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1 Introduction

One of the most important aspects of an operating system is the Virtual
Memory Management system. Virtual Memory (VM) allows an operating
system to perform many of its advanced functions, such as process isolation,
file caching, and swapping. As such, it is imperative that an administrator
understand the functions and tunable parameters of an operating system’s
virtual memory manager so that optimal performance for a given workload
may be achieved. This article is intended to provide a system administrator
a general overview of how a VM works, specifically the VM implemented
in Red Hat Enterprise Linux 4 (RHEL4). After reading this document, the
reader should have a rudimentary understanding of the data the RHEL4
VM controls and the algorithms it uses. Further, the reader should have
a fairly good understanding of general Linux VM tuning techniques. It is
important to note that Linux as an operating system has a proud legacy of
overhaul. Items which no longer serve useful purposes or which have better
implementations as technology advances are phased out. This implies that
the tuning parameters described in this article may be out of date if you
are using a newer or older kernel. This is particularly true of this release of
Red Hat Enterprise Linux, as it is the first RHEL release making use of the
2.6 kernel series. Fear not however! With a well grounded understanding of
the general mechanics of a VM, it is fairly easy to convert ones knowledge
of VM tuning to another VM. The same general principles apply, and docu-
mentation for a given kernel (including its specific tunable parameters), can
be found in the corresponding kernel source tree under the file Documenta-
tion/sysctl/vm.txt.
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2 Definitions

To properly understand how a Virtual Memory Manager does its job, it helps
to understand what components comprise a VM. While the low level details
of a VM are overwhelming for most, a high level view is nonetheless helpful
in understanding how a VM works, and how it can be optimized for various
workloads. A high level overview of the components that make up a Virtual
memory manager is presented in Figure 1 below:

2.1 What Comprises a VM

Figure 1: High level overview of VM subsystem
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While a VM is actually far more complicated than illustrated in Figure
1, the high level function of the system is accurate. The following sections
describe each of the listed components in the VM: 1

2.2 MMU

The Memory Management Unit (MMU) is the hardware base that make a
Virtual Memory system possible. The MMU allows software to reference
physical memory by aliased addresses, quite often more than one. It ac-
complishes this through the use of pages and page tables. The MMU uses
a section of memory to translate virtual addresses into physical addresses
via a series of table lookups. Various processor architectures preform this
function is slightly different ways, but in general figure 2 illustrates how a
translation is preformed from a virtual address to a physical address:

Figure 2: Illustration of a virtual to physical memory translation

Each table lookup provides a pointer to the base of the next table, as

1AUTHORS NOTE: The Overview figure may need updating to bring it
into line w/ 2.6 kernel architecture
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well as a set of extra bits which provide auxiliary data regarding that page
or set of pages. This information typically includes the current page status,
access privileges, and size. A separate portion of the virtual address being
accessed provides an index into each table in the lookup process. The final
table provides a pointer to the start of the physical page corresponding to
the virtual address in RAM, while the last field in the virtual address selects
the actual word in the page being accessed. Any one of the table lookups
during this translation, may direct the lookup operation to terminate and
drive the operating system to preform another action. Some of these actions
are somewhat observable at a system level, and have common names or
references

• Segmentation Violation - A user space process requests a virtual ad-
dress, and during the translation the kernel is interrupted and informed
that the requested translation has resulted in a page which it has not
allocated, or which the process does not have permission to access. The
kernel responds by signaling the process that it has attempted to access
an invalid memory region, after which it is terminated.

• Swapped out - During a translation of an address from a user space
process, the kernel was interrupted and informed that the page table
entry lists the page as accessible, but not present in RAM. The kernel
interprets this to mean that the requested address is in a page which
has been swapped to disk. The user process requesting the address is
put to sleep and an I/O operation is started to retrieve the page.

