Copyright NTT 1998

Specification of E2 — a 128-bit Block Cipher

Nippon Telegraph and Telephone Corporation
June 14, 1998

Contents

1 Description of Algorithm
1.1 Notations and Conventions
1.2 Outline. e
1.3 Emcryption
1.4 Decryption.
1.5 Key Scheduling

[N NGO VI

2 Functions
2.1 IT-Function e
2.2 F-Function e
2.3 FT-Function
2.4 BRL-Function.
2.5 S-Function.
2.6 S-bOX e
2.7 P-Function e
2.8 G-Function 11
2.9 f-Function 12
2.10 Binary Operator @ 12
2.11 Binary Operator @ 12
2.12 BP-Function 12

© 0 0 N N 9O

A Test Data for E2 14

1

1.1

Copyright NTT 1998
Description of Algorithm

Notations and Conventions

The following notations are used in this document.

1.

2.

10.

Let Z denote the set of all integers.

Let A, B, and C be sets. Let A x B := {(a,b)|la € A,b € B} represent the Cartesian
product of A and B. An element in A x B x C is identified as follows: (a,b,c) =
((a,b),¢) = (a, (b,c)). Moreover, let A := A, and A" := A x A" for n > 2.

For an element (a,_1,a,_2,...,ay) of set A", let a,_; be the left most element, and a

be the right most element.

Let K be a field and n > 1. Let K™ be the n-dimensional vector space over K. For
a = (Gp_1,0p_9,...,09), b = (bp_1,bp_2,...,bp) € K", and A € K, the following
equations hold.

a+b = (a1 +by_1,a,2+by_o,...,a0+ by)
)\CL = ()\an,l,)\(J,n,Q, ceey)\&0)

. When K = GF(2) = {0, 1}, the Exclusive-Or operation, @, is considered as the addition

operation. Operation @ is called the XOR operation simply.

A row vector r = (r,_1,7n_2,...,7o) is identified with the column vector Z7r.

Let B represent a vector space of 8-bit (byte') elements, that is, B := GF(2)%.
Let W represent a vector space of 32-bit (word) elements, that is, W := B%.
Let H represent a vector space of 64-bit (half block) elements, that is, H := BS.

An element of the field GF(2®) is identified with a polynomial p(X) in GF(2)[X]
whose degree is less than 8, where GF(2%) is isomorphic to GF(2)[X]/(r(X)) and
r(X) = X%+ X*+ X?®+ X + 1 which is an irreducible polynomial in GF(2)[X]. Thus
the complete set of representatives is {p(X) mod r(X) € GF(2%)| degp(X) < 8}.

'In this document, a byte means octet.

11.

12.

13.

Copyright NTT 1998

7
An element p(X) of the set GF(2)[X]/(r(X)) represented by p(X) = > a,X" is iden-
i=0
tified with (ar, as, - .., ap) € B.

An element (a7, ag, ..., ap) in the set B, where a; € GF(2), is identified with
7 .
> a;2' mod 2°Z € Z/2°Z,
i=0

where a; € GF(2) (i =0,1,...,7) corresponds to a; € {0,1} C Z in a canonical way,
i.e., ay is the most significant (left most) bit and aq is the least significant (right most)
bit.

An element (bs, be, b1, bg) in the set W, where b; € B, is identified with
3 ~ .
> " b;2% mod 2%Z € Z/2°°Z,
i=0

where b; € B (i = 0, 1,2, 3) corresponds to b; € {0,1,...,2% — 1} C Z. The correspon-
dence of b; to Ez is defined in item 12.

1.2 Outline

Let

M Dbe a plaintext (M € H?)
K be asecret-key (K € H? H? or H*), and
C be a ciphertext (C € H?).

The encryption algorithm E2 is defined as:

C =E(M, K)
M =D(C, K),

where E is the encryption function of E2, which is described in Section 1.3, and D is the

decryption function of E2, which is described in Section 1.4. The following equations hold.

M = D(E(M,K),K)
C = E(D(C, K),K)

Copyright NTT 1998

1.3 Encryption

The data randomizing part consists of an initial transformation I'T’; a 12-round Feistel cipher
structure with F-Function, and a final transformation F'T". The key scheduling part generates
16 subkeys {ky, ko, ..., kig} (k; € B'Y), from a secret-key K before encryption.

