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Abstract
This paper introduces a general and flexible framework for
F0 and aperiodicity (additive non periodic component) analy-
sis, specifically intended for high-quality speech synthesis and
modification applications. The proposed framework consists of
three subsystems: instantaneous frequency estimator and initial
aperiodicity detector, F0 trajectory tracker, and F0 refinement
and aperiodicity extractor. A preliminary implementation of
the proposed framework substantially outperformed (by a fac-
tor of 10 in terms of RMS F0 estimation error) existing F0 ex-
tractors in tracking ability of temporally varying F0 trajecto-
ries. The front end aperiodicity detector consists of a complex-
valued wavelet analysis filter with a highly selective temporal
and spectral envelope. This front end aperiodicity detector uses
a new measure that quantifies the deviation from periodicity.
The measure is less sensitive to slow FM and AM and closely
correlates with the signal to noise ratio. The front end com-
bines instantaneous frequency information over a set of filter
outputs using the measure to yield an observation probability
map. The second stage generates the initial F0 trajectory using
this map and signal power information. The final stage uses the
deviation measure of each harmonic component and F0 adap-
tive time warping to refine the F0 estimate and aperiodicity es-
timation. The proposed framework is flexible to integrate other
sources of instantaneous frequency when they provide relevant
information.
Index Terms: fundamental frequency, speech analysis, speech
synthesis, instantaneous frequency

1. Introduction
This paper describes a new F0 tracker for rapidly changing F0
trajectories with aperiodicity, which represents additive non-
periodic components. In high-quality speech synthesis and
modification applications [1–3], surpassing 4.2 on the 5 point
MOS score, glitches in aperiodicity handling and the failure
to follow rapidly changing fundamental frequencies (F0) are
harmful to processed speech quality. Introducing a generative
model of F0 trajectory (for example [4]) to F0 estimation pro-
vides well behaved and parametric representation. However,
the estimated F0 trajectories are still not good enough for high-
quality speech synthesis. The actual excitation signal of speech,
glottal flow, contains several sources of fluctuations [5] and con-
sequently, the observed F0 trajectories are different from the
trajectories produced by those models. To attain highly natu-
ral synthetic speech it is important to retain these fine temporal
variation in F0 trajectories [6, 7]. Although many F0 extractors
have been proposed [8–12], in practice, parameter tuning and/or
manual error correction is often necessary. In addition, their
performance when extracting such fine temporal variations has
not been investigated explicitly. That is the goal of this paper.

This paper is organized as follows. Section 2 discusses the
motivation and target for designing a new F0 observer, based on
a review on existing issues. It also defines aperiodicity, which is
relevant for speech analysis and synthesis. Section 2.2 presents
objective measures used in this paper. Based on these, section 3
introduces a general scalable architecture for F0 observer. It
consists of three subsystems: front end aperiodicity detectors,
the best trajectory finder, and F0 initial estimate and refinement
subsystem with aperiodicity extractor. Sub-sections 3.1 and 3.3
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Figure 1: Example of the difficulty of handling irregular voic-
ing. Upper plot shows speech waveform. Middle shows spec-
trogram using 25 ms Blackman window with 1 ms frame shift.
Lower plot shows F0 trajectories extracted using YIN and
SWIPE′. Around 0.25 s to 0.3 s, deviations caused discrep-
ancies and/or failure of the baseline F0 trajectory trackers.

introduce the front end and the refinement subsystems, respec-
tively. In section 4, these subsystems are evaluated using artifi-
cial test signals. Section 5 discusses remaining issues. Example
analysis results using actual speech samples and mathematical
details are given in appendices.

2. Background
Speech synthesis requires dependable F0 values whenever pro-
ducing voiced sounds. However, even for copy-synthesizing
from actual speech samples, where the targets are known, this
is not always easy, since voiced sounds are not purely periodic
and defining F0 values for such signals is not a trivial issue.

Figure 1 shows a beginning of a sentence from our speech
corpus. From 0.2 s to 0.52 s, the speech signal is voiced. How-
ever, due to irregularities in glottal vibrations, defining the F0
is difficult. The lower plot shows the F0 tracks by YIN [10]
and SWIPE′ [12] to illustrate the issues. It is difficult to eval-
uate the relevance of these tracking results. Yet these two state
of the art systems do not produce consistent results. The fact
that voicing without vocal fold contact is not rare [13, 14] pre-
vents using EGG (electroglottograph) for the source of ground
truth. Using the extracted trajectory and comparing the synthe-
sized speech and the original speech is a reasonable test but it is
very demanding on human resource and time to obtain reliable
results.

