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Abstract :

Lucifer, a direct predecessor of the DES algorithm, is a block-cipher
having a 128 bit block size and 128 bit key length. Its general design
principles and properties are described and discussed. A simple FORTRAN
program is presented which implements the algorithm, providing a modern,
secure cryptographic algorithm that can be used in personal computers.
Lucifer is of special interest because it is in the same class of product

ciphers as DES but is much simpler. Study of Lucifer may reveal

cryptanalytic methods that can be applied to DES.
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I. 1Introduction

Lucifer is a high security, 128 bit key, block-cipher algorithm with a
128 bit block size. It is a direct predecessor of DES and is the same
vafiety of product cipher, wusing alternating 1linear and non-linear
transformations. Lucifer is thereforé a good subject for cryptanalysis in
order to discover principles that can be applied to DES.

One of the principle complaints about DES is the short, 56 bit length
of 'the key. It is asserted [4,5,11,12] that DES could be broken by
exhaustive search at a reasonable cost with today's hardware. It is also

asserted that by 1990, the increased speed of the available hardware will



make DES so insecure that some form of replacement will be a necessity
[4]. it is unlikely that exhaustive search will ever be a feasible
technique with Lucifer because of its 128 bit key length, and it is
extr.emely likely that any successor of DES will have a 128 bit key |[4].

DES has also been criticized because some of its design principles
have been kept secret at the request of NSA [11,12], allowing for the
possibility that there are weaknesses that only NSA and its designers are
aware of. The same degree of secrecy does not appear to have been applied
to Lucifer.

Because of its relationship to DES, and its relative simplicity
compared to DES, Lucifer is worthy of study. An understanding of Lucifer
helps to clarify the internal operation of DES, since the principal
elements of Lucifer are also present in DES, though in more complex form.
Since Lucifer and DES have similar key-message statistical properties, and
Lucifer is very resistent to exhaustive search because of its 128 bit key,
Lucifer appears to be relatively strong cryptographically. Lucifer's
relative simplicity also makes it an extremely easy algorithm to implement
in software, making it a reasonable candidate for use on a personal
computer.

This paper discusses the development of Lucifer, its design and

hardware implementation. The relationship of Lucifer to DES is also

discussed, and some suggestions for cryptanalytic study are made. An

original FORTRAN implementation is presented that is suitable for use on a

personal computer or in other applications.

II. The Hardware Device

Lucifer was developed at IBM Thomas J. Watson Research Laboratory in



the early 1970's [6,16] and was the subject of several U.S. patents
(7,8,9,17]. The original Lucifer was a prototype cryptographic device
constructed at Watson Laboratory for use in data communication. The
Lucifer device was combined with the IBM 2770 Data Communications System
as part of an experiment in computer security. A software algorithm
provided the same cryptographic transformation in the host computer. The
Lucifer device allowed the key to be loaded at the operator's option
either from ROM or from magnetic cards. A mode selection switch allowed
three modes of operation. One mode disabled the cryptographic function,
and, therefore, cleartext was both sent and received. A second mode
enabled Lucifer to receive ciphertext and decipher it; messages received
in cleartext were not altered. Cleartext was always transmitted. The
third mode was similar to the second, except that, in addition, all
messages transmitted were enciphered.

The Lucifer device was constructed from standard TTL SSI and TTL MSI
component.s. In all, 178 TTL modules were used, mounted on four wire-wrap
boards. The state-of-the-art in LSI at the time Lucifer was constructed
had an influence on the design of the device (and therefore the algorithm)
in that an attempt was made to limit the complexity of the circuits. As a
result, the Lucifer hardware used circular shift registers to store the
key and the two halves of the message in order to simplify access to
successive bytes. The APL program written by IBM that implements the
algorithm in software mimics the hardware by actually shifting the key and
halves of the message. The Fortran programs, discussed in Section V and
shown in the Appendices, do not move the key or halves of the message; the

appropriate bytes are accessed in place as needed.



III. The Algorithm

The Lucifer algorithm is a product cipher that uses alternating linear

and non-linear transformations with the choice of non-linear

transformation under control of the key [6]. Informally, a linear

transformation, T, on a vector space, V, is one that has the linearity

'Erogrtx: T(ax+by) = aT(x)+bT(y), where x and y are vectors and a and b

are scalars. A non-linear transformation is one that does not have the
linearity property. Strings of bits and Boolean operations can form a
vector space with bit strings vectors, individual bits scalars, bitwise
EXCLUSIVE-OR vector addition, and bitwise logical AND multiplication by a
scalar. Por a formal treatment see [11,14]. For example, a permutation
p(xlxz xn) = xp(l)xp(Z) xp(n) of a string of bits is a
linear transformation.