First, calculate
M = IT(M, ks, ki4)

where M is a plaintext. Next, M’ is separated into Lo and Ry of equal length, i.e.,
M'=(Ly, Ry), where Ly € H and Ry € H. Then, calculate the following from r = 1 to
12.

Rr = LT—I@F(RT—lakT’)
Lr = erl

Let C’ be the concatenation of Rjs and Lis, i.e., C' = (Ry2, L12).

Finally, calculate
C — FT(CI,]{316, k15).

The result C' is a ciphertext.
The encryption is shown in Figure 1. IT-Function is described in Section 2.1, F-Function

is described in Section 2.2, and F'T-Function is described in Section 2.3.

1.4 Decryption

Similarly to encryption, the data randomizing part consists of an initial transformation I'T,
a 12-round Feistel structure with F-Function, and a final transformation FT. The key
scheduling part generates 16 subkeys {ky, ks, ..., k1s} (k; € B%), from a secret-key K before
decryption.

First, calculate
Cl — IT(C, k16, k15)

where C' is a ciphertext. Next, C' is separated into Ris and L1y of equal length, ie., C' =
(Ri2, L12) where Ry5 € H, Li; € H. Then, calculate the following from r = 12 down to 1.

Lr—l - RT@F(Lrakr)
R._, = L,

4

Copyright NTT 1998

k16

k13

I(15

k14

L12

k12

Lll

kll

W™

P

W

W

LlO
L

Ne
7

R10

k12

L12

N
N

R12

<
~
4

1o}
—
4

k13

k16

Decryption

Encryption

Figure 1: Encryption and Decryption Procedures

Copyright NTT 1998

Let M’ be the concatenation of Ly and Ry, i.e., M' = (Lg, Ry).

Finally, calculate
M = FT(M' ki3, k).

The result M is a plaintext.
The decryption is shown in Figure 1. F-Function is described in Section 2.2, IT-Function

is described in Section 2.1, and F'T-Function is described in Section 2.3.

1.5 Key Scheduling

For secret-key K = (K1, Ks, K3, K4) (K; € H, i = 1,2,3,4), which is given as input to
E2 (E or D), the subkeys k; € B! (4 = 1,2,...,16) are generated as follows using G- and

S-Functions defined later.

v_1 = 0123456789%abcdef (1ex)

(Lo, (Yo, v0)) = G(K, v_1)

(List, (Vier, vinn)) = G(Veyw)) (i=0,1,2,...,7)
(Lais laitn, Laiv2, Lais) = Liya (i=0,1,...,7)
W iy =1, (=0,1,...,31)

R R A R L)

1/2 i/2 i/2 .
ki1 = (t(()\:i—éirjr?odﬂ’ téi{iﬁodz)’ e at:(a%j{(gilodz)) (i=0,1,...,15)

where L;,Y; € H* I;,v; € H, and t¥) € B.

The procedure for generating subkeys is the same when the secret-key is 128-, 192-, or
256-bits. When the secret-key is 128-bits, constant values are set on K3 and Ky K3 =
S(S(S(v_1))), K4 = S(S(S(S(v_1)))), respectively. When the secret-key is 192-bits, a
constant value is set on Ky: K4 = S(S(S(S(v-1)))).

S-Function is described in Section 2.5, and G-Function is described in Section 2.8 and

shown in Figure 3.

2 Functions

Let variables denoted by small letters, e.g., z, v, x;, y;, be elements of B or W, and variables
denoted by capital letters, e.g., X, Y, be elements of H or H? hereafter if not stated explicitly

otherwise. Figures are represented as decimals without an explicit description.

Copyright NTT 1998

2.1 IT-Function

I'T-Function, which we call the initial transformation, is defined as follows:
IT:H* x H* x H?> — H? (X,A,B) — BP((X ® A) ® B)

The binary operator ® is described in Section 2.10, and BP-Function, which we call the

byte permutation, is described in Section 2.12.