2.3 Zoned Buddy Allocator

The Zoned Buddy Allocator is responsible for the management of page allo-
cations to the entire system. This code manages lists of physically contiguous
pages and maps them into the MMU page tables, so as to provide other ker-
nel subsystems with valid physical address ranges when the kernel requests
them (Physical to Virtual Address mapping is handled by a higher layer of
the VM and is collapsed into the kernel subsystems block of Figure 1 ). The
name Buddy Allocator is derived from the algorithm this subsystem uses to
maintain it free page lists. All physical pages in RAM are cataloged by the
buddy allocator and grouped into lists. Each list represents clusters of 2n

pages, where n is incremented in each list. There is a list of single pages,
a list of 2 page clusters, a list of 4 page cluster, and so on. When a request
comes in for an amount of memory, that value is rounded up to the nearest
power of 2, and a entry is removed from the appropriate list, registered in the
page tables of the MMU and a corresponding physical address is returned to
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the caller, which is then mapped into a virtual address for kernel use. If no
entries exist on the requested list, an entry from the next list up is broken
into two separate clusters, and 1 is returned to the caller while the other is
added to the next list down. When an allocation is returned to the buddy
allocator, the reverse process happens. The allocation is returned to the
requisite list, and the list is then examined to determine if a larger cluster
can be made from the existing entries on the list which was just updated.
This algorithm is advantageous in that it automatically returns pages to the
highest order free list possible. That is to say, as allocations are returned to
the free pool, they automatically form larger clusters, so that when a need
arises for a large amount of physically contiguous memory (i.e. for a DMA
operation), it is more likely that the request can be satisfied. Note that the
buddy allocator allocates memory in page multiples only. Other subsystems
are responsible for finer grained control over allocation size. For more in-
formation regarding the finer details of a buddy allocator, refer to [1]. Note
that the Buddy allocator also manages memory zones, which define pools of
memory which have different purposes. Currently there are three memory
pools which the buddy allocator manages accesses for:

• DMA - This zone consists of the first 16 MB of RAM, from which
legacy devices allocate to perform direct memory operations

• NORMAL - This zone encompasses memory addresses from 16 MB
to 1 GB2 and is used by the kernel for internal data structures, as well
as other system and user space allocations.

• HIGHMEM - This zone includes all memory above 1 GB and is used
exclusively for system allocations (file system buffers, user space allo-
cations, etc).

2.4 Slab Allocator

The Slab Allocator provides a more usable front end to the Buddy Allocator
for those sections of the kernel which require memory in sizes that are more
flexible than the standard 4 KB page. The Slab Allocator allows other kernel
components to create caches of memory objects of a given size. The Slab
Allocator is responsible for placing as many of the caches objects on a page
as possible and monitoring which objects are free and which are allocated.
When allocations are requested and no more are available, the Slab Allo-
cator requests more pages from the Buddy Allocator to satisfy the request.

2The RHEL4 kernel extends this zone to 3.9 GB of space
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This allows kernel components to use memory in a much simpler way. This
way components which make use of many small portions of memory are not
required to individually implement memory management code so that too
many pages are not wasted3.

2.5 Kernel Threads

The last component in the VM subsystem are the active tasks: kswapd, and
pdflush. These tasks are responsible for the recovery and management of
in use memory. All pages of memory have an associated state (for more
info on the memory state machine, refer to section 3). These two tasks are
responsible for the management of swap and pagecache respectively. Kswapd
periodically scans all pgdat4. structures in the kernel, looking for dirty pages
to write out to swap space. It does this in an effort to keep the number of free
and clean pages above pre-calculated s̈afeẗhresholds. Likewise the pdflush
daemon is responsible for managing the migration of cached file system data
to its backing store on disk. As system load increases, the effective priority
of the pdflush daemons likewise increase to continue to keep free memory at
safe levels, subject to the VM tunables described in section 5

2.6 Components that use the VM

It is worth mentioning here the remaining components which sit on top of the
VM subsystem. These components actively use the VM to acquire memory
and presents it to users, providing the overall ‘feel’ of the system:

• Network Stack - The Network Stack is responsible for the manage-
ment of network buffers being received and sent out of the various
network interfaces in a system

• Standard C Library - Via various system calls the standard C library
manages pages of virtual memory and presents user applications with
a an API allowing fine grained memory control

• Virtual File System - The Virtual file system buffers data from disks
for more rapid file access, and holds pages containing file data which
has been memory mapped by an application

3The Slab Allocator may only allocate from the DMA and NORMAL zones
4A pgdat is the data structure that describes one node in a Non Uniform Memory

Access Architecture (NUMA) machine
5AUTHORS NOTE: ADD REFERENCE TO SECTION FOR VM TUN-

ABLES HERE
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3 The Life of A Page

All of the memory managed by the VM is labeled by a state. These states help
let the VM know what to do with a given page under various circumstances.
Dependent on the current needs of the system, the VM may transfer pages
from one state to the next, according to the state machine diagrammed in
figure 3 below: 6 Using these states, the VM can determine what is being
done with a page by the system at a given time and what actions it (the
VM) may take on the page. The states that have particular meanings are as
follows:

• FREE - All pages available for allocation begin in this state. This
indicates to the VM that the page is not being used for any purpose
and is available for allocation.

