
ScopeVerif: Analyzing the Security of Android’s
Scoped Storage via Differential Analysis

Zeyu Lei∗, Güliz Seray Tuncay†, Beatrice Carissa Williem∗, Z. Berkay Celik∗, Antonio Bianchi∗
∗Purdue University, †Google

lei76@purdue.edu, gulizseray@google.com, beat.wil105@gmail.com, zcelik@purdue.edu, antoniob@purdue.edu

Abstract—Storage on Android has evolved significantly over
the years, with each new Android version introducing changes
aimed at enhancing usability, security, and privacy. While these
updates typically help with restricting app access to storage
through various mechanisms, they may occasionally introduce
new complexities and vulnerabilities. A prime example is the
introduction of scoped storage in Android 10, which fundamen-
tally changed how apps interact with files. While intended to
enhance user privacy by limiting broad access to shared storage,
scoped storage has also presented developers with new challenges
and potential vulnerabilities to address. However, despite its
significance for user privacy and app functionality, no systematic
studies have been performed to study Android’s scoped storage
at depth from a security perspective.

In this paper, we present the first systematic security analysis
of the scoped storage mechanism. To this end, we design and
implement a testing tool, named ScopeVerif, that relies on
differential analysis to uncover security issues and implementa-
tion inconsistencies in Android’s storage. Specifically, ScopeVerif
takes a list of security properties and checks if there are any
file operations that violate any security properties defined in
the official Android documentation. Additionally, we conduct a
comprehensive analysis across different Android versions as well
as a cross-OEM analysis to identify discrepancies in different
implementations and their security implications.

Our study identifies both known and unknown issues of scoped
storage. Our cross-version analysis highlights undocumented
changes as well as partially fixed security loopholes across
versions. Additionally, we discovered several vulnerabilities in
scoped storage implementations by different OEMs. These vul-
nerabilities stem from deviations from the documented and
correct behavior, which potentially poses security risks. The
affected OEMs and Google have acknowledged our findings and
offered us bug bounties in response.

I. INTRODUCTION

The security of data storage is a critical concern in modern
mobile security. Unlike temporary data in memory or in transit,
information in storage remains accessible for extended periods,
prolonging the window of risk exposure. As mobile devices
accumulate an ever-growing collection of sensitive data over
time—ranging from personal information to financial records

and proprietary business information—they become increas-
ingly attractive targets for attackers. The challenge is further
complicated in multi-user environments, where different apps
share the same storage space, even sharing access to the same
files, which requires a more fine-grained permission system to
manage data access [1], [2], [3].

Previous research has exposed how attackers violate privacy
and security by exploiting vulnerabilities in storage shared by
apps. For example, Bianchi et al. [4] demonstrated the theft
of authentication credentials via shared storage, and Dong et
al. [5] revealed the use of shared storage as a covert channel for
transferring user identifiers between apps, compromising user
privacy. Additionally, Checkpoint [6] reported an attack where
an untrusted application could maliciously replace a victim
app’s library files, leading to potential crashes or arbitrary code
execution.

As a defense against shared storage vulnerabilities, Google
introduced scoped storage in Android, a security model that
aims to enhance protection for both apps and users by limiting
access to shared storage spaces [7]. Scoped storage has shown
promising improvements, with Lee et al. [8] estimating that
scoped storage reduces attack operations—authorized opera-
tions that may be exploited by adversaries to escalate their
privileges—by 54-71% in Android’s external storage. Further-
more, Dong et al. [5] confirmed that when scoped storage is
active, all malicious SDKs that violate user privacy by utilizing
cross-app user identifiers are rendered inoperative.

Despite the benefits of scoped storage, it does not address
all issues. For instance, Tuncay has shown that adversaries
can escalate their privileges and obtain unauthorized access
to all files via SDK downgrading on devices with active
scoped storage [9]. Other anecdotal evidence [10] reveals
that Android 12 had an implementation error, which led to
a widely exploited loophole, despite scoped storage being
active, resulting in violations of the security properties that
scoped storage aims to achieve. Furthermore, while Android
13 partially addressed this issue, it was not until Android 14
that all known vulnerabilities associated with this loophole
were fully resolved. These instances motivate us to explore
three research questions: (1) Is Android’s shared storage secure
under all the security defenses, including scoped storage?
(2) Does Android’s storage implementation correctly comply
with its specifications? (3) Given the recurrent over-the-air

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.240340
www.ndss-symposium.org

updates across Android versions and OEMs, are there any
inconsistencies in storage implementations, and if so, what
are their security implications?

Studying these issues presents several challenges. First
of all, although Android storage is now mostly governed
by scoped storage, an app’s ability to access a file is still
determined by multiple distinct security rules and exceptions
that are subtle and sometimes undocumented across different
permissions, file types, and other variables. Hence, it remains
unclear whether there are conflicts between these security
rules, making the analysis even more challenging. Further-
more, Android supports multiple storage operation APIs, and
while the expected results are clear, the correct implementa-
tions can vary and potential issues are unbounded, making
it difficult to analyze the source code to identify potential
problems. Additionally, various OEM implementations and
Android versions exhibit different API behaviors across builds
while expected to maintain the same standard of security
and correctness. These versions coexist in the market and
are actively used by users, making it challenging to develop
scalable, automatic tools that are extensible to all available
Android builds.

Prior work has examined Android storage and the impact of
scoped storage. For example, PolyScope [11] is a tool designed
to triage combinations of Android filesystem access control
policies and identify potential logical vulnerabilities. However,
this tool’s capabilities are limited because it cannot identify
implementation issues, and in fact, it did not reveal any
feasible attacks that bypass the scoped storage defense when it
is fully activated. Dong et al. [5] confirmed all SDKs identified
as malicious become inoperable under scoped storage. While
they were able to identify an attack for cross-app user tracking
that works on fully activated scoped storage, it still requires the
attacker to obtain runtime permissions to perform the attack.

In this paper, we propose ScopeVerif1, a dynamic black-box
testing tool for Android storage that is device-agnostic and
can be used to identify arbitrary violations of given security
goals. To avoid analyzing the large and complex Android
codebase, we use dynamic analysis to systematically execute
an array of file operations on a given Android device to reveal
the operations that violate security properties. Specifically, we
design ScopeVerif as a distributed dynamic testing tool where
the controller runs on a PC and the workers are Android
apps running on Android devices. The controller generates
test cases, sends commands to worker apps to perform various
file operations, collects feedback from the workers, and uses
a violation oracle to determine if there are any security
violations.

The violation oracle dynamically determines whether a file
operation complies with specific security properties. It works
by constructing two different environments: one where the
security property is guaranteed to hold and another where the

1The source code of ScopeVerif can be found here [12].

actual testing is performed. The violation oracle then conducts
a differential analysis to determine if the tested file operation
has the same outcome in both environments.

Using the violation oracle, ScopeVerif identifies violations
of scoped storage rules. An analysis of similar efforts (see
Section III-B) shows that ScopeVerif is the first testing tool
capable of verifying Android’s implementation of storage for
arbitrary violations of a list of given security properties.
Furthermore, by comparing the results across multiple versions
and OEMs, ScopeVerif can reveal implementation discrep-
ancies. To evaluate ScopeVerif and detect inconsistencies in
scoped storage implementations, we ran the same experiments
on multiple devices and across multiple Android versions.

