
FNV hash history
The basis of the FNV hash algorithm was taken from an idea sent as reviewer comments to the IEEE POSIX P1003.2 committee by Glenn
Fowler and Phong Vo. In a subsequent ballot round: Landon Curt Noll improved on their algorithm. Some people tried this hash and found that it
worked rather well. In an EMail message to Landon, they named it the ``Fowler/Noll/Vo'' or FNV hash.

FNV hashes are designed to be fast while maintaining a low collision rate. The FNV speed allows one to quickly hash lots of data while
maintaining a reasonable collision rate. The high dispersion of the FNV hashes makes them well suited for hashing nearly identical strings such
as URLs, hostnames, filenames, text, IP addresses, etc.

The FNV hash is in wide spread use:

calc
Domain Name Servers
mdbm key/value data lookup functions
Database indexing hashes
major web search / indexing engines
high performance EMail servers
Netnews history file Message-ID lookup functions
Anti-spam filters
NFS implementations (e.g., FreeBSD 4.3, IRIX, Linux)

FNV hash algorithms and source code have been released into the public domain.

If you use an FNV function in an application, tells us about it by sending EMail to:
fnv-mail@asthe.com

We will be happy to add your application to the list.

Comments are welcome.

The core of the FNV hash
The core of the FNV-1 hash algorithm is as follows:

hash = offset_basis
for each octet_of_data to be hashed

hash = hash * FNV_prime
hash = hash xor octet_of_data

return hash

The offset_basis and FNV_prime can be found in the parameters of the FNV-1 hash section below.

FNV-1a alternate algorithm

There is a minor variation of the FNV hash algorithm known as FNV-1a:

hash = offset_basis
for each octet_of_data to be hashed

hash = hash xor octet_of_data
hash = hash * FNV_prime

return hash

The only difference between the FNV-1a hash and the FNV-1 hash is the order of the xor and multiply. The FNV-1a hash uses the same
FNV_prime and offset_basis as the FNV-1 hash of the same n-bit size.

Some people use FNV-1a instead of FNV-1 because they see slightly better dispersion for tiny (<4 octets) chunks of memory.

Either FNV-1 or FNV-1a make a fine hash. (Try it with with just a dash of Sage and ground Cloves :-))

Parameters of the FNV-1 hash

hash is an n bit unsigned integer, where n is the bit length of hash.



The multiplication is performed modulo 2n where n is the bit length of hash.
The xor is performed on the low order octet (8 bits) of hash.
The FNV_prime is dependent on n, the size of the hash:

32 bit FNV_prime = 16777619
64 bit FNV_prime = 1099511628211
128 bit FNV_prime = 309485009821345068724781401
256 bit FNV_prime = 374144419156711147060143317175368453031918731002211

Part of the magic of FNV is the selection of the FNV_prime for a given sized unsigned integer. Some primes do hash better than
other primes for a given integer size. The theory behind which primes make goodFNV_prime's is beyond the scope of this web
page.

The offset_basis for FNV-1 is dependent on n, the size of the hash:

32 bit offset_basis = 2166136261
64 bit offset_basis = 14695981039346656037
128 bit offset_basis = 275519064689413815358837431229664493455
256 bit offset_basis =
100029257958052580907070968620625704837092796014241193945225284501741471925557

These non-zero integers are the FNV-0 hashes of the following 32 octets:

chongo <Landon Curt Noll> /\../\

The \'s in the above string are not C-style escape characters. In C-string notation, these 32 octets are:

"chongo <Landon Curt Noll> /\\../\\"

The following calc script was used to compute the offset_basis for FNV-1 hashes:

offset_basis = 0;
FNV_prime = insert_the_FNV_prime_here;
hash_bits = insert_the_hash_size_in_bits_here;
offset_str = "chongo <Landon Curt Noll> /\\../\\";
hash_mod = 2^hash_bits;

str_len = strlen(offset_str);
for (i=1; i <= str_len; ++i) {
 offset_basis = (offset_basis * FNV_prime) % hash_mod;
 offset_basis = xor(offset_basis, ord(substr(offset_str,i,1)));
}

print hash_bits, "bit offset_basis =", offset_basis;

NOTE: The above code fragment example is written in the calc language, not in C.