2.2 F-Function

F-Function is defined as follows:

F:HxH — H
(X, (KW, K®)) — Y = BRL(S(P(S(X & KM)) & K®)).

F-Function is shown in Figure 2. S-Function is described in Section 2.5, P-Function is
described in Section 2.7, and BRL-Function is described in Section 2.4.

2.3 F'T-Function

FT-Function, which we call the final transformation, is defined as follows:
FT:H>xH?xH? — H?* (X,A,B)— (BP'(X)0oB) @ A

The binary operator @ is described in Section 2.11. BP- and BP~!-Function are described
in Section 2.12.

Note that F'T-Function is the inverse of IT-Function, i.e.,

X = FT(IT(X, A, B), A, B).

2.4 BRL-Function

BRL-Function, which we call the byte rotate left function, is a part of F-Function and is

defined as follows:
BRL :H — H; (bl, b27b3, ey bg) — (b27b3, .. .,bg,bl).

BRL-Function is shown in Figure 2.

Copyright NTT 1998

2.5 S-Function

S-Function is a part of F-Function, and is defined as follows using s-boxes:
S:H — H; (21,22, 75) — (s(11), 5(2), . .., s(as)).

s-box is described in Section 2.6.

2.6 s-box
The definition of s-box in S-Function is described as follows:
s: B — B; x — Affine(Power(z, 127),97,225),

where

Power(z,e) = 2 in GF(2°%)
Affine(y,a,b) = ay +b (mod 2°Z).

The following canonical identification among sets is adopted here:
GF(2%) = GF(2)[X]/(r(X)) = GF(2)* = Z/2°Z, (1)

where the first equality = is given in item 10 in Section 1.1, the second one is given in
item 11, and the third one is given in item 12. The calculation result of Power-Function in
GF(28) is considered to be an element in Z/28Z, which is input to Affine-Function, as given
in the above relation. The table expression of s-box is given as follows. This means that
s(0) = 225,s(1) = 66,...,s(16) = 204, ..., and s(255) = 42.

Copyright NTT 1998

225 66 62 129 78 23 158 253 180 63 44 218 49 30 224 65
204 243 130 125 124 18 142 187 228 88 21 213 111 233 76 75
53 123 90 154 144 69 188 248 121 214 27 136 2 171 207 100
9 12 240 1 164 176 246 147 67 99 134 220 17 165 131 139
201 208 25 149 106 161 92 36 110 80 33 128 47 231 83 15
145 34 4 237 166 72 73 103 236 247 192 57 206 242 45 190
93 28 227 135 7 13 122 244 251 50 245 140 219 143 37 150
168 234 205 51 101 &4 6 141 137 10 94 217 22 14 113 108
11 255 96 210 46 211 200 85 194 35 183 116 226 155 223 119
43 185 60 98 19 229 148 52 177 39 132 159 215 &1 0 97
173 133 115 3 8 64 239 104 254 151 31 222 175 102 232 184
174 189 179 235 198 107 71 169 216 167 114 238 29 126 170 182
117 203 212 48 105 32 127 55 91 157 120 163 241 118 250 5
61 58 68 87 59 202 199 138 24 70 156 191 18 56 86 26
146 77 38 41 162 152 16 153 112 160 197 40 193 109 20 172
249 95 79 196 195 209 252 221 178 89 230 181 H4 82 74 42

2.7 P-Function

P-Function is a part of F-Function, and is defined as follows using a matrix expression.

21 21 21

z 25 z

PHSH| T |—| =P

28 24 28

where matrix P is given as follows:
01111110
10110111
11011011
11101101
P =

11011100
11100110
011100171
10111001

We can calculate P-Function using Figure 2, for example.

