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Abstract—The area of security measurability is gaining in-
creased attention, with a wide range of organizations calling
for the development of scalable approaches for assessing the
security of software systems and infrastructure. In this paper,
we present our experience developing Security Signals, a compre-
hensive system providing security measurability for web services,
deployed in a complex application ecosystem of thousands of web
services handling traffic from billions of users. The system collects
security-relevant information from production HTTP traffic at
the reverse proxy layer, utilizing novel concepts such as synthetic
signals augmented with additional risk information to provide a
holistic view of the security posture of individual services and the
broader application ecosystem. This approach to measurability
has enabled large-scale security improvements to our services,
including allowing prioritized rollouts of security enhancements
and the implementation of automated regression monitoring;
it has proven valuable for security research and prioritization
of defensive work. Security Signals addresses shortcomings of
prior web measurability proposals by tracking a comprehensive
set of security properties relevant to web applications, and by
extracting insights from collected data for use by both security
experts and non-experts. We believe the lessons learned from the
implementation and use of Security Signals offer valuable insights
for practitioners responsible for web service security, potentially
inspiring new approaches to web security measurability.

I. INTRODUCTION

In recent years, governments, standards organizations and
software makers have universally recognized the need to
make broad, systemic security improvements to the software
ecosystem. Initiatives such as secure-by-design(1), attempts to
secure the software supply chain(2), and move to memory-
safe languages(3) all aim to reduce the likelihood of writing
vulnerable code that can be exploited by malicious actors to
undermine the security guarantees of systems depending on
that code.

Across all these initiatives, a common challenge is insuf-
ficient measurability: developers and security teams do not
have comprehensive information that helps them understand
the security posture of their services and systems. As a
result, they often lack the ability to systematically implement
security-relevant improvements. This has attracted increased
attention of policymakers, with both the US Office of Science
and Technology Policy(4) and Office of the National Cyber
Director(5) issuing recommendations urging software makers
and academic researchers to identify scalable strategies to
collect cybersecurity quality metrics.

There are a number of known shortcomings of existing
security measurability approaches: they frequently focus on

assessing the posture of individual applications or application
components, providing limited utility in complex ecosystems;
they are often technology-specific (e.g. static security analysis
for a given programming language), and they base assessments
on specific security flaws (such as vulnerabilities discovered
in the past in a given component) rather than on adherence to
security best practices across the evaluated codebase.

These limitations pose significant obstacles to applying
security measurability to enable meaningful defensive im-
provements to an organization’s services. To make well-
informed prioritization decisions about code hardening and
related security investments, security teams need to build a
thorough understanding of their organization’s attack surface.
This requires building a comprehensive inventory of systems,
their security properties, the sensitivity of processed data and
capabilities they provide.

In that context, a particularly underserved area of security
measurability is the analysis of web applications. Organiza-
tions typically rely on large numbers of web services accessed
through a web browser by employees and end users, either
developed internally by the organization’s developers, or built
by external software makers and hosted as on-premise de-
ployments. Because of the heterogeneity of web application
development stacks (web applications can be built in a large
number of programming languages and for each language
there may exist dozens of commonly used web application
development frameworks with varying security properties), it
is difficult to find general, broadly applicable indicators of web
application security.

This creates a significant gap in the ecosystem’s security
measurability efforts and requires developing new, scalable
approaches for measuring the security of web services.

A. Contribution

In this paper, we outline the design of Security Signals:
scalable infrastructure to collect an array of runtime security
quality metrics—including a number of custom application
security properties exposed through active instrumentation of
web services—currently deployed in a large-scale, hetero-
geneous web application ecosystem, comprising more than
8000 web services built using a wide variety of program-
ming languages and frameworks. These services are hosted
across almost 1000 registrable domains, including some of the
world’s most frequently visited websites, processing trillions
of requests from billions of web users daily. To our knowledge,



Security Signals is currently the largest implementation of
security measurability on the web.

Our paper focuses on the following novel contributions to
the area of security measurability:

• System architecture: We present a generic, extensible
approach for collecting web application security metrics
based on real user traffic collected at the reverse proxy
layer, accompanied by a number of lessons learned from
implementing and deploying this system in production.

• Data collection: We provide a list of security metrics
relevant for determining the security posture of a web
service, and the data sources which make it possible to
collect this data at scale. We introduce the concept of
synthetic signals, which allow surfacing custom security-
relevant information at the HTTP protocol level.

• Security applications: We share several case studies of
successful initiatives that led to substantial web security
improvements across our application ecosystem. These
efforts significantly reduced the risks associated with
common web security vulnerabilities in our services and
provide a framework for uplifting security at scale.

• Visualizing and extending collected data: A common
concern with collecting security metrics is the ability
to make them actionable and spur concrete, impactful
security improvements. We demonstrate how collected
data can be presented to both expert and non-expert users
to allow quick assessments of application security, as
well as automated analysis of security posture for both
individual services, and across entire ecosystems.

Our aim is to provide academics and security practitioners
with a blueprint for practical, comprehensive measurement
of security quality in web services, and initiate a discussion
about extensions and additional use cases for this infrastructure
among the security community.

II. BACKGROUND

A. Web service measurability challenges
The typical architecture of web services—defined here as

HTTP-based services with which the user generally interacts
using their web browser—poses unique challenges which
make it difficult to comprehensively assess their security
posture using established approaches such as static analysis(6),
dynamic analysis(7), and formal methods(8). Web applications
typically interact with a large variety of backend components,
for example by transmitting data and invoking capabilities with
Remote Procedure Calls(9), calling software libraries written
in different languages, and using databases or other data
storage systems for persistence; they are also often controlled
through a set of values known only at code execution time
(e.g. command-line parameters, runtime experiments). The
highly distributed and dynamic nature of such services makes
it difficult to collect information about source code powering
these services that could facilitate whole program analyses of
internal program states.

