
A New Stream Cipher “Mir-1”

Alexander Maximov

Dept. of Information Technology, Lund University, Sweden
P.O. Box 118, 221 00 Lund, Sweden

movax@it.lth.se

Abstract. This document describes a new design of a software oriented
stream cipher for academic purposes. This cipher is 64-bit oriented and
it uses a T-function to form a loop of a long period. The key size is 128
bits, and IV is 64 bits. Each round 64 bits of keystream are produced.

1 Design Criteria and Motivation of the Choice

1.1 Design Criteria

(a) This is a software oriented stream cipher for academic purposes. In hardware
one can increase security level performing many operations in parallel. In
software we consider the processor to be deterministic, and all the steps
are done consecutive. These limits do not allow us to increase the security
level of a cipher by parallelising the operations. However, there are some
exceptions for some processors, and they could perform a few operations in
one clock (like RISC processors);

(b) The cipher should require rather small internal state memory. Our cipher
needs 256 bytes for a secret S-box table, and 48 bytes for internal registers.
When the platform is a PC, then memory, most probably, is not a strict
requirement. However, smart cards and other Java programmable chipsets
are strict in memory and require smaller internal state;

(c) The cipher should be efficient in software, i.e., fast and simple;
(d) It should be flexible for different platforms;
(e) The cipher should resist against different kinds of attack, and it should have

a rather high security level.

1.2 Claims Section

(a) This design is a 64 bit oriented stream cipher for software. The key size is
128 bits, and IV is 64 bits. Each round it produces 64 bits of the keystream;

(b) We claim that the security level is at least 2128, i.e., it cannot be “broken”
or distinguished faster than exhaustive search;

(c) We do not know any weaknesses in the design, and we did not introduce any
trapdoors in the design. We tried to make our motivation of the choice and
the description of the design as clear as possible.

1.3 Motivation for the Choice of the Design

(a) Output word size. The output word must be a small piece of the internal
state, that is required to protect the cipher from different kinds of distin-
guishing attacks. In our case we output 8 bytes from the internal state;

(b) Number of operations each round. To make the cipher to work fast
each round should contain as few number of operations as possible. How-
ever, the first trade-off is that the minimum number of operations should be
compensated with larger internal state;

(c) Internal state update. The internal state (registers) should be updated
in some way each round. Increasing the size of the internal state we increase
the round evaluation time. One of the solution could be to update only
a small part of the internal state. This is not good because it will leak
the information between two consecutive states, such as, some variable is
unchanged and could be eliminated via linear cryptanalysis, for example.
This scenario makes the use of large state negligible also. Therefore, we
suggest that each word of the internal state should be updated each round;

2

(d) S-boxes. We found that the implementation of an S-box application can be
done efficiently, when a word (64 bits) is represented as an array of 8 bytes. In
C/C++ it can easily be done by type casting of the variable address pointer
to a char pointer. However, one application requires 8 look-up tables. In this
design we introduce only one keyed (secret) S-box application as a good
shaffler for bytes;

(e) Why not LFSR? The implementation of this structure can, actually, be
done in a quite efficient way, and this block could work very fast. A good
example of an LFSR use is the cipher SNOW 2.0 [1]. For efficient implemen-
tation we need to have several multiplication tables. This solution might be
not very convenient when a cipher should be implemented on a smart card,
or some other Java card. Otherwise, LFSRs are good for a software oriented
design.
As a possible alternative, one can use a T-function, which can be imple-
mented memoryless. However, they have other minuses, such as they ap-
peared to be much slower, and the security of these functions is not well
studied yet as well;

(f) May be T-functions as a long cycle? This is one possible alternative
to form a pseudo-nonlinear loop of a long period. These functions could
substitute LFSRs, and could be implemented memoryless. However, they
are not well studied, and also have some leakages. For example, if we have
a T-function modulo 2k, then it is also a T-function modulo 2m, for m < k.
It means, for example, that consecutive values modulo 2 will give us the
sequence of zeros and ones such as 0, 1, 0, 1, 0, 1, . . ., which, obviously, leaks
some information. In our design we ignore the first half of the bits (the least
significant bits), and accept only the most significant bits for operating with.
This, we hope, will prevent such obvious information leakage;

