USING THE FLUX CAPACITOR IN GTEx

The reasons to use the transcript quantifications produced by the FluxCapacitor
(abbr. as Flux) in the pilot phase of the GTEx project have already been described
(http://liorpachter.wordpress.com/2013/10/31/response-to-gtex-is-throwing-
away-90-of-their-data). Below we describe an evaluation of Flux for the use in GTEx.

1. Performance evaluation of Flux using simulation.

(i) Caveats to benchmarks based on simulated data. While simulations are
valuable for evaluating the performance of computational methods, the effect of
underlying assumptions going into the simulation will always influence the outcome.
The post by Lior shows that for 100M reads of simulated data, Cufflinks has an
accuracy of 0.05-0.06 higher than that of the Flux (as measured by the Spearman
correlation). The data has been simulated according to the Roberts-Pachter schema.
This schema simulates the data using a generative model of the objective function
implemented in eXpress, which is also similar in spirit to the objective function in
RSEM and Culfflinks. In other words, the data has been generated with the behavior
that is exactly expected by eXpress. Hence, one might a priori expect both Cufflinks
and eXpress to better match the Pachter simulated datasets than FluxCapacitor
(0.95 correlation for Cufflinks vs. 0.89 for the Flux).

(ii) Evaluation of Flux and Cufflinks using Flux Simulator. Given the
extraordinary complexity of the human transcriptome it is unlikely that any
simulation will comprehensively recapitulate the real biology. We have also
performed benchmarking simulations to evaluate Flux, but using a different
simulator. We simulated data using the Flux Simulator
(http://www.ncbi.nlm.nih.gov/pubmed/22962361), a published method that has
been widely used by the community—including by scientists involved in the recent
development of TopHat (http://www.ncbi.nlm.nih.gov/pubmed/23618408.) We
have simulated data closely matching that used in GTEx: 50 million 76bp paired end
reads. The simulation does not share the objective function optimized by either Flux
Capacitor or Cufflinks. Our results show very similar accuracy for Cufflinks and the
Flux. Considering all simulated transcripts, Spearman correlation is 0.76 for the
Flux, and 0.75 for Cufflinks (Figure 4). These values, although still high, are
consistent with the limited available ground truth data based on independent
experimental quantifications (Steijger et al.,, Nature Methods in press*).
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Figure 4. Predicted vs simulated transcript abundances for Cufflinks and the Flux.

Spearman correlation, however, may not be the most appropriate measure of
transcript quantification accuracy, given the large dynamic range of transcript
abundances in the cell. Spearman measures correlation of ranks, and ignores the
absolute values of transcript expression levels. For instance, let’s assume a
transcriptome with two genes with measured abundances of 1 and 10”6. If method
A predicts 1 and 10”6, and method B predicts 10.1 and 10.2, both have Spearman
correlation of 1, despite the fact that method A is much more accurate than method
B. To address this limitation, as well as limitations inherent to other correlation-
based methods, Ribeca and Sammeth have developed an alternative approach
(http://algorithms.cnag.cat/pool/pearson.pdf ) that allows to compute a meaningful
Pearson coefficient after an optimized power-law transformation of the data.

(iii) Consistency of simulation results with realistic expectations. As mentioned
above, the Flux simulation produces Spearman values consistent with available
experimental evaluations. However, the Pachter simulation produces very high
correlations, even for very low coverage sequencing. Pachter reports a prediction
accuracy of 80% for eXpress at 1M (10”6) reads. Assuming that the average
number of fragments per expressed gene is 67 at this depth of sequencing (1M)
and given the dynamic range of gene expression of 7 orders of magnitude observed
in GTEX, it is unlikely that such a small number of reads would give good transcript-
level quantifications. Realistic assumptions about the underlying biology are
necessary when assessing computational methods, and flawed simulations can lead
to incorrect methodological decisions that may be suboptimal given real data.

(*) The Steijger et al. analysis is part of RGASP, the RNASeq Assessment Project, carried out within
the ENCODE project. In Steijger et al., methods to reconstruct transcript isoforms were evaluated.
Programs like the Flux, MISO, RSEM and others that produce quantifications only on annotated
elements were, therefore, not included in the evaluation. As part of the analysis, a few of the
evaluated programs that also produced quantifications were evaluated against independent




quantifications obtained using the Nanostring technology. The accuracy reported for Cufflinks
(measured as Pearson correlation of log transformed values) was 0.68-0.74. Since the Nanostring
benchmark targeted mostly relatively straightforward cases, this numbers should be considered over
estimates.

