevant only to IBAA). The normal
values are either the whole values in r or the low-order ALPHA bits of each r
value.

In the scaled-down versions of IBAA, SHIFT was chosen to be the integer
closest to the golden ratio (.618) times BETA [4]. These shift values seem to
work well. No reason is known for why they should work well. The scaled-down
versions still are not quite IBAA, because the values usually had fewer than
2ALPHA bits. Many bits of ind(y>>ALPHA) were always zero, so the pseudoran-
dom choices were very restricted.
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Figure 3: Test results for IBAA

IBAA correlated normal correlated normal normal number
frequency frequency gap gap run of calls

------ ---------- --------- ---------- --------- ------ --------
a1b1s1 1:0 1:0 7:4 7:13 1:2 5
a1b2s1 3:2 3:1 7:4 7:3 3:0 12
a1b3s2 3:0 3:0 7:5 7:11 3:7 3164
a1b4s2 3:3 3:6 7:6 7:3 3:0 10441
a1b5s3 3:0 3:0 7:14 7:5 3:6 235491
a1b6s4 3:5 3:7 7:5 7:2 3:3 1869951
a1b7s4 3:0 3:0 7:1 7:7 3:0 221862935
a2b2s1 3:0 3:1 15:7 15:11 3:1 1407
a2b3s2 7:6 7:7 15:21 15:8 7:3 29382
a2b4s2 15:9 15:11 15:16 15:7 7:9 6146999
a2b5s3 15:12 15:12 15:15 15:12 7:7 9507107
a3b3s2 7:3 7:0 31:44 31:49 7:5 886828921
a8b32s19 255:238 255:215 1023:949 1023:1016 7:5 2^26

A result 15:9 means expected 15, actually got 9. A test is said
to pass if the actual result differs from the expected result by
less than four times the square root of the expected result.

The normal gap test was questionable for IBAA a3b3s2.

The number of calls was the cycle length, except for a3b32s19.
The cycle length for IBAA a2b5s3 was unusually short.

Test results are given in figure 3. If a test would have taken more than a
day to run and tests on smaller generators had failed to detect any bias, then
the test was not run.

A common requirement of cryptographically secure random number genera-
tors is that all detectable biases b decrease exponentially with some polynomial
function f of the size s of the internal state: b < 2−f(s) [1] [12]. No significant
bias was detected in IBAA, so it might satisfy this requirement or it might not.

Tests suggest that all consecutive 256-value strings are equally likely results
from IBAA, 256 being the number of terms in r. No tests on samples of that
size or smaller ever failed, even for IA which has known biases. The gap and run
tests in particular only fail if they look at subsequences of more than 2ALPHA

values [3]. All 8192-bit strings are equally likely in m; there are 264 such states
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for every string (one for each possible value of a and b).
George Marsaglia’s DIEHARD test suite [8] was found shortly before this

paper went to print. Two samples each from full-scale IBAA and ISAAC were
tested. Although each sample had some test return questionable results, no
test had questionable results for both samples for either generator. Separate
experiments have seen IBAA develop small biases that fade away as sequences
grow longer. Bias peaked in subsequences with about 221 values. ISAAC does
not seem to have this problem with short term bias.

5 ISAAC

IBAA was extended to be leaner, meaner, and have no short cycles at all – at
the expense of being easy to memorize. The result is ISAAC, shown in figure 4.
If the initial internal state is all zero, after ten calls the values of aa, bb, and cc
in hexadecimal will be d4d3f473, 902c0691, and 0000000a.

rngstep() The macro rngstep() is essentially the inner loop of IBAA. Re-
peating it four times (unrolling the loop) reduced the loop overhead. This
does not affect the results.