Our study discovered 11 different types of violations,
ranging from trivial cases, such as undocumented or un-
available features, to more security-critical violations, such
as partially fixed loopholes or previously unknown privacy
leakages. Google has acknowledged two of our findings:
first, a high-severity loophole that allows unauthorized access
despite scoped storage, and second, a secrecy violation that
enables cross-app user identification without requiring any
permissions. Additionally, Huawei acknowledged our finding
of an integrity violation, which allows the creation of files
within other apps’ private folders. Both Google and Huawei
offered us bug bounties for our findings.

In summary, we make the following contributions:
• Formalize the properties of scoped storage. We system-

atically studied the official Android documentation [13]
and identified eight security properties that describe
scoped storage’s security guarantees.

• Develop a black-box testing tool for Android’s scope
storage. We developed ScopeVerif, the first automatic,
black-box, and device-agnostic testing tool that targets
Android storage. It verifies specified security properties
and identifies violations of confidentiality, integrity, and
availability. It also supports parallel testing on multiple
devices from different OEMs and running various ver-
sions of Android.

• Identify violations of scoped storage rules. We identi-
fied 11 distinct issues, ranging from minor issues to more
security-critical violations. Our findings were confirmed
by Google and Huawei, both of which offered bug
bounties.

II. BACKGROUND

In this section, we explain the basics of Android storage
and previously known attacks. In Section II-A, we detail
how the Android storage model has evolved and describe the
commonly used Storage APIs. In Section II-B, we discuss
previously known attacks, including details such as how they
work and what they can achieve.

A. Android Storage Basics

External Storage. In Android, a distinct filesystem partition
is designated for various dynamically managed files, such
as media and application updates, historically referred to as

2

the External Storage partition [14], [15]. This partition has
different folders to separate public shared folders from private
app-specific folders. The data stored in these public areas
remains accessible and some persist even after the app that
created them is uninstalled.

Prior to Android 10, Android’s storage system used a
coarse-grained access control approach, where read or write
permissions were granted either for the entire external storage
or not at all. For example, apps that needed to access their
own folder had to request the READ_EXTERNAL_STORAGE
permission. However, this permission also allowed them to
access the private folders of other apps in external storage,
forcing users into a situation where they must either grant
access to everything or nothing. There was no way for users
to grant an app access to only its own folder.
Scoped Storage. As a redesign of the original coarse-grained
access control system, Android introduced the scoped storage
feature starting with Android 10. Scoped storage uses Filesys-
tem in Userspace (FUSE) [16] to redirect all file operations
to the MediaProvider component for centralized access
control. MediaProvider enforces scoped storage rules by
unifying gating access to files: it can permit access, deny it, or
provide a redacted version of it (i.e., with sensitive information
removed).

Scoped storage ensures that each app has full access to
its own app-specific folder without the need for any per-
mission, where it remains completely isolated from the app-
specific folders of other apps. Accessing other app’s files
in shared folders would require explicit user consent. The
READ_EXTERNAL_STORAGE permission now only permits
access to media files, further limiting potential misuse. More-
over, the MANAGE_EXTERNAL_STORAGE permission [17],
which allows broader access to external storage, is strictly
regulated on Google Play, ensuring that only apps with a valid
need can request it.

Although Android 10 introduced scoped storage, it allowed
apps to opt out of scoped storage and disable the defense
at will [18], [9]. Since Android 11, apps could still opt out
by targeting their SDK to Android 10 (API level 29) [19].
However, starting with Android 12, the system fully enforces
scoped storage and ignores any requests to opt-out. Therefore,
this paper focuses on Android versions starting with Android
12 up to the latest, Android 14.
Storage APIs. There are various methods to do file operations
on Android’s external storage. In general, an app can use a file
path or URI to perform file operations. One of the commonly
used APIs is the File API [20], which relies on a file path.
The other methods rely on URIs, which usually require one
API to get the URI, such as MediaStore [21] or Storage
Access Framework (SAF) Picker [22]. Then, if the app wants
to access the file, it will need to use another API such as
FileDescriptor [23].

In Android 10, apps using scoped storage could not ac-
cess files via direct file paths due to the effort required
to intercept kernel calls. Starting with Android 11, scoped

storage supports the File API, and access control is managed
through MediaProvider, adhering to the same restrictions
of scoped storage rules.

When using the File API to save a file where another
file with the same name already exists, it will throw an ex-
ception. However, when using other URI-based APIs, the file-
saving process will proceed, but the system will automatically
increment the filename by adding a numeric suffix to avoid
duplication (e.g., “(1)”).

B. Known Storage Attacks

There have been several storage-related attacks with varying
severity levels on Android [4], [5], [6]. Here, we will cover
the ones that are most related to our work.
Account Hijacking. Apps often store login credentials so
that users do not need to log in each time they use the
app. However, if an attacker steals these credentials, they
can use them on their own device to gain unauthorized
access to the victim’s account. Previous research [4] has
shown that if apps store their login credentials in external
storage, the credentials essentially become public information.
This is because a malicious app can exploit the commonly
granted READ_EXTERNAL_STORAGE permission to access
them, given the lack of more fine-grained permissions.
Cross-app User Identifier. Within the same advertisement
network, apps may seek to identify users in order to exchange
information about users’ preferences and deliver more per-
sonalized advertisements. Android mandates apps to use the
Advertising ID for this purpose, while users can opt out or
reset it at any time. However, previous research [5] shows
that external storage can be used as a covert channel for apps
to share custom user identifiers. Similar to an Advertising ID,
these custom user identifiers may allow different apps installed
on the same device to link various accounts to the same person.
However, the user cannot opt out of this tracking or reset their
identifier, which results in a breach of their privacy.
Squatting Attack. External storage is commonly used by
apps to store software updates or dynamically loaded libraries.
Since the permission WRITE_EXTERNAL_STORAGE is often
granted, apps can write to external storage without restriction,
including writing to the private folders of other apps. This
allows them to create or modify files in the private folders of
other apps and mislead the victim app into using the attacker-
created file instead of their original files. According to a report
by Checkpoint [6], attackers can maliciously substitute the
library files of an app stored on external storage, leading to
crashes or even arbitrary code execution in the victim app.
Downgrade Attack. A vulnerability discovered in Android’s
scoped storage implementation allowed apps to bypass stor-
age access restrictions through SDK downgrading [9]. After
obtaining scoped storage permissions, malicious apps could
downgrade their target SDK level or modify storage settings,
then update the app to gain unrestricted legacy storage access
without requiring additional user permission. This effectively
enables attackers escalate their storage privileges from the
limited scoped storage access to full external storage access.

3

Starting with Android 12, this attack is no longer viable as
apps are not allowed to opt out of scoped storage on devices
offering it.
SAF Loophole. Since scoped storage, directories like
/Android/data and /Android/obb are restricted. These
directories contain apps’ private folders, which are used to
store app data, including large files like game assets. SAF
loophole refers to a vulnerability that is commonly used by file
manager apps like MiXplorer [10] to bypass scoped storage
restrictions and access private app directories on Android
devices. It leveraged SAF, which lets apps request access to
specific directories.

