
Decorrelated Fast Cipher:

an AES Candidate

Henri Gilbert2, Marc Girault2, Philippe Hoogvorst1, Fabrice
Noilhan1, Thomas Pornin1, Guillaume Poupard1, Jacques Stern1,

and Serge Vaudenay1

1 Ecole Normale Sup�erieure { CNRS
2 France Telecom

Contact e-mail: Serge.Vaudenay@ens.fr

Version: 1998, May 19th

Abstract. This report presents a response to the call for candidates
issued by the National Institute for Standards and Technologies (the Ad-
vanced Encryption Standard project). The proposed candidate | called
DFC as for \Decorrelated Fast Cipher" | is based on Vaudenay's decor-
relation technique. This provides provable security against several classes
of attacks which include the basic version of Biham and Shamir's Di�er-
ential Cryptanalysis as well as Matsui's Linear Cryptanalysis.

Since the beginning of commercial use of symmetric encryption
through block ciphers in the seventies, construction design used to
be heuristic-based and security was empiric: a given block cipher was
considered to be secure until some researcher published an attack on.

The Data Encryption Standard [1] initiated an important open
research area, and some important cryptanalysis methods emerged,
namely Biham and Shamir's di�erential cryptanalysis [7] and Mat-
sui's linear cryptanalysis [13], as well as further generalizations. Ny-
berg and Knudsen [16] showed how to build toy block ciphers which
provably resist di�erential cryptanalysis (and linear cryptanalysis as
well as has been shown afterward [4]). This paradigm has success-
fully been used by Matsui in the MISTY cipher [14, 15]. However
Nyberg and Knudsen's method does not provide much freedom for
the design, and actually, this paradigm leads to algebraic construc-
tions. This may open the way to other kind of weaknesses as shown
by Jakobsen and Knudsen [9] (although no weakness has been dis-
covered in MISTY so far).

Here, we propose a new design which combines heuristic construc-
tion with provable security against a wide class of attacks. Unlike the
Nyberg-Knudsen paradigm, our approach is combinatorial. It relies
on Vaudenay's paradigm [19{21]. This construction provides much
more freedom since it can be combined with heuristic designs.

In response to the call for candidate for the Advanced Encryption
Standard (AES) which has been issued by the National Institute of
Standards and Technology (NIST) we propose the hereafter de�ned
Decorrelated Fast Cipher (DFC). It is a block cipher which supports
message blocks of length 128 and key string of arbitrary length up
to 256. We provide the tests (Known Answer Tests and Monte-Carlo
Tests) as requested by NIST. We provide portable implementations
in ansi-C and JAVATM languages. We also provide an optimized C
program (which is a regular ansi-C with the nowadays usual long
long int type extension). All these support the Application Pro-
gram Interface (API) provided by the NIST. In addition we provide
implementations in assembly languages for PentiumTM, SPARCTM,
AXPTM and MotorolaTM 6805 (which is commonly used in smart
cards). We also provide some security analysis.

1 De�nition of DFC

1.1 Notations and Other Conventions

All objects are bit strings or integers. The notations used to manip-
ulate them are as follows.

d43x We represent bit strings in hexadecimal by packing
bits into nibbles. For instance, d43x denotes the bit
string 110101000011.

�s and jxj` To any bit string s = b1 : : : b` we associate an integer

�s = 2`�1b1 + : : :+ 2b`�1 + b` (1)

(the leftmost bit is thus the most signi�cant bit).
Integers are denoted in standard decimal notation.
The converse operation of representing an integer x
as an `-bit string is denoted jxj`. For instance, d43x =
3395 and j3395j12 = d43x.

2

sjs0 The concatenation of two strings s and s0 is denoted
sjs0.

truncn(s) We can truncate a bit string s = b1 : : : b` (of length
at least n) to its n leftmost bits truncn(s) = b1 : : : bn.

s� s0, s ^ s0 The bitwise exclusive or of two bitstrings of equal
length s and s0 is denoted s � s0. Their bitwise and
is denoted s ^ s0.

:s The bitwise negation of one bitstring s is denoted
:s.

+;�;mod The arithmetical operations +, �, mod are the nat-
ural operations over the integers.

1.2 High Level Overview

The encryption function DFCK operates on 128-bit message blocks
by means of a secret key K of arbitrary length, up to 256 bits. The
corresponding decryption function is DFC�1K and operates on 128-
bit message blocks. Encryption of arbitrary-length messages is per-
formed through standard modes of operation which are independent
of the DFC design (see [2]).

The secret key K is �rst turned into a 1024-bit \Expanded Key"
EK through an \Expanding Function" EF, i.e. EK = EF(K). As
explained in Section 1.5, the EF function performs a 4-round Feistel
scheme (see Feistel [8]). The encryption itself performs a similar 8-
round Feistel scheme. Each round uses the \Round Function" RF.
This function maps a 64-bit string onto a 64-bit string by using one
128-bit string parameters. It is de�ned in Section 1.3.

Given a 128-bit plaintext block PT, we split it into two 64-bit
halves R0 and R1 so that PT = R0jR1. Given the 1024-bit expanded
key EK, we split it into eight 128-bit strings

EK = RK1jRK2j : : : jRK8 (2)

where RKi is the ith \Round Key".
We build a sequence R0; : : : ; R9 by the Equation

Ri+1 = RFRKi
(Ri)� Ri�1: (i = 1; : : : ; 8) (3)

We then set CT = DFCK(PT) = R9jR8 (see Fig. 1).

3

More generally, given a bitstring s of length multiple of 128, say
128r, we can split it split into r 128-bit strings

s = p1jp2j : : : jpr:

From s we de�ne a permutation Encs on the set of 128-bit strings
which comes from an r-round Feistel scheme. For any 128-bit string
m which is split into two 64-bit halves x0 and x1 so that m = x0jx1.
We build a sequence x0; : : : ; xr+1 by the Equation

xi+1 = RFpi(xi)� xi�1 (i = 1; : : : ; r) (4)

and we de�ne Encs(m) = xr+1jxr. The DFCK encryption function is
thus obtained as

DFCK = EncEF(K) (5)

(hence an 8-round Feistel Cipher). The EF function uses a 4-round
version de�ned with Enc.

Obviously, we have DFC�1K = EncrevEK where

revEK = RK8jRK7j : : : jRK1: (6)

1.3 The RF Function

The RF function (as for \Round Function") is fed with one 128-bit
parameter, or equivalently two 64-bit parameters: an \a-parameter"
and a \b-parameter". It processes a 64-bit input x and outputs a
64-bit string. We de�ne

RFajb(x) = CP
�������a� �x +�b

�
mod (264 + 13)

�
mod 264

���
64

�
(7)

where CP is a permutation over the set of all 64-bit strings (which
appears in Section 1.4).

1.4 The CP Permutation

The CP permutation (as for \Confusion Permutation") uses a look-
up table RT (as for \Round Table") which takes a 6-bit integer as
input and provides a 32-bit string output.

4

R0 R1

R9 R8

RF� r

??
��

RF� r

??
��

RF� r

??
��

RF� r

??
��

RF� r

??
��

RF� r

??
��

RF� r

??
��

RF� r

??
��

hhhhhh
((((((

hhhhhh
((((((

hhhhhh
((((((

hhhhhh
((((((

hhhhhh
((((((

hhhhhh
((((((

hhhhhh
((((((

RK1

RK2

RK3

RK4

RK5

RK6

RK7

RK8

??

Fig. 1. An 8-Round Feistel Cipher.

5

Let y = yljyr be the input of CP where yl and yr are two 32-bit
strings. We de�ne

CP(y) =
����(yr � RT(trunc6(yl)))j(yl �KC) + KD mod 264

����
64

(8)

where KC is a 32-bit constant string, and KD is a 64-bit constant
string. Permutation CP is depicted on Fig. 2.

?

+ � KD

? ?

� �� KC
?

RT � trunc6

?

yl

PPPPPP

?

yr

�
�
�
�
�
��

Fig. 2. The CP Permutation.

The constants RT(0); : : : ;RT(63), KC and KD will be set in Sec-
tion 1.6.

1.5 Key Scheduling Algorithm

In order to generate a sequence RK1;RK2; : : : ;RK8 from a given
key K represented as a bit string of length at most 256, we use the
following algorithm. We �rst pad K with a constant pattern KS in
order to make a 256-bit \Padded Key" string by

PK = trunc256(KjKS): (9)

If K is of length 128, we can observe that only the �rst 128 bits of
KS are used. We de�ne KS of length 256 in order to allow any key
size from 0 to 256.