*m++ Replacing m[i] with *m++, r[i] with *r++, and m[i(SIZE/2)] with
*m2++ reduced the cost of looking up terms in predictable array positions.
m is a pointer, * gets the term it points at, and ++ moves the pointer up
one to the next term. This does not affect the results.

a(̂mix) The barrelshifts of IBAA were replaced with a sequence of four func-
tions: a^(a<<13), a^(a>>6), a^(a<<2), and a^(a>>16). ^ means XOR
and << and >> are shifts. Each call to rngstep() does one of these
functions. When machines have no barrelshift instruction, this saves one
instruction per rngstep(). This sequence of functions also cause a to
achieve avalanche [6] in twelve rngstep()s. That causes orderly states to
become disorderly faster, reducing short term biases. It should be noted
that each of these functions is a permutation of a.

cc A counter was included which is used (and incremented) only once per call.
This was suggested by Bill Chambers [2]. cc and i together guarantee a
minimum cycle length of 240 values. No cycles are known which are that
short. No bad initial states exist, not even the state of all zeros. Tests
have shown that adding independent things to b does not greatly affect
the generator’s bias or security.

ind(x) The indirection bits used in ISAAC are 2 . . . 9 for x and 10 . . . 17 for y.
(IBAA used 0 . . . 7 and 8 . . . 15.) This shaved another instruction off each
indirect lookup. Scaled-down tests suggest that the choice of indirection
bits does not affect security or bias, providing no bit is used twice.
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Figure 4: C code for ISAAC

/* & is bitwise AND, ^ is bitwise XOR, a<<b shifts a by b */
/* ind(mm,x) is bits 2..9 of x, or (floor(x/4) mod 256)*4 */
/* in rngstep barrel(a) was replaced with a^(a<<13) or such */
typedef unsigned int u4; /* unsigned four bytes, 32 bits */
typedef unsigned char u1; /* unsigned one byte, 8 bits */
#define ind(mm,x) (*(u4 *)((u1 *)(mm) + ((x) & (255<<2))))
#define rngstep(mix,a,b,mm,m,m2,r,x) \
{ \
x = *m; \
a = (a^(mix)) + *(m2++); \
*(m++) = y = ind(mm,x) + a + b; \
*(r++) = b = ind(mm,y>>8) + x; \

}

static void isaac(mm,rr,aa,bb,cc)
u4 *mm; /* Memory: array of SIZE ALPHA-bit terms */
u4 *rr; /* Results: the sequence, same size as m */
u4 *aa; /* Accumulator: a single value */
u4 *bb; /* the previous result */
u4 *cc; /* Counter: one ALPHA-bit value */
{
register u4 a,b,x,y,*m,*m2,*r,*mend;
m=mm; r=rr;
a = *aa; b = *bb + (++*cc);
for (m = mm, mend = m2 = m+128; m<mend; )
{
rngstep( a<<13, a, b, mm, m, m2, r, x);
rngstep( a>>6 , a, b, mm, m, m2, r, x);
rngstep( a<<2 , a, b, mm, m, m2, r, x);
rngstep( a>>16, a, b, mm, m, m2, r, x);

}
for (m2 = mm; m2<mend; )
{
rngstep( a<<13, a, b, mm, m, m2, r, x);
rngstep( a>>6 , a, b, mm, m, m2, r, x);
rngstep( a<<2 , a, b, mm, m, m2, r, x);
rngstep( a>>16, a, b, mm, m, m2, r, x);

}
*bb = b; *aa = a;

}
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All told, ISAAC requires an amortized 18.75 instructions to produce each
32-bit value. (With the same optimizations, IA requires an amortized 12.56
instructions to produce each 32-bit value.) There are no cycles in ISAAC shorter
than 240 values. There are no bad initial states. The internal state has 8288 bits,
so the expected cycle length is 28287 calls (or 28295 32-bit values). Deducing the
internal state appears to be intractable, and the results of ISAAC are unbiased
and uniformly distributed.

6 Summary

A sequence of new pseudorandom number generators were developed: IA, IBAA,
and ISAAC. Their speed and lack of bias should make them useful for simula-
tions and cryptography. The reader is invited to prove their security (or lack
thereof).

Thanks go to Colin Plumb for rephrasing an early version of IBAA, and
Niels Jorgen Kruse who found a horrible flaw in a slightly later irreversible
version. Thanks go to Hal Finney, Paul Crowley, Peter Boucher, John Kelsey,
and the other readers of sci.crypt. Thanks go to Bill Chambers for reviewing
a preliminary draft and suggesting a way to guarantee cycle lengths. Thanks
go to Manuel Blum for introducing me to cryptography in the first place. All
mistakes are my own.
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