This is exacerbated by the lack of standardized approaches
for receiving external input—web services typically read and

make decisions (security-related or otherwise) based on a vari-
ety of user-controlled data at any point during the processing
of a given HTTP request. They can collect this information
from various sources: the HTTP request method, path or
URL parameters, as well as in-memory session data based
on the user’s cookie or databases which store information
about the user. This absence of clear interfaces for exchanging
information between the user and the web application makes
reasoning about the internal state, and thus about the security
properties, of a web application difficult in practice.

Web services also tend to evolve rapidly, frequently im-
plementing many unrelated changes per day(10). Effective
measurement approaches must thus be fully automated—
without requiring human-in-the-loop assistance—and respon-
sive to any changes in the underlying codebases.

B. Vulnerabilities in web services

A nearly universal aspect of web service behavior is that
they accept requests from users in the form of HTTP requests
and return HTTP responses with relevant data, possibly after
initiating logic that triggers additional server-side behaviors or
modifies stored data. In practice, the attack surface of a web
service corresponds to the set of actions that can be invoked
either through HTTP requests processed by the target service
or by browser-mediated interactions processed by client-side
code. Vulnerabilities can generally be triggered either through
sending requests on behalf of a victim user, authenticated with
their cookies (for example if the user visits an attacker’s web
page), or directly sent by the attacker to the target web server.

A key insight of our measurement approach is that infor-
mation provided at the HTTP request/response level is often
sufficient to gain an understanding of both potential attacks
that might affect a given web application endpoint and the
defenses or mitigations applied by the application that prevent
it from being vulnerable.

For example, a web application’s attack surface for com-
mon classes of vulnerabilities exploitable against logged-
in users can often be closely approximated by looking at
request/response pairs: exploitable cross-site scripting and
clickjacking vulnerabilities will likely be limited to renderable
MIME types (HTML or XML Content-Type headers);
cross-site request forgery is mostly confined to endpoints that
process HTTP POST requests; cross-site script inclusion(11)
can only affect responses that are returned with a JavaScript
MIME type such as text/javascript, etc.

Likewise, defensive mechanisms that protect an
application from common web flaws are usually delivered
as HTTP response headers as a signal to the user’s
browser to enforce a given security restriction. The
presence of an X-Frame-Options response header
ensures that a resource will be safe from clickjacking
attacks; a Content-Security-Policy with a
strong policy will ensure any injection flaws are
unlikely to result in cross-site scripting; a restrictive
Cross-Origin-Resource-Policy value will protect



a resource from cross-site script inclusion(11) and many
cross-site leaks.

Thus, by collecting data from HTTP requests and responses
to a production instance of a web application, it’s possible to
understand the susceptibility of the application to common
classes of web vulnerabilities and enabled protections. Im-
portantly, this approach can be extended to other classes of
vulnerabilities and defenses.

C. Enabling effective measurability

We have found that to be successful in practice a measura-
bility approach needs to be:

1. Technology-agnostic: Data collection needs to be easy
to enable for a wide range of applications built using
diverse programming languages and frameworks, ideally
without requiring either developers or system adminis-
trator teams to make service-specific changes. It should
be possible to enable it even in the absence of code or
direct access to the measured systems.

2. Comprehensive: It’s necessary to collect information
about all the web-exposed endpoints of an application
to understand the individual security properties of each
endpoint. More so, the gathered data should ideally
provide complete information about the security posture
of the application, covering the common classes of flaws
to which the application might be susceptible.

We designed our approach to focus on these two goals.

D. Collecting HTTP request/response data

A key practical observation is that while the set of pro-
gramming languages and application stacks used to build web
applications is particularly diverse, there is a smaller number
of commonly used intermediary systems such as HTTP servers
and reverse proxies which forward traffic between the user and
a web service. Popular tools in this category include nginx,
HAProxy, Caddy, Traefik as well as Apache configured in
reverse proxy mode.

Organizations typically use a reverse proxy system to route
user connections to a large number of web services they
provide with the goal of providing load balancing, terminating
HTTPS traffic, as well as providing centralized logging and
related capabilities.

Fig. 1. Traffic to web services typically flows through a reverse proxy.

This design pattern creates an opportunity to implement data
collection functionality in the reverse proxy and collect and
store data for a number of web services whose traffic flows
through the system. This has multiple scalability benefits,

including automatically collecting data for any newly created
services, and creating a single place where any custom logging
capabilities can be added.

For organizations with a more varied network architecture,
where web service traffic isn’t routed through a few “choke
points”, an alternative design is to use the request logging
capability, universally available in HTTP servers, to store
relevant information from both requests and responses. Logs
from individual systems can then be aggregated to provide a
unified view of their security posture available for analysis.

E. Exposing custom security properties with synthetic signals

While HTTP response headers provide data about common
web security defenses enabled by an application, they neces-
sarily cover only a small subset of the information necessary
to evaluate the security posture of a web service. There are a
number of important security properties of a web application
that by default aren’t exposed in HTTP headers. For example,
a security engineer might be interested in whether an access
control check was made during the handling of a given request,
or whether an HTML response was constructed using a safe,
autoescaping HTML templating system.

A critical aspect of our security measurability approach
is allowing applications, frameworks and middleware compo-
nents to expose these security properties at runtime, through
custom HTTP headers carrying information about the presence
or absence of a given security property. These values can
be stored by the reverse proxy system and removed before
forwarding the response to prevent internal security-relevant
information from being exposed to end users. A detailed
review of custom security properties relevant for web applica-
tions is present in the Synthetic Signals section.

III. ARCHITECTURE

The real-world production implementation of our web ser-
vice security measurability approach is known within Google
as Security Signals. At its core, the system is a Flume(12)
distributed map-reduce data processing pipeline that collates
various sources of information to produce insights into the
security properties of web traffic flowing to and from our
organization’s web services. Because of the massive scale
and sensitivity of collected data, the pipeline focuses on
reducing the cardinality of input data and removing privacy-
sensitive information, producing a high-quality output that
enables engineers to execute fast queries on the collected data.