6

Then we cut PK into eight 32-bit strings PK1; : : : ;PK8 such that
PK = PK1j : : : jPK8. We de�ne

OAP1 = PK1jPK8 (10)

OBP1 = PK5jPK4 (11)

EAP1 = PK2jPK7 (12)

EBP1 = PK6jPK3: (13)

We also de�ne

OAPi = OAP1 � KAi (14)

OBPi = OBP1 � KBi (15)

EAPi = EAP1 �KAi (16)

EBPi = EBP1 � KBi (17)

for i = 2; 3; 4 (where KAi and KBi are �xed constants de�ned in Sec-
tion 1.6). The names of the variables come from \Odd a-Parameter",
\Odd b-Parameter", \Even a-Parameter", and \Even b-Parameter"
respectively, which will become clearer below.

We de�ne

EF1(K) = OAP1jOBP1j : : : jOAP4jOBP4: (18)

It de�nes a four-round permutation which is EncEF1(K). Similarly,

EF2(K) = EAP1jEBP1j : : : jEAP4jEBP4 (19)

de�nes a four-round encryption function EncEF2(K).
The EncEF1(K) and EncEF2(K) enables to de�ne the RK sequence.

Namely, we let RK0 = j0j128 and

RKi =

(
EncEF1(K)(RKi�1) if i is odd
EncEF2(K)(RKi�1) if i is even:

(20)

More precisely, we let

RKi�1 = RVi;0jRVi;1 (21)

and we de�ne

RVi;j+1 =

(
RFOAPj jOBPj (RVi;j)� RVi;j�1 if i is odd
RFEAPj jEBPj (RVi;j)� RVi;j�1 if i is even

(22)

7

so that

RKi = RVi;5jRVi;4: (23)

Finally we have

EF(K) = RK1jRK2j : : : jRK8: (24)

Practically, we

1. compute OAPi;OBPi;EAPi;EBPi from Equations (10){(17);
2. set RK0 = RV1;0jRV1;1 = j0j128;
3. compute the RV1;j values from Equation (22);
4. set RK1 = RV1;5jRV1;4 = RV2;0jRV2;1;
5. compute the RV2;j values from Equation (22);
6. : : :
7. set RK8 = RV8;5jRV8;4.

1.6 On De�ning the Constants

The previously de�ned algorithm depends on several constants:

{ 64 constants RT(j0j6); : : : ;RT(j63j6) of 32 bits,
{ one 64-bit constant KD,
{ one 32-bit constant KC,
{ three 64-bit constants KA2;KA3;KA4,
{ three 64-bit constants KB2;KB3;KB4,
{ one 256-bit constant KS.

Security arguments require that these constants ful�ll the following
criteria.

1. No collision occurs on table RT, i.e. we have RT(s) = RT(s0) for
no s 6= s0.

2. KD is odd.

In order to convince that this design hides no trap-door, we
choose the constants from the hexadecimal expansion of the mathe-
matical e constant

e =
1X
n=0

1

n!
= 2:b7e151628aed2a6abf7158x : : : (25)

8

If EES is the \e Expansion String" of the �rst 2144 bits of this
expansion (after the decimal point), we de�ne

EES = RT(0)jRT(1)j : : : jRT(63)jKCjKD: (26)

In addition we de�ne

trunc640(EES) = KA2jKA3jKA4jKB2jKB3jKB4jKS: (27)

Thus the table RT is given in rows by

b7e15162x 8aed2a6ax bf715880x 9cf4f3c7x
62e7160fx 38b4da56x a784d904x 5190cfefx
324e7738x 926cfbe5x f4bf8d8dx 8c31d763x
da06c80ax bb1185ebx 4f7c7b57x 57f59584x
90cfd47dx 7c19bb42x 158d9554x f7b46bcex
d55c4d79x fd5f24d6x 613c31c3x 839a2ddfx
8a9a276bx cfbfa1c8x 77c56284x dab79cd4x
c2b3293dx 20e9e5eax f02ac60ax cc93ed87x
4422a52ex cb238feex e5ab6addx 835fd1a0x
753d0a8fx 78e537d2x b95bb79dx 8dcaec64x
2c1e9f23x b829b5c2x 780bf387x 37df8bb3x
00d01334x a0d0bd86x 45cbfa73x a6160ffex
393c48cbx bbca060fx 0ff8ec6dx 31beb5ccx
eed7f2f0x bb088017x 163bc60dx f45a0ecbx
1bcd289bx 06cbbfeax 21ad08e1x 847f3f73x
78d56cedx 94640d6ex f0d3d37bx e67008e1x

and we also have

KD = 86d1bf275b9b241dx

KC = eb64749ax

KA2 = b7e151628aed2a6ax

KA3 = bf7158809cf4f3c7x

KA4 = 62e7160f38b4da56x

KB2 = a784d9045190cfefx

KB3 = 324e7738926cfbe5x

KB4 = f4bf8d8d8c31d763x

KS = da06c80abb1185eb4f7c7b5757f59584xj

90cfd47d7c19bb42158d9554f7b46bcex:

9

We further check that the previous criteria are satis�ed.

2 Tests

In addition to the Known Answer Tests (KAT) requested by the
NIST, we have included another KAT for the generation of internal
key scheduling algorithm. The additional �elds of the new KAT are
as follows.
PK: padded 256-bit key PK, Equation (9)

OAP: �rst odd a-parameter OAP1, Equation (10)
OBP: �rst odd b-parameter OBP1, Equation (11)
EAP: �rst even a-parameter EAP1, Equation (12)
EBP: �rst even b-parameter EBP1, Equation (13)
RVij: round value RVi;j, Equation (22)
RKi: round key RKi, Equation (23)
PT: plaintext PT
Ri: round value Ri, Equation (3)
CT: ciphertext CT

Due to the similarity between the encryption and the decryption, we
do not include such a \variable ciphertext KAT".

3 Implementation

3.1 Multiprecision Arithmetic

The internal operations deal with 64- and 128-bit numbers. Few mi-
croprocessors can compute directly with such quantities. Generally
we shall have to implement multiprecision arithmetic. Such opera-
tion is usually best implemented using assembly code. DFC is not
an exception: we will see that the performance of the ANSI-C imple-
mentation is much lower than the performance of the assembly-code
implementations.

The key operations are an a�ne mapping x 7! P = ax+ b where
a, b and x are 64-bit operands and P a 128-bit quantity, followed by
two reductions modulo 264 + 13, and modulo 264 respectively.

The implementation of the multiprecision multiplication follows
a classical scheme, without any optimizations, such as Karatsuba's,
which would not be worthwhile for so small operands.

10

The modular reduction must not use division, which is too slow.
Instead, we use the following method. First we write

P = Q264 +R (28)

where R is the remainder of the Euclidean division of P by 264. (No
computation is required for this.) Then we rewrite (28) as:

P = Q(264 + 13) +R� 13Q (29)

As we want to reduce modulo 264 + 13, the quantity Q(264 + 13)
disappears. However, this is not yet perfect as we have to deal with
two cases: R� 13Q > 0 and R� 13Q < 0. To avoid this, we rewrite
(29) as:

P = (264 + 13)(Q� 13) + (13(264 � 1�Q) + 182 +R) (30)

In (30), the quantity 264 � 1 � Q is the bitwise complement of Q.
The modular reduction thus consists of the evaluation of:

P 0 = 13(264 � 1�Q) + 182 +R (31)

modulo 264+13. The result is always positive and, most of the time,
greater than 264 + 13. We thus perform a second reduction, using
Formula (29). Let us write it

P 0 = Q0264 +R0:

As we now have Q0 � 13, we can store the values of

13(264 � 1�Q0) + 182 mod (264 + 13)

in a table. Further optimizations are dedicated to the architecture.
The computation of the CP function is straightforward and re-

quires no particular comment.

3.2 Application Program Interface

Five versions of the cipher have been implemented using the standard
C Application Program Interface (API) provided by the NIST.

11

The ANSI-C, extended-C, AXPTM, SPARCTM and i386 assembly
coded implementations can be used through the API. The API uses
conditional de�nes in order to know which version to call.

