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INTRODUCTION

AIMS
● Determine the quality of digital whole slide 

images (WSI) of reticulin-stained bone marrow 
trephines (BMT) from a large, tertiary referral 
laboratory.

● Measure the concordance of reticulin quality 
control (QC) assessments between expert 
Haematopathologists.

● Evaluate the performance of an AI fibrosis 
algorithm (CIF v1.5.3) on a large cohort of 
routine clinical BMT samples.

CONCLUSIONS
Access to a CIF generated heatmap significantly improved 
interobserver agreement and MF-grading consensus, whilst 
remaining in agreement with our ground truth (manual 
consensus).

The variability we have described in human assigned 
MF-grades supports the need to pursue a more objective 
approach to quantifying reticulin fibrosis.

CONTACT INFORMATION
Dr. Timothy J Ebsworth: timothy.ebsworth@ouh.nhs.uk
Dr Sharon Ruane: sharon@groundtruthlabs.com
Prof. Daniel Royston: daniel.royston@ndcls.ox.ac.uk

MODEL TRAINING

Overview of the computational steps for detection and quantification of reticulin 
fibrosis from WSIs of BMTs. From Ryou, H et al Leukaemia (2023.)
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METHOD

Fibrosis grading is critical to the classification, 
prognostication and monitoring of 
myeloproliferative neoplasms (MPN). Manual 
estimation of fibrosis is subjective and only 
semi-quantitative. AI-augmented evaluation of 
fibrosis using continuous indexing of fibrosis 
(CIF) improves accuracy of fibrosis grading in 
clinical trials.1 Here we evaluate its performance 
to support deployment in clinical practice.
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PRELIMINARY ANALYSIS I 

VALIDATION DATASET
Digital WSIs of 1,000 sequential BMTs were identified from 
Oxford University Hospitals pathology archive (April 2023-July 
2024.)
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CIF v1.5.3 is a ranking convolutional neural network, trained 
using a pairwise ranking strategy (RankNet), incorporating 
human-in-the-loop manual image ranking. 
WSIs are divided into uniform tiles then segmented to exclude 
non-haematopoeitic areas. The model output is the CIF score 
for each tile: 0 (no fibrosis) to 1 (maximal fibrosis). 
Training: 476 BMTs (23,504 tiles)
Independent Testing: 105 BMTs (6,090 tiles)
Accuracy 0.891 | Precision 0.904 | Recall 0.885 | F1 0.895
Performance based on pairwise ranking agreement vs. human 
annotations.

Inclusion: H&E + 
reticulin WSIs available
Exclusion: patient 
registered for NHS data 
opt out

Age (mean): 60.6 years
Age (range): 1-95 years

Sex: ♂ 56%, ♀ 43%

Ethnicity: White 50%, Not Stated 41%, Asian 6%, Black 1%, 
Other 1%

Histogram of reported MF-grades for sample BMTs

This project received funding from:

International Panel of 15 
Haematopathologists

On viewing the same sample on separate occasions, pathologists 
assigned a different MF-grade in 1/3 cases (intraobserver agreement 
66.26%)

Access to heatmaps significantly reduced interobserver variability:

Manual Read: 0.51-0.84 (weighted kappa range)

CIF Assisted Read 0.60-0.84

CIF model heatmap overlay

Access to heatmaps significantly improved MF-grade consensus:

CIF Sequential Read OR 1.43 (1.19-1.71), p=0.0001*

CIF Concurrent Read OR 2.41 (1.93-3.02), p<0.0001*

(Odds ratio of consensus agreement relative to manual read, based on 
generalised linear mixed modelling)

PRELIMINARY ANALYSIS II
Interpretation of CIF heatmaps was in agreement with 
ground truth*:

Round Agree (n) Disagree (n) Agreement with ground truth*

Manual Read 771 384 66.8%

CIF Assisted 
Sequential Read 798 384 69.1%

CIF Assisted 
Concurrent Read 719 342 67.8%

p=0.0017*

LEFT: confusion matrix for overall 
intraobserver variation: manual MF-grade 
round 1 vs. manual MF-grade round 2 
(identical slide sets.)

Weighted kappa = 0.746 (95% CI: 
0.720-0.772)

Pie chart of histological diagnoses for sample BMTs as reported by Oxford University 
Hospitals NHSFT Pathology Department

*ground truth was the manual consensus MF-grade due to conventional acceptability.
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