Lucifer has a block size and key size of 128 bits (16 bytes). 128 bit
plaintext blocks produce 128 bit ciphertext blocks under control of the
128 bit key. Every bit of the key and every bit of the cleartext
participate in the construction of every bit of the ciphertext. Tests
conducted by IBM indicate that the change of a single bit in either the
key or the message causes approximately half (64) of the bits in the
resulting ciphertext to change (16). The probability that a particular
ciphertext bit will change appears to be very close to one-half, and the
probabilities seem tc be independent for each bit of the ciphertext block.

The message block to be enciphered is divided into two halves, the
upper and lower, each containing eight bytes (64 bits). The bytes of the
message are initially ordered so that the rightmost byte is the highest,
and the leftmost byte is the lowest. Encryption (and decryption) is

divided into sixteen rounds. A block diagram of the functional units |



appearing in one round is shown in Figure 1. During a round, the lower
half of the message is transformed; the upper half is not changed, but its
contents are used as input to the transformation. Between rounds, the
upper and lower halves of the message are exchanged.

The sixteen bytes of the key and the eight bytes of each message half
can be viewed as being enscribed axially on the face of three cylinders.
The cylinders all rotate in the same direction. Let the initial position
of byte zero on each cylinder be the origin for that cylinder with respect
to rotation along its axis. The rotation of each cylinder by one step
brings a new byte to the origin. The number of the new byte is one
greater (modulo 16) than the number of the previous byte.

The halves of the message move in step and rotate one position after
each byte is used. Byte zero returns to the origin on both cylinders
after eight steps, i.e. one round. During encryption, the key rotates one
step after each key byte is used, except at the end of each round, when it
does not advance. Therefore, the key byte that ended the previous round
begins the next one. For example, bytes zero through seven are used in
the first round, and byte seven, not zero, starts the second round. For
decryption, the key bytes are accessed in reverse order. The key is
initially rotated to bring byte eight to the origin. Before each round
and after each byte is used, the key advances one step. Thus, the first
decryption round starts with byte nine and rotates past byte fifteen to
end with byte zero; byte two starts the second round. Different key bytes
are accessed in each round; the period of repetition is sixteen, so after
the last round, the key is back in its initial position. The order in
which the key bytes are accessed for each round is shown  in Figqure 2 and

is discussed further in Section IV. The rotation of the key is not in



step with the rotation of the two halves of the message. This permits the
bits of every key byte to be used in the generation of every ciphertext
bit.

The first key byte accessed in each round is used as the
transform—control-byte. 1Its number is the leftmost entry in each row
(round) in Fiqure 2. Bach of its eight bits in turn becomes the
interchange-control-bit, which is used to choose which of two non-linear
transformations will be applied to a byte in the upper half of the
message. For both encryption and decryption, bits seven through zero of
the transform-control-byte choose the transform for bytes zero through
seven of the upper half of the message respectively.

The non-linear transformations contain two different non-linear
substitution boxes (S-boxes), S0 and Sl‘ Bach S-box has four input
bits and four output bits, so the input and output can represent the
numbers from zero to fifteen (one hexdigit) in binary. An S-box can be
considered to implement a permutation of the numbers from 0 to 15.
Equivalently, it can also be viewed as a simple substitution of 4-bit
quantities into 4-bit quantities. The Lucifer S-box implementation
decodes the four binary bits into values from zero to fifteen, performs a
fixed permutation of the values from zero to fifteen, and encodes the
values from 2zero to fifteen back into four binary bits. While the
internal S-box permutation is a linear transformation of the 4 input bits
when they are considered to be binary numbers frbm 0 to 15, it is a
non-linear transformation of the four input bits when they are considered
to be simply a vector of bits. A block diagram of an S-box appears in
Figure 3. The permutations for S0 and Sl are shown in Figure 4. 1If

the interchange-control-bit is 2zero, then the right hexdigit of the



message byte is input to Sl and the left hexdigit is input to SO‘ If
the interchange-control-bit is one, then the hexdigit inputs to the
S-boxes are interchanged; the right hexdigit is input to S0 and the left
hexdigit is input to S;- One of two non-linear transforms results. The
generation of transformed bytes using the bytes of the upper half of the
message as input to the key—controlled S-boxes is called confusion.

