Chapter 7

Block Cipher Design

7.1 Introduction

In this chapter we further elaborate our block cipher design strategy that
was introduced in Chapter 4. We start with describing a new type of self-
reciprocal cipher structure that is a widely applicable alternative for the
Feistel round structure. The round transformation is composed of a small
number of simple basic transformations that must satisfy certain algebraic
conditions.

We describe a number of transformations that are especially suited for
the proposed cipher structure. For each of these transformations the dif-
ference propagation and correlation properties are treated. We show that,
for the proposed cipher structure and basic transformations, the behavior
of differential and linear trails are governed by the same equations. This
allows the evaluation and optimization of the resistance against LC and DC
in a single effort. We also discuss the risk of weaknesses due to symmetry
and the measures that have to be taken with respect to these aspects.

This chapter contains two fully specified block ciphers with high porta-
bility and a short and elegant description. For both we give our findings
with respect to LC and DC. We conclude with describing an example fil-
tered counter stream encryption scheme that can be built using one of the
two proposed block ciphers. A large part of this chapter has already been
published in our paper [22].

CXXIX
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7.2 A self-reciprocal cipher structure

The basic building blocks of our block ciphers are a number of different
invertible transformations, each with its own specific contribution:

~: a local nonlinear transformation,
: a local linear transformation for diffusion,
o: bitwise addition of a round key «;,

;. blockwise bit permutations for bit dispersion.

These transformations must be arranged into a portable and simple block
cipher. For block encryption and decryption to be executable by a single
cryptographic finite state machine, this cipher must be structurally self-
reciprocal. In this section we show how such a nontrivial self-reciprocal
structure can be built by introducing a simple bit permutation g and im-
posing that the basic transformations interact with p in a specific way.

The block cipher consists of a certain number m of iterations of a round
transformation p[x;], followed by an output transformation w(x,,] and the
bit permutation p. The round keys k; are derived from the cipher key &
by the key schedule. The round transformation p and the output trans-
formation w are composed from the basic transformations in the following
way:

plej] = moyomoboolk;] , (7.1)
wlkm] = 0oc[km] -

Consider the simple single-round block cipher

Bi[ko, k1] = pow[r1] o plko] (7.3)
or
Bi[ko, k1] = poboo[rki]omoyom oboc[ke] . (7.4)
Its inverse is given by
Bilko, k1] = oro] o0 omt oy omytoalki]of0 o uT! L (7.5)

Since @ is linear we can switch # and ¢ resulting in
Bilko, k1] = 07 oa[l0(ko)]orT oy tomy o0 b oa (k1) op™" . (7.6)

We choose the basic transformations in such a way that they satisfy the
following conditions:

07 = plobopu , (7.7)
vl o= ployop, (7.8)
b o= plomon, (7.9)
71'1_1 = pltomopu . (7.10)
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Using these relations, we can eliminate all occurrences of inverse transfor-
mations in (7.6), with the exception of u=1 i.e.,

Bi[ko, k1]t =071 oo[0(ko)] 0 71'1_1 oy lo 71'2_1 00t oo[f(r1)]op~?
=0""oo[f(ko)]om oyt omstopuT oo a[u(f(k1))]
= 0 o olf(xo)] om0 97 o o 1y 00 0 alu(O(xy)]
=0""oo[f(ko)]om; o~ oyom obfoa[u(d(r))]
=07t oo[0(ko)]op tomoyomoboa[u(f(k))
=ptofoa[u(f(ro))]omoyomoboau(d(k)) .

(7.11)
By imposing the additional condition
pt=p, (7.12)
we have
Bi[ko, k1] " = Bi[xh, #1] , (7.13)

with the inverse round keys given by ; = u(0(r1-;)). If line 5 of (7.11) is
rewritten in terms of the round transformation and the output transforma-
tion, we have for j > 1,

ol owli) ™t o p! = w0t o plu(6(s,))] - (T.14)
A cipher B,, with m rounds is defined by

Bonlio, A1 Kz, -] = 0 wliom] 0 plim—i] o .. .0 plii] o plro] -
By iteratively applying (7.14) we obtain

Bm[ﬁo,m,ffz,...,ﬁm]_l = By [rh, K1, kS, oo K] (7.15)

’ m

with £} = p(0(km-j)).-

We propose to use a cipher key & of length equal to the block length.
The round keys «; are derived from this cipher key by the bitwise addition
of so-called round constants c/:

kj=k+cl . (7.16)
If & = p(0(x)) is considered to be the inverse cipher key, the inverse round