Although it is possible to use the API to test these implemen-
tations (see for instance the dfc_*_test programs), benchmarking
should not be used with this API since there are many costly conver-
sions between native objects of the implementation and BYTE objects
of the API. Hence, programs dfc_*_bench are provided in order to
allow direct calls to the functions of the implementations. The per-
formance tests have been made using this program together with
the time program of UNIXTM to encrypt 1048576 times a plaintext.
We recall that the block-size is 128 bits, and the benchmarks do not
depend on the length of the key.

3.3 ANSI-C Implementation

In ANSI-C, the largest guaranteed integer type is the unsigned long

int, which may contain 32-bits values. We therefore use only 16 �
16! 32 multiplications. We represent big integers with arrays of 16-
bits integers stored in unsigned long int. The code itself is heavily
commented about these details.

This implementation should compile with any ANSI-C compiler,
even on exotic architectures where signed integers are not stored in
the two's complement binary representation. It has been tested on
various UNIXTM platforms, using whatever ANSI-C compiler avail-
able. It also works on Windows NTTM using Visual C++TM 4.0.

The ANSI-C implementation has been optimized for speed, with-
out sacri�cing code readability, so it may be used in production
environment. We outline that this implementation corresponds to
both the \Reference Implementation" and the \Mathematically Op-
timized C Implementation" required by NIST for the AES process.

3.4 Extended C Implementation

We provide an additional C implementation which is \almost" an
ANSI-C implementation in the sense that it uses the extension of a
64-bits integer type, which is fairly common among recent C com-
pilers and will become a standard soon. There are two versions of

12

the main calculation (the multiplication and modular reduction):
the �rst one is optimized for native 64-bits architectures (such as
the AXPTM), whereas the second one includes some explicit casts
to help the compiler bypass useless operations on architectures that
may e�ciently perform 32�32! 64 multiplications. On RISC archi-
tectures, this implementation is quite e�cient (hand-coded assembly
is only 30 or 40% faster).

3.5 JAVATM Implementation

Implementation of DFC in JAVATM uses the new BigInteger library
from the JAVATM Development Kit (JDK) v 1.1 speci�cations. Since
JAVATM does not have any unsigned integer type, the largest un-
signed available integers have only 63 bits. Thus, without using the
library, 64-bit multiplications would entail many steps and modu-
lar reductions would also be hard. The new BigInteger library can
do multiplications, additions and modular reductions of integers of
arbitrary length; this library allows us to do 64 bits multiplications
faster.

DFC is really easy to implement in JAVATM. The whole job is
made using BigIntegers. Since conversions between BigIntegers and
arrays of bytes are quite expensive, it is not worth trying to do
simpler operations (for example XOR) on arrays of bytes.

Speed of encryption does pay its tribute to the BigInteger library.
Even though these operations on BigIntegers take much time, it is
still worth using them. Next JAVATM Virtual Machines and JAVATM

processors should have a signi�cant speedup on those new operations
so that encryption may be faster in the future. At the moment,
one can achieve a disappointing 4KB/s on a UltrasparcTM 166MHz
running the JDK v 1.2 beta2. This is the consequence of the 64
bit unsigned integer design of DFC, which does not �t JAVATM

speci�cations on integers.

3.6 Assembly Code Implementations

PentiumTM. The di�cult points of this implementation are:

{ the small number of registers,

13

{ the ability of the CPU to execute two instructions together, if
some conditions are met.

{ the cost of mispredicted branches.

The lack of registers is a problem that cannot be solved: we have
to cope with it. Our implementation computes the round function
entirely in the CPU's registers. Only the constants are kept in mem-
ory. This makes it interesting to bu�er as many plaintexts as possible
before calling the encryption function: if su�ciently many encryp-
tions are done in a row, the code will be in the program cache and
the constants will all be in the data cache, thus speeding up the
encryption process by a factor greater than 20.

The PentiumTM features two execution units: the \U" pipe and
the \V" pipe. Only simple instructions can be executed in the \V"
pipe. The V-pipe instruction must also not use the result of the
U-pipe instruction. The condition for \pairing" instructions are de-
tailed in the IntelTM documentation. Our implementation of DFC
contains very few \pairing stalls".

The PentiumTM has prediction rules for branches. It allows it to
pre-decode the instructions. Its prediction rules are relatively e�-
cient but, in case of misprediction, the penalty can be high in terms
of wasted cycles. In our implementation, we have solved this problem
by eliminating all conditional branches.

SPARCTM. The implementation on SPARCTM is easier due to the
large number of 32-bit registers: we can freely use 24 of them. It is
interesting to keep the scalar constants (KC, KD and the address of
RT) in registers. This also implies that an optimal performance is
obtained by bu�ering the data to be processed.

AXPTM. The AXPTM architecture has unique properties that make
implementation of DFC especially e�cient. First of all, it is a native
64 bits processor, and the 64 � 64 ! 128 multiplication may be
implemented as two successive opcodes, each one yielding 64 bits of
the result.

The modular reduction uses Equation (30).
There are three generations in the AXPTM family. The �rst one

is the 21064, that runs up to 300MHz and initiates 2 instructions per
cycle, as long as there is no con
ict in registers or memory usage.

14

A 64 � 64 ! 64 multiplication locks the multiplier for 21 cycles,
and the result may be used after 23 cycles. Two such multiplications
are needed at the beginning of each round of DFC, but we do not
implement the multiplication by 13 with the internal multiplier: it
is time-e�ective to perform it \by hand" with shifts and adds, as
this may be done in parallel to the calculus of R (the low 64 bits
of the 128 bits �rst result). A 21064 at 266MHz may encipher 4:7
megabytes per second (not counting the key scheduling).

The second AXPTM generation is the 21164. It may be clocked
up to 600MHz, initiates 4 instructions per cycle, and locks the mul-
tiplier only 8 cycles (the result is available after 12 cycles). The tests
yield a performance of about 18:8 megabytes per second. There are
some resource con
icts, so this �gure could be raised with an imple-
mentation performing two ciphers in parallel (slightly out of phase,
in order to avoid multiplier usage con
ict). There are 31 integer reg-
isters, so there is no register shortage problem.

The third generation is the new 21264, that should become avail-
able in its 600MHz version soon; a 750MHz model is announced
for September 1998. It may initiate 8 instructions per cycle, and
will reorder automatically the instructions. This should ease imple-
mentations. The trick of performing two di�erent but interleaved
encryptions will become almost mandatory to achieve ultimate per-
formance. 30 megabytes per second is a reasonable expected perfor-
mance.

As far as DFC is concerned, there is no cache size or memory
speed issue, as the constants are in a small enough number to �t in
the internal high-speed cache memory (8 KB data, 8 KB code).

Performances. We compared the performance of DFC on three archi-
tectures: PentiumTM, SPARCTM and AXPTM stations. The results
are summarized in the Tables 3 to 7.

3.7 Implementation on Smart Cards

We have implemented DFC on a cheap smart card based on a 8-bit
processor MotorolaTM 6805 which can perform byte multiplications.
Two versions are proposed:

{ the �rst one performs the key scheduling just once and stores EK
1024-bit string in RAM. It needs about 200 bytes of memory.

15

{ the second one needs less than 100 bytes of RAM but is much
slower because it computes the extended key during encryption of
each block. Anyway, it may be interesting for some applications
to reduce the size of the RAM and accordingly the cost of the
smart cards used.

The amount of ROM needed to store the program and constant
data is less than two kilo-bytes. The time needed to encrypt a 128-
bit block is about 35000 cycles (resp. 200000 cycles for the second
version). With a clock frequency of 3:57MHz, our implementation is
able to encrypt 1632 bytes per second (resp. 285 bytes per second).
This is much faster than what can be obtained with commercial
implementations of 3DES on the same platform.

3.8 Time E�ciencies

Tables 1 and 2 summarize the time e�ciencies (in cycles) of the
various implementations. All are for a message block length of 128
and do not depend on the key length (i.e. 128- 192- and 256-bit
key produce the same results). For this we just used the values in
Tables 3 to 7 (provided at the end of this report) as frq=enctime,
and multiply by four for the key setup or key change. The two 6805
implementations are the 200B RAM and 100B RAM versions. The
latter computes the subkeys for each encryption (due to the lack of
memory space).

Algorithm setup is free. Decryption is as long as encryption. Key
setup and key change do not di�er. We did not include the e�ciency
of the JAVATM implementation, because the number of clock cycles
does not make so much sense.