For step n in a particular round, a confused byte is generated from
byte n in the upper message half. It is then bitwise XOR'ed (addition
modulo 2) with the key byte that is at the origin of the key cylinder for
step n in that particular round. Figure 2 shows the key byte accessed for

every step of each round. This process is called key interruption, since

the use of the key acts as a barrier to cryptanalysis by merging some
secret information into the confused bytes. The eight bits of each
resuliing interrupted byte are permuted according to a fixed permutation,
shown in Fiqures 1 and 4.

The permuted bits are then XOR'ed with eight bits of the lower part of
the message. The eight bits in the lower half of the message are chosen
according to the bit pattern of convolution XOR cells shown in Figqures 1
and 5. The convolution XOR cells remain fixed in space with respect to
the origin as the lower message cylinder rotates. Figure 5 shows the
lower message cylinder and convolution cells of Figure 1 cut at the origin
and unfolded. As the cylinder rotates, each permuted-interrupted byte is
bitwise XOR'ed with a different eight bits of the lower half of the
message. All 64 bits of the lower message half are used in each round,
and each bit is used exactly once. This process is called diffusion,
since the result of the transformation of one-half of the message is

diffused throughout the other half of the message. Key-interruption and



diffusion can be combined because XOR is associative and commutative.

The confusion, key interruption, and diffusion (c-i-d) cycle described
above forms a single round. Oonfusion and diffusion were first suggested
as a way in which to create a cryptographically strong cipher by Shannon
in his well-known paper on secrecy systems [15]. Confusion, key
interruption and diffusion are also used in DES, though in a somewhat more
complex manner than in Lucifer [13]. The description of DES is actually
more understandable when looked upon as describing key interruption,
confusion, and then diffusion.

The Lucifer c~i-d cycle is repeated sixteen times with fifteen
interchanges of the upper and lower message halves. The result is the
ciphertext. Deciphering is performed by repeating the c-i-d cycles in
reverse order, with the key rotated eight positions before the beginning
of the first decryption round. 1In the sixteen repetitions of the c-i-d
cycle, each of the 128 key bits is used once for confusion control and
eight times for key interruption, so every bit of the ciphertext depends

in a very complex way upon every bit of the message and every bit of the

key.

IV. Key-Byte Access Schedule

Figure 2 shows the order in which the key bytes (rows) are accessed
for each round. Each entry in the table is the number of the key byte to
be accessed. For encipher operations the key bytes are taken from left to
right and top to bottom. For decipher operations the key bytes are taken

from left to right and bottom to top. The leftmost column contains the

nunber of the transformcontrol-byte. The rows show the numbers of the

eight key bytes used for key-interruption in the corresponding round.



Each element of row n + 1 of the table is obtained by adding 7 modulo 16

to the corresponding element of row n. Alternatively, each element of row
n is obtained by adding 9 modulo 16 (= -7 modulo 16) to the corresponding
element of row n + 1. In implementing the algorithm, it is not necessary
to store the key-byte access schedule in tabular form, since it merely
shows the exact order in which the key bytes pass the origin during the

rotation of the key, as described above.

V. FORTRAN Programs

The original 1IBM report describing Lucifer contains an APL
implementation that emulates the | hardware implementation. A FORTRAN
implementation was developed for this paper because APL is very hard to
read and understand, and APL is unavailable on most small and many large
computers. In addition, APL can be quite inefficient. On the other hand,
FORTRAN is very widely available (including on personal computers),
FORTRAN has an ANSI Standard, and FORTRAN programs are usually compiled so
they normally have reasonable performance. The FORTRAN implementation was
developed by comparing the APL program with the hardware block diagrams
and written descriptions contained in [6,16]. There were some ambiguities
in the written description of the order in which the bits of the key and
message were loaded and stored in the hardware. These ambiquities were
resolved by reference to the APL implementation.

Appendix 1 presents a simple FORTRAN subroutine which implements
Lucifer. Because very few high-level languages, including FORTRAN, are
well suited for bit manipulation operations, the message and key are
stored in integer arrays with one message or key bit per array element;

the value of each array element must be either 2zero or one. The



subroutine assumes that the key and message have already been converted
from input format into array format by another subroutine; no attempt is
made to verify that every array element is either zero or one.