" =K' 4+ ¢ with

keys K?;» can be derived from «’ in a similar manner: K}

= p(6(cm ) (7.17)

This cipher structure lends itself to a straightforward implementation
as a cryptographic finite state machine. Encryption and decryption can be
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Figure 7.1: Cryptographic finite state machine for the proposed cipher
structure.

performed by the same finite state machine with p as updating transfor-
mation. An encryption operation consists of initializing the state register
by loading the plaintext and doing m state updating iterations. During
these iterations the key schedule is executed by a separate round-constant
generating module. The additional application of the output transforma-
tion can be accomplished by reading out the intermediate stage after 8 of
the round transformation logic, instead of the internal state itself. The bit
permutation p can be hardwired in the connections to the output pins. The
block scheme of the resulting cryptographic finite state machine is shown
in Fig. 7.1. Additionally, it can be observed from this scheme that if the
cipher key is loaded into the state register and the key register is set to
0, the inverse cipher key appears at the output. Hence, the calculation of
the inverse cipher key from the cipher key can be executed by the module
itself.

If the specific permutation p 1s hard to implement in software and the
inverses of 8~ m and 7y are easy, a variant of the proposed structure may
be more suitable. In this variant the final application of i in the encrypting
operation is omitted. This must be compensated by an additional applica-
tion of p at the beginning of decryption. We have

Bim[ko, K1, - - -, k] = w[km] 0 plkm_1] 0 ... 0 p[r1] o p[ko] , (7.18)

and

Bnlko, k1, i) L = o Bkl ] o gt (7.19)

with £} = p(0(km-j)).-
The cryptographic finite state machine implementation scheme of this
variant differs from that given in Fig. 7.1 by the presence of two functional
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Figure 7.2: Arrangement of the bits in the transformation +. The bits of
an individual triplet are marked in black.

blocks responsible for g in decryption mode. One of these is placed at
the input, the other at the output. These blocks are switched “off” for
encryption and “on” for decryption.

In software implementations of this variant the encrypting transforma-
tion does not contain u. In the decrypting transformation the need for u
can be avoided by implementing it using the inverses of v, 71 and ms.

7.3 The Nonlinear transformation ~

The transformation ~ is defined for vectors with a dimension ny, divisible
by 3. Let b = vy(a) with a and b vectors of length n, = 3k. We have

b; = a; + (aH_k + 1)Cli+2k +1 . (720)

This is in fact a simple variant of the invertible shift-invariant transforma-
tion x. Every 3-tuple, or triplet (b;, biyx, bitar) is completely determined by
the triplet (a;, ai4k, @iyar), i.e., v is a juxtaposed transformation consisting
of k equal 3-bit substitution boxes. The arrangement of the bits in triplets
is illustrated in Fig. 7.2. In this figure it can also be seen that in software
implementations a number of substitution boxes equal to the processor word
length can be handled simultaneously by using bitwise Boolean operations.
The block length ny, must be a multiple of 3. Since computer word lengths
are typically powers of 2, we restrict the block length to n, = 2¢3 for some
L.

The v substitution box is given in Table 7.1. Its effect can be described
as: a single 1 at the input is shifted one position to the left, a single 0
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¢ | 000 001 010 100 110 101 011 111
y() | 111 010 100 001 011 110 101 000

Table 7.1: The 3-bit v substitution box.

000 001 010 100 011 101 110 111
000 | 1 - - - - -
001 | - 1/4 - - 1/4 1/4 - 1/4
010 | - - 1/4 - 1/4 - 1/4 1/4
00 | - - - 1/4 - 1/4 1/4 1/4
011 | - 1/4 1/4 - - 1/4 1/4 -
01 | - 1/4 - 1/4 1/4 - 1/4 -
1mo | - - 1/4 1/4 1/4 1/4 - -
1L | - 1/4 1/4 1/4 - - - 1/4

Table 7.2: Prop ratios for the 4 substitution box.

one position to the right and three equal input bits are complemented. The
description of the inverse of v is obtained by simply interchanging the words
“left” and “right”. Hence, for

v =pTloyoup (7.21)

to hold, g must respect the division in triplets and invert the order of the
components within the triplets.