(g) Internal state size. The size of the internal state is another trade-off.
We decided to have six 64-bit registers: Loop State registers x0, x1, x2, x3,
which are combined with a T-function to generate a loop of a long period;
and Automata State registers A, B also of size 64 bits bits each. They form
a “modified” Feistel structure with specified operations. Each round one
output word is produced. If the size of the internal state would be less
than 256 bits, then it would be weak against such attacks as linear analysis,
algebraic attacks, memory trade-off, etc. From the other hand, if the internal
state is large, then each round would require more amount of operations to
update all the words, and the speed is then undesirable decreasing;

(h) Circular shifts. We apply a secret S-box to a word in parallel to the word’s
bytes independently. To perform byte scrambling we suggest to make a cir-
cular shift of the word B to the left by 29 positions. After the second round
we will have that the word is circularly shifted by 58 positions to the left, or,
6 positions to the right. It means that we can scramble the bytes of a word
as well as the bits inside of each byte via this circular rotation. Since the
lowest bits are more weak than the highest bits, then the rotations dismised
to the right direction is preferable;

3

(i) Key Setup. The key is 128 bits. The key bits are divided into two halfs,
which initialise the automata and loop states independently. Afterwards, the
procedure requires to make 8 rounds before the cipher is ready for use;

(j) IV Setup. The IV is 64 bits. Setup procedure is done such that any small
change in IV would lead to an as random state as possible. Therefore, the
bytes of IV are shared between the registers. Afterwards, the procedure
requires to make 2 rounds. IV setup is also faster than Key setup procedure.

1.4 Speed Measuring and Security Issues

One round evaluation speed is important for stream ciphers. We consider two
ciphers which are interest to compare with. The first is AES [2] – a block cipher,
and our aim is to make a stream cipher at least faster than AES. The second is
SNOW 2.0 [1] – a stream cipher, which is rather fast, and we can think of this
cipher as a standart to compare the evaluation time with.

We decided to give the estimate for the plain implementation with one oper-
ation per cycle, since we do not know the implementation platform in advance.
Nowadays, a usual Pentium IV processor allows us to work with 128 bit numbers
(XMM registers). That makes us to believe that this cipher can be redesigned
for a 128 bits platform later, with the same number of operations, but increased
speed.

Theoretical Speed Estimation: Plain Implementation The first step of
speed analysis is the analysis of the plain implementation of the design. Assume
our processor can effort only one operation in a time, step by step. Then we call
this implementation as plain implementation, and we wish to cound the number
of operations which are required for a particular algorithm implementation. That
can be useful for estimating the algorithm speed in average.

Let us have an algorithm Ah and let us denote the number of operations
to perform this algorithm by Tp(Ah). Note that the expressions ‘x + y’ and
‘z = x+y’ take only one operation. However, just a single operation ‘z = x’ also
takes one operation.

The real actual implementation with one processor cannot take less number
of clocks than the number of operations in the plain implementation. However,
for the case of two or more conveyers, the work could be distributed, and the
real implementation could be much faster.

Actual Speed Measuring: Practical Implementation We would like to
note also that this speed measuring was given in [3]. Assume we have an algo-
rithm implementation Ah, and we want to measure the speed of this particular
implementation. Measuring procedure could be done in the following way.

First, choose a quite large number of runs of the algorithm for one experiment.
We can set this number as a constant N = 225, and it should be quite large for
an accurate time estimation.