A. Input Data Sources

External HTTP Traffic Logs
Our infrastructure employs a standardized reverse proxy

system(13) to handle nearly all incoming HTTP traffic. Due
to large traffic volume, the reverse proxy capability is dis-
tributed, performed across many physical machines in multiple
geographically dispersed data centers; however, because these
systems are powered by the same code, they can be considered
as a single system. These reverse proxies produce and manage
traffic logs: structured data sources that capture information

https://www.nginx.com
https://www.haproxy.org
https://caddyserver.com
https://traefik.io
https://httpd.apache.org/docs/2.4/mod/mod_proxy.html
https://httpd.apache.org/docs/2.4/mod/mod_proxy.html
https://github.com/google/closure-templates


Fig. 2. Input and output data sources of Security Signals.

about HTTP headers for requests and responses that flow
through them.

Due to the high volume of requests processed by these
servers, logs can capture only a small random sample of
traffic—in most cases, 1% of a service’s requests. Security
Signals is aware of sampling rates and can dynamically
increase them on a per-service basis to ensure that low-traffic
services are represented in its output. This is important in
order to provide visibility across all externally facing web
applications while collecting accurate information about traffic
volume.

Employee Traffic Logs
Many organizations have large internal user populations

which interact with their systems, both those visible to external
users and internal-facing. Storing information about these
users’ interactions with the organization’s web services has
several benefits: it provides information about applications
that aren’t exposed externally to end users, including internal
administrative systems and not-yet-launched services, and it
allows for setting a higher sampling rate (in our implementa-
tion we sample 10% of traffic from employees).

Security Scanner Logs
The Security Signals system also consumes traffic logs

generated by Google, a custom security scanner focusing
on automatically probing for common web vulnerabilities.
Ingesting these logs alongside with the real-world traffic logs
allows us to gain coverage on yet-to-be launched products,
allowing the detection of security issues before they affect a
production system.

Furthermore, since scanner logs are guaranteed to not
contain any user data, we can rely on them to inspect more
precise metadata about requests/responses (e.g. inspecting the
full HTTP response body), thereby enabling a wider range of
security investigations and remediations.

A combination of these data sources allows for generating
a comprehensive inventory of web applications and their
individual endpoints, which serves as the foundation for all
other Security Signals capabilities.

B. Collected Information

In addition to having a comprehensive inventory of an
organization’s web services, to provide robust security mea-

surability capabilities the system must collect security-relevant
data that allows building a thorough understanding of the
overall security posture of each application, and the ecosystem
as a whole. To achieve this, we have designed Security Signals
to collect data from a variety of sources.

1) Basic HTTP Request & Response Data: The raw in-
formation available by default in HTTP traffic provides a
large amount of security-relevant data. Security Signals store
information about both the request and response, including the
HTTP method, destination host, redacted path, status code,
returned MIME type, and related values.

Even information seemingly not directly related to security
can become important from a security perspective. Because
of this we collect a variety of other information, including the
values of Referer, Cache-Control and other headers, as
outlined in Appendix A. Additionally, we store metadata about
the request, including the timestamp and sampling frequency.

2) HTTP security headers: Web platform security mecha-
nisms are generally configured through HTTP response head-
ers; similarly, clients often provide security-related informa-
tion in request headers. Security Signals aims to collect
all available platform security headers from the request and
response, corresponding to the security features listed below.

TABLE I
HTTP SECURITY HEADERS AND THEIR ASSOCIATED SECURITY

CONTROLS

HTTP Security Header Security Control

Content-Security-Policy Strict Content Security Policy(14): The pres-
ence of a strict CSP policy to mitigate XSS
vulnerabilities.

Content-Security-Policy Allowlist-based Content Security Policy: Re-
stricting script loading to trusted locations to
prevent loading of third-party scripts and mit-
igate supply chain attacks.

Content-Security-Policy Trusted Types(15): The adoption of Trusted
Types for DOM-based XSS protection.

Cross-Origin-Opener-
Policy

Preventing cross-window cross-site leaks and
related attacks.

X-Frame-Options Restricting framing to protect against click-
jacking attacks.

Strict-Transport-Security Enforcing the use of HTTPS for an origin or
domain.

Sec-Fetch-Dest,
Sec-Fetch-Mode,
Sec-Fetch-Site

Fetch Metadata headers(16) for assessing if
resource and framing isolation policies were
applied to prevent cross-site leaks.

Cross-Origin-Resource-
Policy

Protecting against certain requests from other
origins (such as those issued with elements like
<script> and <img>), to mitigate specula-
tive side-channel attacks, like Spectre(17), as
well as Cross-Site Script Inclusion(11) attacks.

Cross-Origin-Embedder-
Policy

Restricting embedding cross-origin resources
into the document, ensuring that all resources
loaded by a given document have explicitly
opted into being embedded.

X-Content-Type-Options Prevents MIME sniffing attacks.

Similarly, we collect a number of auxiliary sources of
security-relevant information, including the Origin and var-
ious headers related to Cross-Origin Resource Sharing and
cookie security attributes.

https://w3c.github.io/webappsec-csp/
https://w3c.github.io/webappsec-csp/
https://w3c.github.io/webappsec-csp/
https://web.dev/articles/coop-coep
https://web.dev/articles/coop-coep
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Glossary/Fetch_metadata_request_header
https://developer.mozilla.org/en-US/docs/Glossary/Fetch_metadata_request_header
https://developer.mozilla.org/en-US/docs/Glossary/Fetch_metadata_request_header
https://web.dev/articles/cross-origin-isolation-guide
https://web.dev/articles/cross-origin-isolation-guide
https://web.dev/articles/coop-coep
https://web.dev/articles/coop-coep
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-Type-Options


3) Synthetic Signals: While traffic logs do provide signif-
icant utility alone, a core capability of the Security Signals
approach is the collection of synthetic signals that contain
additional metadata that is not normally included in traffic
logs. At an architectural level, this is done by instrumenting
web frameworks to emit this metadata in an internal-only
X-Google-Security-Signals HTTP response header.
This header is then collected and included in traffic logs to be
consumed by the Security Signals pipeline, while removing it
before the response is served to external users.