• ACTIVE - Pages which have been allocated from the Buddy Allocator
enter this state. It indicates to the VM that the page has been allocated
and is actively in use by the kernel or a user process.

• INACTIVE DIRTY - Th state indicates that the page has fallen
into disuse by the entity which allocated it, and as such is a candidate
for removal from main memory. The kscand task periodically sweeps
through all the pages in memory Taking note of the amount of time the
page has been in memory since it was last accessed. If kscand finds that
a page has been accessed since it last visited the page, it increments
the pages age counter, otherwise, it decrements that counter. If kscand
happens on a page which has its age counter at zero, then the page is
moved to the inactive dirty state. Pages in the inactive dirty state are
kept in a list of pages to be laundered.

• INACTIVE CLEAN - Pages in this state have been laundered. This
means that the contents of the page are in sync with they backing data
on disk. As such they may be deallocated by the VM or overwritten
for other purposes.

6AUTHORS NOTE: I Believe that the InactiveLaundry state needs to be
removed from the figure
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Figure 3: Diagram of the VM page state machine9



4 Tuning the VM

Now that the picture of the VM mechanism is sufficiently illustrated, how
is it adjusted to fit certain workloads? There are two methods for changing
tunable parameters in the Linux VM. The first is the sysctl interface. The
sysctl interface is a programming oriented interface, which allows software
programs to directly modify various tunable parameters. The sysctl interface
is exported to system administrators via the sysctl utility, which allows an
administrator to specify a specific value for any of the tunable VM parameters
on the command line, as in the following example:

sysctl -w vm.max map count=65535

The sysctl utility also supports the use of a configuration file (/etc/sysctl.conf),
in which all the desirable changes to a VM can be recorded for a system and
restored after a restart of the operating system, making this access method
suitable for long term changes to a system VM. The file is straightforward in
its layout, using simple key-value pairs, with comments for clarity, as in the
following example:

#Adjust the number of available hugepages vm.nr hugepages=64

#turn on memory over-commit vm.overcommit memory=2

#bump up the number of pdflush threads vm.nr pdflush threads=2

The second method of modifying VM tunable parameters is via the proc
file system. This method exports every group of VM tunables as a file,
accessible via all the common Linux utilities used for modify file contents.
The VM tunables are available in the directory /proc/sys/vm, and are most
commonly read and modified using the Linux cat and echo utilities, as in the
following example:

# cat swappiness
60

echo 70 > /proc/sys/vm/swappiness

# cat kswapd
70

The proc file system interface is a convenient method for making ad-
justments to the VM while attempting to isolate the peak performance of a
system. For convenience, the following sections list the VM tunable parame-
ters as the filenames they are exported as in /proc/sys/vm. Please note that
unless otherwise noted, these tunables apply to the RHEL4 2.6.9-11 kernel.
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4.1 block dump

The block dump parameter is a boolean value which is used to enable message
logging of submitted I/O requests and page writes. It is not a vm tunable
per se, but it is a handy tool to help identify which processes are causing
large amounts of disk access. Set it to a non-zero value and configure syslog
to record debug messages from the kernel to have this debugging information
recorded to /var/log/messages

4.2 laptop mode

Laptop Mode is an umbrella setting designed to increase battery life in lap-
tops. By enabling laptop mode the VM makes decisions regarding the write-
out of pages in such a way as to attempt to minimize high power operations.
Specifically, enabling laptop mode does the following:

• modifies the behavior of kswapd to allow more pages to dirty before
swapping

• modified the behavior of pdflush to allow more buffers to be dirty before
writing them back to disk

• coordinates the activities of kswapd and pdflush such that they write
to disk when the disk is active to avoid unneeded disk spin up activity,
which wastes battery power.

4.3 legacy va layout

This tunable provides, for architectures which support it, a switch which
allows the kernel to allocate memory address space in a processes virtual
memory map either using the current 2.6 layout algorithm, or using the
legacy layout algorithm which was provided with the 2.4 kernel. While this
is not strictly speaking a performance tunable, it does allow older applications
which push the usage envelope of their process address space a greater degree
of compatibility with 2.6 kernels without requiring excess modification.