This loophole has two known variations. Although
Google blocked direct SAF access to the /Android
directory in Android 12, the implementation did not block
access to its subdirectories, allowing apps to still reach
those files by requesting permissions at the subdirectory
level. We refer to this issue as SAF Loophole A. Later,
Google blocked /Android/data and /Android/obb in
Android 13, but not their subdirectories, still allowing the
SAF picker to directly access private app folders, such as
/Android/data/com.google.android.youtube.
We refer to this issue as SAF Loophole B.

III. MOTIVATION

Since Android storage accumulates sensitive data over time,
it has become an increasingly attractive target for attackers.
The storage model is constantly changing across different
versions and OEMs. With the introduction of scoped storage
in Android 10, which set new security objectives, Android’s
storage model was completely redesigned, adding further
complexity. This complexity raises three research questions:

1) How effectively does scoped storage ensure security and
privacy?

2) How well do the existing implementations of this defense
comply with the official Android documentation?

3) Are there inconsistencies due to the variations across
OEMs and versions, and what are their security conse-
quences?

Studies focusing on specific implementations can quickly
become obsolete with each new design release. For this reason,
it is essential to conduct a systematic, automated study that
remains effective across various versions, OEMs, and security
objectives. However, this presents several challenges.

A. Challenges

In this section, we outline three primary challenges in
developing a testing tool that can effectively and efficiently
verify different security properties across multiple Android
versions and OEMs.
CH1: Large and Complex Code Base. One major challenge
arises from the complexity and dispersion of the codebase.
Ideally, access control checks regarding storage should be
centralized and unified, but in reality, they are distributed
across various concurrent API implementations in different

components at different layers, from the lower layer’s Linux
kernel to the upper layer’s Android system, written in different
programming languages.

The diversity of implementation language and the dispersion
of storage-related functionality throughout the source code
complicate the manual analysis, as they require navigating
an extensive amount of intertwined code. They also pose
significant difficulties for automatic static-analysis tools since
there can be potentially unbounded patterns of random cod-
ing errors, such as the SAF loophole [10], a known issue
in scoped storage that allows apps to access other apps’
private folders despite scoped storage being fully activated.
While the standard access control is correctly implemented
in MediaProvider, there is an additional component—the
SAF picker—that separately enforces scoped storage rules and
has an issue due to an incorrectly written regex pattern.
CH2: Differences across Android Versions and OEMs.
Some parts of the Android codebase are not open-sourced.
For instance, while the Android Open Source Project (AOSP)
provides a publicly accessible code base, customized builds
implemented by different OEMs or security fixes through
Google Play system updates may be closed-source [24]. This
lack of accessibility to source code complicates the compati-
bility of any approach that is based on white-box testing.

Additionally, Android updates and OEM customizations
might include undocumented changes, making it difficult to
maintain a consistent testing approach and identify crucial
inconsistencies that could affect app security and functionality.
For example, in the latest Android 14, Google no longer
allows users to use the SAF picker to access an app’s own
private folder. This update is undocumented and differs from
the implementations by Samsung or Huawei.
CH3: Existence of multiple storage-related APIs. A funda-
mental goal of our work is to automatically detect arbitrary
security violations regarding file storage, as well as identify
discrepancies between documentation and implementation in
a precise way. Since there are many combinations of APIs
for file operations, managing them can be challenging. This
is especially true for URI-based APIs, where each viable
combination may provide different feedback, creating many
corner cases. Inconsistencies among different OEMs further
complicate the issue, where different implementations do not
necessarily mean they are insecure. For example, the File API
throws an error if an app tries to create a file at a location
where another app has already created a file with the same
name. In contrast, MediaStore automatically renames the file
by appending an index before the extension to avoid conflicts
(e.g., duplicate (1).txt). Both file operations should be
considered “working as intended,” but defining rules to handle
all such situations requires significant engineering work and
is error prone.

B. Existing Solutions

To the best of our knowledge, no one has attempted to
create a device-agnostic testing tool to automatically verify
the implementation of scoped storage across different Android

4

versions and OEMs. However, there is existing work that
studied scoped storage or Android access control policies in
general. For instance, PolyScope [11] models scoped storage
by extracting access policies from documentation for static
analysis, which partially addresses CH1. However, it does not
analyze the underlying Java implementations or dynamically
verify vulnerabilities, limiting its ability to account for un-
documented differences across Android versions and OEMs,
and thus does not fully address CH2. Moreover, PolyScope is
unable to detect unexpected implementation errors in storage-
related APIs, such as the SAF loophole [10], leaving CH3
unresolved. A detailed discussion of existing related work can
be found in Section IX.

IV. SCOPEVERIF DESIGN AND IMPLEMENTATION

We explain the design and implementation of our black-box,
device-agnostic dynamic testing tool for Android’s scoped
storage, named ScopeVerif. In doing so, we will also discuss
how our design choices address the technical challenges dis-
cussed in Section III-A.
Overview. Our goal is to precisely identify security vulnera-
bilities as well as implementation inconsistencies with security
implications in the various implementations of Android’s
storage APIs across different Android versions and OEMs. For
this purpose, we first formalize the security rules for Android’s
storage based on the guidance provided in the official Android
documentation (Section IV-A). Then, we translate these rules
into concrete test cases that, when run, elicit specific sequences
of API calls (Section IV-B). The generated test cases are
tested using a dynamic analysis approach and a dedicated
violation oracle, which utilizes differential analysis to reveal
any violations of the tested security rules (Section IV-C).
Finally, we analyze the results by clustering violations based
on their root causes and compare the results across various
Android versions and OEMs to identify implementation in-
consistencies (Section IV-D). Figure 1 shows an overview of
our approach. Additional implementation details can be found
in Appendix B.

Our approach focuses on the results of file operations
instead of analyzing the complex Android codebase, thereby
addressing CH1. Additionally, it is device-agnostic and al-
lows identifying violations across different file access APIs,
Android versions, and OEMs, thereby addressing CH2 and
CH3.

A. Formalizing Rules from Documentation

For ScopeVerif to work consistently across different ver-
sions, we use a declarative approach in which a configurable
list of rules that always need to hold is first used to generate
test cases. These test cases are later used to guide dynamic
analysis, and the results regarding their execution are checked
by a violation oracle. This approach has two benefits. On the
one hand, it allows us to consistently verify security properties
across multiple Android versions and OEMs, addressing CH2.

On the other hand, this approach also makes ScopeVerif future-
proof, because it allows an operator to easily add new rules
to be verified. A concrete example of how to add new rules
is given in Section VIII.

We categorize Android storage security properties into the
traditional CIA properties: confidentiality, integrity, and avail-
ability. Specifically, confidentiality ensures that the file cannot
be accessed by unauthorized apps, integrity ensures that the
file cannot be modified by unauthorized apps, and availability
ensures that the file operations can be performed by authorized
apps.