Version AXPTM PentiumTM Pro SPARCTM 6805 200B 6805 100B

ansi-C 2562 2592 5380

Extended C 708 2432 1115

Assembly code 558 754 802 35000 200000

Table 1. Time E�ciencies of One Block Encryption.

16

Version AXPTM PentiumTM Pro SPARCTM 6805 200B 6805 100B

ansi-C 12810 12960 26900

Extended C 3540 12160 5575

Assembly code 2790 3770 4010 140000 1000

Table 2. Time E�ciencies of One Key Setup or Key Change.

seconds Kbits/s cycles/block

ansi-C 4.27 30696 2562
Extended C 1.18 111077 708
Assembly code 0.93 140937 558

Table 3. Encryption of 1048576 blocks on an Alpha 21164 600 MHz 128 MB RAM
with OSF1 V4.0 878. Compiled with DECTM cc 5.6-071.

4 Extension and Uses

4.1 Di�erent Modes

The DFC algorithm is presented as a 128-bit message block cipher.
It can be extended by standard ways in order to encrypt a message
of arbitrary length, for instance, with the CBC mode [2].

4.2 Encryption with 64-Bit Blocks

Some applications do not need 128-bit message blocks, and 64-bit
ones are enough. We can adapt the DFC algorithm in a straightfor-
ward way.

We use a 8-round Feistel cipher with a new RF0 function which
acts on 32-bit strings with a 64-bit string parameter ajb. We let

RF0ajb(x) = CP0
�������a� �x +�b

�
mod (232 + 15)

�
mod 232

���
32

�

where CP0 is a new function. For a 32-bit value y = yljyr where yl is
of length six and yr is of length 26, we de�ne

CP0(y) =
���(yr � trunc26(RT(yl)))jyl +KD0 mod 232

���
32

where KD0 is the 32-bit string of the 32 last bits of KD (so that KD0

is still odd for sure).
The key scheduling algorithm is as described in Section 1.5 but

for the changes as follows.

17

seconds Kbits/s cycles/block

ansi-C 12.96 10113 2592
Extended C 12.16 10779 2432
Assembly code 3.77 34767 754

Table 4. Encryption of 1048576 blocks on a PentiumTM Pro 200 MHz 128 MB RAM
with Linux 2.1.95. Compiled with gcc 2.7.2.1.

seconds Kbits/s cycles/block

ansi-C 63.90 2051 5751
Extended C 33.43 3920 3008
Assembly code 11.78 11126 1060

Table 5. Encryption of 1048576 blocks on a PentiumTM 90 MHz 16 MB RAM with
Linux 2.0.30. Compiled with gcc 2.7.2.2.

{ PK = trunc128(KjKS);
{ the PKis are 16-bit strings;
{ the OAPi, OBPi, EAPi, EBPi, and RVi;js are 32-bit strings;
{ the KAi and KBis are truncated on their �rst 32 bits;
{ the RKis are 64-bit strings;
{ RF0 is used instead of RF.

We observe that the resulting algorithm (which we call DFC64)
accepts any key with length up to 128 (all bits after the 128th are
ignored). Implementation results shall be roughly four times as fast
as the original DFC algorithm.

4.3 Stream Cipher and Pseudorandom Generator

Stream ciphers are traditionally the one-time pad algorithm in which
the key stream is spanned by a pseudorandom generator. The US
Standard [2] tells how to transform a block cipher into such stream
cipher with the OFB mode.

For this we �rst have to choose a parameter 1 � t � 128 and
an initial 128-bit value IV. The pseudorandom generator is a �nite
automaton which is de�ned by the key K in a state ST which is
initialized to ST = IV. Each iteration outputs trunct(DFCK(ST))
and replace ST by the last 128 � t bits of ST concatenated to the
output. The output can be XOR-ed to a t-bit plaintext block. We

18

seconds Kbits/s cycles/block

ansi-C 31.65 4141 5380
Extended C 6.56 19980 1115
Assembly code 4.72 27769 802

Table 6. Encryption of 1048576 blocks on a SPARCTM 170 MHz 64 MB RAM with
SunOSTM 5.5. Compiled with Workshop CompilersTM 4.2.

seconds Kbits/s cycles/block

ansi-C 18.00 7281 3600

Table 7. Encryption of 1048576 blocks on a PentiumTM Pro 200 MHz 160 MB RAM
with Windows NTTM 3.51. Compiled with Visual C++TM 4.0.

recommend to use t � 64 in both the stream cipher mode and the
pseudorandom generator mode.

4.4 Hashing

We believe that the DFC algorithm can be adapted into a hash
function and a Message Authentication Code (MAC) algorithm by
standard methods. Those approach have been discussed by various
authors, e.g. Knudsen and Preneel [11].

A traditional way is the so called Davies{Meyer scheme which has
been speci�ed in the ISO/IEC norm [3] with the Merkle-Damg�ard
strengthening. A message to be hashed is �rst padded with su�-
ciently enough 0 bits, one 1 bit and the original length coded in
binary so that the total length is a multiple of 256. The padded mes-
sage is then cut into 256-bit pieces M1; : : : ;Mn. We de�ne a 128-bit
initial value H0 = IV. Then we iteratively de�ne

Hi = DFCMi
(Hi�1)�Hi�1:

The hashed value is Hn.

For a MAC, we can propose that we simply take the (eventually
truncated) last block of the CBC mode encryption of the message
(see Bellare-Kilian-Rogaway [5]). We can alternatively use any stan-
dard method.

19

4.5 Possible Platforms

We have shown that the DFC algorithm can be e�ciently imple-
mented on popular 32- and 64-bit microprocessor-based platforms,
as well as cheap smart cards. Hardware-based implementations re-
quire to implement the multiplication which may be painful for the
designer, but e�ciently possible. Although we did not investigate all
possible applications, we believe that there is no restriction on the
implementability of DFC.

5 Security Analysis, Tentative Attacks

5.1 Security Results

The design construction is based on decorrelation techniques devel-
oped by Vaudenay [19{21] (see Appendix). From the results recalled
in Appendix C, we know that if ajb is a uniformly distributed 128-bit
string we have

jj[RFajb]
2 � [R]2jj � 0;813:2�58 (32)

(see Appendix A for de�nitions of the notations) where R is a truly
random 64-bit to 64-bit function. Thus a three-round Feistel ci-
pher which uses RF has a pairwise decorrelation distance less than
0;641:2�56 to the Perfect Cipher, and a six-round Feistel cipher which
uses RF has a pairwise decorrelation distance less than 0;821:2�113

to the Perfect Cipher.
From the results in Appendix B we thus know that a di�erential

distinguisher requires more than 2107 chosen plaintexts pairs in or-
der to achieve an advantage of 1%. Similarly, a linear distinguisher
requires more than 281 known plaintexts in order to achieve an ad-
vantage of 1%. These are attacks against a six-round encryption
function. Attacks against eight rounds need even greater complexi-
ties.

Another (weaker but more general) result proves that any known
plaintext attack with order 1 needs more than 243 known plaintexts
in order to achieve an advantage of 1% against the six-round cipher.
This suggests that the key should not be used more than 243 times
i.e. that we should not encrypt 128TB with the same key. We believe
that this restricts no practical application.

20

The key-scheduling algorithm breaks the uniformity of the ex-
panded key sequence. The results above only hold for uniformly dis-
tributed expanded keys. The key scheduling algorithm makes only
four calls to each of the tiny ciphers EncEF1(K) and EncEF2(K). We
can thus prove that the previous security results are still valid by
making assumptions like

\we cannot built any distinguisher between EncEF1(K) (resp.
EncEF2(K)) and a truly random permutation which is limited
to four calls and which achieves an advantage greater than
1% with a limited budget of US$1; 000; 000; 000."

A more precise treatment on this problem is stated in Appendix D.

5.2 Exhaustive Search

Assuming that the best implementation achieves a 30MBps encryp-
tion rate, we can estimate the real cost of exhaustive search. Secret
key trials require to optimize the key scheduling algorithm. Its cost
is roughly four times the cost of one encryption. Hence we can try up
to 400;000 keys per second with the best implementation. In order to
upper bound the complexity of the exhaustive search, we make some
pessimistic assumption. We assume that the opponent can get one
million of such devices with a technology 1000 times as fast (which
approximates what would be the fastest platforms we can get in a 15
years according to Moore's empiric law). The opponent can then try
up to 249 keys per second. Exhaustive search on k-bit keys thus re-
quires 2k�65:4 days. Exhaustive search on 64-bit keys thus requires at
least 13 hours. Exhaustive search on 80-bit keys requires one century
with this technology. This is of course not accurate since technology
makes chips faster and faster. We can thus reasonably conclude that
no 80-bit key search is possible within less than several computation
decades.