An alternative approach for evaluating F0 extractors is to
use an objectively defined artificial test signal. The ideal can-
didate is a speech signal, where the ground truth is available
and provides wide divergence and variability. Instead, this
article uses the excitation source signal defined by the L–F
(Liljencrants–Fant) model [15]. The L–F model represents the
time derivative of the glottal flow using a set of equations with
four parameters. However, directly digitizing the L–F model,
which is defined in the continuous time domain, introduces
spurious components due to aliasing. To alleviate this aliasing
problem this paper uses a closed-form representation of the anti-
aliased L–F model defined in the continuous time domain [16].
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Figure 2: Frequency modulated F0 tracking. Black thin line
on top shows waveform of the L–F (Liljencrants–Fant) model
[15, 16] output. The very thick blue line shows the true F0 tra-
jectory, which was used to generate the test signal. The refined
F0 trajectory by the proposed method (thick light green line)
almost overlays on the true trajectory.

Since the model is defined in the continuous time domain, it is
easy to generate a signal using a given F0 trajectory that will be
the ground truth used in this paper.1 [20–22]

Figure 2 shows an example of F0 tracking using a sinu-
soidally frequency modulated F0 trajectory as the test signal.
This test signal has a vibrato of 16 Hz, which is large compared
to the normal human voice, but demonstrates the problems due
to random, cycle-by-cycle variations in the F0. The tested F0
extractors are YIN [10], SWIPE′ [12], NDF [11], DIO [23] and
the proposed method, which is described in Section 3. The tra-
jectories obtained by YIN and SWIPE′ are strongly distorted
and attenuated, perhaps because the F0 is changing faster than
these models allow. When these distorted trajectories are used
to generate the excitation source for copy-synthesis, the out-
put is perceived differently. This is because the distortion adds
fast-changing modulation components that are not in the origi-
nal signal. The effects of these spurious components are made
worse because humans are far more sensitive to fast frequency
modulations than amplitude modulations [24, 25].

Voiced sounds are usually considered as periodic, and to
first approximation the glottal pulses do occur at regular inter-
vals. But due to prosodic needs the F0 of a voice is constantly
changing, sometimes a simple glide as in the rise of F0 in a
question, and sometimes in a regular fashion, as with vibrato.
And, sometimes F0 varies in a more complex patterns, such as
in tonal languages, where the F0 trajectory conveys linguistic
information. On top of these intended changes in F0, there are
modulations due to physiological aspects of voice production.
The stochastic nature of neural pulses which drive the muscles
of the vocal organ is a strong noise source and the critical con-
ditions that produce vocal fold oscillation introduce bi-stable or
chaotic vocal fold vibration, especially during voice onset and
offset. Age related change and physical body status also affects
the stability of vibration [5]. All these deviations from pure
periodicity play important roles in speech communication and
make speech a much richer media than text [26].

It is important to properly analyse and replicate these de-
viations from periodicity in high-quality speech synthesis and
modification applications. Accurately estimating aperiodicity
is still a very challenging problem. Tracking errors introduces
spurious components [27, 28] and they add to the original ran-
dom component. These are the reasons why F0 tracking dis-
tortions as shown in Fig. 2 are harmful for high-quality speech
synthesis. Two issues have to be properly solved : accurate es-
timate and tracking of changing F0 trajectory and accurate esti-

1In an open-source implementation [17, 18] of the anti-aliased L–F
model [16], the model parameters can be controlled each glottal cycle
independently to simulate the details of vocal fold behaviour [19]. It can
be combined with a time varying lattice filter to simulate the dynamic
speech production process, which modulates observed F0 through in-
teraction between harmonic component and the group delay associated
with resonances (formant trajectories). But these detailed simulations
are for further study.

mate of random components based on the accurate estimate of
F0 trajectory.

These issues motivate us to develop a framework that pro-
vides a calibrated procedure to describe the amount of aperiod-
icity and to track F0. The primary analysis target is high quality
speech corpus recorded in a quiet and acoustically controlled
environment using high-fidelity microphones. The aim here is
to provide accurate, certified metadata, in this case, F0 value
and an index that represents the accuracy of the estimated F0
as well as a measure that represents the amount of aperiodic-
ity. Processing speed is not the first priority of the framework
described here. Note that these metadata depend only on the
data in the analysis frame, because there is no reliable model
yet for the dynamic behaviour of F0 and aperiodic compo-
nent. Using models of dynamic F0 behaviour such as Fujisaki’s
model [29], or F0 continuity constraint, may introduce biases
due to model mismatch. Frame-based F0 with aperiodicity in-
formation, which the proposed system produces, will help to
establish certifiably accurate models of the statistical/dynamic
behaviour.