7.3.1 Propagation and correlation properties

Table 7.2 lists the prop ratios of difference propagation in the v substitu-
tion box. The input differences are listed above and the output differences
at the left. Every nonzero input (output) difference is compatible with ex-
actly four output (input) differences. All nontrivial difference propagations
have a prop ratio of 1/4 and a restriction weight of 2. An input differ-
ence triplet and an output difference triplet are compatible if they have an
odd number of 1-bits in common, i.e., if the parity of their bitwise product
(AND) is odd.

An input difference and an output difference to 4 are compatible if
all their component triplets are compatible. If an input difference has ¢
nonzero triplets it is compatible with 2% different output differences. All
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000 001 010 100 011 101 110 111
000 | 1 - - - . . . .
001 | - -1/2 - - =12 1)2 - =12
010 | - - —12 - 1/2 - =12 —1)2
100 | - - =12 - =12 12 =12
011 | - 1/2 -1/2 - - 12 1/2 -
01 | - —-1/2 - 12 1/2 - 1/2 -
110 | - - 12 —1/2 1/2  1/2 - -
1L | - =12 —1/2 -1/2 - - - 1/2

Table 7.3: Correlation matrix of the + substitution box.

possible difference propagations from this input difference have restriction
weight 2¢. Hence, w(a’), the restriction weight of a difference vector a’ with
respect to v, is equal to twice the number of nonzero component triplets in
a.

Table 7.3 gives the correlation matrix of the ~ substitution box. Ev-
ery nonzero output selection triplet is correlated with exactly four input
selection triplets, all with correlation +1/2. By comparing Tables 7.3 and
7.2 1t can be seen that the condition for compatibility between input and
output selection triplets is the same as that between input and output dif-
ferences. This is not the case in general but a consequence of the symmetry
properties of 5.

An input selection and an output selection to v are compatible if all
their component triplet selections are compatible. Since linear combinations
corresponding to different triplets are disjunct, C(u‘y(a), w'a) is equal to
+2~% with ¢ the number of nonzero component triplets in u. Every output
selection vector is compatible to exactly 2% input selection vectors. Hence,
the correlation weight of a selection vector w¢(u) is equal to the number of
nonzero component triplets in u. We introduce the triplet weight we(a) to
be the number of nonzero triplets in a vector. We have

we(a) = we(a) and wr(a) = 2wi(a) . (7.22)

7.4 The linear transformation ¢

The transformation € is defined for vectors with a dimension n, divisible
by 12. Let b = 6(a), with a and b vectors of length ny, = 12h. We have

b(z) = e(x")a(x) mod (14 2'2") | (7.23)
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Figure 7.3: Arrangement of the bits in the transformation #. The bits of an
individual 12-tuple are marked in black.

with
e(x)y=1+a+a’+2°+2° + 25+ 210 . (7.24)

Every 12-tuple (b;, bixn, bitan, ..., biy11n) is completely determined by the
12-tuple (ai, dith, Gitah, - .-, it11n), 1-€., 0 can be seen as a juxtaposed
transformation with A linear 12-bit substitutions boxes. This is illustrated
in Fig. 7.3. Similar to ~, in software implementations a number of lin-
ear # substitutions can be handled simultaneously using bitwise Boolean
addition.

The inverse of & consists of multiplication by the inverse polynomial of
e(a:h) modulo 1 + 2™*. The selected polynomial has been chosen from the
subclass of polynomials with the following property:

e(z) ' =e(x™!) (mod 14 z'?) | (7.25)
hence, the inverse of # is given by
a(x) = e(x™")b(x) mod 1 + &2 . (7.26)

The effect of substituting by 2=! in the argument of a polynomial a(x)
corresponds to a bit permutation in the vector a. It can be seen as a reflec-
tion around component 0, interchanging the components in pairs (¢, ny, — ).
We can rewrite (7.26) as

a(z™l) = e(x™)b(x™t) mod 1 + 21" | (7.27)
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1.e., the inverse of @ applied to the reflected vectors corresponds to 6 itself.
Hence, for

0=l =ptobop (7.28)

to hold, p must respect the division in 12-tuples and invert the order of the
components within the 12-tuples.

The selection of e(#) was governed by two additional design decisions.
To have high diffusion we decided that e(x) should have a Hamming weight
of 7. This has the additional benefit that in hardware the combination of 8
and o[x;] can be implemented with balanced-tree circuits consisting of three
stages with respectively 4, 2 and 1 EXOR gates. The modulus exponent m
was chosen to be the smallest value larger than 7 of the form 2¢3, since m
must divide the block length ny,.