The subroutine handles the key and message halves in place, without
rotating them. Instead, pointers are used to indicate which key and
message bytes are to be accessed, and the pointers are moved instead. The
message is stored in variable m as an 8x8x2 three dimensional array
(c_olumn, row, plane). It can be equivalenced to a 128 element one
dimensional array. The planes correspond to the two halves of the
message. The key is stored in the variable k as a 16x8 two dimensional
array (column, row). It can be equivalenced to a 128 element one
dimensional array. Variables s0 and sl contain the permutations for the
S-boxes, and variable pr contains the inverse of the fixed permutation
used after key interruption. If the variable d is equal to one, then the
subroutine deciphers; otherwise, it enciphers. Variable Jjj contains the
index of the message byte (row) being accessed; variable kk contains the
index of the bit (column) being accessed. Variable p(0) contains the
index of the lower half of the message; p(l) contains the index of the
upper half of the message. Variable kc holds the array index of the key
byte curréntly being accessed; ks holds the array index of the
transform-control-byte. Lines 7600 through 10000 implement the S-boxes
and interchange control. Lines 10200 through 10900 implement Kkey
interruption and diffusion. Key interruption and diffusion are combined
into one operation by first permuting the confused byte and the key byte,
and then doing the XOR's (implemented as additon modulo 2). The diffusion
pattern is contained in variable o, and the convolution cell for column kk

and row jj is equal to (o(kk)+jj) modulo 8). Because the subroutine
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operates on the messadge in place, it is necessary to physically swap the
contents of the upper and lower halves after the end of the sixteen rounds
in order to have the halves in the correct order. Lines 10900 through
11900 implement the interchange. This final swap would not have been
necessary if we had been physically swapping halves all along.

Appendix 2 presents a sample FORTRAN program which calls Lucifer. The
message block is enciphered and deciphered 500 times each, so that Lucifer
is invoked 1000 times. Appendix 3 shows the timing for 1000 invocations.
On a VAX 11/780 computer, the time to encrypt or decrypt a 128 bit block
is approximately 100 ms. On the same computer, an optimized version of
the NBS DES algorithm [13] takes between 40 and 50 ms to encrypt or
decrypt 64 bits. It should be possible to speed up the Lucifer subroutine

by optimizing it, however, that was not done in this presentation for

reasons of clarity. An optimized program would not have corresponded in

anvobviouslway to the description and figures presented in the rest of the

paper.

Appendix 4 shows a subroutine that expands input bytes into atray

format, and a subroutine that compresses array format back into byte

format.. The conversion from byte format to array format guarantees that

each array element is either one or zero.

V. Conclusion

A recent article [3] asked if there was a reasonable secure, modern
cryptographic algorithm that could be easily implemented on a personal
comput.er. The FORTRAN version of the Lucifer algorithm presented in this
paper is very suitable for use on a personal computer. The advantages of

FORTRAN are that it is widely available, standardized, and usually

-11-



produces programs with reasonable performance. The Lucifer FORTRAN
implementation is simple and reasonably fast. These programs can be
optimized for speed, though the particular techniques employed would
depend upon the processor used and its architecture. The programs
presented here can easily be converted into another programming language
(e.g. BASIC).

Lucifer is also interesting because it is the direct predecessor of
DES, but is much simpler than DES. For example, Lucifer only has two
S-boxes, the minimum possible for this kind of product cipher with
rotating key, and therefore, the key is used to choose between the same
two non-linear transforms in every round. DES effectively has 32 S-boxes
(constructed from 8 more complicated ones), and the choice of which
non-linear transforms are used in each round depends upon input bits as
well as key bits. Studying the properties of Lucifer should yield some
insights into the cryptanalysis of product ciphers with rotating keys.

It is known that without the rotating key this type of cipher is weak
[10]. Some statistical techniques have been developed that allow
cryptanalysis under a known-plaintext attack of very simple ciphers using
alternating S-boxes and permutations [1,2]. It is possible that these
techniques might be extended to Lucifer and DES, and they need not provide
a complete cryptanalysis. The statistical attack might be used in
combination with exhaustive search by first reducing the set of possible
keys to a practical size; exhaustive éearch would then be used t.o examine
every remaining key to find the correct one. However, to-date, the only
publicly known cryptanalysis of Lucifer or DES is exhaustive search of the
entire key space, which is currently impractical for DES and virtually

impossible for Lucifer [4,5,11,12].