FNV-0 Historic note: The FNV-0 is the historic FNV algorithm that is now deprecated. It has an offset_basis of 0. Unless the
FNV-0 hash is required for historical purposes, the FNV-1 should be used in place of the FNV-0 hash. Use FNV-1 with its non-
zero offset_basis instead. The FNV-0 hashes all buffers that contain only 0 octets to a hash value of 0. The FNV-1 does not suffer
from this minor problem.

Changing the FNV hash size - xor-folding
If you need an x-bit hash where x is not a power of 2, then we recommend that you compute the FNV hash that is just larger than x-bits
and xor-fold the result down to x-bits. By xor-folding we mean shift the excess high order bits down and xor them with the lower x-bits.
For example to produce a 24 bit FNV-1 hash in C we xor-fold fold a 32 bit FNV-1 hash:

#define MASK_24 (((u_int32_t)1<<24)-1) /* i.e., (u_int32_t)0xffffff */
#define FNV1_32_INIT ((u_int32_t)2166136261)
u_int32_t hash;
void *data;
size_t data_len;

hash = fnv_32_buf(data, data_len, FNV1_32_INIT);
hash = (hash>>24) ^ (hash & MASK_24);

To produce a 16 bit FNV-1 hash in C we xor-fold fold a 32 bit FNV-1 hash:



#define MASK_16 (((u_int32_t)1<<16)-1) /* i.e., (u_int32_t)0xffff */
#define FNV1_32_INIT ((u_int32_t)2166136261)
u_int32_t hash;
void *data;
size_t data_len;

hash = fnv_32_buf(data, data_len, FNV1_32_INIT);
hash = (hash>>16) ^ (hash & MASK_16);

To produce a 56 bit FNV-1 hash in C (on a machine with 64 bit unsigned values) we xor-fold fold a 64 bit FNV-1 hash:

#define MASK_56 (((u_int64_t)1<<56)-1) /* i.e., (u_int64_t)0xffffffffffffff */
#define FNV1_64_INIT ((u_int64_t)14695981039346656037)
u_int64_t hash;
void *data;
size_t data_len;

hash = fnv_64_buf(data, data_len, FNV1_64_INIT);
hash = (hash>>56) ^ (hash & MASK_56);

If you really need an n-bit hash for n > 256 bits, send us EMail.

Changing the FNV hash size - non-powers of 2
The FNV hash is designed for hash sizes that are a power of 2. If you need a hash size that is not a power of two, then you have two
choices. One method id called the lazy mod mapping method and the other is called the retry method. Both involve mapping a range that
is a power of 2 onto an arbitrary range.

Lazy mod mapping method: The lazy mod mapping method uses a simple mod on an n-bit hash to yield an arbitrary range. To
produce a hash range between 0 and X use a n-bit FNV hash where n is smallest FNV hash that will produce values larger than X without
the need for xor-folding.

For example, to produce a value between 0 and 2142779559 using the lazy mod mapping method, we select a 32-bit FNV hash because:

232 > 2142779559

We compute the 32-bit FNV hash value and then perform a final mod:

#define TRUE_HASH_SIZE ((u_int32_t)2142779560) /* range top plus 1 */
#define FNV1_32_INIT ((u_int32_t)2166136261)
u_int32_t hash;
void *data;
size_t data_len;

hash = fnv_32_buf(data, data_len, FNV1_32_INIT);
hash %= TRUE_HASH_SIZE;

An advantage of the lazy mod mapping method is that it requires only 1 more operation: only an additional mod is performed at the end.
The disadvantage of the lazy mod mapping method is that there is a bias against the larger values.

To understand this bias consider the a need to produce a value between 0 and 999999. We will compute a 32-bit FNV hash value because:

232 > 999999

We compute the 32-bit FNV hash value using the and then perform the final mod:

#define TRUE_HASH_SIZE ((u_int32_t)1000000) /* range top plus 1 */
#define FNV1_32_INIT ((u_int32_t)2166136261)
u_int32_t hash;
void *data;
size_t data_len;

hash = fnv_32_buf(data, data_len, FNV1_32_INIT);
hash %= TRUE_HASH_SIZE;

The bias introduced by the final mod is slight. The values 0 through 967295 will be created by 4295 different 32-bit FNV hash values
whereas the values 967296 through 999999 will be created by only 4294 different 32-bit FNV hash values. In other words, the values 0
through 967295 will occur ~1.0002328 times as often as the values 967296 through 999999.