7.4.1 Propagation and correlation properties

As explained in Chapter 6, the difference propagation through # can be
expressed as

b (x) = e(x")d'(x) mod (14 2™) | (7.29)

and a linear combination of output bits specified by u is equal to the linear
combination of input bits specified by w with

w(z) = e(x™"u(x) mod (14 z™) . (7.30)
Using (7.25) this can be converted to
u(x) = e(xh)w(x) mod (1 + z™*) . (7.31)

Hence, for 6 difference propagation and correlation are governed by es-
sentially the same equation. This is not the case in general, nor is it a
coincidence. Tt is the consequence of the design decision specified in (7.25).

The combination of the shift-invariance and (7.25) causes the matrix
My corresponding to # to be orthogonal with respect to Z35®, i.e.,

My~' = Myg" . (7.32)

The Hamming weight distribution table (see p. 120) of modular multi-
plication by e(z) is given in Table 7.4. Tt can be observed that the branch
number B of this linear shift-invariant transformation is 8, the maximum
attainable value both for a polynomial with 7 terms and for a polynomial
multiplication modulo 1+ z!? (see p. 122).
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1 2 3 4 5 6 7 8 9 10 11
N L _
20 - - - - - 60 - - - 6 -
3 - - - - 180 - - - 40 - -
40 - - - 25 - - - 240 - - -
50- - 180 - - - 600 - - - 12
6| - 60 - - - 804 - - - 60 -
712 - - - 600 - - - 180 - -
8 - - - 240 - - - 2% - -
9| - 0 - - - 180 - - - -

|- 6 - - - 60 - - - - -

mn| - - - - 12 -

Table 7.4: Hamming weight distribution table of polynomial multiplication
by e(x) modulo 1 + z!2,

7.5 The bit permutations ; and =

it is a bit permutation with g=! = p that respects the grouping of the

triplets and 12-tuples, but inverts the order of the components within them.
The simplest example of such a bit permutation 1s p1, that simply inverts
the order of the components of the vector. Hence, if b = y;(a) we have

bi = ap,—1—i for 0 <i<mnp . (7.33)

This bit permutation requires the handling of individual bits and is not
very well suited for software implementations. This is not the case for the
bit permutation yj that inverts the order of h-bit subblocks. If b = pp(a)
we have

bivin = aiy(11-j)n (7.34)

for 0 <it< hand 0 <j < 12.

The bit permutations 7; and 7o treat the vector in 3 or 12 subblocks.
The bits of each subblock are cyclically shifted by a specified number of
positions. The bit permutations can be specified by an array that contains
these rotation constants. The effect of a bit permutation b = m(a) specified
by the 3-tuple (po, p1, p2) is described by

bs = Gi—pymodk
bivk = A(i—p, mod k)+k for0<i<k .
bivok =  Q(i—p, mod k)4+2k



7.5. THE BIT PERMUTATIONS p AND =« CXXXIX

I IO I o |
! ! !
M M
I I
U rot po I I
J rot p1
M I I rot po
NN |
1 I
! ! !
I I O I |

Figure 7.4: The arrangements of bits in the 7 bit permutation with 3 blocks
specified by (po,p1,p2) = (2,11, 28). The effect is shown on the three bits
of a triplet.

Figure 7.4 illustrates the arrangement of the bits in such a bit permuta-
tion. In software, the transformations m can be implemented using bitwise
shift operations.

The choice of one of the © bit permutations and g determines the other
7 bit permutation through (7.9). For y; we have

71 (poyp1y--) & w2 (oo, p1, Do) - (7.35)
For pp, 1t can easily be checked that the bit permutations must necessarily

split the vector into 12 subblocks. We have

o (po,p1, ..., p11) & w2 (—p11, ..., —P1, —Po) - (7.36)

7.5.1 Propagation and correlation properties

Since bit permutations are linear, the propagation of differences through
m and 7y is governed by

b =mid) . (7.37)

For the specification of linear combinations of input bits w in terms of
output bits u, we write the bit permutation in a matrix M,. We have

w=Mu . (7.38)

Using the fact that the permutation of components is an orthogonal trans-
formation and therefore M, ' = ML, we have u = Myw, or equivalently

u=m(w) . (7.39)
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As in the case of v and # i1t can be seen that the difference propagation and
the input-output selection correlation are governed by the same equation.
This is an inherent property of bit permutations.

7.6 Propagation analysis

In this section we describe the behavior of differential and linear trails in
the proposed block cipher structure.