We can make more accurate estimates by assuming Moore's law.
We assume that the opponent can try up to f0 = 400;000;000;000
keys per second at time t = 0 (i.e. now). At time t, he can try f0:2

t
�

keys per second where � = 1:5 years. Then he can try

Z T

0
f0:2

t
� dt =

f0�

log 2
2
T
�

21

keys within a time T . Exhaustive search of a k-bit key requires on
average 2k�1 trials. Hence the average time of the exhaustive search
is

T = k� + �

log2

log 2

2f0�

!
� �(k � 65:6):

Each bit thus requires 1:5 years more on average. Table 8 estimates
the average complexity of exhaustive search for various key size in
this setting.

key length complexity

80 21.65

128 93.65

192 126.43

256 190.43

Table 8. Estimates of the average time complexity (in years) of the exhaustive search

for various key size assuming that we can try up to 400:109 :2
t

1:5 years keys per second
at time t.

5.3 Higher Order Di�erentials

The present cipher resists to classical di�erential cryptanalysis by
making some pairwise decorrelation distance small. However we can
still consider higher order attacks. For instance we can consider dif-
ferentials of order two.

Let x1; x2; x3; x4 be four inputs of RF with exclusive or zero:
x1 � x2 � x3 � x4 = 0. Let us �rst consider a weakened RF function
de�ned by

RFajb(x) = CP ((a � x)� b)

where � denotes the GF(264)-product, and with

CP(y) = (yr � RT(trunc6(yl)))j(yl � KC)

(i.e. we consider KD = 0). Let yi = (a � xi)� b. Obviously, we have
y1� y2� y3� y4 = 0. The four values of RT(trunc6(yi)) are pairwise
equal with probability 3:2�6. Hence the four outputs of RF have an
exclusive or zero with this probability. This can be used to mount an

22

attack on the whole cipher with this weakened RF function. Namely,
we consider the following distinguisher.

Input: an oracle m 7! C(m)
1. for j from 1 to n, do

(a) pick a random constant mr and four values ml
i, i = 1; 2; 3; 4 with an

exclusive or of zero
(b) get C(ml

ijm
r), i = 1; 2; 3; 4

(c) let ui denote the 64 rightmost bits of C(ml
ijm

r)

(d) if

4M
i=1

ui = 0, stop and output 1

2. output 0

The main loop will stop and output 1 with probability (3:2�6)6 �
1:42 � 2�27. Thus we will distinguish the simpli�ed cipher from a
truly random permutation for n � 1:40� 226.

We argue that this attack cannot work on DFC for several rea-
sons.

First, let us consider the case

RFajb(x) = j�a�x +�b mod (264 + 13) mod 264j64:

We can reasonably expect that the x1 � : : : � x4 = 0 property is
transformed into a y1 � y2 � y3 � y4 (mod 264) (for instance when
x1�x2 has a very low Hamming weight), and that the yis are almost
uniformly distributed. But then the following result shows that this
property is very di�erent to the y1 � : : :� y4 = 0 one, so we cannot
propagate it in the Feistel scheme.

Theorem 1. Let Y1; : : : ; Y4 be random n-bit strings with uniform
and independent distribution. We have

Pr[Y1 � : : :� Y4 = 0= �Y1 � �Y2 � �Y3 � �Y4 (mod 2n)] =
�
3

4

�n
:

Proof. From the relation

x� y = �x� �y + 2y ^ :x mod 2n

where n is the length of x and y, we obtain that Y1 � : : :� Y4 = 0
if, and only if

2j �Y1 + �j ^ :Y1 = 2j �Y3 + �j ^ :Y3

23

where � = �Y1� �Y2 = �Y3� �Y4 (mod 2n operations are omitted here). We
let fn(�) denotes the probability that this holds. We have fn(2�) =
fn�1(�) and

fn(2� + 1) =
1

4
fn�1(�) +

1

4
fn�1(� + 1 mod 2n�1):

This equation comes from the fact that the least signi�cant bit of Y1
and Y3 must be equal (with probability 1

2
) and from separating the

cases where this common bit is 0 or 1. Then it is straightforward that

E(fn(�)) =
�
3
4

�n
by induction where � is uniformly distributed. ut

Second, let zi denotes the result of the actual RFajb(x) value
before being added to KD. We assume that we can expect that z1�
: : :� z4 = 0. The following theorem indicates why we choose a KD
constant with its rightmost bit set to one.

Theorem 2. Let Z1; : : : ; Z4 be random n-bit strings with uniform
and independent distributions. We let g(z) denotes j�z+KD mod 2njn.
Let g(z)i be the ith bit of g(z) (with the convention that the leftmost
one is the �rst). We have

Pr[g(Z1)i � : : :� g(Z4)i = 0=Z1 � Z2 � Z3 � Z4 = 0] = 1

for i > j � 2 where j is the number of the rightmost nonzero bit of
KD. The probability for i = j � 2 is 1

2
+ 1

8
.

Proof. We use the formula

�z +KD mod 2n = z � KD+ 2(z ^ KD) mod 2n:

Thus �z +KD mod 2n is equal to

z � KD� (Sz ^ SKD) +

(Sz ^ S2z ^ S2KD)� (SKD ^ S2z ^ S2KD) mod 2n

where S is the logical shift operation from one position to the left
(with the leftmost bit dropped and one rightmost zero bit pushed).
From this the Theorem 2 is straightforward for i > j�2. For i = j�2,
let u = Z1�Z2 and v = Z3�Z4. We show that Z1�Z2�Z3�Z4 = 0
implies that the ith bit is equal to ujvj�1 � uj�1vj. ut

24

5.4 Weak Keys with ARK = j0j64

(We let RK = ARKjBRK for convenience.) If the a parameter of RF
is equal to zero, then RFajb(x) is a constant which does not depend
on x. Hence, if we assume that ARK2 = ARK4 = ARK6 = j0j64, we
have a trivial distinguisher.

Input: an oracle m 7! C(m) with ARK2 = ARK4 = ARK6 = j0j64
1. for j from 1 to 4 do

(a) pick a random constant mr and two values ml
i, i = 1; 2

(b) get C(ml
ijm

r), i = 1; 2
(c) let ui denotes the 64 rightmost bits of C(ml

ijm
r)

(d) if u1 � u2 6= ml
1 �ml

2, stop and output 0

2. output 1

The advantage is almost 1 if, and only if ARK2 = ARK4 = ARK6 =
j0j64 here. This proves that the keys for which we have ARK2 =
ARK4 = ARK6 = j0j64 are fairly weak. It is however quite unlikely
that ARK2 = ARK4 = ARK6 = j0j64 occurs since it happens with
probability 2�192.

We outline another property which may come from a bad choice
of the KAi and KBi strings. If we have KA3 = KB3 = j0j64, KA2 =
KA4 and KB2 = KB4, then we have a very weak keys K such that
OAP2 = EAP2 = j0j64. For this we obtain that OAP1 = OAP3 and
OAP2 = OAP4 = j0j64 so that EncEF1(K)(ujv) = vju. Similarly we
have EncEF2(K)(ujv) = vju. Thus we obtain that ARKi = BRKi =
j0j64 for all i and thus DFCK(ujv) = (v � c)j(u� c) for some given
c strings, which is a very insecure permutation. This class of weak
keys vanishes with a good choice of the KAis and KBis.

5.5 Other Weak Keys

The (a; b) pairs subject to the relation �14�a+�b � �14 (mod 264+
13) can be used with entry pairs such that �x+�x0 = 264�1. For these
pairs we have �x+ �x0 = x� x0. We have

(�a�x+ �b) + (�a�x0 +�b) = �a(�x+ �x0) + �b � 264 � 1 (mod (264 + 13)):

Hence is x and x0 are bitwise complement, y and y0 are bitwise
complement with high probability (where �y = �a�x + �b mod (264 +
13) mod 264).