Then we make two experiments:

4

Experiment 1:
T1=get current time in clocks
repeat N times

empty operator ;
T2=get current time in clocks

Experiment 2:
T3=get current time in clocks
repeat N times

run algorithm implementation Ah

T4=get current time in clocks

Let us denote the working time in clocks of the algorithm Ah as Tc(Ah). Let
also the accumulated time in clocks for other expenses, such as loop organization,
probably the function Ah calls, etc., be denoted as σ. Then from the experiments
above we get an approximate estimates of the speed in clocks.

T2− T1
N

= σ

T4− T3
N

= Tc(Ah) + σ.

(1)

From above equation we can derive the expression for the speed estimate in
the number of clocks that the algorithm Ah requires.

Tc(Ah) =
(T4− T3) − (T2− T1)

N
. (2)

This is the time estimate of the algorithm implementation Ah in clocks, for
a particular processor. The value must converge to an integer number as the
number of runs N goes to infinity. To get the current clock state we can use the
following procedure:

asm
{ xor eax,eax

cpuid
rdtsc
mov T1,eax
xor eax,eax
cpuid

}

1.5 The Choice of the Name

The name “Mir” is dedicated to the first space station which was also called
“Mir”. The space station was launched by Russians on February 20 1986, and
was sinked in the Pacific ocean on March 23 2001. Actually, the word ‘Mir’ in

5

Russian has two meanings ‘World’ and ‘Peace’. Unfortunately, we do not know
exactly which one was meant when they decided to call the space station by this
name, and this question is difficult for us. However, during its working period in
the space a lot of scientific results were achieved. That is why we give the name
to our design “Mir” in respect to science. As far as this is our the first attempt
to make a stream cipher of such kind, we add “-1” to the name, as it is our the
first version. The final name is “Mir-1”.

2 Design Description

2.1 Notations and Definitions

In our paper ⊕, &, and | are a bitwise XOR, AND, and OR on two arguments,
whereas � and · denote arithmetical addition and multiplication operations with
truncation by 64 bits. x ≪ t and x ≫ t denote cyclic shift on a word x by t
bits to the left and right, respectively. x � t and x � t denote a simple shift
of a word x by t positions to the left and right, respectively; note that in this
case 64 − t and t bits of the word x will be lost, respectively. If some variable
X is represented in a binary form as x63 . . . x1x0, then the notation X [a, b]
denotes an integer number which has the binary representation xb . . . xa. A 64-
bit word can also be represented as a concatenation of bytes, and denoted as X =
(X.byte7|| . . . ||X.byte1||X.byte0); or it can also represented as concatenation
of 32-bit words as X = (X.half1||X.half0). In this design we also use three
constants C0 = 0x1248842112488421, C1 = 0x1248124812481248 and C3 =
0x4812481248124812.

- A word is a nonnegative 64-bit integer;
- Loop State (LS) are 4 words registers x0, x1, x2, x3;
- Automata State (AS) are 2 words registers A, B;
- Internal State (IS) is the combination of words from LS and AS, and a secret

S-box of size 256 bytes;
- Plaintext (PT) is a sequence of words P=p0, p1, . . .;
- Keystream (KS) is a sequence of words Z=z0, z1, . . .;
- Ciphertext (CT) is a sequence of words C=c0, c1, . . .;
- Secret Key (Key) are 16 bytes k0, . . . , k15;
- Initial value (IV) are 8 bytes IV0, . . . , IV7;

2.2 Encryption and Decryption

Encryption and decryption is a XOR with the keystream

C = P⊕ Z. (3)

One round function looks as follows:

1. Encrypt(pi)

6

2. Loop State Update
3. Automata State Update
4. return ci = pi ⊕ B

1. Decrypt(ci)
2. return Encrypt(ci)

2.3 Loop State Update

x0

x1

x2

x3

L
o
op

S
ta

te
U

p
d
at

e

Fig. 1. Loop State update block

Update of the LS is a T-function, first studied and introduced in [4, 5]. The
LS update is illustrated in Figure 1.




x0

x1

x2

x3


 →




x0 �(s) �2 · x2 · (x1|C1)
x1 �(s&x0) �2 · x2 · (x3|C3)
x2 �(s&x0&x1) �2 · x0 · (x3|C3)
x3 �(s&x0&x1&x2) �2 · x0 · (x1|C1)


 , (4)

where s = (x0&x1&x2&x3 � C0) ⊕ x0&x1&x2&x3, and C0, C1, C3 are three
constants given in sub Section 2.1.