The bias can be larger when the range is nearly as large as the range of values produced by the FNV hash. Consider using the lazy mod
mapping method to produce values between 0 and 9999999999999999999. We use a 64-bit FNV hash because:

264 > 9999999999999999999

We compute the 64-bit FNV hash value using the and then perform the final mod:

#define TRUE_HASH_SIZE ((u_int64_t)10000000000000000000) /* range top plus 1 */
#define FNV1_64_INIT ((u_int64_t)14695981039346656037)
u_int64_t hash;
void *data;
size_t data_len;

hash = fnv_64_buf(data, data_len, FNV1_64_INIT);
hash %= TRUE_HASH_SIZE;

Here the bias introduced by the final mod is more noticeable. The values 0 through 9999999999999999999 will be created by 2 different
64-bit FNV hash values whereas the values 10000000000000000000 through 18446744073709551615 will be created by only 1 64-bit
FNV hash value.

NOTE: This bias issue may not be of concern to you, but we thought we should point out this issue just in case you care. Most of the time
applications and people need / should / will not care about this bias.

Retry method: The retry method also performs a final mod in order to produce a hash range between 0 and X. Unlike lazy mod mapping
method, the retry method avoids the bias by additional computation.

To produce a hash range between 0 and X use a n-bit FNV hash where n is smallest FNV hash that will produce values larger than X
without the need for xor-folding.

For example, to produce a value between 0 and 49999 using the retry method, we select a 32-bit FNV hash because:

232 > 49999

Before the final mod 50000 is performed, we check to see if the 32-bit FNV hash value is one of the upper biased values. If it is, we
perform additional loop cycles until is below the bias level. For example:

#define TRUE_HASH_SIZE ((u_int32_t)50000) /* range top plus 1 */
#define FNV_32_PRIME ((u_int32_t)16777619)
#define FNV1_32_INIT ((u_int32_t)2166136261)
#define MAX_32BIT ((u_int32_t)0xffffffff) /* largest 32 bit unsigned value */
#define RETRY_LEVEL ((MAX_32BIT / TRUE_HASH_SIZE) * TRUE_HASH_SIZE)
u_int32_t hash;
void *data;
size_t data_len;

hash = fnv_32_buf(data, data_len, FNV1_32_INIT);
while (hash >= RETRY_LEVEL) {

hash = (hash * FNV_32_PRIME) + FNV1_32_INIT;
}
hash %= TRUE_HASH_SIZE;

The disadvantage of the retry method is that it sometimes requires additional calculations. An advantage of the retry method it avoids
slightly biased values.

For another example, we will produce a value between 0 and 999999999999 using the retry method, we select a 64-bit FNV hash because:

264 > 999999999999

Before the final mod 1000000000000 is performed, we check to see if the 64-bit FNV hash value is one of the upper biased value. If it is,
we perform additional loop cycles until it is not.

#define TRUE_HASH_SIZE ((u_int64_t)1000000000000) /* range top plus 1 */
#define FNV_64_PRIME ((u_int64_t)1099511628211)
#define FNV1_64_INIT ((u_int64_t)14695981039346656037)
#define MAX_64BIT ((u_int64_t)0xffffffffffffffff) /* largest 64 bit unsigned value */
#define RETRY_LEVEL ((MAX_64BIT / TRUE_HASH_SIZE) * TRUE_HASH_SIZE)
u_int64_t hash;
void *data;
size_t data_len;

hash = fnv_64_buf(data, data_len, FNV1_64_INIT);



while (hash >= RETRY_LEVEL) {
hash = (hash * FNV_64_PRIME) + FNV1_64_INIT;

}
hash %= TRUE_HASH_SIZE;

To summarize: When dealing with an application that needs to generate a hash value over an arbitrary range, one can do one of the
following:

1. Change the application to use hash values that range between 0 and 2n-1. Use a n-bit FNV hash, xor-folding if needed.

Pro: Yields the best results in the shortest amount of CPU time.
Con: Requires source code change to force hash range to be a power of 2 in size.