-12-



Even if the combined statistical/brute-force method suggested in the
previous paragraph doesn't work, understanding the simpler Lucifer problem
should help us to understand the DES problem, which, in turn, might lead
to cryptanalytic techniques that can be applied directly to DES. Also,
understanding the ways in which Lucifer was strengthened (to arrive at

DES) might aid us in understanding the (still classified) criteria used by

IBM (and NSA) to design and evaluate DES. This in turn might answer some

of the questions raised about the existence of hidden weaknesses in DES.
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APPENDIX 1

subroutine lucifer{(deksym)
imrlicit integer(s-z)
dimension m(037»0t790:1)sk(0:7,0:15),0(0!7)

messase block stored one bit/locelion.

ks stored one bit/location.

values must be 0 or 1. this sutroutine doecen’t verify that
condition for messade or kewy.

fortran stores deta with innermost subscrirl verving the
fustest.therefores we have n{(columnsrowrrlane) and
k(columnsrow), the rows are the butec of the messadge and
kes. the coluwns are the bits in the bustes. for 3 normel
landadge such 2s rl/1y we would declare m(rowscolumns¥line)
and %“(rowrcolumn). we can ecuivalence 8 linear array of
128 entries to the message and hev beccsuse of the way

in whicir thew are stored.

dimension sw(0317:0:17)srr (03735t (0:7)sc(011)
dimension s0(0!15),s1(0t15) '
ecauivalence (c(0)en)sy{c(1)s1)

diffusion rattern
date 0/7¢61291+5+0+314/

inverse of fixed rermutation
date pr/215:49093y1:7+¢6/

.S-box Frermutations

date s0/12+13+7910+14+13+11+0+2+623111914+5:¢8/
data 51/7+2+14+y9+3511+0+4512y13+1»10+6+15+8+5/

the hslves of the messade bule celected zre used as input
to 60 and 1 to #roduce 4 v bits wvach, (f k(JJrks)=0 then
the low order 4 tits are used with «0 and the high ovder 4
bits are used with 31, if k{ddsks)=1 then the low worder

4 bits are used with si1 and the high order 4 bite are uvesed
with s0.

we don’t rphusically swar the halves of the mesczdge or rotate

the messade nNalves or key, we use rointers into the arraus
to tell which bules are being orerated on.

d=1 indicates decirher, encirher otherwice.

NG 2nd hl rFroint to the two halves of the meccasc,
value 0 is Lhz lower half and velue 1 is the urrer

ho=0
hl=1

k.c=0
if (d.ea.l) ke=8

do 100 ii=1s16,1
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11800
119090

12000..

N NN

400

410

"

500

NnNnNnNnmn

300

100

c—-i-d c<cle
if (d.ea.1) ke=mod{kct+l:16)

ks is the index of the transform conlroul bute
ks=ke

do 200 JJ=0:s7,1

1=0
h=0
construct the inteder values of Lhe hexdigits of one bute
of the messade.

c2ll cowrress{m{(0yjdrhl)rcr»2) is ecvuivelent znd simrler
but was slower. ¢c(02=h & c(l1)=1 D=2 ewnuivalence.

do 400 kk=0,3,1
" 1=1%24+wm(7-kkrdJeshl)
continue

do 410 kk=4,7,1
h=hx2+m(7~-kkyJddrhl)
continue

controlled interchanse and s~-btox rermutation.
v=(s0(1)+1é%Xs1(h))X(1-k(Jdrke) )+ (s0(ni+16Xc1{(1)I¥L{JIrks)

convert v back into bit arraw format.

c8ll exrpandl{vsiters2) is equivalent and simrler but
was slower,

do 500 kk=0s7,1
tr{kk)=wod{vs2)
v=Ey/2

cantinue

key-interrurtion and diffusion combiined.

the k+ir term is the rermuted kee intervrustion.

nod{(O0(kk)+iJr8B) is the diffusion row for column kk.

‘row = buyte & coluwn = bit witihin bwute.

do 300 kk=0+7.1
m(kkymod(o(kk)+Jds8)rNO)=mod(k{pr(kk) skt (rrikb)d+

mlhbsrmod(o(kk)+idr8)yh0) D)
continue

if (divlt.7.0r.d.ea.1) ko=mod(hetlrlé)

continue

swar wvwalues in hO and hl to swer hzlves of messaie.
JJJd=i10

ho=ht

hi=Jddd

continue



13300
13400
13500
13600
13700
13800
13900
14000
14100
14200
14300
14400
14500

14600

[g]