Based on the guidance provided in the official Android
documentation [13], we formalized scoped storage into eight
security rules. As detailed in Table I, to address CH3, we
translate the documentation into security rules that describe
security goals by defining the targeted path (i.e., private or
shared folders), the types of action (e.g., read, write, move,
etc.), the permission settings, and the types of security prop-
erties (i.e., confidentiality, integrity, or availability) the system
wants to achieve.

To illustrate how a security rule from the documentation
was formalized into a row in Table I, we take the rule C1 as
an example. The documentation [28] states: “[...] apps can no
longer access files in any other app’s dedicated, app-specific
directory within external storage.”

To translate this rule from natural language to a row in
Table I, we first determine the type of the security rule. In the
example, the documentation specifies that the apps’ private
files should be confidential, hence the type of the security rule
is Confidentiality. The ID of rule C1 starts with “C” because it
is a Confidentiality rule. Similarly, “T” stands for an Integrity
rule and “A” stands for an Availability rule.

An Actions set consists of file operation types. The
documentation for C1 does not mention any exceptions in the
file operations, so the set of Actions includes all possible
options: Create, Read, Overwrite, Delete, Move, and Rename
(abbreviated as C, R, U, D, M, N). In contrast, the doc-
umentation for rule A3 mentions that having the required
permission should allow an app to read other apps’ media
files, except for location data. Since it only authorizes read
operations, the set of Actions for A3 is limited to R only.

Also, in case of C1, there are no exceptions for File
Attributes, so this rule includes all file attributes, such
as Content, Path, Size, Modified Date, Media Location, and
Exceptions (abbreviated as CT, PT, SZ, MD, ML, EX).
In contrast, for rule C3, the only File Attribute included
is ML, as the documentation specifies that an app should not,
without proper permissions, be allowed to access location data
of another app’s media file.

The set of APIs for C1 includes File, MediaStore,
and SAF, as rule C1 applies to all APIs. The Targets
for C1 are Other_Private because the scope of this rule
applies to the Private files of Other apps. In another case,
T1, an app should not be able to modify another app’s file
in the Download collection without user consent (or the
“all files access” permission). Thus, its Targets become

5

Results Analysis

Cross-OEM Analysis

Cross-versions Analysis

Violation Clustering

Dynamic Analysis

Baseline Result

Differential Analysis

Security Rules

Actions

Targets

Attributes

APIs

Permissions

Type
Test Cases

Payload

Testing Action

Path + Extension

Seed

Security Rule

Documentation Test Case Result

Fig. 1: Overview of ScopeVerif Approach.

TABLE I: Security Rules of Android Storage. A rule describes targeting whose file (Self or Other) and which collection
(Media, Download, or Private), under what permission settings, using which APIs to perform what types of actions (Read,
Write, etc.), and which attributes (Content, File path, Size, etc.) should hold which types of properties (Confidentiality, Integrity,
Availability).

ID Actions File Attributes APIs Targets Permissions

A1 [25] C, R, U, D, M, N CT, PT, SZ, MD, ML, EX File, MediaStore, SAF Self Private None

A2 [26] C, R, U, D, M, N CT, PT, SZ, MD, ML, EX File, MediaStore, SAF Self Download None

A3 [27] R CT, PT, SZ, MD, EX File, MediaStore SAF Other Media RES

C1 [28] C, R, U, D, M, N CT, PT, SZ, MD, ML, EX File, MediaStore, SAF Other Private AML, RES, WES, MES, WMS

C2 [29] C, R, U, D, M, N CT, PT, SZ, MD, ML, EX File, MediaStore Other Download AML, RES, WES, MES, WMS

C3 [30] C, R, U, D, M, N ML File, MediaStore, SAF Other Media RES, WES, MES, WMS

T1 [31] C, U, D, M, N CT, PT, SZ, MD, ML, EX File, MediaStore Other Download AML, RES, WES, WMS

T2 [25] C, U, D, M, N CT, PT, SZ, MD, ML, EX File, MediaStore, SAF Other Private AML, RES, WES, MES, WMS
∗ The original documentation specifying each of the rules is cited next to the rule ID.
∗ The first letter of ID indicates the type of the security property: (C)confidentiality, In(T)egrity, (A)vailability.
∗ Actions: C: Create, R: Read, U: Overwrite, D: Delete, M: Move, N: Rename
∗ File Attributes: CT: Content, PT: Path, SZ: Size, MD: Modified Date, ML: Media Location, EX: Exceptions
∗ Permissions: AML: ACCESS MEDIA LOCATION, RES: READ EXTERNAL STORAGE, WES: WRITE EXTERNAL STORAGE,

MES: MANAGE EXTERNAL STORAGE, WMS: WRITE MEDIA STORAGE, None: no permissions required.

Other_Download, and its APIs contain only File and
MediaStore, because the usage of the SAF API requires
user consent and, therefore, does not violate this rule.

As for the Permissions, the documentation does not
specify any exceptions for C1 regarding the permissions
granted, therefore the set of Permissions is all storage-
related permissions, including AML, RES, WES, MES, and WMS
(detailed in Table I’s caption), which means that regardless of
the permissions granted, an app should not be able to access
other apps’ private files.

B. Translating Security Rules to Test Cases

After we formalize the security rules in Table I, we need
to translate them into a set of test cases where each test case
describes a sequence of API calls to be performed. Our goal
is to generate test cases that enumerate all the possibilities of
file-related operations that might violate the security rules to
ensure the coverage of the search space, thereby addressing
CH1 and CH3. The generation should also be comprehensive
and automatic in order to address CH2.

ScopeVerif generates test cases by iterating through all the
possible attribute combinations for each security rule in Table I
using Algorithm 1. Note that the procedure is generic and
comprehensive, and it applies to all rules in Table I, allowing
easy addition and modification of rules. In fact, if a new
rule is added as a new row in Table I, the algorithm can
generate test cases for the new rule automatically. Listing 1
and Algorithm 2 (in Appendix A) show a concrete example of
how we internally represent a test case and demonstrate how
ScopeVerif executes a test case.

C. Dynamic Analysis and Violation Oracle

We designed ScopeVerif to be a distributed dynamic testing
tool. Its architecture is divided into two parts: the controller
and the workers, as shown in Figure 2.