2. Use the lazy mod mapping method if one does not care about the slight hash bias and does not want (or cannot change) the hash
range.

Pro: Yields the fastest results for a non-power of 2 range.
Con: Produces a slight bias against larger hash values. However if one does not care about the slight bias, then there is no
problem using this technique.

3. Use the retry method if one wants to avoid the hash bias and does not want / cannot change the hash range.

Pro: Produces non-biased values for a non-power of 2 range.
Con: Requires slightly more CPU time in some cases.

FNV source
In the C FNV source below, primes are provided for 32 bit and 64 bit unsigned integers. For compilers that do not implement the
unsigned long long type, code is provided to quickly simulate the 64 bit multiply by the particular FNV_prime.

fnv-4.1.tar.gz - (all the bits)

hash_32.c - (32 bit FNV-1 algorithm)
hash_64.c - (64 bit FNV-1 algorithm)
hash_32a.c - (32 bit FNV-1a algorithm)
hash_64a.c - (64 bit FNV-1a algorithm)
fnv.h - (FNV header file)

fnv32.c - (32 bit FNV-0 and FNV-1 hash tool/demo)
fnv64.c - (64 bit FNV-0 and FNV-1 hash tool/demo)
fnv32a.c - (32 bit FNV-1a hash tool/demo)
fnv64a.c - (64 bit FNV-1a hash tool/demo)

README - (brief comments about FNV-0 and FNV-1)
Makefile - (how to compile/install)
have_ulong64.c - (64 bit unsigned integer type detector)

gcc optimization
It has been reported by several people that under the gcc compiler with -O3 on many AMD & Intel CPUs, that replacing the FNV_prime
multiply with a expression of shifts and adds will improve the performance.

Limited testing on our part confirmed that one can gain a few % in speed on an 1.6GHz AMD Athlon using gcc version 3.2.2 with -O3
optimization.

For a 32 bit FNV-1, we used:

while (bp < be) {

 /* multiply by the 32 bit FNV magic prime mod 2^32 */
#if defined(NO_FNV_GCC_OPTIMIZATION)
 hval *= FNV_32_PRIME;
#else
 hval += (hval<<1) + (hval<<4) + (hval<<7) + (hval<<8) + (hval<<24);
#endif

 /* xor the bottom with the current octet */
 hval ^= (Fnv32_t)*bp++;
}

For a 32 bit FNV-1a, we used:



while (bp < be) {

 /* xor the bottom with the current octet */
 hval ^= (Fnv32_t)*bp++;

 /* multiply by the 32 bit FNV magic prime mod 2^32 */
#if defined(NO_FNV_GCC_OPTIMIZATION)
 hval *= FNV_32_PRIME;
#else
 hval += (hval<<1) + (hval<<4) + (hval<<7) + (hval<<8) + (hval<<24);
#endif
}

For a 64 bit FNV-1, we used:

while (bp < be) {

 /* multiply by the 64 bit FNV magic prime mod 2^64 */
#if defined(NO_FNV_GCC_OPTIMIZATION)
 hval *= FNV_64_PRIME;
#else
 hval += (hval << 1) + (hval << 4) + (hval << 5) +

 hval << 7) + (hval << 8) + (hval << 40);
#endif

 /* xor the bottom with the current octet */
 hval ^= (Fnv64_t)*bp++;
}

For a 64 bit FNV-1a, we used:

while (bp < be) {

 /* xor the bottom with the current octet */
 hval ^= (Fnv64_t)*bp++;

 /* multiply by the 64 bit FNV magic prime mod 2^64 */
#if defined(NO_FNV_GCC_OPTIMIZATION)
 hval *= FNV_64_PRIME;
#else
 hval += (hval << 1) + (hval << 4) + (hval << 5) +

 hval << 7) + (hval << 8) + (hval << 40);
#endif
}

Now serving

This site is proud to be WinTel free!

Landon Curt Noll
chongo <was here> /\oo/\