2.1. What is aperiodicity?
For speech synthesis applications, amplitude and F0 are con-
trollable parameters of the excitation source. However, only
replicating amplitude and F0 precisely to the original speech
yields poor quality synthetic sounds. An important attribute of
excitation is missing. This missing attribute is aperiodicity.2

In this paper, attributes that can be represented by amplitude
and F0 modulation are not included in the definition of aperiod-
icity. What is left after removing periodic component defines
“aperiodicity” in this paper. It turns out that our system’s F0
estimation error is well correlated with the system’s estimate of
aperiodicity, described below.

2.2. Measures for objective evaluation
F0 extractors have been evaluated based on error-rate related
measures; such as Gross Pitch Error (GPE), Voicing Detec-
tion Error (VDE) [30] and Pitch Tracking Error (PTE) [31].
Attaining high performance in these measures is a prerequi-
site for good F0 extractors. In this paper, we focus on F0
tracking fidelity, because the proposed method does not make
voiced/unvoiced decision. Instead, this F0 tracker outputs a
measure of aperiodicity, which closely correlates with the stan-
dard deviation of the relative F0 estimation error from the true
value. This aperiodicity detector also is an informative source
of the type of excitation. The voiced/unvoiced decision is left
to the application, which can use the output of the proposed
method to make this decision.

3. Architecture and subsystems
The proposed framework, YANGSAF (Yet ANother Glottal
Source Analysis Framework), computes the instantaneous F0
using three steps: estimate, track, and refine. The estimation
step calculates three features of the input signal over a number
of bandpass channels. The maximum from the estimate stage
is then tracked to produce a local estimate of the F0. Finally,
an optional refinement stage combines temporal and harmonic
information to produce a more accurate estimate of F0.

3.1. Estimation
The first stage of the YANGSAF algorithm analyses the signal
with a number of bandpass channels, and then estimates three
values for each channel as a function of time. These values are
1) the local instantaneous frequency, 2) a measure called ape-
riodicity that represents the amount of variability in the chan-
nel’s frequency estimate, and 3) a probabilistic estimate that the
channel contains a good representation of the F0. These sig-
nals are described in the subsections that follow and are used in
the tracking stage described by Section 4.2. Figure 3 shows a
diagram of the estimating detector in each channel.

The front end breaks the input into a number of spectral

2Effects of spectral envelope are also ignored. These details exceed
the scope of this paper.
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Figure 3: Schematic diagram of aperiodicity detector. Upper
part calculates instantaneous frequency using Flanagan’s equa-
tion (Appendix A). The lower part calculates aperiodicity mea-
sure as a relative residual level aks (Appendix B).

channels using a bank of bandpass filters, each centered at fc.3
The center frequencies cover the possible F0 range, with a fixed
separation on the logarithmic frequency axis. The current im-
plementation covers 400 Hz to 1000 Hz using 12 channels and
detectors in each octave.

The instantaneous frequency estimate needs both the
complex-valued signal and its derivative. These values are cal-
culated starting with bandpass filter h(τ, fc) and its derivative
hd(τ, fc) shown in Fig. 3 and described in Appendix A. Each
bandpass filter has linear phase, is a zero-delay FIR filter, has
a complex-valued response, and passes only the positive fre-
quency components.

Figure 4 shows an example of these three estimated signals
for a sequence of vowels.

3.1.1. Instantaneous Frequency
The instantaneous frequency of the signal contained within
each channel is calculated using Flanagsn’s approach, which is
based on the logarithm of a complex signal x(t) and its deriva-
tive. An AM/FM modulated signal is represented in polar form
x(t) = r(t)ejθ(t). The instantaneous (angular) frequency ωi(t)
is defined as the derivative of the phase component θ(t), namely
ωi(t) = dθ(t)

dt
. The instantaneous frequency can be derived by

starting with the logarithm of the component phase and using a
bit of algebra:

d log(x(t))

dt
=
d log

(
r(t)ejθ(t)

)

dt
=
d log(r(t))

dt
+j

dθ(t)

dt
(1)

ωi(t) =
<[x(t)]

d=[x(t)]

dt
−=[x(t)]

d<[x(t)]

dt
|x(t)|2 , (2)

where <[x] and =[x] represents the real and the imaginary part
of x, respectively. The derivation of this expression is contained
in Appendix A.

3.1.2. Aperiodicity
We also wish to calculate a measure of the aperiodicity of the
signal in each channel, which will be used as a measure of the
reliability of the instantaneous frequency measurement. For a
constant sinusoid, the aperiodicity is zero, and the aperiodicity
grows as the signal varies (wiggles) more within the bandpass
channel. The basic idea of the periodicity detector is to calculate
the amount of energy in the band-passed signal that is not the
primary sinusoid. The primary sinusoidal component will have
the largest energy, and when the complex signal is normalized
to have unit magnitude, refiltered, and then renormalized, the
primary sinusoid will still have unit magnitude. The other com-
ponents will be filtered with a non-unit gain, since the filter is
not an ideal brick-wall filter, and their amplitude will change.
Subtracting the original and the twice-filtered and normalized
response gives an estimate of the aperiodicity. Note this esti-
mate is done without explicitly identifying the primary sinusoid
and its frequency.