Any information that is known to the server at the moment
of processing a given HTTP request can be exposed as a
synthetic signal. Some synthetic signals are request-scoped,
allowing the surfacing of custom security-relevant information,
such as whether a check of a CSRF token was performed
during the handling of the request, or whether an HTML re-
sponse was constructed using a safe HTML templating system.
Other signals may represent service-level security properties
such as the build version of the web service binary, the
programming language and application framework powering
the service (which can be a reliable indicator of the overall
security posture of a web application), or information about the
specific server-side code responsible for creating the response.
See tables II and III.

Our web services are built on a variety of different server-
side web frameworks that we have individually instrumented
to emit these synthetic signals to provide a more complete
view of their security properties.

TABLE II
SYNTHETIC SECURITY SIGNALS COVERING CUSTOM SERVER AND CLIENT

SIDE SECURITY CONTROLS

Synthetic Signal Description

RESPONSE TYPE Exposes the use of type-safe responses and
autoescaping HTML templating systems for
XSS prevention.

TEMPLATE The server-side templating system that gener-
ates HTMLoutput .

SEC FETCH The presence of server-side isolation
policies(16) to assess if isolation policies
were applied to prevent cross-site attacks.

CSRF The presence of Cross-Site Request
Forgery(18)(19) protections to verify if
an CSRF check was carried out by the
backend on state changing requests.

PROTOTYPE POLLUTION The presence of prototype pollution protec-
tions to determine if front-end code makes
JavaScript prototypes immutable.

4) Auxiliary Data: Certain kinds of security-relevant in-
formation might not be exposed directly in HTTP re-
quest/response pairs, or easy to provide as a synthetic signal.
For this reason, the Security Signals system also queries
several internal databases such as build systems and corpo-
rate IT systems, collecting information about organizational
structure. This allows joining information about the production
environment, ownership information (team, project name, and
the owner’s contact information), source-code information
(allowing to identify the specific function that serves a given

TABLE III
SYNTHETIC SECURITY SIGNALS PROVIDING ADDITIONAL CONTEXT ON

THE SERVING ENVIRONMENT

Synthetic Signal Description

FRAMEWORK The serving web framework. This allows easy differentia-
tion between hardened and safe-by-default frameworks vs.
the use of legacy frameworks.

ACTION Method-level pointer to the code generating the web
response, together with some framework-specific metadata
such as experiment configuration.

BUILD Information about the application’s build environment.

endpoint), providing additional information about a given
service.

This context is also crucial for streamlining remediation
efforts, as it allows for automatic identification of relevant code
and ownership information, allowing automated bug filing.

5) Risk Signals: Not all services are equally sensitive from
a security perspective. Security Signals incorporates various
factors that enable assessing and prioritizing risk:

• Sensitivity of the hosting domain: Leveraging a cate-
gorization based on Domain Tiers(20), Security Signals
determines the inherent risk associated with each web
origin based on factors such as the sensitivity of data
it processes and potential impact of compromise. This
enables focusing security efforts on securing the most
critical applications.

• Traffic volume: While not always a direct indicator of
risk, high traffic volume can be used to prioritize within
risk tiers and identify popular applications that require
extra security attention.

• External exposure: Traffic exposed to external users
naturally carries a larger risk of being exposed to attacks.
Security Signals identifies such traffic to prioritize miti-
gation of external threats while also considering critical
internal systems for insider risk management.

C. Cardinality Reduction

An important idea behind Security Signals is that it is possi-
ble to take a high-cardinality input that is impractical to query
(e.g. traffic logs with hundreds of billions of distinct entries),
and transform it into a lower-cardinality output designed to
be easily queryable. To reduce the cardinality of the input, it
is necessary to purposefully drop information from the input
traffic logs, while still maintaining sufficient granularity to
make the data useful. This process also helps ensure that the
output data is fully anonymous by removing any personalized
data from the input. This strategy is applied to all data in
Security Signals, including for:

Path Redaction: Individual instances of URLs often contain
superfluous information that negatively affects the cardinality
of input data and which could contain personal identifiers.
Examples include authentication tokens, timestamps or param-
eters containing user input. Because the security properties
of server-side code serving such URLs are invariant, Security
Signals employs a number of techniques that reduces input



URL cardinality with no loss of generality. Since URL query
parameters are always ignored by our system, we call this
process path redaction. The end result converts individual
URL paths into path patterns.

At a high level, the path redaction algorithm is as follows:
if available, leverage path routing information provided by
either frameworks or reverse proxies. This data may be present
in the ACTION synthetic signal or per-service infrastructure
configurations. This allows us to match and replace vari-
able parts, for instance /v1/search/query+string with
/v1/search/$query. Since this technique uses source-of-
truth inputs, it successfully redacts over 90% of all paths. If
this information is not available, we apply filtering rules based
on a manually curated set of well-known high-entropy paths.

Finally and as a fallback, we execute a stateless random
forest machine learning model applied on individual path
tokens, trained on real-world data. This model uses entropy-
and dictionary-based techniques to infer redactions from a
corpus of real-world traffic, and consists of 11 decision trees
with a maximum depth of 5.

User-Agent Parsing: We parse user agent information and
keep only coarse-grained information, such as the browser
name and major version, obtained from User-Agent Client
Hints(21), where available, and by parsing the User-Agent
request header otherwise. Storing only the browser major
version, together with its name, ensures that the cardinality
of the output table remains limited while still preserving the
utility of being able to query based on browser version.

D. Output Database

After cardinality reduction and the inclusion of synthetic
signals and auxiliary data, the resulting set of outputs is
materialized to a dated database table that can be queried in
SQL for a specific period of time. This process occurs on a
daily basis, as most of the capabilities and use cases described
in this paper have no need for real-time information. Security
Signals output data is retained for a period of 30 days, which
enables time series analysis, regression detection, and other
monitoring tasks.