2.4 Automata State Update

The structure of the AS update function is shown in Figure 2. First we ap-
ply the secret S-box to each byte of B in parallel, and the result is xored
with A, i.e., A.bytei = A.bytei ⊕ S[B.bytei]. Then A is padded with a word
(x2.half1||x0.half1). Register B is then rotated by 29 positions to the left, and
ariphmetically added with the register A and the word (x3.half1||x1.half1).
Finally, the words A and B are exchanged.

7

x0[32:63]

x1[32:63]

x2[32:63]

x3[32:63]

A B

S

A′ B′

≪ 29

zi

Fig. 2. Automata State Update

2.5 Key Setup

The key is of size 128 bits and given as an array of 16 bytes Key = (k15, . . . , k0).
First, the secret S-box is initialized as follows.

S[i] = SR[. . . SR[SR[i⊕ k0] ⊕ k1] ⊕ . . . ⊕ k15], for all i = 0, . . . , 255, (5)

where SR[·] is a fixed Rijndael S-box, which is also given in Appendix B.
Afterwards, the following procedure is performed.

1. Key Setup ((k15, . . . , k0))
2. Initialise secret S-box as shown above
3. A = x1 = (k7|| . . . ||k0)
4. B = x3 = (k15|| . . . ||k8)
5. x0 = C0

6. x2 = C1

7. Repeat 8 times
8. Loop State Update
9. Automata State Update

The constants C0 and C1 are the same as in the LS update function, and
also given in sub Section subsec:not.

8

2.6 IV Setup

The IV is of size 64 bits and given as an array of 8 bytes IV = (IV7, . . . , IV0).
This setup function is given below.

1. IV Setup((IV7, . . . , IV0))
2. x0.byte4 = x0.byte4 ⊕ S[IV0] ⊕ S[IV1] ⊕ S[IV2]
3. x1.byte4 = x1.byte4 ⊕ S[IV0] ⊕ S[IV3] ⊕ S[IV4]
4. x2.byte4 = x2.byte4 ⊕ S[IV2] ⊕ S[IV5] ⊕ S[IV7]
5. x3.byte4 = x3.byte4 ⊕ S[IV3] ⊕ S[IV6] ⊕ S[IV7]
6. x0.byte0 = x0.byte0 ⊕ S[IV3] ⊕ S[IV5]
7. x1.byte0 = x1.byte0 ⊕ S[IV7] ⊕ S[IV6]
8. x2.byte0 = x2.byte0 ⊕ S[IV0] ⊕ S[IV1]
9. x3.byte0 = x3.byte0 ⊕ S[IV2] ⊕ S[IV4]

10. A.byte0 = A.byte0 ⊕ S[IV0] ⊕ S[IV5] ⊕ S[IV6]
11. A.byte4 = A.byte4 ⊕ S[IV1] ⊕ S[IV3] ⊕ S[IV5]
12. B.byte0 = B.byte0 ⊕ S[IV1] ⊕ S[IV4] ⊕ S[IV7]
13. B.byte4 = B.byte4 ⊕ S[IV2] ⊕ S[IV4] ⊕ S[IV6]
14. Repeat 2 times
15. Loop State Update
16. Automata State Update

3 Speed Measuring

We estimated the plain implementation (one operation per time is allowed), and
also a C++ implementation. We give the detailed table with speed parameters.