The controller runs on a PC and the worker apps
are Android apps running on the tested Android device.
The controller takes security rules as input and asks the
InputGenerator to generate test cases based on the given
rules. According to the generated test cases, the controller then
sends commands to worker apps. The worker apps perform
file operations on the filesystem based on the controller’s

6

Algorithm 1 Test Case Generation
1: function GENERATETESTCASESFORALLRULES(rules)
2: test_cases ← []
3: for all rule in rules do
4: for all api, action, target in VALIDCOMBINATIONS(rule) do
5: test_cases.extend(GENERATETESTCASESFORONERULE(rule, api, action, target))
6: return test_cases
7:
8: function VALIDCOMBINATIONS(rule)
9: valid_combinations ← []

10: for all api in rule.apis do
11: for all action in rule.actions do
12: for all target in rule.targets do
13: if api.is_valid_target(target) and api.is_valid_action(action) then
14: valid_combinations.append(api, action, target)
15: return valid_combinations
16:
17: function GENERATETESTCASESFORONERULE(rule, api, action, target)
18: cases ← []
19: for all path in target.get_paths() do
20: /* Check if api/path/action combination is included in the specification (see Table I) */
21: if rule.is_included(api, action, path) then
22: for all ext in get_extensions_by_path(path.template) do
23: for all perm in rule.permissions do
24: payloads ← GENERATE PAYLOADS(api, target, max_payload_len)
25: for all payload in payloads do
26: case ← TestCase(rule, action, api, payload, perm, path.template, ext)
27: cases.append(case)
28: return cases

ScopeVerif
Controller

Violation
Oracle

Input
Generator

ScopeVerif
Workers

Worker 1

Worker 2

Worker 3

Android
Filesystem

File Operations
(READ, CREATE, etc)

Security
Rules

Violations

PC Android Device

Fig. 2: Overview of ScopeVerif Architecture.

commands, collect results, and send feedback to the controller.
Eventually, the controller asks the violation oracle to determine
if there is a violation based on the workers’ feedback. As each
test case elicits a specific sequence of API calls, a violation
oracle determines if a rule is violated based on dynamic
execution results. Appendix A provides a step-by-step example
of how ScopeVerif and the violation oracle operate. Additional
implementation details are provided in Appendix B.

The design of the violation oracle is based on differential
analysis. In general, the violation oracle runs each test case
twice on the same device. The first time, it collects the baseline
results, representing the expected outcome if the property
holds. The second time, it collects the test case results. Any
difference between the baseline results and the test case results
indicates a violation of the tested property. Concretely, the
violation oracle behaves differently depending on whether the
tested rule is about confidentiality, integrity, or availability, as
we will now explain.

Confidentiality. To construct the baseline for confidentiality,
the violation oracle will execute a test case twice on the same
device. The first time, it attempts accessing a non-existent file.
The expected feedback, such as “No such file or directory”,
serves as the baseline result, indicating that confidentiality
holds. Then, it executes the same test case a second time, but
attempting to access a file that actually exists. If confidentiality
holds, the two results should be exactly the same. In contrast,
any difference indicates a confidentiality violation.

Integrity. For integrity, the violation oracle reads a file twice
on the same device. The first time, it reads a specific file
without any modification attempts. Then, the violation oracle
executes the test case, allowing the attacker app to attempt
modifying the file. Finally, the violation oracle reads the file
a second time. Any difference in the results of the first and
second read operations implies that the file was altered during
the execution of the test case, indicating a violation of integrity.

Availability. The violation oracle uses two different users to
execute the test case twice on the same device. The first
user is root, who is capable of performing all file operations.
The feedback from root executing the test case serves as the
baseline. Then, the violation oracle executes the test case. If
both results are the same, this indicates that the test case was
able to perform the file operation specified by the test case. If
the results differ, it implies a violation of availability, as the
discrepancy indicates that the tested file operation failed.

7

D. Analysis of the Results

After the violation oracle determines whether a test case
contains any violations of the tested security properties,
ScopeVerif also attempts to cluster identified violations for
further analysis. Note that identifying the root cause of a
violation and grouping violations based on their root cause
require manual investigation. Classifying a violation as a vul-
nerability involves subjective interpretation, as demonstrated
by the varying responses we received from different OEMs.
Ultimately, the final decision rests with the developers or
organizations responsible, who apply their own criteria and
risk assessments. For these reasons, we designed this part to
be semi-automatic.

First, we select a subset of identified violations and manu-
ally investigate the root causes of the failed test cases. Using
the insights from this investigation, we develop a script to
automatically classify the violations in the subset into different
types of security or privacy issues. Once the subset is fully
analyzed and categorized, we apply the script to the entire set
of test cases.

Finally, we review each group to identify patterns. This
analysis allows us to precisely determine Android versions,
devices, and OEMs affected (or not affected) by a specific
issue. By following this approach, we gain better insights into
the results provided by the ScopeVerif, which we will describe
in the next section.

V. SCOPEVERIF RESULTS

We designed our evaluation to answer the following ques-
tions:

• Q1: How efficient is the violation oracle in ScopeVerif at
finding violations of security properties regarding scoped
storage?

• Q2: How reliable is ScopeVerif when re-running ex-
periments to find implementation inconsistencies across
Android versions and OEMs?

• Q3: How long does it take for ScopeVerif to expose
violations and inconsistencies?

We use the Pixel 3a for Android 12, and the Pixel 5a for both
Android 13 and 14, all updated with the latest security updates
and Google Play System Updates. Additionally, we use the
Samsung Galaxy S22 with the latest build of Android 14 and
the Huawei Mate 40 Pro running HarmonyOS 4, which is
based on Android 14 and also enforces scoped storage. While
the controller runs on a PC and is Python-based, it only sends
ADB commands to the workers and collects results during the
experiment. Therefore, the experiment’s runtime is constrained
by the workers.

In the rest of the paper, for brevity, we may refer to different
OS implementations using the OEM’s name that developed it
and the Android version they utilized. For example, Google
12 represents Google Pixel’s Android 12 implementation,
whereas Huawei 14 represents Huawei’s Android 14 version.

A. Finding Security Issues

To address Q1, we first used ScopeVerif to generate a
search space of 22,217 test cases to verify eight security rules
of scoped storage. As the search space was too large, we
applied random sampling to explore it (see Appendix B for
implementation details). This heuristic sampling technique is
based on a hypothesis that assumes security or privacy issues
are clustered in the search space instead of uniformly scattered.
If the hypothesis holds true, extensive exploration of the search
space is not strictly necessary to find most issues, and the
sampling method should be sufficient to identify them.

To test this hypothesis, we verify a small sample of 505
test cases, which is 2.27% coverage of the space, on a Pixel
5a running Android 14, and then scale up to a larger sample
of 2,501 test cases, which is 11.26% of the search space.
We evaluate how many security issues can be found in the
small experiment, as well as assess how many new issues are
uncovered in the larger experiment. If there is a proportional
increase in identified issues in the larger experiment, that
indicates the need for exploring the whole search space.

For the smaller experiment tested on Android 14, ScopeV-
erif found 88 violations in total, which means 17.4% of the
tested cases. Compared to the larger experiment, ScopeVerif
found 509 violations in total, which is 20.35% of the tested
cases. ScopeVerif then classifies these violations (see the
details in Section IV-D) as actual security issues. We found
seven issues in both the smaller and larger experiments. This
means that by randomly exploring approximately 2.27% of
the search space, ScopeVerif identified the same number of
security issues as would be found in approximately 11.26%
of the search space.

Table II shows the results of ScopeVerif for the smaller ex-
periment. Specifically, it shows the types of issues ScopeVerif
detected (e.g., Squatting Attack, SAF Loophole, etc.) based
on our semi-automatic analysis and the number of test cases
where ScopeVerif discovered a specific issue to be viable.

Combined with our evaluation of cross-version analysis and
cross-OEM analysis (see Section V-B), ScopeVerif identified
10 distinct issues in total, each of which is presented as a row
in Table II. These issues are found in both shared and private
storage, encompassing various known and unknown violations
of different security properties. For example, ScopeVerif iden-
tified confidentiality violations, such as the Metadata Leak,
EXIF Leak, and Download Leak, which could lead to privacy
issues or misunderstandings for developers and users.