9

Copyright NTT 1998

K® K®
F - Function
z' X
4! s le St Mo) s le na !
NAARA T <<
z) X
Y2 s | 42 Me Me i s le REAP
<“Hp< e S <D<
z, X
Y3 s | < Me Me i s le I
<“Hp< S o <
z, z X
Ya s le < Me Me ‘s le R 2 AP
<+Hp< S S < X
z') 4 ¥ X <
Ys < < Mo Mo % LS
S [¢{pe D¢ (D¢ S |[¢H{pe
z') 4 b 4 X
Ye < < Me N ¢ % S s
S [{pe VA D¢ S [t
z, Y Y X
Y7 s | < Me hd & S
IR o< o< S
z) 4 ¥ X
Ys s | < M P Si s le e
<+—{p< (D¢ (D¢ (<
BRL - s-Function P - Function S - Function
Function

Figure 2: F-Function

10

Copyright NTT 1998

2.8 G-Function

G-Function is defined as follows:

G:H'xH — H'x (H'xH)
((X17X27X37X4)7U0) — ((U17U27U37U4)7((}/17}/27}{37}/4)7‘/))

where
Y, = f(X) (=1,2,3,4)
U = fU)eY, (i=1,23,4)
Vi = U

G-Function is shown in Figure 3, and f-Function is described in Section 2.9.

X

A\

Y

Y

B

DT TPl
<+«O A=A AP J—¢C

Y

Figure 3: G-Function

11

Copyright NTT 1998

2.9 f-Function

f-Function is a part of G-Function, and is defined as follows:

f:H—H,; X+— P(S5(X)).

2.10 Binary Operator
The binary operator ® is defined as follows.
Y = X®B (X,Y,BecH?
where
(.’L‘l,l’g,l'g,l'4) = X (fL’@ EW, 1= 1,2,3,4)
(bl, bg,bg,b4) == B (bl € W, Z - 1,2, 3,4)
y; = xi(b; V1) mod2¥Z (i =1,2,3,4)
Y = (y1,92, Y3, 9a)

Let V1 denote bitwise logical OR with 1 € 23?Z.

2.11 Binary Operator ©
The binary operator @ is defined as follows.
X = YoB (X,Y,BecH?
where
(y17y27y37y4) =Y (yz € WJ 1= 1727 374)
(b1,bo,b3,bs) = B (b; €W, i=1,2,3,4)
v, = yi(bi V1) 'mod2¥Z (i=1,2,3,4)

X = ($1,$2,$3,$4)

Let V1 denote bitwise logical OR with 1 € 232Z.

2.12 BP-Function

BP-Function, which we call the byte permutation, is a part of IT- and FT-Function. It is

defined as follows.
BP: W' — W!

12

Copyright NTT 1998

(l’17$2,$3,$4) — (9179271/373/4)

where
(@2 2 2™y = oz @Y eB,i=1,2,3,4, j=1,2,3,4)
1 2 3 4 .
g = (@, 2P 2Dy 2l (1=1,2,3,4)
(Y7, is identified with =\, i =0,1,2,3, j = 1,2,3,4)
Y = (y1,Y2,V3 Ya)
We can calculate BP~! as follows.
BP ' Wt — W*
(y17y27y37y4) — (5171,(1:2,373,374)
where
W,y 9P ™) = oy P eB, i=1,2,3,4, j =1,2,3,4)
1 2 3 4 .
Z; = (yz()7 yz(—)la yi(—)QJ yz(—)?)) (Z = 17 2: 37 4)
(y", is identified with ¢, i =1,2,3,4, j = 1,2,3,4)
X - ($1,$2,$3,$4)
BP-Function is shown in Figure 4.
Xl X2 X3 X4
x® | x@ | x@ | x@ x| x,@ | x,@ | x@ x| x,@ | x,®| x,@ X0 x,@| x| x,®

X 7y

A

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
x| x| x @ | x® x| x@ | x,® | x@ x| x,@ | x,®| x,@ x,0| x,@] x| x,®

yl y2 y3 y4

Figure 4: BP-Function

13

Copyright NTT 1998

A Test Data for FE2

Sample data are shown in hexadecimal notation.

Case 1) The key length is 128-bits long
K = 00000000000000000000000000000000
M = 00000000000000000000000000000000
= c2883490b9d9d5e5a03f216edb8156fff

Case 2) The key length is 192-bits long
= 00
= 00000000000000000000000000000000
= 882£80269d3c146d6ebb9addc4715b4dc

Case 3) The key length is 256-bits long
= 00
= 00000000000000000000000000000000
= 5002cb8cd878f26fbab9f52e6c96501e

14