Algorithm Plain implementation C++ implementation
(number of operations) (processor’s clocks)

Key Setup around 256× 16 op. for S-box 11149 clocks
6 op. for LS and AS registers init (2−30 · 4972 sec.)

additionally 8 rounds
IV Setup 32 op. for LS and AS registers update 693 clocks

additionally 2 rounds (2−30 · 310 sec.)
One Round 40 op. 314 clocks
· LS Update 24 op. (2−30 · 141 sec.)
· AS Update 16 op. (454 MBit/sec.)

The estimations were done on a usual PC computer, 32-bit operation system
Windows XP, 32-bit compiler Visual C/C++ 6.0, with the processor Pentium
IV, 2.40GHz and memory 1Gb.

The speed of this design appers to be slightly less (or even similar) than the
speed of AES. The reason is that the 64-bit multiplication operations are very
expensive. The T-function has four multiplications, which require as much time
as all the other operations in the round loop. It means that T-function are very
expensive. Another reason could be that the compiler and the platform are 32-
bit oriented, and the work with 64-bit variables is slow. In the nearest feauture

9

64-bit Windows XP will appear, and the beta-edition of Visual C/C++ has
already released. We hope that on a new platform this cipher can work faster.
However, this design does not need much memory and it is flexible for different
platforms.

4 Conclusions

In this work we tried to use a T-function to substitute an LFSR, make the
cipher to be more resistent against algebraic attacks, and make it more flexible
for different platforms with a little memory requirement. Another important
criteria for us was a very high security level, which we clame to be at least 2128.

During our work on this design we also found several implementation issues.
In particular, we found that T-functions appear to be quite expensive in time,
and are not as efficient as it was stated by Shamir and Klimov before. The
implementation of such functions is even much slower than LFSRs. One of the
reasons why they were studied was that T-functions can perhaps efficiently resist
against algebraic attacks, since the multiplication operation scrambles the bits a
lot. However, the multiplication operation appeared to be a very slow operation
for common PC processors. Just four multiplications require as much time as
all the rest operations in the cipher. One more minus is that the security level
of T-functions is also not well studied yet. However, we found them interesting
from other objectives stated before, such as their resistance against algebraic
attacks and other positives.

We believe that such design could be used in smart cards or other micro-
processors.

References

1. P. Ekdahl and T. Johansson. A new version of the stream cipher SNOW. In
K. Nyberg and H. Heys, editors, Selected Areas in Cryptography—SAC 2002, volume
2595 of Lecture Notes in Computer Science, pages 47–61. Springer-Verlag, 2002.

2. J. Daemen and V. Rijmen. The Design of Rijndael. Springer-Verlag, 2002.

3. M. Matsui and S. Fukuda. How to Maximize Software Performance of Symmetric
Primitives on Pentium III and 4 Processors. In Fast Software Encryption 2005.
Springer-Verlag, 2005.

4. A. Klimov and A. Shamir. A new class of invertible mappings. In CHES ’02:
Revised Papers from the 4th International Workshop on Cryptographic Hardware
and Embedded Systems, pages 470–483, London, UK, 2003. Springer-Verlag.

5. A. Klimov and A. Shamir. New Applications of T-functions in Block Ciphers and
Hash Functions. In Fast Software Encryption 2005. Springer-Verlag, 2005.

0
The work described in this paper has been supported in part by Grant VR 621-2001-2149, in part by the Graduate
School in Personal Computing and Communication PCC++, and in part by the European Commission through
the IST Program under Contract IST-2002-507932 ECRYPT.
The information in this document reflects only the author’s views, is provided as is and no guarantee or warranty
is given that the information is fit for any particular purpose. The user thereof uses the information at its sole
risk and liability.