4.4 nr pdflush threads

This is a read-only value. It indicates how many pdflush threads are run-
ning at any one time. It is a useful metric for determining how much disk
buffer work is being done on the system. While it is not adjustable, it is
usefully for telling an admin how much disk activity a certain workload is
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driving. It does not correlate directly to any amount of I/O or I/O rate, but
it does indicate within a certain range that when a pdflush thread wrote to
disk, it detected there was additional work to do, and no available thread
to do it. This value will fluctuate between MIN PDFLUSH THREADS
and MAX PDFLUSH THREADS which are current defined to 2 and 8
respectively.

4.5 dirty background ratio

This is the percentage of memory that needs to be dirty7 before one of the
pdflush threads will begin writing out the dirty data in the background.

4.6 overcommit memory

Overcommit memory is a value which sets the general kernel policy toward
granting memory allocations. If the value in this file is 0, then the kernel
will check to see if there is enough memory free to grant a memory request
to a malloc call from an application. If there is enough memory then the
request is granted. Otherwise it is denied and an error code is returned
to the application. If the setting in this file is 1, the kernel will allow all
memory allocations, regardless of the current memory allocation state. If
the value is set to 2, then the kernel will grant allocations above the amount
of physical ram and swap in the system, as defined by the overcommit ratio
value (defined below). Enabling this feature can be somewhat helpful in
environments which allocate large amounts of memory expecting worst case
scenarios, but do not use it all.

4.7 overcommit ratio

This tunable defines the amount by which the kernel will overextend its
memory resources, in the event that overcommit memory is set to the value
2. The value in this file represents a percentage which will be added to
the amount of actual ram in a system when considering whether to grant a
particular memory request. For instance, if this value was set to 50, then
the kernel would treat a system with 1GB of ram and 1GB of swap as a
system with 2.5GB of allocatable memory when considering weather to grant
a malloc request from an application. The general formula for this tunable
is:

memoryallocatable = (sizeofswap + (sizeofram ∗ overcommitratio))

7modified, but not written to disk
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Use these previous two parameters with caution. Enabling memory over-
commit can create significant performance gains at little cost, but only if
your applications are suited to its use. If your applications use all of the
memory they allocate, memory overcommit can lead to short performance
gains followed by long latencies as your applications are swapped out to disk
frequently when they must compete for oversubscribed ram. Also ensure
that you have at least enough swap space to cover the overallocation of ram
(meaning that your swap space should be at least big enough to handle the
percentage if overcommit, in addition to the regular 50 percent of ram that
is normally recommended).

4.8 dirty expire centisecs

This tunable, expressed in 100ths of a second, defines who long a disk buffer
can remain in ram in a dirty state. If a buffer is dirty, and has been in ram
longer than this amount of time, it will be written back to disk when next
one of the pdflush daemons runs.

4.9 dirty writeback centisecs

This tunable, also expressed in 100ths of a second, defines the poll interval
between iterations of any one of the pdflush daemons. Lowering this value
causes a pdflush task to wake up more often, decreasing the latency between
the time a buffer is dirtied, and the time it is written back to disk, while
lowering it increases the poll interval and the sync-to-disk latency. Decreasing
the sync-to-disk latency of course potentially trades of system responsiveness,
since time that a processor is running a pdflush daemon is time that it may
be able to spend doing user application work.

4.10 lower zone protection

This tunable provides a level of protection against applications inadvertently
allocating memory from a memory zone lower than what the allocation re-
quires. In some workloads, where large quantities of memory are required,
some allocations may be drawn from ZONE NORMAL when they could have
used ZONE HIGHMEM, or from ZONE DMA when they could have used
ZONE NORMAL or ZONE HIGHMEM. Under large amounts of memory
pressure, satisfying allocation requests from lower zones may occur if higher
zones are sufficiently depleted. If, when these allocations are granted, the
requester pins them (for example via an mlock call), the kernel may find
itself in a state in which it is unable to satisfy requests from allocators who
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do need memory from a particular zone, potentially resulting in system fail-
ure. The protection operates as a multiplier on the page low value computed
for each zone. If the number of free page in a given zone is lower than
lower zone protection ∗ zone → page low it will wake up kswapd before at-
tempting the allocation, so that an allocation request will be more likely to
obtain its memory from the highest memory zone possible.

4.11 dirty ratio

This value, expressed as a percentage of total system memory, defines the
limit at which processes which are generating dirty buffers will begin to
synchronously write out data to disk, rather than relying on the pdflush
daemons to do it. Increasing this value tends to make disk write access
faster for a process, but at the expense of a larger workload presented to
pdflush, should that memory be required for other uses later.