800
700

rhysicalle swar urrer and lower halves of Llhe mevcase after

the last round. we wouldn’t have needed to do
had been swarring 23ll 2lons.,

do 700 4JJ=0y7,1
o 800 kk=0r7:1
swl(kbkesddd)=m(kksyiir0)
mlkkesidrOd=m(kkeddrl)
mikkrddrl)=swillklkyid
continue -
continue

return
wand

this i1f we



APPENDIX 2

00100 c mairn prosrezm that ueses Lucifer
00200 implicit inteder (a-2)
00300 dats hsndle/0/
00400 dimension B(NI7s0:115)ym{(0i7¢0:750:1) .
00500 c messege and kev arravs are ecuivalernced to 128 element linear
004600 c arraxs.
00700 dimension kee(0!127)rmecsszge(0:127)
00800 eauivalencs (k(0r0)skeg(1))sr(m(0s0:r0)rnessadel(l))
00900 c inFut bete arravs for reasding kew anc messade
01000 c inePUbl 1s ifm ex didits, 128 bits = 32 hex digite = 14 bwriecs
01100 dimension kb{(0i31)ymb(0I31)
01200
01300 write(é6r1003)
01400 rezd(Sy1004) (kbL(i),i=0+31)
013200
01400 ) write(6:100%5)
01700 read(9+1008) (wb(i)si=0,s31)
01800
01900 call exrand(mecscagesmbr3I2)
02000 73l exrand(bkevsbkiy3d)
02100 .
02200 write(4651000) (kevw(ids 1i=0,127)
02300 Wwrike(6:,2001) (mecsadge(idy i=0,127)
02400
02500 if (.rnot, libsinit_timer(hendle)) dotao E80C
02600 »
02700 do 500 i=1,300,1
02800
02900 c encifFher
03000 ' 3=0
03100 cell lucifer(dykrm)
03200
03300 c decirher
03400 3=1
03500 c2ll lucifer(dsksm)
03600 -
03700 500 continue
03800 if{.not.libscshow_timer(handle)) €uto 800
03900 800 continue
04000 Wwrite(&,1001) (meccagel(id)sy 1i=0,127)
04100
04200 czll comrress(messasermbry 323
04300 ciéll cowmsruess(kesskbr32)
04400 write(é6,1003)
04500 write(46»1007) (kb(i)si=0,21)
044600 - Write(é:,1005)
04700 write(&:1007) (wb(i),i=0,31"
04800
04900 1000 formet(’ kew "/1&(1x,11))
05000 1001 format(’ rlain “/716(1xnsi11))
05100 1002 formet(’ cirher “/16{(1xsild)
5200 1003 fovmst(” kez 73
05300 1004 formet(32z1.1)
05400 100% formet(’ rFrlain 7
05500 100& formet(32z1.1)
054600 1007 formgt (1w:32z1.1)

QS700 end



APPENDIX 3

hew .

0123456789ABCIEFFENCKA9876543210

.rlain

AAAAAAARAAAAAAAAFBFBBBBBBBBBBBBB

khex

00000001 00100011

01000101011 00111
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0011001006001 0000
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FAULTS

nIrRI0: O
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RUFID

01:431.17
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00101

ELAFSED

rlain

1¢1010101010101°6¢0
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—
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—
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-
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0101010101010

1¢111011101
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o O
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—
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101110111011 1011
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hew

01234567B9ARCIEFFEDCEA®B746543210

slain

ARARARARARAAAAAAARRERRERRERRRERERER



Q0100
00200
00300
00400
00500
00600
00700
00800
00900
01000
01100
01200

01300 .

01400
01500
01600
01700
01800

01900

00100
00200
00300
00400

- 003500

00600
00700
00800
00900
01000
01100
01200
01300
01400
01500
01600
01700
01800

01900 .

APPENDIX 4

subroutine comrrecs{arhsrl)
iwplicit inteder(a-z)
dimension 2{(0i%),0(0! %)

ie the array in bit arrse format.

is the arraeyw in byite format.

is the lendgth of arraw b in hexdigites.
nust be 4X1.

nnNnNo-n
o Tw

do 100 i=0,1-1,1
v=0
do 200 J=0:3,1
vEvk2+mod(a(J+ix4),2)

_200 - continue

blid)=v

100 continue

return
ernd -

subroutine exrand(arbsrl)
imelicit integer (3-2)
dimension a3{(0:%X)>b(0I¥)

ie the arrae in bit arrezvy format.
is the arravy in bute format.

is the lensth of the arrew b in hexdisits.
mnust be 4%1 long.,

nnNnN
W -y

do 100 i=0s1-1,1
v=bh(i)
do 200 J=0,3s1
3({(3-Ji+i%d4)=mod(vr2)
v=Ev/2
200 : continue
100 continue

return
end