10

Appendix A: Test Vectors

Key: k15, . . . , k0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
IV: IV7, . . . , IV0 00 00 00 00 00 00 00 00
After key setup
x0.byte7, . . . , x0.byte0 47 40 4C C7 14 EA 22 3D
x1.byte7, . . . , x1.byte0 CD 78 28 56 65 82 51 E8
x2.byte7, . . . , x2.byte0 08 E1 F0 10 4E 88 A0 92
x3.byte7, . . . , x3.byte0 91 8A A3 B0 D2 37 D3 61
A.byte7, . . . , A.byte0 A1 70 23 49 22 4E 5F C1
B.byte7, . . . , B.byte0 EE B1 D4 0A 14 B6 D1 C7
After IV setup
x0.byte7, . . . , x0.byte0 7A 66 37 73 33 2C D6 1F
x1.byte7, . . . , x1.byte0 5C AD A9 04 E8 F2 BA 55
x2.byte7, . . . , x2.byte0 6D 4F 20 0A 23 6E C3 D4
x3.byte7, . . . , x3.byte0 E7 1F 73 BD 7F DE 7F FD
A.byte7, . . . , A.byte0 49 E2 D1 B0 C9 D2 F7 99
B.byte7, . . . , B.byte0 62 E2 39 00 0C E1 7B C1
The first keystream values
Keystream C5EC3D7E 3C0A7145 69050CF2 6E002DB5 . . .
Key: k15, . . . , k0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
IV: IV7, . . . , IV0 00 00 00 00 00 00 00 01
After key and IV setup
x0.byte7, . . . , x0.byte0 A6 53 3A 71 99 50 40 13
x1.byte7, . . . , x1.byte0 90 65 12 F6 73 A1 D4 6D
x2.byte7, . . . , x2.byte0 54 E9 C3 78 DE D1 4B CE
x3.byte7, . . . , x3.byte0 D8 7C 71 C6 0F 45 CD 6D
A.byte7, . . . , A.byte0 77 CF 78 BF D9 19 B4 B3
B.byte7, . . . , B.byte0 26 2E EC B8 D6 78 78 49
The first keystream values
Keystream 1DCFBAFB C0AC03B7 BFD4F59A 2BB729DB . . .
Key: k15, . . . , k0 0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00
IV: IV7, . . . , IV0 07 06 05 04 03 02 01 00
After key setup
x0.byte7, . . . , x0.byte0 CD 63 A0 93 0B 20 28 3D
x1.byte7, . . . , x1.byte0 A7 4F FB E8 FF 12 34 E8
x2.byte7, . . . , x2.byte0 BE B6 78 2E 66 BB 40 72
x3.byte7, . . . , x3.byte0 13 16 7D 0E 7B 6D 9B 29
A.byte7, . . . , A.byte0 B2 35 0C 29 55 F7 43 52
B.byte7, . . . , B.byte0 AE F1 8E 28 AE 75 CE EF
After IV setup
x0.byte7, . . . , x0.byte0 A0 0C 75 DE E3 72 B3 97
x1.byte7, . . . , x1.byte0 1D C4 68 5D D8 BB FE 62
x2.byte7, . . . , x2.byte0 E7 93 97 4A 51 1D 81 D1
x3.byte7, . . . , x3.byte0 CE 9B 86 FF 18 C6 E4 B3
A.byte7, . . . , A.byte0 4F CF E0 7C 0B 44 73 7F
B.byte7, . . . , B.byte0 89 A1 CD 6F 1A 23 94 CF
The first keystream values
Keystream DBDB0F48 B40CBCA0 84EB4EE0 5683AD37 . . .