25

Although we do not know how to use this property, we be-
lieve that it is a weakness so that (ARK;BRK) subkeys such that
�14ARK + BRK � �14 (mod (264 + 13)) may be considered as
weak subkeys.

5.6 Photo�nishing Attack

Biham introduced an e�cient implementation technique based on 1-
bit SIMD microprocessor approach. This kind of implementation is
made hard by the carry propagation in modular additions and multi-
plications. This has the positive consequence that Shamir's photo�n-
ishing attack [18] is made impossible.

5.7 Timing Attacks

Implementations must be such that computations of the modular
multiplication does not leak any information by time measurement
(i.e. we must avoid tests and conditional branches that depend on
the computation). Otherwise this may leak some information by
Kocher's timing attacks [10]. Our assembly code implementations
ful�ll this requirement.

5.8 Attacks on Four Rounds

We can attack DFC with a number of rounds reduced down to four.
We outline three attacks below. All these attacks are chosen plain-
text attacks where we query the encryption oracle EncRK1;:::;RK4

with
random messages m = xjc where x is a random 64-bit string and c
is a 64-bit constant. We let

EncRK1;:::;RK4
(xjc) = h(x)jg(x)

so that we can write

y = x� RFRK1
(c)

g(y) = RFRK2
(y)

f(x) = y � RFRK3
(c� g(y))

h(x) = c� g(y)� RFRK4
(f(x)):

The main observation (but for the �rst attack) is that RFRK2
has

hardly any collisions. Namely, for any 128-bit round key RK2, there
exist up to 13 pairs fy; y0g such that RFRK2

(y) = RFRK2
(y0).

26

Di�erential Collision-Attacks on f . In this attack we try about 232

possible x values until we get a collision f(x1) = f(x2). We obtain
that there exists a pair fy1:y2g such that

y1 � y2 = x1 � x2

g(y1)� g(y2) = h(x1)� h(x2):

Since we know an input di�erence and an output di�erence for g, we
can further attack on RK2.

Collision Attack on RFRK2
. In this attack we try about all of the

264 possible x values until we get a collision x1� f(x1) = x2� f(x2).
We assume that this comes from a collision on g = RFRK2

. (It can
comes from a collision on RFRK3

as well.) For each of the 264 possible
values of RFRK1

(c) we can compute y1 and y2. Since we known this
leads to a collision on g, we must have

ARK2 � (y1 � y2) � �264 (mod 264):

Thus we obtain two possible values for ARK2, and for each of it
we obtain 13 possible values for BRK2. To each possible value of
RFRK1

(c) we can therefore compute 26 possible candidates for RK2.
The (c;RFRK1

(c)) pair enables next to recover the whole key within
an attack of complexity close to 264.

Distinguishing Collision Attack on RFRK2
. In this attack, we aim to

distinguish the encryption oracle from a truly random permutation
oracle. We try 232 possible x values. If there is a collision x1�f(x1) =
x2 � f(x2), we output 0, otherwise, we output 1. For the four-round
DFC oracle, the probability that the answer is 0 is about 2�27 ' 0.
For a truly random permutation oracle, the probability that the
answer is 1 is about 0:63. The advantage is thus 0:37.

We conclude that the DFC algorithm is weak when reduced to four
rounds. We believe that eight attacks are enough for security. (The
above attacks are at least not applicable.)

6 Conclusion

We have proposed a dedicated block cipher algorithm which is faster
than DES and hopefully more secure than triple-DES. In addition

27

we provided proofs of security against some classes of general simple
attacks which includes di�erential and linear cryptanalysis. This re-
sult is based on the decorrelation theory. We believe that this cipher
is also \naturally" secure against more complicated attacks since our
design introduced no special algebraic property. To summarize, our
design is guaranteed to be vulnerable against neither di�erential nor
linear cryptanalysis with complexity less than 281 encryptions. We
believe that the best attack is still exhaustive search which is limited
by the implementation speed (decreased by a factor of 5 due to the
key scheduling algorithm). We (very pessimistically) forecast that
one need at least several decades to search a 80-bit key, which makes
it safe until the Advanced Encryption Standard expires. Extrapola-
tion estimates that 128-bit key is safe for 93 years, 192-bit key is safe
for 126 years, and 256-bit is safe for 190 years.

Another theoretical result claims that if we admit that no key
will be used more than 243 times, then the cipher is guaranteed to
resist to any iterated known plaintext attack of order 1.

Our algorithm accepts 128-bit message blocks and any key size
from 0 to 256. It can be adapted into a 64-bit variant (with a key
size up to 128). We believe that it can be adapted to any other
cryptographic primitive such as stream cipher, hash function, MAC
algorithm although we did not deeply investigate this issue.

Our algorithm can be implemented on traditional personal com-
puters, as well as on cheap smart cards. We believe that it can be
implemented in any other digital environment.

In conclusion we recommend this encryption algorithm as a can-
didate to the Advanced Encryption Standard process.

References

1. Data Encryption Standard. Federal Information Processing Standard Publication

46, U. S. National Bureau of Standards, 1977.

2. DES Modes of Operation. Federal Information Processing Standard Publication 81,
U. S. National Bureau of Standards, 1980.

3. Information Technology | Security Techniques | Hash-Functions. ISO/IEC
10118, 1994.

4. K. Aoki, K. Ohta. Strict evaluation of the maximum average of di�erential prob-
ability and the maximum average of linear probability. IEICE Transactions on

Fundamentals, vol. E80-A, pp. 1{8, 1997.

28

5. M. Bellare, J. Kilian, P. Rogaway. The security of cipher block chaining. In Ad-

vances in Cryptology CRYPTO'94, Santa Barbara, California, U.S.A., Lectures
Notes in Computer Science 839, pp. 341{358, Springer-Verlag, 1994.

6. E. Biham. A fast new DES implementation in software. In Fast Software En-

cryption, Haifa, Israel, Lectures Notes in Computer Science 1267, pp. 260{272,
Springer-Verlag, 1997.

7. E. Biham, A. Shamir. Di�erential Cryptanalysis of the Data Encryption Standard,
Springer-Verlag, 1993.

8. H. Feistel. Cryptography and computer privacy. Scienti�c American, vol. 228, pp.
15{23, 1973.

9. T. Jakobsen, L. R. Knudsen. The interpolation attack on block ciphers. In Fast

Software Encryption, Haifa, Israel, Lectures Notes in Computer Science 1267, pp.
28{40, Springer-Verlag, 1997.

10. P. Kocher. Timing attacks in implementations of Di�e-Hellman, RSA, DSS and
other systems. In Advances in Cryptology CRYPTO'96, Santa Barbara, California,
U.S.A., Lectures Notes in Computer Science 1109, pp. 104{113, Springer-Verlag,
1996.

11. L. R. Knudsen, B. Preneel. Fast and secure hashing based on codes. In Advances

in Cryptology CRYPTO'97, Santa Barbara, California, U.S.A., Lectures Notes in
Computer Science 1294, pp. 485{498, Springer-Verlag, 1997.

12. M. Luby, C. Racko�. How to construct pseudorandom permutations from pseudo-
random functions. SIAM Journal on Computing, vol. 17, pp. 373{386, 1988.

13. M. Matsui. The �rst experimental cryptanalysis of the Data Encryption Stan-
dard. In Advances in Cryptology CRYPTO'94, Santa Barbara, California, U.S.A.,
Lectures Notes in Computer Science 839, pp. 1{11, Springer-Verlag, 1994.

14. M. Matsui. New structure of block ciphers with provable security against di�er-
ential and linear cryptanalysis. In Fast Software Encryption, Cambridge, United
Kingdom, Lectures Notes in Computer Science 1039, pp. 205{218, Springer-Verlag,
1996.

15. M. Matsui. New block encryption algorithm MISTY. In Fast Software Encryption,
Haifa, Israel, Lectures Notes in Computer Science 1267, pp. 54{68, Springer-Verlag,
1997.

16. K. Nyberg, L. R. Knudsen. Provable security against a di�erential cryptanalysis.
Journal of Cryptology, vol. 8, pp. 27{37, 1995.

17. C. E. Shannon. Communication theory of secrecy systems. Bell system technical

journal, vol. 28, pp. 656{715, 1949.

18. A. Shamir. Visual cryptanalysis. In Advances in Cryptology EUROCRYPT'98,
Espoo, Finland, Lectures Notes in Computer Science 1403, pp. 201{209, Springer-
Verlag, 1998.