The block cipher can be described as the repeated application of alter-
nating nonlinear transformations v and linear (in fact affine) transforma-
tions A[k;] = m1 0 8 o o[k;] o my. For the nonlinear step the correlation and
difference propagation properties are described by the compatibility condi-
tions and the triplet weight. The propagation of differences through A is
governed by

b = A[0](d’) . (7.40)

A linear combination of input bits specified by w 1s correlated to a linear
combination of output bits specified by u given by

u = A0](w) | (7.41)

with correlation (—1)“t”1(9(“j)). In the following we will omit the [0] in
Al0](a).

In the context of propagation analysis we consider a round to be yoA[x;].
A differential step consists of a couple of difference vectors (a’, b') with A(a’)
y-compatible with b’. Tts restriction weight is 2w¢(4’). A linear step consists
of a couple of selection vectors (w,u) with A(w) compatible with w. Tts
correlation weight is wi(u). Hence, a couple (a,b) with A(a) y-compatible
with b can be interpreted both as a differential and as a linear step and 1s
called a propagation step. These steps can be chained to form propagation
trails.
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propagation trail

Differential Linear

| 2" | a® | v’ |
A A

| Az | Aa®) | A(v?) |
v compatible with v

| 2! | al | v! |
A A

| Azt | Aat) | Avt) |
v compatible with v

| z? | a’ | v’ |

| 2! | a” | vt |

—% log, Rp = Zoqu wi(a?) = —log, Gy

Figure 7.5: The differential and linear interpretations of propagation trails
for the self-reciprocal block cipher structure.

An f-round propagation trail  is specified by an ¢ + 1-tuple
W Wt W)

with AM(w®~!) compatible with w’ for 0 < i < £. Its triplet weight is given
by
wi(Q) = > wi(w') . (7.42)

0<i<e

This propagation trail represents both a differential trail with restriction
weight 2w () and a linear trail with correlation weight w(€2). Figure 7.5
shows the two interpretations of a propagation trail.

Once the block size np, and the permutation g have been fixed, all
that remains is the specification of 7;. The shift constants must be chosen
to eliminate the occurrence of propagation trails with low triplet weight,
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addressing the resistance against DC and LC in a single effort. The selection
of the array of rotation constants involves finding and comparing the critical
propagation trails for a small number of rounds by computer.

After the specification of the rotation constants, it has to be verified
that the triplet weight of the propagation trails appropriately reflects the
resistance against LC and DC. The most important effect that has to be
investigated is the potential systematic clustering of low-weight trails.

7.7 Symmetry considerations

Even if a block cipher is resistant against LC and DC, symmetry in its
structure can be the cause of serious weaknesses. The best known example
of a block cipher with such weaknesses 1s DES. The first symmetry-based
weakness is the existence of weak and semi-weak keys for DES [30]. For the
four weak keys, encryption is an involution. For the six pairs of semi-weak
keys, encryption with one key of a pair is the same as decryption with the
other key of the pair. The second symmetry-based weakness of DES is the
complementation property [6, 48]. This property can be exploited to reduce
exhaustive key search of DES by a factor of 2. More recent examples can
be found in [7], where the regularity in key schedules is used to construct
efficient chosen-key attacks and to speed up exhaustive key search.

Many undesirable symmetry properties are special cases of one of the
two following properties:

o There are affine mappings A, Ap and Ac, such that for some keys
Ac 0 B[Ak(k)] o Ap is equal to B[k] or B[x]™';

e There are keys for which the last » — p rounds of the cipher (or its
inverse) under one key perform the same transformation as the first
7 — p rounds of the cipher (or its inverse) under another key, with p
small.

The round constants ¢/ must be chosen in such a way that all symmetry-
related weaknesses are eliminated. This choice is not affected in any way
by propagation trail considerations. The round constants are derived from
the state ¢ of a linear feedback shift register with length 8. In polynomial
representation we have

¢ (x) = (1 4+ 2+ %)/ mod (14 z*+ 28) . (7.43)

The order of the feedback polynomialis 12, hence, z'? = 1 mod (1+a*+28).
The calculation of the round constants ¢/ in polynomial representation is

x) = (2 4 230 4 28 4 M) (2) (7.44)
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with 12h = ny,.

The round constants are chosen in such a way that the difference be-
tween the round constants of any pair of subsequent encryption or decryp-
tion rounds is different. The decryption round constants depend on the
block length and on the bit permutation .