Finally, adjacent jobs store aggregated views on top of
Security Signals that provide high-level statistics. For example,
coverage information of important web security features or the
total number of hostnames and services. This information is
kept in secondary tables for long-term retention and visualiza-
tion in internal dashboards.

These condensed views aggregate data in a way that pro-
vides actionable insights to users with more or less expertise
with web security. Section V describes what types of aggrega-
tions exist and example use cases for different types of users.

IV. APPLICATIONS

Data collection alone is not sufficient for implementing a
robust security measurability program. A crucial question is
whether the information can be effectively used in practice
to improve security outcomes in the measured ecosystem.
In this section, we outline how Security Signals supports

Google’s strategy for securing web services at scale(22), and
the capabilities it offers to security engineering teams and
decision-makers.

A. Adoption of Web Security Features

Organizations are frequently faced with a large amount
of legacy code and systems built using approaches without
modern security safeguards. This creates an ongoing need
to improve the security state of existing web services to
bring them in line with security best practices, such as using
safer application components or adopting web-platform level
defensive mechanisms.

Making these kinds of large-scale security improvements
can be daunting, since it involves:

• Identifying services or specific endpoints where a protec-
tion is missing. This has traditionally been challenging in
large heterogeneous environments.

• Initiating service-specific work to enable a new secu-
rity feature. This work can involve making far-reaching
changes to a service, which introduces the risk of break-
ing existing functionality.

• Tracking deployment progress across hundreds or thou-
sands of services. This requires measuring the status of a
complex rollout, and the ability to prioritize deployments
for critical services to maximize impact.

Measurement of security deployments
From a project management perspective, being able to

accurately and continuously measure the progress of large-
scale security deployments is critical. Security Signals makes
it easy to precisely measure deployment progress based on
flexible criteria; for example, measuring what percentage of
services enable Content Security Policy, broken down by
framework and application sensitivity.

Prioritization of security rollouts
It is critical to be able to prioritize security rollouts to

maximize risk reduction. Since Security Signals incorporates
information about the sensitivity of web origins through the
Domain Tiers(20) classification, it becomes easy to assess if
a given service’s sensitivity makes it a good candidate for the
adoption of a given security feature. Similarly, it is possible
to join Security Signals data with information from a bug
bounty program to identify whether a given service has been
historically prone to vulnerabilities and would thus benefit
from enabling additional defenses.

1) Example: Deploying Trusted Types: To demonstrate
how measurement and prioritization can enable success-
ful security rollouts, we provide a summary of how
Security Signals supported the deployment of Trusted
Types(15) across our ecosystem. Trusted Types is an im-
portant client-side security feature that aims to comprehen-
sively prevent DOM XSS vulnerabilities(23) by relying on
type information to ensure only safely constructed values
can reach dangerous DOM APIs. It is enabled by set-
ting a Content-Security-Policy HTTP header with
a require-trusted-types-for 'script' directive.
Our efforts to roll out Trusted Types consisted of:



1. Targeted service-specific rollouts: Combined with the
domain sensitivity classification, Security Signals made
it possible to scalably prioritize work on highly sensitive
services. For example, we know that Google hosts
our organization’s login form and sets authentication
cookies. Under the same-origin policy(24)(25), every
service on that domain is sensitive, so we prioritized
rollouts for that origin.

2. Large scale cross-ecosystem rollouts: Security Sig-
nals also enabled large-scale changes to centrally de-
ploy Trusted Types across our ecosystem of existing
services(22). We used Security Signals to approach the
rollout in batched rollouts for groups of similar services.

Throughout this process, we were able to measure our
rollout progress. In the past 2 years, we have deployed Trusted
Types to over 600 distinct services; Security Signals made it
possible to accurately track the status of this multi-year project
and monitor the resulting security improvements in security
critical applications (see Figure 3).

Fig. 3. Web services protected by Trusted Types over time.

We have completed similar rollouts for numerous web-
platform security features(22) and to remediate a variety of
unsafe patterns across our ecosystem.

B. Monitoring and Regression Detection

In environments where web services evolve quickly, there
exists a risk of modifying existing functionality or implement-
ing new features in a way that undermines the security posture
of the service. This is particularly common in developer
ecosystems that don’t follow secure-by-design principles(1)
and thus don’t robustly prevent developers from writing unsafe
code. While some organizations rely on code reviews or
periodic penetration tests performed by security experts to
identify any newly introduced unsafe patterns or vulnerabil-
ities, these approaches are often costly and do not scale to
large application codebases.

Security Signals monitoring is based on three components:
Security Invariant Monitoring: Security Signals contin-

uously queries its own database, searching for violations of
predefined security invariants representing expected security
behaviors and configurations. For example, the security team
may require that all HTML endpoints in a service include the
X-Frame-Options header to prevent clickjacking vulner-
abilities, or that all HTML responses are generated with the
use of a safe autoescaping HTML templating system. Security
Signals can automatically detect instances where the desired
property isn’t satisfied and trigger remediation actions.

Alerting: When anomalies or regressions are detected the
system can trigger alerts to a security engineering team and, in
some cases, directly to the responsible product teams, enabling
swift investigation and remediation.

Automated Bug Filing: Leveraging ownership information
within Security Signals, bug reports are automatically routed
and assigned to appropriate service owners, streamlining the
resolution process.

We have enabled this monitoring for a number of secu-
rity properties, including the absence of defensive features,
misconfigurations of security policy headers (e.g. invalid or
unsafe Content Security Policy values), and the absence
of a variety of application-specific security checks exposed
via synthetic signals. This approach enables identifying and
addressing potential issues quickly, contributing to a more
resilient ecosystem security posture, while requiring minimal
involvement from security engineering teams.

C. Targeted Security Research & Remediations

Security remediations are engineering efforts aimed at mit-
igating systemic sources of vulnerabilities. Remediations start
with an observation about potential security risk, including
traditional classes of security issues and those that emerge
from the use of unsafe patterns specific to the programming
language or framework used by the application, or as a result
of using application-specific dangerous constructs.