3The -3 dB points in frequency are 0.745fc and 1.255fc. The zero
points are located at 0 and 2fc. The -3 dB points in time are −0.456/fc
and 0.456fc. Support is (−2/fc, 2/fc).
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Figure 4: Example of the first stage detector outputs. The up-
per plot shows the instantaneous frequency map. The middle
plot shows the residual map. The bottom plot shows the prob-
ability map. The speech material is a Japanese vowel sequence
/aiueo/ spoken by a male. For reference purpose, the F0 trajec-
tory extracted in the third stage is overlaid using open circles. In
the probability map, the periodic vertical lines are synchronized
with vocal fold vibration. The upper right trace of periodicity
corresponds to the response of first formant of vowel /o/.

When a signal x whose fundamental frequency is equal
to fc is filtered, only the fundamental component, a complex-
valued, slowly time-varying signal, is passed (appears in y1)
and is normalized to become y′1. Then, by using the same filter,
filtering signal y′1 again, and normalizing the overall amplitude
using the absolute value of the complex valued-signal, the twice
filtered (and amplitude normalized) signal y′2 is obtained. Sub-
tracting this twice filtered and amplitude normalized signal y′2
from the amplitude normalized first filter output y′1 , yields a
residual signal r. Since the signal y′1 is normalized, the power
of the residual represents the relative level of the other compo-
nent(s).

The difference between y′1 and y′2 corresponds to spectral
components in the channel that are not the primary sinusoid.
Calculating the energy in this signal (ak), and smoothing it
gives aks which is this system’s measure of harmonic aperi-
odicity. Appendix B describes the relation between the SNR
of the original signal and the residual aperiodicity power using
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equations and examples.
Placing bandpass filters having the same shape on the loga-

rithmic frequency axis yields the detector to output higher aperi-
odicity value, when fc is located at harmonic frequencies other
than the fundamental. This is similar to the concept “funda-
mentalness,” which is explained in Fig. 11 of reference [32].
Appendix shows relation between filter shape examples and har-
monic components.

The instantaneous frequency calculation and the aperiodic-
ity calculation yield values at the audio sampling rate. These
audio sampling rate time series are down-sampled for later pro-
cessing. In this work the down-sampling is accomplished by
extracting the nearest time samples from each time series, pro-
viding two sequences of instantaneous frequency and aperiod-
icity measure values at the frame rate (i.e. 200 Hz).

3.1.3. Probability

The fundamental component in the original signal is dominant
in a number of output channels because there is little else for fil-
ters centered at frequencies lower than the second harmonic can
respond. Thus a number of channels will respond in the same
way to the fundamental component, as seen by the blueish blob
around 100Hz in the second panel of Figure 4. All channels
inside this blob have information about the fundamental com-
ponent, but with different reliabilities.

Given a number of (distinct) estimates of the true F0, all
from different channels, a probability map indicates which
channel will have the best estimate. To create this probabil-
ity map, all the instantaneous frequency and aperiodicity esti-
mates are converted into Gaussian probability masses centered
at various instantaneous frequency estimates. The output of the
channel’s aperiodicity estimate (aks, a measure of smoothed en-
ergy) is converted into a variance σ2

k by scaling. The scaling
coefficient was empirically determined by a set of simulations.
On a log-frequency scale ν, this gives a number of (indepen-
dent) estimates of the instantaneous frequency, each modelled
as a Gaussian mass centered at log(fk), and with a variance
of σ2

k. Summing all these yields a probability density function
pG(ν) represented as a Gaussian mixture. For each channel,
integrating this distribution provides an observation probability
Pr[k] that channel k should see the fundamental component in
its nominal pass band [fL(k), fH(k)] is

pG(ν) =

N∑

n=1

b̂n√
2πσ2

n

exp

(
− (log(fn)−ν)2

σ2
n

)
(3)

Pr[k] =

∫ log(fH [k])

log(fL[k])

pG(ν)dν (4)

fL[k] = fc[k]2−
1

2K , fH [k] = fc[k]2
1

2K , (5)

where K represents the number of filters per octave.
This integrates the instantaneous frequency probability dis-

tributions between the frequency limits of filter k to arrive at
an estimate of how reasonable it is for channel k to provide an
estimate of the F0. An example of this result is shown in the
bottom of Figure4.