11

Appendix B: Rijndael S-box

const uc SR[]={
0x63 ,0x7c ,0x77 ,0x7b ,0xf2 ,0x6b ,0x6f ,0xc5 ,0x30 ,0x01 ,0x67 ,0x2b,
0xfe ,0xd7 ,0xab ,0x76 ,0xca ,0x82 ,0xc9 ,0x7d ,0xfa ,0x59 ,0x47 ,0xf0,
0xad ,0xd4 ,0xa2 ,0xaf ,0x9c ,0xa4 ,0x72 ,0xc0 ,0xb7 ,0xfd ,0x93 ,0x26,
0x36 ,0x3f ,0xf7 ,0xcc ,0x34 ,0xa5 ,0xe5 ,0xf1 ,0x71 ,0xd8 ,0x31 ,0x15,
0x04 ,0xc7 ,0x23 ,0xc3 ,0x18 ,0x96 ,0x05 ,0x9a ,0x07 ,0x12 ,0x80 ,0xe2,
0xeb ,0x27 ,0xb2 ,0x75 ,0x09 ,0x83 ,0x2c ,0x1a ,0x1b ,0x6e ,0x5a ,0xa0,
0x52 ,0x3b ,0xd6 ,0xb3 ,0x29 ,0xe3 ,0x2f ,0x84 ,0x53 ,0xd1 ,0x00 ,0xed,
0x20 ,0xfc ,0xb1 ,0x5b ,0x6a ,0xcb ,0xbe ,0x39 ,0x4a ,0x4c ,0x58 ,0xcf,
0xd0 ,0xef ,0xaa ,0xfb ,0x43 ,0x4d ,0x33 ,0x85 ,0x45 ,0xf9 ,0x02 ,0x7f,
0x50 ,0x3c ,0x9f ,0xa8 ,0x51 ,0xa3 ,0x40 ,0x8f ,0x92 ,0x9d ,0x38 ,0xf5,
0xbc ,0xb6 ,0xda ,0x21 ,0x10 ,0xff ,0xf3 ,0xd2 ,0xcd ,0x0c ,0x13 ,0xec,
0x5f ,0x97 ,0x44 ,0x17 ,0xc4 ,0xa7 ,0x7e ,0x3d ,0x64 ,0x5d ,0x19 ,0x73,
0x60 ,0x81 ,0x4f ,0xdc ,0x22 ,0x2a ,0x90 ,0x88 ,0x46 ,0xee ,0xb8 ,0x14,
0xde ,0x5e ,0x0b ,0xdb ,0xe0 ,0x32 ,0x3a ,0x0a ,0x49 ,0x06 ,0x24 ,0x5c,
0xc2 ,0xd3 ,0xac ,0x62 ,0x91 ,0x95 ,0xe4 ,0x79 ,0xe7 ,0xc8 ,0x37 ,0x6d,
0x8d ,0xd5 ,0x4e ,0xa9 ,0x6c ,0x56 ,0xf4 ,0xea ,0x65 ,0x7a ,0xae ,0x08,
0xba ,0x78 ,0x25 ,0x2e ,0x1c ,0xa6 ,0xb4 ,0xc6 ,0xe8 ,0xdd ,0x74 ,0x1f,
0x4b ,0xbd ,0x8b ,0x8a ,0x70 ,0x3e ,0xb5 ,0x66 ,0x48 ,0x03 ,0xf6 ,0x0e,
0x61 ,0x35 ,0x57 ,0xb9 ,0x86 ,0xc1 ,0x1d ,0x9e ,0xe1 ,0xf8 ,0x98 ,0x11,
0x69 ,0xd9 ,0x8e ,0x94 ,0x9b ,0x1e ,0x87 ,0xe9 ,0xce ,0x55 ,0x28 ,0xdf,
0x8c ,0xa1 ,0x89 ,0x0d ,0xbf ,0xe6 ,0x42 ,0x68 ,0x41 ,0x99 ,0x2d ,0x0f,
0xb0 ,0x54 ,0xbb ,0x16 };

Appendix C: C++ Object “MirCipher”

// ==
// Types and Constants
// ==
typedef unsigned long long ull;
typedef unsigned long ul;
typedef unsigned char uc;

union Int
{ struct
{ uc b0, b1, b2, b3, b4, b5, b6, b7;
} b; // 8 -bit access
struct
{ ul w0, w1;
} w; // 32-bit access
ull v; // 64-bit access

};

