DeepMind

XManager
(External Talk)

Updated: 2 August 2022
Presente d by Andrew Chen (xmanager-oss@google.com)

O

Agenda

DeepMind

|. The Problem

[I. Our Solution

lIl. Demo

V. Design Principles

V. Limitations

O

The Problem:

Current ML tools are not
designed for Research

o

Research must be:

Fast, Reproducible, and Collaborative

O

Challenge 1: Fast Research

Early-stage research is focused on unexplored areas and needs to be

highly-flexible.

> 4 "V‘A‘

L & &
- ‘

O

Challenge 1: Fast Research

How fast can you clone a Github baseline and run it?
e Current tools are too slow/costly to spin up.

e Production services geared towards ML lifecycle management are
not designed for research.

e Full-service frameworks causes tight coupling between the ML
code and the framework.

O

Challenge 2: Reproducible Research

How easily can you verify the empirical claims of a paper?

e Running demo code requires setup.
e Experimental setups are not described in the code.

How can you track changes?

e ML code is changing.
e Software dependencies are changing.
e Hyperparameters are changing.

O

Challenge 3: Collaborative Research

Members of your research team may work at different companies or
different universities.

Physical desktop with GPUs

Google Borg
Google Cloud Platform (GCP) Vertex Al

Kubernetes (K8s)
On-prem high performance computing (HPC)

And more...

O

https://research.google/pubs/pub43438/

Our Solution:

A simple framework for defining and
managing experiments

o

A universal specification for experimentation

XManager is a light-weight, non-invasive, unopinionated,
platform-agnostic Python framework for defining ML Experiments.

Take any ML code "as-is" and use XManager to "plug-and-play".

o

A universal specification for experimentation

XManager abstracts the differences between ML platforms and leaves
more time for researchers to do research.

On-Prem HPC

ML Code
(black box)

XManager

O

A collaboration tool for industry + academia

The same ML code + the same XManager code:

Can run on a physical desktops with GPUs
Can run on proprietary clusters, e.g. Borg

Can run on open-source clusters (Kubernetes)
Runs on Cloud-based Al solutions

o

https://research.google/pubs/pub43438/

Modular components that can mix-and-match

The XManager interface allows clients to swap public components
with private components without changing the ML code or structure.

from xmanager import xm
from xmanager.xm_local import create_experiment
from xmanager.xm_local import Vertex

with create_experiment("train") as experiment:
assert isinstance(experiment, xm.Experiment)

job = xm.Job(train_executable, Vertex())
experiment.add(job)

O

Modular components that can mix-and-match

The XManager interface allows clients to swap public components
with private components without changing the ML code or structure.

from xmanager import xm
from xmanager.xm_google import create_experiment
from xmanager.xm_google import Borg

with create_experiment("train") as experiment:
assert isinstance(experiment, xm.Experiment)

job = xm.Job(train_executable, Borg())
experiment.add(job)

O

A starting point for new research

XManager makes it easy to snapshot/share/run papers with code.

e Sharable ML code.
e Sharable XManager configuration code.
e Sharable Docker images.

O

Groups using XManager

And more...

4

s
£ N
/
F
] % Y
Q)

a

verily

)

D
em
o Time!

o

Running Tensorflow on XManager

https://github.com/deepmind/xmanager/tree/main/examples/cifarlO_tensorflow

o

https://github.com/deepmind/xmanager/tree/main/examples/cifar10_tensorflow

Running Tensorflow on XManager

Import base XManager experiment components.
from xmanager import xm

Import the execution environments compatible with the open-source XManager codebase.
from xmanager import xm_local

O

Running Tensorflow on XManager

def main(_):

Declare the experiment you want to create.
Open the experiment in a context manager.
with xm_local.create_experiment(experiment_title='cifarl®') as experiment:

O

Running Tensorflow on XManager

Declare the package you want to run.

spec = xm.PythonContainer(
Package the current directory that this script is in.
path=".",
base_image='gcr.io/deeplearning-platform-release/tf2-gpu.2-6",
entrypoint=xm.ModuleName('cifarle"'),

O

Running Tensorflow on XManager

Declare the environment you want to run your package in.
executor = xm_local.Vertex()

O

Running Tensorflow on XManager

Prepare your package to be staged in the execution environment.
[executable] = experiment.package([
xm.Packageable(
executable_spec=spec,
executor_spec=executor.Spec(),
)
D

O

Running Tensorflow on XManager

Declare the hyperparameter sweep or trials to run.

batch_sizes = [64, 1024]

learning rates = [0.1, 0.001]

trials = list(

{'batch_size': batch_size, 'learning rate': learning_rate}

for batch_size, learning_rate in itertools.product(batch_sizes, learning_rates)

)

O

Running Tensorflow on XManager

For each hyperparameter set, create a job.
for hyperparameters in trials:
experiment.add(
xm. Job (
executable=executable,
executor=executor,
args=hyperparameters,

))

O

XManager Design
Principles

O

Tailored for Research

ML research is about science.

Real-world applications are about software engineering.

Focus on the research!

Run
\ | / experiment
\\ !/ P
e £/
~ -
’/ %& \\

Analyze/
. refine

"“'" o,la«ll wal o

Genom r” o

O

Tailored for Research

What researchers care about:
e ML Code
. :
Modelvatidat !)
..
EI!EEg' !

o

Python is the language of ML

XManager is built for ML researchers, and researchers write ML code

(Tensorflow, PyTorch, JAX) in Python.

XManager

A

NLTK & Lo
Spark theano

aQ

¥

) O Z
Pytorch
Keras
AL
TensorFlow s
P @xnet

@ tearn
Scikit-learn Pandas

O

Modularity

XManager is intended for many
different executable types:

Python code
C++ code
Docker image
Shell script
Binary package

Running on many different
platforms:

Physical desktop

GCP Vertex Al
Kubernetes
On-prem/remote HPCs

O

Extensibility

The XManager interface can be extended to further support new:

e Executable types (binaries, packages, configs)
e Executor types (AWS, Azure, etc.)
e Scheduler flows (xm_local, xm_google, etc.)

O

Limitations

O

Not Included

e No graphical user-interface.
o Use GCP Vertex Al instead

e No metric storage.
o Use Tensorboard instead

e No job status tracking.
o Use Vertex Training instead

e No resource sharing or queueing.
o Rely on K8s resource quotas or GCP compute quotas.

e No dataset versioning.
o Re-running using the exact same dataset isn't part of XM. @