(#) Considering that the transcribed coding genome is 50 Mbps (~25,000 genes), and assuming that
for any given tissue about 60% of genes are expressed (30 Mps), then 1M fragments would result in
average coverage of 5X (150 Mbps at 150 bps per fragment given 75bp paired end reads), or on
average 67 fragments per expressed gene.

2. SpliceQTLs found based on Flux quantifications reflect biological
expectations. As part of the GTEx pilot project, we used Flux to quantify transcripts
so as to identify SNPs that associate with splicing changes (splicing QTls, sQTIs). To
that end, in addition to more standard exon-centric methods, we developed a new
method (called sQTLseeker) that identifies the genetic variants that associate with a
gene’s splicing phenotype defined as the multivariate distribution of the relative
abundances of the gene’s splice isoforms (Monlong et al., currently under revision).
We applied the method to the transcript quantifications obtained with the Flux and
obtained results that are consistent with biological expectations:

(i) Flux based sQTLs were enriched for variants that would be expected to have the
greatest impact on splicing (e.g. splice acceptor and donor sites) (Figure 1).
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Figure 1. Functional enrichment for sQTLs from sQTLseeker. For the 1st, the 2nd, 5th and
10th most associated SNPs to a given splicing event we compute the relative frequency with
which they map to different genomic domains. sQTLs are enriched at functionally relevant
sites.




(ii) We tested whether sQTLs were enriched in sites that are predicted to have an
effect on splicing based on their splicing motif disruption (evaluated using a position
weight scoring matrix). We observed that sQTLs were more likely to be consistent
with predicted splicing disruption. Mutations disrupting splice site sequences have
the expected effect on the usage of the splice site much more often in sQTLs than in
non sQTLs (Figure 2)

Method / Tissue . non-sQTLs . . sQTLs .
COnSlStent ‘ . Inconsistent COnSlStent | Inconsistent
sQTLseeker ]
Adipose Subcutaneous 0.089  2630/20a00 | 0.075 2224720400 | 0.373 82220 | 0.136  30/220
Artery Tibial 0.08 227328578 | 0.066  1890/28578 | 0.385  saj218 | 0.083  18/218
Heart Left Ventricle 0.103  2061/28764 | 0.093  2683/28764 | 0.423 63/149 0.128 19/149
Lung 0.08 244630615 | 0.057 1754730615 | 0.492 62126 | 0.056  7/126
| Muscle Skeletal 0.089 247427874 | 0.072  2007/2787a | 0.471  64/136 | 0.044  6/136
Nerve Tibial 0.092 274520857 | 0.084 2497720857 | 0.424 725170 | 0.318 54170
Skin Sun Exposed Lower leg | 0.096  2sss/20071 | 0.068  2052/20071 | 0.425 51120 | 0.092  11/120
Thyroid 0.081 242830150 | 0.065  1952/30150 | 0.346  71/205 0.18 37/205
Whole Blood 0.087  2440/28004 | 0.074  2083/28004 0.5 29/58 0 0/58

Figure 2. Frequency of consistent (positively correlated) and inconsistent (negatively
correlated) changes between splice site strength (as measured by a Position Weigth
Matrix like method) and usage (as measured by RNASeq) for SNPs occuring in splicing
sites. The frequency of consistent and inconsitent changes is similar in non-sQTLs SNPs.
In contrast, in SQTL SNPs the frequency of consistent changes is several fold that of
inconsistent changes.

These results are consistent with the simulation results, which suggest that Flux
accurately reflects real biology.

Finally, in Figure 3 we show an example of an sQTL found by sQTLseeker. This is a
GWAS hit for Alzheimer disease for which, until the recent publication of Battle et al.
(http://www.ncbi.nlm.nih.gov/pubmed/24092820) no known eQTL existed.
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Figure 3. Splicing QTL found by
sQTLseeker based on GTEx
quantifications by the Flux
Capacitor. This gene, CD33, has
four different isoforms. Individuals
with the CC genotype express
mostly the T1 isoform (green),
while individuals with the AA
genotype express mostly the T3
isoform (blue). Heterozygotes
express both isoforms at similar
levels.

3. Scalability and reproducibility testing of Flux. Flux ran smoothly on the 1,800
RNASeq samples, and results where 100% reproducible at the CRG and at the Broad.

In conclusion, we believe that Flux is an appropriate method for isoform
quantification in GTEx. It performs comparably to Cufflinks in simulation and
produces splice QTL results consistent with biological expectations. Flux also
integrates well into a high throughput production setting because of its consistent

resource requirements.