3.2. Tracking
Given the three instantaneous maps (as a function of frame time
and spectral channel) computed in Section 3.1, an initial esti-
mate of the single best F0 at each frame is calculated by finding
the channel with the highest probability. This is done in four
steps: estimate the pitch range for this utterance, smooth the
probability map, find the highest probability F0, and then refine
the F0 estimate. The result is a smooth estimate of the true F0
based on the instantaneous frequency calculated in each chan-
nel.

First, the F0 search range is estimated by a weighted aver-
age of the instantaneous frequencies seen in the utterance. The
temporal weighting is calculated from the energy in the orig-
inal signal, after filtering it between 40-1000Hz, which is the
prospective pitch range. Then each frame of the instantaneous

frequency map is weighted and combined to form an overall in-
stantaneous frequency histogram. By weighting by the signal’s
amplitude at each point in time, the high-energy portion of the
utterance (vowels) are treated with more importance.

The median of this instantaneous frequency distribution
(marginal distribution) defines the center point of the F0 search
range. The tracker looks for peaks in the probability distribu-
tion within 1.2 octaves above this center point, and 1.3 octaves
below, a total of a 2.5 octave range.

Second, in order to better estimate the F0 at the start and
end of voicing the probability map computed in Section 3.1.3
is smoothed in time using a 45ms Hanning window with am-
plitude weighting. Smoothing is done before tracking so that
we extend the F0 estimates at the start and end of voiced seg-
ments. For example, at the onset of voicing, the probability at
F0 is not high, because the signal level is low and the SNR is
low. Smoothing using amplitude weighting increases the prob-
ability at F0, because at frames after the onset the level grows
and consequently the SNR become higher. In other words, the
probability distribution of the onset frames become more like
the probability distribution of later frames. This way smoothing
reduces tracking error at the beginning of voicing. The same
thing happens at the voice offset.

Thirdly, given the F0 range and the smoothed probability
map the best channel across time can be tracked. For a range
of channels that are within the 2.5 octave range defined for the
entire utterance, and 0.7 octaves of the last frames best channel,
the channel with the highest smoothed probability is chosen.

Finally, this channel selection is further refined by returning
to the original probability map computed in Section 3.1.3 and
choosing the channel with the highest probability closest to that
bin chosen from the smoothed estimate. The following provides
the initial F0 estimate fOI .

fOI =
∑

m∈V[k]
bmfm (6)

V[k] = {m | 0.5 fc[k] < fc[m] < 1.25 fc[k] } , (7)

where the best weights bm are calculated from σ2
m in V[k].

3.3. Refinement of the initial estimate
The third stage further improves this F0 estimate by adding two
refinements. First, and most importantly, the higher harmonics
of an F0 estimate can refine the estimate. Secondly, adaptive
time warping of the original signal, combined with further re-
finement using higher harmonics of the warped signal, reduces
the amount of F0 trajectory deviation for better analyses.

The first procedure uses harmonic frequencies and their
variance. Each harmonic component, from first to m-th, has
corresponding aperiodicity detector. Each bandpass filter of the
detector has the same shape on the linear frequency axis and
does not cover neighbouring harmonic components. Each de-
tector yields instantaneous frequency fk and its aperiodicity
ak, where k represents the harmonic number. These values
are converted to F0 estimate fk/k and its variance σ2

k. The
weighted average

∑m
k=1 bkfk/k provides the refined F0 esti-

mate. Variance values {σ2
k}mk=1 are used to calculate the best

mixing weights {bk}mk=1 (Appendix D).
However, this refinement does not properly make use of

higher harmonic information when the F0 trajectory is rapidly
changing. This is because a rapid movement of higher frequen-
cies generates strong side-band components and they smear the
analysed harmonic structure [27, 28, 33].

Thus, the second procedure uses F0 adaptive time axis
warping to alleviate this problem. Stretching the time axis, pro-
portional to an instantaneous F0 value makes the observed F0
value constant [27, 28, 33] and keeps the harmonic structure in-
tact. Then, placing aperiodicity detectors on harmonic frequen-
cies, from first to m-th, the weighted average of F0 information
yields the F0 estimate on the warped time axis. Converting this
estimate value to the value on the original time axis provides the
further improved F0 estimate.

These two procedures are applied serially as well as recur-
sively. Let Hm represent the operation of harmonic based re-
finement using the first throughm-th harmonic components and
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Tm represent the operation of F0 adaptive time warping-based
refinement using the first through m-th harmonic components.
LetPX [x; Θ] represent the function of initial estimate F0 where
x represents the input signal and Θ represents a set of the asso-
ciated design parameters for analysis. The following equations
describes the configurations of the two trackers tested:

H10 ◦ H3 ◦ PX [x; Θ] (8)
T10 ◦ T10 ◦ H3 ◦ PX [x; Θ], (9)

where T ◦H represents the composite function of the functions
T andH.