19. S. Vaudenay. Provable security for block ciphers by decorrelation. In STACS 98,
Paris, France, Lectures Notes in Computer Science 1373, pp. 249{275, Springer-
Verlag, 1998.

20. S. Vaudenay. Provable security for block ciphers by decorrelation. (Journal Ver-
sion.) Submitted.

21. S. Vaudenay. The decorrelation technique home-page.
URL:http://www.dmi.ens.fr/~vaudenay/decorrelation.html

22. G. S. Vernam. Cipher printing telegraph systems for secret wire and radio tele-
graphic communications. Journal of the American Institute of Electrical Engineers,
vol. 45, pp. 109{115, 1926.

29

A Basic De�nitions in Decorrelation Theory

We brie
y recall the basic de�nitions used in the decorrelation theory
and results taken from [19{21]. Firstly, let us recall the notion of
d-wise distribution matrix associated to a random function. This
matrix characterizes its d-wise decorrelation.

De�nition 3. Given a random function F from a given set A to
a given set B and an integer d, we de�ne the d-wise distribution
matrix [F]d of F as a Ad �Bd-matrix where the (x; y)-entry of [F]d

corresponding to the multi-points x = (x1; : : : ; xd) 2 Ad and y =
(y1; : : : ; yd) 2 B

d is de�ned as the probability that we simultaneously
have F (xi) = yi for i = 1; : : : ; d.

Secondly, we recall the de�nition of the jjj:jjj1 matrix norm1 which
will be denoted jj:jj throughout this report since it is the only one
considered here.

De�nition 4. Given a matrix A, we de�ne

jjAjj = max
x

X
y

jAx;yj

where the sums run over all the (x; y)-entries of the matrix A.

We recall that jj:jj is a matrix norm (i.e. that the norm of any matrix-
product A � B is at most the product of the norms of A and B).
Finally, the de�nition of the general d-wise decorrelation distance
between two random functions is as follows.

De�nition 5. Given two random functions F and G from a given
set A to a given set B, an integer d and a matrix norm jj:jj over the

vector space RAd�Bd, we call jj[F]d � [G]djj the d-wise decorrelation
distance between F and G.

We consider a block ciphers on a message-block space M = f0; 1gm

with a key represented by a random variable K and a random per-
mutation C de�ned by K over M. Ideally, we consider the Perfect

1 The strange jjj:jjj1 notation used in [19] comes from the fact that this norm is
associated to the usual jj:jj1 norm over the vectors de�ned by jjV jj1 = max

x
jVxj by

jjjAjjj1 = max
jjV jj1=1

jjAV jj1:

30

Cipher C� for which the distribution of C� is uniform over the set of
all permutations overM. Hence for any multi-points x = (x1; : : : ; xd)
and y = (y1; : : : ; yd) with pairwise di�erent entries, we have

[C�]dx;y = Pr[C�(xi) = yi; i = 1; : : : ; d] =
1

2m : : : (2m � d+ 1)
:

The following Lemma makes the decorrelation distance a friendly
measurement thanks to the matrix norm property.

Lemma 6. Let jj:jj be a matrix norm over RMd�Md

. For any inde-
pendent random ciphers C1; C2; C

� where C� is a Perfect Cipher, we
have

jj[C1 � C2]
d � [C�]djj � jj[C1]

d � [C�]djj:jj[C2]
d � [C�]djj: (33)

This property comes from the easy facts [C1 � C2]
d = [C2]

d � [C1]
d

and [C�]d � [C1]
d = [C�]d.

We are mostly interested into Feistel Ciphers over M = M2
0

(where M0 is a given group) which are de�ned with random round
functions F1; : : : ; Fr on M0. (In most of practical examples we have
M0 = Z2

m
2 .) We denote C = 	(F1; : : : ; Fr) the cipher de�ned by

C(xl; xr) = (yl; yr) where we iteratively compute a sequence (xli; x
r
i)

such that

xl0 = xl and xr0 = xr

xli = xri�1 and x
r
i = xli�1 + Fi(x

r
i�1)

yl = xrr and y
r = xlr

where + is the group operation (see Feistel [8]).

B Security Results in Decorrelation Theory

The following security result taken from [20], shows how d-wise
decorrelation distance zero between C and C� implies unconditional
security of C.

Theorem 7. Let C be a cipher which has a d-wise decorrelation zero
to the Perfect Cipher. For any sequence of messages x1; : : : ; xd�1, if

31

X denotes a random variable whose values are inM\fx1; : : : ; xd�1g,
we have

H(X=C(x1); : : : ; C(xd�1); C(X)) = H(X)

where H denotes Shannon's entropy of random variables.

This means that if an adversary knows d� 1 pairs (xi; C(xi)), then,
for any yd which is di�erent from all C(xi)s, his knowledge of C

�1(yd)
is exactly that it is di�erent from all xis.

Decorrelation distance also enables to quantify the security of ci-
phers. Here we consider the security in the Luby-Racko� model [12].
We consider an opponent as an in�nitely powerful Turing machine
which has a limited access to an encryption oracle device and whose
aim is to distinguish whether the device implements a given practical
cipher C1 = C or a given ideal cipher C2 which is usually C2 = C�.
When fed with an oracle c, the Turing machine T c returns either 0 or
1 (which can be probabilistic). More precisely, a distinguisher with
d oracle calls is represented by any Turing machine which complies
with the following model:

Input: an oracle c

1. calculate a message X1 and get Y1 = c(X1)
2. calculate a message X2 and get Y2 = c(X2)
3. : : :

4. calculate a message Xd and get Yd = c(Xd)
5. depending on X = (X1; : : : ; Xd) and Y = (Y1; : : : ; Yd), output 0 or 1

If we want to distinguish a random cipher C from C�, we let p
(resp. p�) denotes Pr[T C = 1] (resp. Pr[T C� = 1]). We say that the
attack is successful if jp� p�j is large. We call jp� p�j the advantage
of the distinguisher. Conversely, we say that the cipher C resists the
attack if we have jp� p�j � � for some small �. This model is quite
powerful: we prove that a cipher C cannot be distinguished from
the Perfect Cipher C�, then any attempt to decrypt a ciphertext
provided by C will also be applicable against the cipher C� for which
we know the security. (For more motivation on this security model,
see Luby-Racko� [12].)

We call non-adaptive a d-limited distinguisher in the following
model:

Input: an oracle c

1. calculate some messages X = (X1; : : : ; Xd)

32

2. get Y = (c(X1); : : : ; c(Xd))

3. depending on X and Y , output 0 or 1

From [19] we know that the d-wise decorrelation distance between
C and C� quanti�es the security against any non-adaptive attack.

Theorem 8. Let C be a cipher; let d be an integer and � be the
d-wise decorrelation distance between C and the Perfect Cipher C�.
The greatest advantage for any d-limited non-adaptive distinguisher
is equal to �=2.

We call di�erential distinguisher with the characteristic (a; b) and
complexity n the following algorithm:

Input: a cipher c, a complexity n, a characteristic (a; b)

1. for i from 1 to n do

(a) pick uniformly a random X and query for c(X) and c(X � a)
(b) if c(X � a) = C(X)� b, stop and output 1

2. output 0

Theorem 9. Let C be a cipher on a space M of size 2m, and let
C� be the Perfect Cipher. For any di�erential distinguisher between
C and the Perfect Cipher C� with complexity n, the advantage is at
most n

2m�1
+ n

2
jj[C]2 � [C�]2jj.

Similarly, we call linear distinguisher with the characteristic (a; b)
and complexity n the following algorithm:

Input: a cipher c, a complexity n, a characteristic (a; b), a set A

1. initialize the counter value t to zero

2. for i from 1 to n do

(a) pick a random X with a uniform distribution and query for c(X)
(b) if X � a = c(X) � b, increment the counter t

3. if t 2 A, output 1, otherwise output 0

Theorem 10. Let C be a cipher on a space M of size 2m, and let
C� be the Perfect Cipher. For any linear distinguisher between C and
the Perfect Cipher C� with complexity n, the advantage jp � p�j is
such that

lim
n!+1

jp� p�j

n
1

3

� 9:3
�

1

2m � 1
+ 2�

� 1

3

where � = jj[C]2 � [C�]2jj.