Often, remediations are spurred by security research that
determines whether a class of security issues exists, what its
practical impact is, and how widespread it is likely to be. Once
the risk is established, security engineers design mitigations
that can be enforced at scale in ways that do not negatively
affect service availability. Security Signals capabilities enable
a centralized, relatively small team of engineers to execute tar-
geted research and remediations without in-depth knowledge
of the internals of specific services.

Importantly, Security Signals provides visibility into actual
runtime behaviors of applications. In contrast to techniques
such as static analysis or code reviews, which often give
insights into potential behaviors, this approach surfaces only
instances that have been demonstrated to exhibit a given
behavior, reducing the number of false positive findings. This
makes it possible not only to reliably identify and prioritize
web endpoints that are likely to be vulnerable, but also to
determine how new mitigations may affect them and what
actions are needed to add protections safely.

The following sections describe real-world examples of se-
curity research and remediations enabled by Security Signals:

CSRF Remediation: Cross-Site Request Forgery is a class
of web vulnerabilities that allows attackers to force an authen-
ticated user’s browser to invoke a state-changing action on
behalf of the user(18)(19). To prevent this issue, web services
often use an approach based on requiring the presence of a
signed per-user token to verify the request originated from
within the application, thereby removing reliance on ambient
authority. However, even in services which use CSRF tokens,



a failure to verify that a valid token is present when processing
a state-changing request will result in a CSRF vulnerability.

Security Signals allowed us to scalably identify CSRF
vulnerabilities by finding endpoints without sanctioned im-
plementations of this defense and then determining which
endpoints implement state-changing functionality.

Frameworks were instrumented with a synthetic signal in-
dicating which requests were protected by the standard CSRF
protection. This helps identify not only endpoints that are
not protected against CSRF, but also those that implement
custom CSRF protection logic, which is more likely to be
vulnerable. Finally, we approximated which endpoints have
state-changing features by using a mix of heuristics, including
HTTP methods, changes in response sizes, content types, and
other request and response properties.

Iterating over this process made it possible to identify
endpoints vulnerable to this class of issues across the entire
ecosystem of web applications, including many disparate
frameworks and programming languages. This concrete list
of potentially vulnerable services was then an input into a
targeted remediation to adopt standard CSRF protections in
applications that hadn’t yet done so, reducing the risk of CSRF
issues arising in them in the future.

CORS Remediation: Cross-Origin Resource Sharing
(CORS)(26) is a mechanism for sharing information across
origins, augmenting the same-origin policy. Because CORS
allows sharing response data with arbitrary origins, web end-
points with misconfigured CORS headers may unintention-
ally expose sensitive information. Such misconfigurations are
common due to the way CORS forces developers to check
whether an origin is trusted; for instance, developers may
allowlist all requesting domains ending with example.com
(note the missing leading dot), thereby allowing requests from
evil-example.com.

Security Signals made it possible to identify CORS-enabled
endpoints, including those that accept requests from third
party or untrusted origins. By combining this information
with service metadata, we were able to test various CORS
implementations to identify vulnerable code locations; in
addition to fixing discovered vulnerabilities we developed a
centrally supported secure-by-design CORS implementation
that mitigates these misconfigurations.

Cached authenticated content remediation: Common
misconfigurations of HTTP caching headers may result in
sensitive content being unintentionally cached by proxies or
edge servers responding to user requests. For example, a web
service could accidentally enable the caching of one user’s
authenticated content and serve it to another user. Using Secu-
rity Signals’ capability to observe fine-grained authentication
behavior, we were able to identify endpoints that are eligible
for caching and that branch on authenticated information. This
represents the set of endpoints that may be vulnerable to cache-
based information leaks.

Following our secure-by-design approach, we implemented
custom caching logic to prevent such cases from happening in

the long term, without disrupting use cases that rely on this
behavior and that are known to be safe.

D. Measuring Runtime Dependencies & Trust Relationships

Typical modern web applications orchestrate multiple back-
end services and infrastructure to process HTTP requests, fetch
and collate the data necessary to implement complex user-
facing functionality. This architecture favors flexibility, but
poses a major challenge in measuring web security effectively,
since runtime relationships between services and supporting
infrastructure are seldom available to static analysis and are
often the root cause of high-impact security issues.

One of Security Signals’ core capabilities is the ability to
highlight these relationships in a framework-agnostic way,
effectively surfacing dependencies that would otherwise be
impractical to understand at the service or framework levels.
This capability is built by cross-referencing synthetic signals
with request and response metadata.

Not only does this allow for a deeper understanding of how
backend services and infrastructure interact with each other,
but it can also highlight web traffic where infrastructure plays
an important role for security, for example in marshaling or
normalizing requests. The following list gives examples of
capabilities enabled by these insights:

Highlighting cross-framework and cross-tier trust rela-
tionships. The ability to identify critical services that establish
trust relationships with lower-sensitivity services or with a
weaker security posture unlocks the ability to pinpoint web
endpoints and workflows that are more likely to be vulnerable.
These services are ideal candidates for security hardening
efforts.

Understanding dependencies between business logic and
infrastructure. Some synthetic signals may be emitted when
requests are transformed or processed by infrastructure ele-
ments outside a service’s business logic. This includes select-
ing backend services to route requests to, marshaling requests
across several protocols, or making modifications to HTTP
requests. Identifying where such transformations are applied
enables security research that can discover vulnerabilities that
surface from infrastructure nodes, including caching servers,
load balancers, fetch systems, reverse proxies and others.

E. Additional Capabilities

The area of web application security is quickly evolving:
new attacks and defenses are introduced on a regular basis,
requiring security engineering teams to continuously evaluate
their ecosystems’ security posture and respond to new threats.
A core goal of the Security Signals approach is flexibility: it
can be adjusted to collect new types of data and integrate with
additional sources of security information, thus acquiring new
useful capabilities.