It also found the well-known issue, the SAF loophole [10],
including variants (See Section II) SAF Loophole A and
SAF Loophole B in Google 12, and found SAF Loophole
B in Google 13. These issues allow an attacker to completely
bypass scoped storage, violating the confidentiality, integrity,
and availability of other apps’ files in both shared and pri-
vate storage. Additionally, ScopeVerif uncovered availability
violations, including the Squatting Attack, EXIF Failure, Me-
diaStore & File Failure, SAF Auto-rename, SAF Restrictions,

8

and Other Failures, which could cause crashes or unexpected
usability issues. In Section VI, we will discuss the details and
explanations of these issues in more depth.

After a thorough evaluation, we determined that nine out of
these 10 issues were previously unknown, and two of them
were either security or privacy issues. We reported the privacy
issues due to the Metadata leak violation to Google and the
security issue, the new variant SAF Loophole C to Huawei.
Both companies acknowledged the reports and offered us bug
bounties. In addition, we observe that Samsung, like Huawei,
also has seven violations of SAF Loophole C (details in
Section VI-B). However, after communicating with Samsung,
we confirmed that applying the latest Google Play System
Update to the operating system resolved the issue in Samsung
14.

Answer to Q1: ScopeVerif found 10 issues, nine of which
were previously unknown, including two security or privacy
concerns.

TABLE II: Number of violations detected by ScopeVerif for
each tested device and Android version.

Issues Google 12 Google 13 Google 14 Samsung 14 Huawei 14

Metadata Leak 15 8 8 10 8

EXIF Failure 6 0 0 0 4

Download Leak 1 1 1 1 1

SAF Loophole 125 102 0 7 7

Squatting Attack 1 1 1 1 1

EXIF Leak 2 10 10 10 2

MediaStore & File Fail. 17 17 17 17 19

SAF Auto-rename 2 2 2 2 3

SAF Restrictions 0 0 49 41 44

Other Failures 0 0 0 0 1

Test Cases in Violation 169 141 88 89 90

Total Test Cases 505 505 505 505 505
∗ The column names represent which Android versions are running on
which devices. For example, Google 14 means Android 14 running on a
Google device (i.e., Pixel). Similarly, Samsung 14 represents a Samsung
device running Samsung’s version of Android 14.

B. Identifying Inconsistencies
Beyond finding security issues, our analysis aims to under-

stand the inconsistencies in different OS versions and how
OEMs introduce mistakes. These inconsistencies, which refer
to variations in mistakes across each OEM and version, can
expose unique patterns that may lead to security issues. To
answer Q2, we conduct the same experiment on Google Pixel
devices running Android 12, 13, and 14, as well as on Samsung
and Huawei devices running Android 14. We then compare
the results to identify inconsistencies and manually analyze
the root cause of inconsistencies. Notice that by comparing
the results between Google 12, Google 13, and Google 14,
we focus on inconsistencies between Android versions while
keeping the device constant. On the other hand, by comparing
the results between Google 14, Samsung 14, and Huawei 14,”
we keep the Android version constant at the latest version.

As shown in Table II, out of the 10 issues, only three
remain consistent across all implementations. ScopeVerif not
only produces statistics for each issue but also shows how
these statistics change from version to version and how they
differ between OEMs. On the one hand, our analysis indicates
that violations have decreased over time as newer OS versions
address issues such as the SAF Loophole, while we also iden-
tified the introduction of new issues, such as SAF restrictions.
On the other hand, inconsistencies between Google’s devices
and OEM devices underscore potential problems. For instance,
SAF Loophole C was discovered by comparing SAF Loophole
violations across Google 14, Samsung 14, and Huawei 14.
Despite all running Android 14, the seven additional violations
observed on Samsung 14 and Huawei 14 compared to Google
14 suggest the presence of unique issues specific to these
OEM implementations. More details on the findings of these
experiments will be discussed in Section VI.

Answer to Q2: ScopeVerif found that seven out of 10 issues
had inconsistent implementations, revealing bug fixes or new
issues.

C. Discovery Efficiency

For Q3, we record the running time for each test case and
report the maximum, minimum, and average test times across
different Android versions and devices. As shown in Figure 3,
the average time to test a single case on Android 14 with the
Pixel 5a is approximately 28 seconds, indicating that exploring
the entire search space would require approximately 7.2 days.
However, based on the answer to Q1 (See Section VI), the
findings of ScopeVerif converge relatively quickly. Exploring
a small sample of 505 cases yields the same results as 2,501
cases, identifying 10 issues, nine of which were previously
unknown, while taking around only four hours. Additionally,
since ScopeVerif can run on multiple devices simultaneously,
using five devices would allow us to identify all inconsistencies
in the same 4-hour period.

Android 12

Android 13

Android 14
Samsung

Huawei

20

40

12 12 13 12 10

22 22

28

20 20

38 39

51

31 31

Ti
m

e
(s

ec
on

ds
)

Minimum Average Maximum

Fig. 3: Runtime of Test Cases

Answer to Q3: ScopeVerif can identify previously unknown
security issues within a day.

9

VI. IDENTIFIED SECURITY ISSUES

In this section, we discuss the security issues identified by
ScopeVerif, listed in Table II.

A. Issues Found in Shared Storage

Despite the enhanced privacy measures of fully activated
scoped storage, ScopeVerif found previously unknown issues
that could lead to privacy violations. Surprisingly, these vulner-
abilities might even make it easier for attackers to compromise
user privacy compared to the older storage model. Further-
more, ScopeVerif identified availability issues that could allow
an attacker to crash another app.
Metadata Leak. Scoped storage restricts apps from accessing
other apps’ files. However, ScopeVerif found that while the
content of the files is not accessible, the meta information,
such as the existence, size, and modified date of a file might
still be accessible without needing any permissions.

ScopeVerif first identified that using the File API, by call-
ing exists() directly, allows an attacker to determine if an-
other file exists. Similarly, size() and lastModified()
are not blocked by scoped storage defenses and return
correct results as usual. Additionally, ScopeVerif found
that calling readText() can also leak the existence of
a file. Specifically, when a file exists, even if the at-
tacker cannot access its content, the exception would con-
tain EACCES (Permission denied), while accessing
a non-existent file contains ENOENT (No such file or
directory) instead.

The MediaStore and SAF picker also leak file existence
in shared folders due to their auto-rename mechanisms. Under
scoped storage, files created by other apps are by default
invisible to an app. However, if a file is created in the same
directory with the same filename, both APIs will automatically
rename the saved files by adding an index such as “(1)”.
Therefore, simply checking if the file created was renamed
leaks to an attacker whether a file with a given name already
existed.

While MediaStore correctly adds the index before the
extension, the SAF picker incorrectly appends the index after
the extension. This is identified by the verifier as the SAF auto-
rename issue. Specifically, instead of my_file (1).txt,
the SAF picker creates “my file.txt (1),” which changes the
file’s extension and could potentially cause unexpected usabil-
ity issues.