Finally, by placing aperiodicity detectors on all harmonic
frequencies in the warped time axis, estimated SNR around each
harmonic component provides the excitation source information
for speech synthesis. Because any F0 trajectories on this warped
time axis are constant in time, aperiodicity values which detec-
tors output are consistent with the aperiodicity definition of this
paper.

4. Evaluation using test signals
This paper uses two measures of performance. Most impor-
tantly, the standard deviation of the relative error tells us the
total distortion of the estimated F0 trajectory from the ground
truth. The second performance measure is the frequency-
modulation amplitude transfer function (FMTF), which ex-
presses how well a F0 tracker follows fast F0 modulations. The
test signal uses sinusoidal modulation on the logarithmic fre-
quency axis, since F0 dynamics is better described on the log-
arithmic frequency axis [29]. Consequently, both FMTF and
distortion evaluation measures use logarithmic frequency to cal-
culate their value.

The proposed algorithms are implemented using MATLAB
and tested using synthetic signals. Only representative results
are described below. In the following tests, the test signals were
generated using the aliasing-free L–F model [16].4 The sam-
pling frequency fs was 22050 Hz and the “modal” voice quality
parameters [34] for the L–F model were used in the following
examples.

We test this new F0 tracker in two different ways: additive
noise and FM modulation.

4.1. Additive noise
Firstly, the quality of the F0 estimate in the face of additive
white noise was tested using the configuration given by Eq. 8
(H10 ◦ H3). The F0 extractor for the initial estimate (Sec-
tion 3.2) (PX [x; Θ]) was tested to clarify the effects of refine-
ment (Section 3.3). Four popular F0 extractors were also eval-
uated for reference; YIN [10], SWIPE′ [12], NDF [11] and
DIO [23, 35]. They were tested using their default or recom-
mended settings. A constant F0 trajectory was used in this test.

Figure 5 shows the results for a 120 Hz F0. The vertical axis
represents the relative RMS error. When the SNR is larger than
5 dB, YIN yielded the best results. But, YIN’s performance is
obtained at the cost of poor temporal resolution, which will be
shown in the following test. DIO was designed for high-quality
recordings and is not tolerant to noise. While SWIPE′ showed
good performance from 0 to 20 dB SNR, performance saturated
there after. The harmonic refinement procedure reduced the er-
ror in the initial estimate by a factor of 8, even in high noise,
because the standard deviation of error in n-th harmonic com-
ponent is 1/n as described in previous paragraph. In total, this
is the second best result.

4.2. Frequency modulation of F0
Measuring the ability of a F0 tracker to follow F0 modulation is
a more relevant test for speech sounds with rapid changes. The
instantaneous frequency of the aliasing-free L–F model output
was controlled at audio sampling rate (22050 Hz) resolution.

4The original L-F model [15] is anti-aliased using a closed form rep-
resentation. The MATLAB implementation of this function and GUI-
based interactive application for speech science education are open
source [17, 18]. Spurious levels around the fundamental component of
the model’s output are lower than -120 dB.
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Figure 5: RMS error of F0 estimation vs. additive noise SNR
for a temporally constant F0. The initial estimate (triangle) er-
ror deviations were reduced by a factor of 8 (circle) by using
harmonic refinement.

modulation frequency (Hz)
100 101

g
a
in

 (
d
B

)

-25

-20

-15

-10

-5

0

F0: 120 Hz

T
10

 ° T
10

 ° H
3

H
10

 ° H
3

Yin
SWIPE'
NDF
DIO
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The average F0 was 120 Hz with 100 musical cent peak-to-peak
modulation depth roughly to 6% frequency modulation peak-to-
peak in frequency.5 In the two tests described in this section, a
bit of white noise (SNR 100 dB) was added.

Figure 6 shows the frequency modulation transfer function
for the four F0 trackers that serve as a benchmark and two vari-
ations of the F0 tracker described in this paper. For very low
vibrato frequency (low modulation frequency) all F0 trackers
work well at high SNR. At higher modulation frequencies all
F0 trackers except for T10 ◦ T10 ◦ H3 fail to follow the full
modulation, which shows up as a reduced gain when consid-
ering the output vs input modulation deviation. For higher F0
signals, the 3 dB point increased proportionally to the F0 value,
except YIN.

Figure 7 shows the RMS error of the F0 trajectories as a
function of the modulation frequency. The dashed line and dash
dot line show the RMS error of the best approximation to the
true F0 using piece-wise linear function with segment lengths
1 ms and 5 ms respectively.

SWIPE′ and YIN yielded large RMS error, corresponding
to the strong distortion shown in Fig. 2. The refinement per-
formance without time warping is comparable to NDF. DIO
showed the best performance among popular methods. The re-
fined F0 trajectory using F0 adaptive time warping reduces the
RMS error by a factor of 10 or more over the range from 2 Hz
to 16 Hz modulation. For higher F0 values, RMS errors of other
methods decrease inversely proportionally to the F0 value.