33

Theorem 9 and 10 mean that if � = jj[C]2 � [C�]2jj >> 2�m,
then we need a complexity n =
(1=�) to attack C in either way.
They also mean that C is secure against any di�erential or linear
distinguisher if jj[C]2 � [C�]2jj << 2�m.

There is another result which is a weaker but more general. We
consider a general iterated attack of order d i.e. an attack in the
following model.

Input: a cipher c, a complexity n, a distribution on X, a test T , an acceptance set A

1. for i from 1 to n do
(a) get a new X = (X1; : : : ; Xd)
(b) get Y = (c(X1); : : : ; c(Xd))
(c) set Ti = 0 or 1 with an expected value T (X;Y)

2. if (T1; : : : ; Tn) 2 A output 1 otherwise output 0

Here is the corresponding security result.

Theorem 11. Let C be a cipher on a message space of size M
such that, if C� is the perfect cipher with uniform distribution, then
jj[C]2d � [C�]2djj � � for a given d � M=2. For any iterated attack
of order d between C and C� such that the obtained plaintexts are
independent, we have

jp� p�j � 3

2� +

5d2

2M
+

3�

2

!
n2
! 1

3

+
n�

2

where � is the probability that for two independent X and X 0 there
exists i and j such that Xi = X 0

j.

In particular, for any known plaintext attack in which the Xis are
independent and uniformly distributed, we have

jp� p�j � 3

7d2

2M
+

3�

2

!
n2
! 1

3

+
n�

2
:

C Decorrelation of the PEANUT Family

The DFC cipher is in the PEANUT Cipher Family [19]. PEANUT
Ciphers are characterized by some parameters (m; r; d; p). They are
Feistel Ciphers with block length of m bits (m even), r rounds. The
parameter d is the order of partial decorrelation that the cipher

34

achieves, and p must be a prime number greater than 2
m
2 . For DFC,

we have m = 128, r = 8, d = 2 and p = 264 + 13.
The cipher is de�ned by a key of mrd

2
bits which consists of a

sequence of r lists of d m
2
-bit strings k0; : : : ; kd�1, one for each round.

In each round, the F function has the form

F (x) = g

0
@
�����
d�1X
i=0

�ki:�x
i mod p mod 2

m
2

�����
m
2

1
A

where g is any permutation on the set of all m
2
-bit strings.

We have the following result which enables to get an upper bound
on the decorrelation distance.

Theorem 12. Let F be any round function used in any cipher in
the PEANUT family with parameters (m; r; d; p). Let R be a random
function with uniform distribution, We have

jj[F]d � [R]djj � 2
�
pd2�

md
2 � 1

�
:

Theorem 13. Let C be a cipher in the PEANUT family with pa-
rameters (m; r; d; p) and let C� be the Perfect Cipher. We have

jj[C]d � [C�]djj �

 �
1 + 2

�
pd2�

md
2 � 1

��3
� 1 +

2d2

2
m
2

!b r
3
c

:

When p = 2
m
2 + � with � << 2

m
2 , this can be approximated to

�
2d(3� + d)2�

m
2

�b r
3
c
:

D Security on the Key Scheduling Algorithm

We bound here the security loss introduced by the key scheduling al-
gorithm. For this, we prove that if some attack were possible against
the real DFC algorithm, then it would roughly be possible against
EncK with a truly 1024-bit random key K, unless some reasonable
assumption is false.

Let Si, i = 1; : : : ; 4 denotes four random 1024-bit strings with
di�erent distributions. Let us denote

Si = Ai
1jB

i
1jA

i
2j : : : jB

i
4

35

where Ai
j and Bi

j are 128-bit strings. The distribution of S1 is uni-
form. The distribution of S2 is de�ned by

A2
j+1 = F (A2

j) B2
j+1 = G(B2

j)

and A2
0 = B2

0 = j0j64, F and G being two random permutations
uniformly distributed. The distribution of S3 is de�ned by

A3
j+1 = EncEF1(K)(A

3
j) B3

j+1 = G(B3
j)

and A2
0 = B2

0 = j0j64, where K is uniformly distributed. The dis-
tribution of S4 is de�ned by S4 = EF(K) where K is uniformly
distributed.

We make the following assumption.

Hypothesis 14. The best advantage for any distinguisher between
EncEFi(K) and the Perfect Cipher which is limited to 4 queries and
within a maximum cost of c is given by the function h(c).

Here the notion of \cost" includes the real cost of an attack, i.e. the
cost for developing it, implementing it, running it, ...

Here is our main result.

Theorem 15. Let A be an attack which distinguishes DFCK from
the Perfect Cipher within a cost c and an advantage of �. The same
attack is able to distinguish EncS1 from the Perfect Cipher with the
same cost and advantage greater than � � 2h(c + c0) � 2�122 where
c0 is a negligible cost (e.g. less than US$1).

As an example of application, we know that distinguishing EncS1
from the Perfect Cipher through a di�erential attack requires more
than 2107 chosen plaintexts in order to achieve an advantage of 1%.
Assuming that h(c) � 1% for the cost c of the attack, our Theorem
proves that there is no di�erential attack of cost c and less than 2107

chosen plaintexts which achieves an advantage of 3% (the c0 cost and
the advantage 2�122 are negligible). As a cryptanalysis challenge, we
can thus propose to make a distinguisher between EncEF1(K) and
the Perfect Cipher which achieves an advantage greater than 1%,
which is limited to 4 chosen plaintexts and with a limited budget
of US$1; 000; 000; 000. If this is not possible, then all our results on
EncK are applicable on DFCK .

36

Proof. Let �0 be the advantage of A for distinguishing EncS1 from
the Perfect Cipher. We let pEncSi be the probability that A outputs
1 when fed with EncSi. Obviously, we have

� � �0 + jpEncS4 � pEncS3 j+ jpEncS3 � pEncS2 j+ jpEncS2 � pEncS1 j:

The �rst two di�erences can be studied in the same way. For instance,
let B be a distinguisher between EncEF1K and the Perfect Cipher
which runs this way.

1. Construct a sequence A1; : : : ; A4 by querying the oracle (A1 =
O(j0j64) and Ai+1 = O(Ai)).

2. Construct a sequence B1; : : : ; B4 like in S2 or S3.
3. With S = A1j : : : jB4 simulate the attack A on EncS.

Its advantage is jpEncS3�pEncS2 j and can be upper bounded thanks to
Hypothesis 14. Let c+ c0 be the cost of this attack. The c0 overhead
is obviously negligible. From our Hypothesis, we have

� � �0 + 2h(c+ c0) + jp
EncS2 � pEncS1 j:

Let us now prove that for any (unlimited) distinguisher between
S1 and S2 the advantage is less than 43:2�128 which completes the
proof.

When fed with a 1024-bit sequence s, such a distinguisher gives a
random output which is 1 with probability f(s) for a given function
f . The advantage is

Adv =

�����
X
s

f(s)
�
Pr
S1
[s]� Pr

S2
[s]
������ �

X
s

����2�1024 � Pr
S2
[s]
���� :

Let
s = a1jb1j : : : ja4jb4

and a0 = b0 = j0j64. When ai 6= ai+j and bi 6= bi+j for all 0 � i < 4
and 0 < j < 4, the di�erence probability is equal to

3Y
j=0

1

2128 � j

!2
� 2�1024

which is less than 13:2�128�1024. Thus

Adv � 13:2�128 +
X

other s

�
2�1024 + Pr

S2
[s]
�
:

37

The number of \other s" is less than 24� 21024�128 so

Adv � 37:2�128 + Pr
S2
[other s]:

Since F and G are permutations, if we have some ai 6= ai+j or
bi 6= bi+j equation, we must have one with i = 0. Let J be the length
of the orbit of j0j128 with the permutation F . We thus have

Adv � 37:2�128 + 2Pr
F
[1 � J � 3]:

Thus Adv � 43:2�128. ut

38

Workshop CompilersTM, SunOSTM and JAVATM are registered trade-
marks of Sun Microsystems.
UNIXTM is a registered trademark of Open Group.
PentiumTM and IntelTM are registered trademarks of Intel Corpora-
tion.
DECTM and AXPTM are registered trademarks of Digital Equipment
Corporation.
SPARCTM, UltrasparcTM and SolarisTM are registered trademarks of
Sparc International, Inc.
MotorolaTM is a registered trademark of Motorola Inc.
Windows NTTM and Visual C++TM are registered trademarks of
Microsoft.

39