The Metadata Leak issue was found in Android 12, affecting
both app-specific folders and shared folders. It was partially
fixed in Android 13, which addressed all leaks in app-specific
folders. However, as of today, even in the latest Android 14,
the Metadata Leak issue remains unresolved in shared folders.

As prior research has shown, cross-app user identifiers can
be established using external storage as a covert channel [5].
Unfortunately, scoped storage does not mitigate this issue. In
fact, it inadvertently facilitates this attack by enabling attackers
to exploit the Metadata Leak vulnerability in shared storage.

Before scoped storage, apps would need the runtime permis-
sions READ_EXTERNAL_STORAGE to read files from shared
storage and WRITE_EXTERNAL_STORAGE to write files to
shared storage. While scoped storage restricts an app’s inter-
action with other apps’ files, it actually reduces the friction
for an app to manage its own files. More specifically, an app
can create files in shared storage without any permissions and
read its own contributed files without any permissions.

Together with the Metadata Leak bug, an app can write to
shared storage without any permission, while another app can
read one bit of information (i.e., existence or non-existence of
a file) from the file created by the first app. This essentially
establishes a covert channel that is fully accessible to any
apps installed on the device, allowing malicious apps to freely
communicate custom user identifiers without the user giving
any consent.

For example, assume apps in the same advertisement net-
work called “bad” predetermine a user identifier length of 20
bits. App A from the “bad” network installed on the device
generates a 20-bit user identifier, encodes it into binary form,
and then creates files in shared storage (in this case, at most
20 files) corresponding to the encoded identifier (e.g., creates
a hidden file .bad_4 if the 4th bit is 1, and does nothing if
it is 0). Later, App B, as a member of the “bad” network, gets
installed on the victim’s phone. App B checks for the existence
of all 20 possible files (e.g., .bad_1, .bad_2, etc.). App B
decodes the 20 bits of data into a unique identifier number
that identifies the user.

In May 2022, we reported the Metadata Leak issue to
Google, highlighting the risks of cross-app user identification.
Google responded that it was “not a security vulnerability”
and was “working as intended.” In April 2024, we reported
the same issue again, explaining the same risks. This time,
Google acknowledged the issue but marked our report as a
duplicate of another bug report. We suspect this change is
due to the evolving threat model of Android. Initially, cross-
app user identification was not seen as a security concern.
Later, as Google’s perspective shifted, they began to take this
issue more seriously, leading to someone else’s report being
acknowledged.

Squatting Attack. Previous squatting attacks worked by re-
placing a file to force the victim app to use the attacker-
provided file. This exact attack no longer works, but a variation
still works under the scoped storage defense. Instead of an
integrity violation, it now results in an availability violation,
which could potentially crash the victim app. This is accom-
plished by creating a file in shared storage before the victim
app attempts to do so.

Since the file created by the attacker is meant to be invisible
to the victim app, the app cannot detect if another file with
the same name already exists without exploiting the Metadata
Leak bug. Furthermore, the file created by the attacker is
intended to be inaccessible to the victim app without required
permissions or user consent. Any attempt by the victim app
to write to this file would result in an exception.

10

Normally, using the SAF picker or MediaStore, the API
would automatically rename the file if another with the same
name already exists. However, this is not the case with the
File API. While the File API does not automatically rename
the file, attempting to write a file owned by another app would
cause an exception. If not handled properly, this could lead to
a crash of the victim app.

The root cause of this issue is the same as the Metadata
Leak, as file name conflicts can occur in shared storage when
other apps’ files are invisible. When the conflicts happen
intentionally, a Metadata Leak occurs and confidentiality is vi-
olated. When the conflicts happen unintentionally, a Squatting
Attack could occur and availability could be violated. To avoid
duplicate reporting, we included the details of the root cause
of the Squatting Attack in the same report that we submitted
in May 2022.

B. Issues Found in App-specific Storage

Most issues found by ScopeVerif for app-specific storage
are caused by the SAF picker, including SAF Loophole A,
and SAF Loophole B. ScopeVerif also discovered two new
variants, SAF Loophole C and SAF Loophole D, in OEM
implementations. Even after applying the latest security update
to Android 14, we were still able to find another variant SAF
Loophole D with the help of ScopeVerif.
SAF Loophole A and B. The SAF loophole allows apps
to access other apps’ private folders and fully bypass scoped
storage. This is due to a non-centralized implementation of ac-
cess control for scoped storage. As explained in Section II-A,
file operations should be redirected to the MediaProvider
for centralized access control, but there are exceptions. While
the standard component (i.e., MediaProvider) implements
most of the restrictions for scoped storage, there are additional
components that require implementing the duplicated rules. In
this case, Android developers inadvertently failed to imple-
ment scoped storage restrictions in several components of the
SAF picker, such as the ActionHandler [32]. ScopeVerif
not only identified previously known issues but also found new
ones.

ScopeVerif also highlighted how SAF loopholes are chang-
ing across Android versions. There were 125 violations in
Android 12 because the SAF picker completely failed to block
access to other apps’ private folders, including SAF Loophole
A and SAF Loophole B. Both SAF Loophole A and SAF
Loophole B are previously known and reported. These issues
were partially fixed in Android 13, as shown in Table II, where
the number of violations dropped from 125 to 102, with only
SAF Loophole B issues remaining.

The 102 SAF Loophole violations left in Google 13 are
due to a regex pattern that is incorrectly written and does
not block the path that directly accesses another app’s private
folder. Therefore, if an attacker knows the package name of
another app, they can still predict the folder path and use the
SAF picker to access that app’s private folder.

Eventually, all known issues of the SAF Loophole were
fixed in Android 14, as the violation count shows 0. While
Google had trouble implementing this correctly and needed
several major versions to do so, ScopeVerif identified this
problem within a day.

SAF Loophole C. When checking OEM implementations,
ScopeVerif found that both Samsung and Huawei had an
inconsistency compared to Google’s Android 14. This incon-
sistency allowed the creation of files in other apps’ private
folders using the SAF picker, while blocking all other types
of file operations such as reading, deletion, etc. This issue
is another variant of the SAF Loophole, but different from
A and B, so we call it SAF Loophole C. SAF Loophole C
could lead to a squatting attack, where an attacker creates a
malicious file and lures the victim to use the attacker-provided
file, as explained in Section II.

In May 2024, we reported these issues to both Samsung and
Huawei. After communication with Samsung, we confirmed
that the issue in Samsung was silently fixed after applying the
latest Google Play System Updates. On the other hand, Huawei
acknowledged our findings, issued a bug ID (HWPSIRT-2024-
02103), and offered us a bug bounty.

SAF Loophole D. During our analysis, we discovered an-
other issue in scoped storage that ScopeVerif did not initially
identify. Due to the limitations explained in Section VIII, this
issue was highlighted by our tool, but not in a fully automated
way, as it required manual analysis for complete and reliable
reproduction. For this reason, it is not listed in Table II for
evaluation.