7.8 3-WAY

7.8.1 Specification

3-WaAY is a block cipher with the self-reciprocal structure. It is designed to
be hermetic and K-secure with respect to sound initialization mappings. It
1s specified by

1. np = 96,

2. p=pu,

3. m :(10,0,—1) and 7 : (—1,0, 10),

4. encryption: 11 rounds and a single output transformation,
5

. decryption: 11 rounds and a single output transformation, preceded
and followed by p.

#1 has been chosen to allow the m permutations to act on 32-bit words.
The rotation constants (10,0, —1) have been selected in the following way.
0 and —1 have been fixed in advance because of their economy. 10 was
selected from the candidate constants {3,5,6,7,9,10,11,13,14, 15} as real-
izing the best propagation properties in the short term. It would of course
be better to select the rotation constant with the best propagation proper-
ties in the long term, but this turns out to be computationally infeasible.

7.8.2 Implementation aspects

The number of rounds 11 is motivated by its convenience in a cryptographic
finite state machine implementation. The encryption of a single block takes
12 clock cycles: 11 state updating iterations and 1 simultaneous plaintext
load and ciphertext read operation. This results in an encryption (and
decryption) rate of 8 bits per clock cycle. The total gate delay of the
cryptographic finite state machine can be made as small as that of 4 EXORs,
1 NAND and 1 MUX (multiplexor), allowing clock speeds of over 100 MHz
and encryption rates of over 800 Mbit /s, even with conventional technology.
The small number of basic operations also allows for extremely compact
hardware implementations with a small 8-bit processor with instructions
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bitwise addition, AND and shift, some program memory (ROM) and some
data memory (RAM).

In software, the steps v and 6 can be efficiently programmed using
bitwise EXOR, OR, complementation and shifting. A straightforward C
implementation allows an encryption speed of over 2 Mbit/s on a 66 MHz
80486 processor. We expect that optimization and the use of coding in
assembler language allow a speedup by at least a factor of 5.

7.8.3 Decryption

For the inverse round constants in 3-WAY we have ¢’/ = py (6(ctt=9)). It
can be seen that

C/j(l‘) — (th 4 xSh 4 xSh 4 $9h)q/j(x) ’ (745)
with q’j(a:) given by
q/j(a:) =1 +2* +2°+ 272 mod (1 +2* +2%) . (7.46)

In a cryptographic finite state machine the encryption and decryption round
constants can be generated and applied with the same circuitry. The only
difference is the initial value ¢° of the 8-bit linear feedback shift register.

7.8.4 Propagation analysis

Propagation analysis mainly consists of the search for propagation trails
with low weight. For this purpose we have written and ran programs that
scan the space of propagation trails in a recursive pruned tree search.

Table 7.5 is the (partial) triplet weight distribution table of A = my0foms
for 3-Way. The element in row ¢ and column j denotes the number of
couples (a, A(a)) with wi(a) = ¢ and wi(A(a)) = j. This table illustrates
the high quality of the short-term propagation properties of the 3-Way
round transformation. It can be seen that for any couple (a, A(a)) the
sum of their triplet weight is at least 8. It follows that there are no 2-
round propagation trails with triplet weight below 8 and consequently that
the minimum triplet weight for propagation trails of even length is 4 per
round. The triplet weight distribution table inherits this property from
the Hamming weight distribution table of #. This is a consequence of the
application of the 7 bit permutations before and after 8. These simple bit
permutations contribute to the single-round diffusion by spreading the bits
in a single triplet over several other triplets.
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1 2 3 4 5 6 7

1 - - - - - - 96
2 - - - - - 480 -
3 - - - - 1440 - -
4 - - - 2040 - 7 168
5 - - 1440 - 25 313 12480
6 - 480 - 7 313 ? ?
7| 96 - - 168 12480 ? ?
8 - - 55 5335 71138 ? ?
9 - 19 1122 28012 265865 ? ?
10 - 195 6381 90042 431964 ? ?
111 39 836 18775 119868 457174 ? ?
12| 25 1883 20751 113010 776241 ? ?
13 | 32 2017 17408 159098 2682584 ? ?
14 | 13 1677 21418 469917 6262878 ? ?

Table 7.5: Partial triplet weight distribution table of A for 3-Way.

The number of vectors with a triplet weight wy is given by

7 (nb/ 3) . (7.47)

Wt

For n, = 96 and w; = 6 we have 3.4 x 10° vectors. This turned out
to be too large for our exhaustive program to end within a reasonable
time span, hence the question marks in Table 7.5. The values that are
actually listed in column 6 and 7 are known because the partial triplet
weight distribution table 1s symmetrical. This is a consequence of the fact
that A is an orthogonal linear transformation in Z5®.