The F0 adaptive time warping also reduced spurious com-
ponent due to FM substantially. For example, for a test sig-
nal with 16 Hz frequency modulation and 100 musical cent p-p
depth, the refined F0 by the analysis configuration T10◦T10◦H3

5Tested F0 were 120, 240, 480 and 800 Hz. For F0 extractors,
120 Hz is the worst condition in terms of tracking.
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reduced spurious residual levels lower than−40 dB. This is per-
ceptually negligible.

5. Discussion
The goal of this paper is to estimate F0 trajectories, which con-
sist of rapidly changing components, accurately for high-quality
speech synthesis. The proposed set of procedures provide a
prospective framework. However, the following aspects of F0
estimation were not exploited here. Investigations of the follow-
ing issues could be important for improving synthesis quality
further.

Plosive sounds such as /k/, /t/ sometimes sound like frica-
tive by smearing temporal sharpness due to the smoothing ef-
fect of time windowing. This is a common degradation found
in STRAIGHT.

Some speakers and languages frequently use “creaky
voice.” Representing these sounds using periodic signal plus
noise results in poor reproduction. Relevant analysis and repre-
sentations have to be investigated.

Temporal variation of F0 consists of effects caused by in-
teractions between harmonic components and group delay in
vocal tract transfer function. It is desirable to compensate this
effect for speech synthesis applications, because this effect can
be accumulated in each analysis and synthesis cycle.

In addition, it is interesting to consider a unique F0 tracker
based on Harmonic-Locked Loop tracking [36] as an alterna-
tive F0 refinement procedure for the third stage of the proposed
framework.

6. Conclusions
This paper introduced a framework for intantaneous estimates
F0 and aperiodicity. It is able to improve the ability of F0 ex-
tractors to temporally follow varying F0 trajectories by a factor
of 10. It may serve as an useful infrastructure for speech re-
search and applications.
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A. Note on the Flanagan’s equation
Flanagan uses the time derivative of the logarithm of a complex
signal x(t) to estimate the instantaneous frequency. By intro-
ducing a logarithmic function, the phase component is linearly

separable from amplitude.

log(x(t))=log(r(t) exp(jθ(t))) = log(r(t)) + jθ(t) (10)
=[log(x(t))] = θ(t). (11)

To make derivation simpler, as far as no ambiguity is intro-
duced, time dependency representation by (t) is omitted after-
wards.

ωi =
dθ

dt
= =

[
d log(x)

dt

]
= =

[
1

x

dx

dt

]

= =
[
da
dt

+ j db
dt

a+ jb

]
where x = a+ jb

= =
[(

da
dt

+ j db
dt

)
(a− jb)

(a+ jb)(a− jb)

]

= =
[
a
(
da
dt

+ j db
dt

)
− jb

(
da
dt

+ j db
dt

)

a2 + b2

]

= =
[
a da
dt

+ ja db
dt
− jb da

dt
− b db

dt

a2 + b2

]

=
a
db

dt
− bda

dt
a2 + b2

=
<[x]

d=[x]

dt
−=[x]

d<[x]

dt
|x|2 . (12)

Which is the Flanagan’s equation.
The complex-valued signal x in Eq. 12 is a filtered output

of h(t). It is a function of the center frequency fc and time.
Let explicitly represent x using X(ωc, t) and its time derivative
using Xd(ωc, t). Then the following holds.

X(t, ωc) =

∫ ∞

−∞
h(λ)x(t− λ)dλ

= −
∫ ∞

−∞
w(τ − t) exp (jωc(τ − t))x(τ)dτ (13)

Xd(t, ωc) =
dX(t, ωc)

dt

= − d

dt

(∫ ∞

−∞
w(τ − t) exp (jωc(τ − t))x(τ)dτ

)

= −
∫ ∞

−∞

(
−d w(τ − t)

dt
− jωcw(τ − t)

)
·

exp (jωc(τ − t))x(τ)dτ

=

∫ ∞

−∞
hd(λ)x(t− λ)dλ, (14)

where
wd(t) =

dw(t)

dt
+ jωcw(t) (15)

hd(t) = wd(t) exp(jωct). (16)

Substituting these two time windows w(t) and wd(t) into
Eq. 12 removes time derivatives:

ωi(t, ωc) =
<[X(t, ωc)]=[Xd(t, ωc)]−=[X(t, ωc)]<[Xd(t, ωc)]

|X(t, ωc)|2
,

(17)

Note that the TKEO (Teager Kaiser Energy Operator [37])
is not relevant for estimating rapidly changing F0 trajectories,
since it uses an approximation, which requires slowly chang-
ing AM and FM. Using Flanagan’s equation is relevant, since it
does not rely on this approximation.
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Figure 8: principles of operation. Left plot shows filter shape
and the dominant signal at 1.14fc. Filter gains are adjusted to
make output levels are 0 dB. Subtracting the second filter gain
from the first one yields the equivalent filter for other compo-
nents. Right plot shows the output residual level as a function
of the location of the dominant signal and the noise level.