4.12 max map count

This file allows for the restriction of the number of VMAs8 that a particular
process can own. A Virtual memory area is a contiguous area of virtual
address space. These areas are created during the life of the process when the
program attempts to memory map a file, link to a shared memory segment,
or simply allocates heap space. Tuning this value limits the amount of these
VMA’s that a process can own. Limiting the amount of VMA’s a process can
own can lead to problematic application behavior, as the system will return
out of memory errors when a process reaches its VMA limit, but can free up
lowmem for other kernel uses. If your system is running low on memory in
the ZONE NORMAL zone, then lowering this value will help free up memory
for kernel use.

4.13 page-cluster

This tunable defines how many pages of data are read into memory on a page
fault. In an effort to decrease disk I/O, the Linux VM reads pages beyond
the page faulted on into memory, on the assumption that the pages of data
beyond the page being accessed will soon be accessed by the same task. De-
pending on how accurate and predictable this is on a given workload, telling
the kernel to read ahead in larger or smaller clusters can reduce disk I/O
and increase system performance. If your workload tends to access data in

8Virtual Memory Areas
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large sequential segments, then increasing this value may increase applica-
tion performance, while for a workload which makes small random memory
access will benefit from a decrease in this value. This value is interpreted by
the kernel as an indicator that on a page fault, 2page−cluster pages should be
read ahead.

4.14 min free kbytes

This value defines the number of kilobytes the VM must keep as free in the
ZONE NORMAL zone of each node in a system. Keeping sufficient memory
free in lowmem is crucial to preventing acute degradation in system perfor-
mance. Some workloads may have a sufficiently high demand for resources
that the VM will become “cornered”. The VM will need to do extra work
to gain the resources it need to satisfy the resources of the user workload,
resulting in a sharp decline in performance. In those situations, increasing
this number may help give the kernel the resources it needs to properly juggle
the resource demands of the user workload, without the VM itself becoming
to resource constrained.

4.15 swappiness

Swappiness lets an admin decide how quickly they want the VM to reclaim
mapped pages, rather than just try to flush out dirty pagecache data. The
algorithm for deciding weather to reclaim mapped pages is based on a com-
bination of the percentage of the inactive list we are scanning in an effort
to reclaim pages, the amount of total system memory we have mapped, and
this swappiness value. The values defined are:

• Distress - This is a measurement of how much difficulty the VM is
having reclaiming pages. Each time the VM tries to reclaim memory,
it scans 1/nth of the inactive lists in each zone in an effort to reclaim
pages. Each time a pass over the list is made, if the number of inactive
clean + free pages in that zone is not over the low water mark, n is
decreased by one. Distress is measured as 100 >> n

• Mapped percent - This is a measure of the percentage of total sys-
tem memory that is taken up with mapped pages. It is computed as
(numbermappedpages)/(totalpages) ∗ 100

• Swappiness - This is exactly the value entered in the sysctl parameter
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Should Distress + (Mappedpercent/2) + Swappiness >= 100, then the VM
will try to unmap pages in an effort to reclaim memory, rather than just
attempting to expunge pagecache.

4.16 hugetlb shm group

This is not a tunable per-se, but is worth mentioning in that the 2.6 VM al-
lows certain users to create SysV shared memory segments using hugepages9.
Users belonging to the group id specified here may created shared memory
segments using hugepages.

4.17 nr hugepages

This tunable specifies the amount of memory (in pages) to reserve for allo-
cation as hugepages. If an application makes use of very large amounts of
memory, the application can save kernel resources by allocating that mem-
ory as hugepages, which reduce the VM’s need for PTE’s10. Applications
not specifically written to use hugepages however, cannot use this memory,
so this value should be set such that it is just enough for the applications
running on the system which can take advantage of it.

4.18 vfs cache pressure

This tunable adjusts the bias on reclaiming inodes and dentries vs. re-
claimation via swap and pagecache. The default setting of 100 provides
a “fair” balance between the reclamaition of the often used data structures
and swap/pagecache. Reducing this value biases the VM to prefer reclaima-
tion of memory using swap and pagecache, while increasing it biases the VM
to reclaim memory by flushing inodes and dentry structures.

9Hugepages are extra large pages of ram, usually multiple MB in size, which reduce
the number of page table entries required by the hardware to map them

10Page Table Entries
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