The bit permutations play an important role in the multiple-round prop-
agation properties in preventing the clustering of propagation trails. This
can be illustrated by considering the hypothetical case of all three rota-
tion constants in m; being 0. In that case the bits of the 12-tuples are
not mixed and the propagation trails are restricted to stay within the 12-
tuples, inevitably giving rise to clustering. Moreover, the bit permuta-
tions m prevent the iterative chaining of propagation steps (w;_1, w;) with
wi(w;—1) + wi(w;) = 8, by destroying the alignment required for these low
triplet weights.

If 3-WaY has no 9-round propagation trails with a triplet weight below
48, there are no 9-round differential trails with prop ratio above 279 and
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no linear trails with correlation above 27%. Both are too insignificant to
be exploited in an attack.

From observing Table 7.5 it can easily be seen that there are no (even-
length) differential trails with a prop ratio below 2% per round, neither
(even-length) linear trails with a correlation contribution below 274 per
round. This is more than a factor 2 better than the round function of DES,
with its iterative differential trails with a prop ratio of 273-¢ per round [5]
and its 14-round linear trail with a correlation contribution of 2292

2714 per round [71].

or

By listing the critical propagation weights of 1,2,...rounds, a propaga-
tion weight profile can be specified. We have been able to determine this
profile for up to 5 3-Way rounds: (1,8, 11,16,22). For 6 rounds no propa-
gation trails were found with a propagation weight below 36. The relatively
low weights of the critical propagation trails for a small number of rounds
are due to the inability of 7 to destroy certain occurrences of local align-
ment. As the number of rounds grows, these alignment conditions become
increasingly restrictive and for 6 rounds we were already unable to exploit
it. For this reason we believe the triplet weight of the critical 9-round
propagation trails to be much higher than 48.

We once more indicate that the function of our propagation investiga-
tions is to support the choice of the rotation constants and the verification
that 11 rounds are sufficient, not to give any proof of security. The security
will eventually be based on the inability of cryptologists to find exploitable
weaknesses.

Attacks can be devised where part of the key is known. The knowledge
of some key material can be exploited to fix part of a differential trail. The
large diffusion ensures that, already after two rounds, the unknown part of
the key is diffused over the complete encryption state. Squeezing off more
than a single round requires the knowledge of too many key bits to be a
threat to K-security.

7.9 BAsSgKING

7.9.1 Specification

BASEKING is a block cipher with the self-reciprocal structure and is de-
signed to be hermetic and K-secure with respect to sound initialization
mappings. It is specified by

1. np = 192,

2. p= s,
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3. m :(0,8,1,15,5,10,7,6,13,14,2,3) and
my : (13,14,2,3,10,9,6,11,1,15,8,0),

4. encryption: 11 rounds, a single output transformation and g,

5. decryption: 11 rounds, a single output transformation and p.

The block and key length impose that the triplet weight of 9-round
propagation trails must exceed 96. From some early experiments it was
concluded that this could not be realized by m permutations with only
three rotation constants. Therefore, the m permutations act on 12 16-bit
words, allowing the adoption of p15 which 1s easily implementable in soft-
ware. The rotation constants have been determined after a coarse analy-
sis of their most elementary interaction (combined addition) and may be
susceptible of improvement. The hardware and software implementation
aspects of BASEKING are almost identical to those of 3-Way. In most im-
plementations, encryption with BASEKING requires the same effort per bit
as with 3-WAY. In hardware, the doubling of the block length with respect
to 3-Way allows a multiplication of the encryption speed by a factor close
to two.

The most important advantage of BASEKING over 3-WAY is its large
block length. Because of this, BASEKING can be used as the main building
block in the elegant and efficient block cipher based cryptographic hash
function and checksum schemes described and/or proposed by Bart Preneel
in [84] and standardized by ISO in [54, 53]. In this way the different modes
of BASEKING cover the complete spectrum of single-key encryption and
hashing.