1) Enhancing JavaScript Security: We have extended Se-
curity Signals to the realm of JavaScript security through
a dedicated JavaScript Signal pipeline. This pipeline maps
JavaScript resources loaded by our web services to their



corresponding source files. By integrating with our organiza-
tion’s standardized build tooling (Bazel(27) and Closure(28)),
JavaScript Signal ensures that we can assess that all executing
scripts adhere to strict security standards and are free of
vulnerable patterns. It also allows us to assess code provenance
properties to further mitigate supply chain risks; for instance,
we can readily identify whether a vulnerable version of a third-
party library is present within a production web application
and pinpoint its exact code location, to ensure the library is
promptly updated.

2) Improving Security Scanning Coverage: Our organiza-
tion employs a custom web security scanner to automatically
detect web application vulnerabilities. While effective at dis-
covering web security issues, its impact can be reduced by
limited coverage: scanners typically initiate crawls based on
a few seed URLs and often cannot discover all parts of the
scanned web service.

Security Signals addresses this limitation by providing the
scanner with a targeted list of URLs derived from real-world
traffic patterns. By leveraging Security Signals’ inventory,
ability to map URLs to backend actions and understand query
parameter semantics, we generate a precise and deduplicated
set of scan targets. This approach significantly enhanced our
scan coverage, especially for internal-only services (resulting
in a threefold scan coverage increase), ensuring that critical
web applications and endpoints within applications are not
missed during security scanning.

3) Non-security Use Cases: Although originally designed
for security purposes, the Security Signals system is currently
used by over 50 teams across Google for many purposes that
are not directly security-related. This demonstrates that while
our focus has been on making web security measurable, the
resulting measurability has benefits that extend also to non-
security domains.

a) Product-level usage questions: Data collected by Se-
curity Signals makes it possible to answer various kinds
of product-level questions without having to implement cus-
tom application-specific data collection. For example, product
teams can query for specific patterns, such as the use of
Service Workers, or the use of resources based on their MIME
type. This can allow implementing various optimizations;
for example, in the case of commonly loaded images, a
developer might decide to reduce their size or improve their
caching properties to save on bandwidth costs and improve
performance for users.

b) Measuring compatibility with third-party cookie re-
strictions: As browsers introduce restrictions on third-party
cookies, existing services that rely on them may be affected.
This makes it important to find ways to scalably identify
application patterns incompatible with third-party cookie dep-
recation. Since Security Signals contains data about the source
and destination of a given request (by collecting the Referer,
Origin, and Host HTTP request headers), and whether a
request is authenticated (based on the Set-Cookie header
and synthetic signals), it was possible to leverage Security
Signals to identify services that required third-party cookies to

function. We were able to use this to identify internal services
that require third-party cookies and deploy a set of well-scoped
exceptions to mitigate these breakages for corporate users;
without Security Signals, this would have required a time-
consuming manual effort.

c) Surfacing AI/ML Properties: By joining the set of
web-level information with a separate graph of Remote Pro-
cedure Calls, Security Signals can identify web endpoints that
depend on generative AI models. This capability enables use
cases that aim to understand which models have access to
user data and where they are exposed to users. These analyses
holistically assess the sensitivity of AI-enabled applications,
going beyond the traditional model based on web origins.

V. MEASURABLE WEB SECURITY

We found that a key practical aspect of addressing the
challenge of insufficient measurability is to transform collected
data into meaningful security quality metrics. To achieve this,
the data must be aggregated, enriched with expert insights,
and tailored to the needs of different audiences.

A. Making Security Risk Measurable and Actionable

As part of Security Signals we built tailored interfaces
catering to different users, each presenting security data at
varying levels of granularity depending on the users’ needs:

• Security engineers: Access raw data and visualizations
to proactively detect vulnerabilities, conduct in-depth
security investigations and run large scale remediations.

• Product teams: Utilize aggregated data and actionable
insights to assess their product’s security posture, self-
evaluate against best practices, and adopt secure-by-
design technologies.

• Leadership: Review risk metrics and strategic recom-
mendations to inform decision-making, prioritize security
initiatives, and steer their organizations towards the adop-
tion of secure-by-design architectures for new projects.

1) Visualizations for Security Engineers: We provided se-
curity engineers with a powerful visualization tool to explore
and analyze web application security posture. Application
endpoints are presented as interactive “bubbles” organized by
code package and color-coded to reflect their security status
(see Figure 4 and 5). This provides security engineers with a
range of capabilities useful in their work:

• Identifying security gaps: Visualize the security posture
of each application endpoint, including details about
enabled security features and potential vulnerabilities.

• Initiating remediations: Use advanced filtering capa-
bilities to isolate endpoints with specific security weak-
nesses, enabling targeted remediation efforts.

• Filing bugs for product teams: Directly access rele-
vant code locations and file pre-populated bug reports
automatically assigned to the appropriate product teams,
accelerating issue resolution.



Fig. 4. Visualizing web endpoints by content type and method.

2) Security Scorecards for Product Teams: An important
goal of Google’s web security team is to scale security through
the use of secure defaults and large-scale improvements. To
this end, we developed an application to empower product
teams to actively participate in this process and gain a clear
understanding of their own service’s security posture and dis-
cover how adopting recommended frameworks can streamline
their web security efforts.

This application provides insights tailored to each team’s
application framework. By highlighting areas for improvement
and offering framework-specific recommendations, it makes it
easier for product teams to implement security best practices
and protect their users.

Developers without security expertise are provided with
information in an easily digestible format, categorized by
project, hostname, team, or product area. Teams can read-
ily identify areas needing attention, track their remediation
progress, and monitor for regressions, ensuring continuous
improvement in their web application security (see Figure 6).

3) Dashboards for executives: The data collected through
Security Signals provides high-level visibility and strategic
insights to executives to allow risk-based prioritization and
resource allocation decisions. To cater to this use case, we
developed dashboards that allow organization leaders to:

• Assess overall web security posture: Gain a comprehen-
sive understanding of the organization’s web application
security posture through surfacing aggregated metrics,
historical trends, and risk scores. This allows making
informed, data-driven decisions about resource allocation
and policy development.