B. Residual calculation in each detector
This section shows how the aperiodicity detector in Fig. 3
works. The input to this detector is x(t). Let h(t, fc) repre-
sent the complex valued impulse response of each band pass
filter centered around fc.

ak(t, fc) = |r(t, fc)|2 (18)

r(t, fc) = y′1(t, fc)− y′2(t, fc) (19)

y′2(t, fc) =
y2(t, fc)

|y2(t, fc)|
(20)

y2(t, fc) =

∫ 2/fc

−2/fc

h(τ, fc)y
′
1(t− τ)dτ (21)

y′1(t, fc) =
y1(t, fc)

|y1(t, fc)|
(22)

y1(t, fc) =

∫ 2/fc

−2/fc

h(τ, fc)x(t− τ)dτ, (23)

where the integration interval (−2/fc, 2/fc) is for the Nut-
tall window (Eq. 25). For Hann window the interval is
(−1/fc, 1/fc) and for Blackman window the interval is
(−1.5/fc, 1.5/fc). Band pass filters having these impulse re-
sponse lengths have first spectral zeros at 0 and 2fc.

Smoothing the relative residual level ak(t, fc) yields the
aperiodicity parameter aks(t, fc).

aks(t, fc) =

∫ 2/fc

−2/fc

|h(τ, fc)|ak(t− τ, fc)dτ. (24)

B.1. Operation and implementation of the procedure

Figure 8 illustrates the process use to calculate the aperiodicity
component. The impulse response of the filter h(t, fc) is

w(t) =

3∑

k=0

ak cos(2πkfct) |t| < 2

fc
(25)

h(t, fc) = w(t) exp(2πjfct), (26)

where j =
√
−1 and the coefficients {ak}3k=0 are (0.338946,

0.481973, 0.161054, 0.018027). This is the 11-th item in Table
II of Nuttall’s work [38].6

The detector is designed to cancel the primary periodic
component in the input signal by adjusting the filter gain at the

6In terms of time-frequency product, when both is bounded, plorate
spheroidal wave function is theoretically the best [39, 40]. However,
due to large spectral dynamic range of actual speech signals, cosine
series windows, which have very low side lobe level and steep side lobe
decay [38] yielded better performance.
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Figure 9: Detector allocation of the front end (left plot) and the
refinement stage (right plot).

frequency of the primary component. This is done by normal-
izing the output by its RMS level. In a high SNR case, to-
tal RMS level of the filtered signals are approximately equal
to the RMS level of the periodic component. The RMS level
of the lower level components are affected by this suppression
process. Since the equivalent filter gain from this suppression
process is the difference of two filters, it yields the filter shape
shown in the red curve of left plot of Fig. 8. The right plot of
Fig. 8 shows the output aperiodicity parameter ak as a function
of the location of the primary component and the level of the
lower level components.

C. Detector allocation
Figure 9 shows detector filter shapes of front end and the third
stage. In the front end, the filter width is proportional to the
center frequency. In the refinement stage, the filter width is
constant. The filters in the refinement stage are designed using
the estimated F0.

D. Mixing F0 information
The band of estimators in the front end independently estimate
instantaneous frequency and an estimate of the quality of this
estimate in the form of an aperiodicity measure. We need to
consolidate these estimates to get a single estimate of F0 and
we do this with a weighted average.

Assume a set of random variables Xk, k = 1, . . . , N hav-
ing zero mean (E[Xk] = 0) and variances σ2

k (Var[Xk] = σ2
k).

We wish to generate a new estimate from all the noisy estimates
by weighting the individual estimates to arrive at an answer with
the minimum estimated variance. Thus, assume the following
cost function.

L = Var

[
N∑

k=1

bkXk

]
, (27)

where bk represents the mixing coefficient. When mixing F0
estimates derived from different sources, the sum of weights
has to satisfy the condition (

∑N
k=1 bk = 1).

The optimum coefficients b̂k for k = 1, . . . , N − 1 are
derived by solving the following set of equations.

σ2
N = bkσ

2
k + σ2

N

N−1∑

n=1

bn for (k = 1, . . . , N − 1). (28)

The final coefficient b̂N is given by

b̂N = 1−
N−1∑

k=1

b̂k. (29)

Other source of F0 information can be used to improve this
estimate further, if the variance of the estimate is available.
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