7.9.2 Decryption

For the inverse round constants in BASEKING we have ¢/ = p16(6(ct177)).
It can be seen that

C/j (l‘) — (th 4 xSh 4 xSh 4 $9h)q/j (l‘) ’ (748)

with ¢';(x) given by
q/j(a:) =1+ + 2%+ 2727 mod (14 2* 4 28) . (7.49)
In a cryptographic finite state machine the encryption and decryption round

constants can be generated with two simple linear feedback shift registers
and be applied using the same connection circuitry.
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7.9.3 Propagation analysis

Table 7.6 is the (partial) reduced triplet weight distribution table of A for
BAsEKING. Since A has a rotational symmetry over the 16-bit subblocks,
all entries of Table 7.6 would be a multiple of 16. This common factor has
been removed.

Because of its key and block length of 192 bits, BASEKING is in principle
a much more ambitious design as 3-Way. The required triplet weight of a
9-round propagation trail is 96, or almost 11 per round. This is more than
a factor 7 better than DES, i.e., a single application of the round function
of BASEKING must be as effective as seven rounds of DES. However, in ex-
periments with propagation trails for only a few rounds, the 12-component
permutations 7 appeared to be very powerful in their task of disrupting
locally propagating structures. These observations have given us a high de-
gree of confidence in the assumption that the triplet weight of the critical
9-round propagation trails is significantly larger than 96.

7.9.4 Alternative software implementations

Both 3-Way and BASEKING require the handling of words that have a
length smaller than 32, the common processor word length in modern com-
puters. However, by a simple rearranging of the blocks both can be im-
plemented using only 32-bit instructions (or any larger power of 2). We
illustrate this for the case of BASEKING.

For BASEKING the operations on 16-bit words can be turned into oper-
ations on 32-bit words by encrypting the messages in blocks of 384 bits. In
this alternative scheme + and ¢ are substituted by their n, = 384 versions
and p16 1s substituted by pss. The subblock size and the rotation constants
of the m bit permutations are doubled. The key and the round constants
are doubled in length by doubling every bit. The resulting cipher can be
considered to be the parallel application of BASEKING to the 192 bits on
the odd positions and the 192 bits on the even positions.

7.10 Filtered counter stream encryption

The ease of changing the cipher key for 3-Way and BASEKING allows the
specification of a very simple filtered counter stream encryption scheme.
The state updating is governed by a linear feedback shift register of
length nj,. The feedback polynomial must be primitive and needs to have
a Hamming weight of only 3. The initial counter state and cipher key
both depend on the parameter @@ and the key K. The dependence of the
cipher key on the parameter () prevents the choice of two parameter values
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1 2 3 4 5 6 7

1 - - - - - - 12
2 - - - - - 60 -
3 - - - - 180 -
4 - - - 255 - - -
5 - - 180 - - - 624
6 - 60 - - - ? ?
T 12 - - - 624 ? ?
8 - - - 255 1282 ? ?
9 - - 44 509 17547 ? ?
10 - 6 89 6087 88972 ? ?
11 4 1254 27588 136398 ? ?
12 - 150 5498 36569 4284 ? ?
13 3 618 6060 689 35274 ? ?
14 9 562 59 5474 167937 ? ?
15 - 1 491 25142 690142 ? ?
16 - 13 2064 103494 2228150 ? ?
17 - 50 8886 324518 4206530 ? ?
18 - 295 27539 563180 4083993 ? ?
19 1 775 42592 479688 2533248 ? ?
20 1 942 31118 233210 4435549 ? ?
21 2 357 11037 346777 12752974 ? ?

Table 7.6: Partial reduced (divided by 16) triplet weight distribution table
of the linear transformation A for BASEKING.
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Figure 7.6: Proposed filtered counter encryption scheme using 3-WAY or
BASEKING as a component.

that give rise to partly overlapping sequences. All ny, bits can be used
for encryption, hence, ng = ny,. This scheme is illustrated in Fig. 7.6 and

described by

K =K+Q,

a® =n(K)+Q ,

atl(z) =z a'(z) mod m(z) ,
2t = Blx](a") .

7.11 Conclusions

In this chapter we have presented a new self-reciprocal structure for block
ciphers. This structure is quite general since it gives the designer a high
degree of freedom in the choice of the specific transformations.

By adopting some specific step transformations, we have shown that
it 18 possible to build block ciphers that have the unique property that
differential and linear trails are governed by exactly the same equations.

We have shown that applying the wide trail strategy yields efficient
and portable round transformations that are superior to the DES round
function with respect to LC and DC.

The specific designs 3-WAY and BASEKING have been investigated with
respect to their propagation behavior. We have not been able to determine
the critical propagation trails for more than a few rounds. We think that it
is an interesting opportunity for further research to improve the efficiency
of the exhaustive propagation trail search procedures.