12

// ==
// Design Block
// ==
#define Mir1_STATE_UPDATE \
Int r0, r1, t0, t1, p0, p1, s, m0, m1, m2, m3; \
t0.v = x0.v << 1; \
p1.v = x3.v | C3; \
p0.v = x1.v | C1; \
t1.v = x2.v << 1; \
m2.v = p1.v * t0.v; \
m3.v = p0.v * t0.v; \
m0.v = p0.v * t1.v; \
m1.v = p1.v * t1.v; \
r0.v = x0.v & x1.v; \
a.b.b0 ^= S[b.b.b0]; \
a.b.b1 ^= S[b.b.b1]; \
r1.v = r0.v & x2.v; \
a.b.b2 ^= S[b.b.b2]; \
a.b.b3 ^= S[b.b.b3]; \
s.v = r1.v & x3.v; \
a.b.b4 ^= S[b.b.b4]; \
a.b.b5 ^= S[b.b.b5]; \
s.v = (s.v + C0) ^ s.v; \
a.b.b6 ^= S[b.b.b6]; \
a.b.b7 ^= S[b.b.b7]; \
x3.v += (s.v & r1.v) + m3.v; \
x2.v += (s.v & r0.v) + m2.v; \
r0.v = (b.v << 29); \
x1.v += (s.v & x0.v) + m1.v; \
r0.v |= (b.v >> 35); \
x0.v += s.v + m0.v; \
r0.v += x1.w.w1; \
r0.w.w1+= x3.w.w1; \
b.w.w0 = a.w.w0 ^ x0.w.w1; \
b.w.w1 = a.w.w1 ^ x2.w.w1; \
a.v = r0.v + b.v;

// ==
// Mir-1 Cipher
// ==
class MirCipher
{ private:

const ull C0, C1, C3; // constants
public:

13

Int a, b, x0, x1, x2, x3; // internal state
uc S[256]; // secret S-box

// --
// Constructor
// --
MirCipher(void): C0(0x1248842112488421),

C1(0x1248124812481248),
C3(0x4812481248124812) {}

// --
// Key Setup
// --
inline void KeySetup(uc * key) // 16 bytes of the key
{ int i, j;

for(i=0; i<256; ++i)
for(S[i]=i, j=0; j<16; ++j)
S[i] = SR[S[i] ^ key[j]];

a.v = x1.v = ((ull*)key)[0];
b.v = x3.v = ((ull*)key)[1];
x0.v = C0;
x2.v = C1;
for(i=0; i<8; ++i) { Mir1_STATE_UPDATE }

}

// --
// IV Setup
// --
inline void IVSetup(uc * IV) // IV is a 64 bit value
{ x0.b.b4 ^= S[IV[0]] ^ S[IV[1]] ^ S[IV[2]];

x1.b.b4 ^= S[IV[0]] ^ S[IV[3]] ^ S[IV[4]];
x2.b.b4 ^= S[IV[2]] ^ S[IV[5]] ^ S[IV[7]];
x3.b.b4 ^= S[IV[3]] ^ S[IV[6]] ^ S[IV[7]];
x0.b.b0 ^= S[IV[3]] ^ S[IV[5]];
x1.b.b1 ^= S[IV[7]] ^ S[IV[6]];
x2.b.b2 ^= S[IV[0]] ^ S[IV[1]];
x3.b.b3 ^= S[IV[2]] ^ S[IV[4]];
a.b.b0 ^= S[IV[0]] ^ S[IV[5]] ^ S[IV[6]];
a.b.b4 ^= S[IV[1]] ^ S[IV[3]] ^ S[IV[5]];
b.b.b0 ^= S[IV[1]] ^ S[IV[4]] ^ S[IV[7]];
b.b.b4 ^= S[IV[2]] ^ S[IV[4]] ^ S[IV[6]];
{ Mir1_STATE_UPDATE }
{ Mir1_STATE_UPDATE }

}

14

// --
// Encryption/Decryption
// --
inline ull EncDec(ull z)
{ Mir1_STATE_UPDATE

return b.v^z;
}

};

15