• Identify areas of focus: Pinpoint areas of higher risk
or requiring immediate attention, such as the absence of
important security controls.

• Track progress and quantify impact: Monitor the ef-
fectiveness of security initiatives and remediation efforts
over time, demonstrating how they reduce security risks.

Fig. 5. Visualizing web security features and their status.

These dashboards distill complex security data into simple
visualizations, enabling leaders to quickly grasp the key chal-



Fig. 6. High level overview of a web security scorecard for product teams.

lenges and opportunities related to web application security
(see Figure 7). This empowers them to champion security
initiatives and support adoption of secure-by-design principles.

B. Assuring Security-by-Design

Importantly, Security Signals can also provide higher-level
interpretations of the data to demonstrate that certain systems
or applications are inherently “safe-by-design”(1) from broad
classes of vulnerabilities. This means achieving a level of
assurance about the absence of specific security issues that
wouldn’t be possible through traditional point-in-time audits
or by measuring the coverage of individual security controls.

This has significant benefits: if it’s possible to gain a high
degree of confidence about the absence of a given class of
flaws, security engineers and decision makers can make better
risk-based prioritization decisions and avoid investing time in
efforts less likely to lead to practical security improvements.

1) Example: Preventing Cross-Site Scripting: Cross-site
scripting (XSS) has historically been the most common high-
risk vulnerability affecting web applications(14). Holistically

addressing XSS requires strong separation between code and
data throughout the application. The only robust defense is
to implement a number of security controls that prevent the
use of unsafe server-side and client-side templating systems
and code that fails to guarantee this separation. Additionally,
these unsafe APIs can be restricted directly in the web browser
via opt-in security mechanisms such as strict Content Security
Policy(14) or Trusted Types(15).

By measuring the presence of security controls in an ap-
plication, we can infer that it is safe-by-design against XSS
vulnerabilities. This provides a high degree of confidence in
the application’s resilience to this class of threats. Past and
future defect data can then be used to validate the effectiveness
of the threat model and ensure the continued adequacy of
the implemented security controls. This approach, driven by
comprehensive measurement and the enforcement of safe-by-
design principles, has allowed us to successfully eliminate
XSS vulnerabilities across Google, a popular serving stack
used by hundreds of applications.

The use of Security Signals has allowed security teams to



Fig. 7. Aggregated view of web security features for executives.

ensure that all the necessary anti-XSS defenses are compre-
hensively enabled in Google applications, reducing the need
for conducting manual security reviews focusing on identi-
fying this class of flaws and freeing up substantial security
engineering resources.

VI. CONCLUSION

In this paper, we presented our experience from the design
and real-world use of Security Signals—a far-reaching effort
to implement security measurability for web services focusing
on enabling practical security improvements in a large-scale
web services ecosystem.

Collecting security-relevant information from HTTP traffic
at the reverse proxy layer, we developed a capable security
system which addresses several shortcomings of prior web
measurability proposals and introduces several novel ideas.
The concept of synthetic signals, exposing custom applica-
tion security properties as HTTP response headers, makes
it possible to collect arbitrary security-related information,
complementing the limited set of data present by default in
HTTP headers. Integrating additional risk information, such
as the relative sensitivity of a given web origin or the amount
of traffic a service receives, aids security teams in assessing
risk and making prioritization decisions. Optimizations such
as path redaction to reduce cardinality can ensure that the
output database remains limited in size for efficient querying,
while also preventing any sensitive information from being un-
intentionally persisted. Integrations with various organization-
specific systems (e.g. bug tracking tools and additional sources
of security data) make it possible to extend the capabilities of
the system beyond originally envisioned uses.

Security Signals has aided security teams at Google in
uplifting the security of a complex ecosystem with over 8000
web services. It facilitates automatic monitoring of security
invariants, preventing regressions and providing notifications
to product teams. It supports deployments of security im-
provements, including native web mechanisms and framework-
specific enhancements. By uplifting the ecosystem’s security

posture, it supports the implementation of secure-by-design
frameworks and technologies. Security Signals has also been
instrumental in security research, enabling teams to flag po-
tentially unsafe patterns for investigation and remediation.

Finally, the visibility into web service security properties
provided by Security Signals has found a large number of
practical uses among product teams, security engineering
teams, and security executives. By exposing data at different
levels of detail—from HTTP-level information about specific
endpoints to aggregate “security scores” for web services, or
groups of services—it has supported security decision-making
and prioritization across our ecosystem.

We expect that lessons learned from the use of Security Sig-
nals are broadly applicable to practitioners responsible for the
security posture of web services, and can spur the development
of powerful approaches for web security measurability.

VII. APPENDICES

A. List of collected HTTP headers

Security Signals reads the following request and response
HTTP headers:

• Access-Control-Allow-Credentials
• Access-Control-Allow-Headers
• Access-Control-Allow-Methods
• Access-Control-Allow-Origin
• Access-Control-Expose-Headers
• Access-Control-Request-Headers
• Access-Control-Request-Method
• Authorization
• Cache-Control
• Content-Disposition
• Content-Length
• Content-Security-Policy
• Content-Security-Policy-Report-Only
• Content-Type
• Cross-Origin-Embedder-Policy
• Cross-Origin-Embedder-Policy-Report-Only
• Cross-Origin-Opener-Policy



• Cross-Origin-Opener-Policy-Report-Only
• Cross-Origin-Resource-Policy
• Location
• Origin
• Purpose
• Referer
• Referrer-Policy
• Report-To
• Sec-Ch-Ua
• Sec-Fetch-Dest
• Sec-Fetch-Mode
• Sec-Fetch-Site
• Sec-Fetch-User
• Server
• Service-Worker
• Set-Cookie
• Strict-Transport-Security
• User-Agent
• Vary
• X-Content-Type-Options
• X-Frame-Options
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