Similar to SAF loopholes, this issue allows a malicious app
to create files in other apps’ private folders even in the latest
Android 14. This problem arises due to the default behavior
of the SAF picker, which accesses the last accessed folder if
no viable path is provided or if none of the specified paths
can be accessed. This access is privileged and not blocked by
scoped storage. Consequently, even with the latest Google Play
System Update, which fully fixes all known SAF loopholes
(i.e., the variants A, B, and C) in Android 14, if a malicious
app had used the SAF picker to access another app’s private
folder before the security update was applied, it could retain
access to the last accessed private folder after the update is
installed.

This could lead to two potential risks. By checking whether
the created files have been renamed or not, a malicious app
could exploit this bug to reveal the existence of another file
in another app’s private folder on external storage, leading to
privacy leakage. Another risk is that the attacker might perform
a squatting attack by creating a file before the victim app does,
luring the victim app to use the attacker-provided file, which
may cause it to crash or become vulnerable to a fraud attack.

Since this issue is caused by AOSP code, in July 2024,
we reported it directly to Google, who acknowledged it as a
high-severity vulnerability and offered us a bug bounty.

11

C. Documentation Discrepancies

Aside from the security and privacy issues identified in
shared storage (Section VI-A) and private storage (Sec-
tion VI-B) that attackers could exploit, we also discovered that
some violations reported by ScopeVerif are not exploitable.
These non-exploitable violations are caused by undocumented
features or policy exceptions. While these discrepancies are
not insecure in themselves, they might create misunderstand-
ings for both developers and users.
EXIF Leak and EXIF Failure. Media files, such as
photos, can contain EXIF information, including location
data. According to documentation [30], an app must declare
ACCESS_MEDIA_LOCATION permission in the manifest file
and request it during runtime to read this location data, ob-
taining user consent. However, ScopeVerif found an exception,
EXIF Leak, where MANAGE_EXTERNAL_STORAGE can also
provide access to unredacted media files, which contradicts
the documentation. Since MANAGE_EXTERNAL_STORAGE is
a special permission requiring stricter vetting from the Google
Play Store and more complex user approval, it is assumed that
obtaining this permission allows bypassing restrictions from
weaker permissions. However, this remains an issue as it may
lead developers and users to falsely believe that media files
can only be accessed with the ACCESS_MEDIA_LOCATION
permission.

This issue was initially found in Android 12 with only
two violations but later increased to 10. This increase was
due to the fixing of another issue, EXIF Failure, where using
the SAF picker to access a file in Android 12 would always
strip location data regardless of app permissions, making it
always “confidential” but violating availability. In Android 13,
after the EXIF Failure was resolved, the number of EXIF
Leak violations became 10. Note that this special case simply
shifted an availability issue to a confidentiality issue, and no
problematic test cases were missed from our results due to
this reason.
Download Leak. While documentation [29] states that ac-
cessing another app’s file in the Download folder mandates
user consent (i.e., SAF picker), ScopeVerif found that an
exception exists where MANAGE_EXTERNAL_STORAGE also
allows an app to access other apps’ files in Download.
However, this is also an undocumented exception where
MANAGE_EXTERNAL_STORAGE practically implies full ac-
cess to shared storage. Therefore, it is not considered a security
issue by Google, similar to the EXIF Leak.
SAF Restrictions. During our cross-version analysis, ScopeV-
erif discovered a silent update in Android 14 restricting apps
from using the SAF picker to access their own files in
app-specific folders for privacy protection. This contradicts
the documentation [25], which states that apps should have
read and write access to their own files without permissions
under scoped storage. This undocumented change, absent in
earlier Android 14 builds but later silently added to the latest
Android 14, could cause apps to fail unexpectedly and lead
to usability issues. With further investigation, we realized that

this issue was caused by a software update to Android 14
that silently changed how the SAF picker blocks file access.
Also, ScopeVerif identified inconsistencies between Samsung
and Huawei compared to Google, where OEMs’ Android still
allows creating files in an app’s folder using the SAF picker,
which causes further complications.
MediaStore & File Failure. Since ScopeVerif extensively
explores a wide range of possible API usages, it can uncover
exceptions and edge cases not addressed by the documentation.
For example, it discovered that if a non-JPG file is created
using the File API, the MediaStore API cannot create,
overwrite, or delete that file, leading to an availability vio-
lation. As highlighted in Table II, this violation leads to 17
MediaStore & File Failure violations for every Google and
Samsung device tested. During cross-OEM analysis, ScopeV-
erif discovered that JPG files also fail to work on Huawei
devices, resulting in two additional violations and bringing
the total number of MediaStore & File Failure violations for
Huawei devices to 19. To the best of our knowledge, this is
not a documented restriction.

VII. DISCUSSION

We discuss three potential causes that contribute to the
issues identified in Section VI. For each potential cause, we
also propose recommendations to mitigate the issue.

A. Spread-out Codebase of Scoped Storage

There are multiple methods to access external storage,
for example, File API, MediaStore API, native system
call open, or using system-provided components like SAF
picker. Ideally, by using Filesystem in Userspace (FUSE) [16],
all file operations in user space will be redirected to the
MediaProvider component. Then, the MediaProvider
component enforces the rules of scoped storage by centralizing
file access control. Depending on the situation, it can grant
access, block it, or return a redacted version of the file with
sensitive data removed. However, in reality, not all access is
handled by FUSE.

For example, scoped storage prohibits any API from ac-
cessing private app folders, as shown by security rules C1
and T2 in Table I. To enforce these rules, Android uses
a regex pattern within components like MediaProvider
to prevent unauthorized access to private folders. However,
SAF Loophole A was identified in Android 12, revealing that
the regex pattern was flawed—it only matched /Android,
but not /Android/data or /Android/obb. In Android
13, SAF Loophole B emerges as the fixes only blocked
/Android/data and /Android/obb without covering
their subdirectories. Addressing this oversight required sig-
nificant modifications. Multiple commits were made to cor-
rect this issue, such as [32], [33], [34], [35], amending the
duplicated regex pattern that was spread across various com-
ponents, such as MediaProvider, ExternalProvider,
and ActionHandler.

12

Even in the same component, the access control might
not be centralized. The SAF Loophole D issue, which we
previously explained in Section VI-B, is one example. When
using the SAF picker, it determines if the initialUri
should be allowed according to scoped storage rules, so it
calls the method shouldPreemptivelyRestrictRe
questedInitialUri(initialUri), which contains
the regex pattern discussed above to filter out illegal access
to other apps’ private folders. If such access is blocked, it
will not proceed to launchToDocument(initialUri)
to provide access. After the access is blocked, it pro-
ceeds to access the last accessed folder instead by calling
initLoadLastAccessedStack(). Since this function
does not have any regex filtering, it allows an attacker to
bypass the scoped storage limitation. If an attacker previously
used the SAF picker to access other apps’ private folders
before the SAF Loophole was fixed, then their last accessed
stack is the private folder of another app. Since there is no
restriction implemented in accessing the last accessed stack,
the attacker’s unauthorized access would remain effective even
after applying the security update which fixes the known issues
of SAF.

While the initial design of scoped storage is to use a
single component MediaProvider to gate access for all
the file operations, the actual implementation, as we observed,
indicates the scoped storage-related codebase is much more
spread out than expected, which we suspect to be the root
cause for all of the coding issues found by ScopeVerif that
lead to security or privacy issues in app-specific folders. In
order to fix this issue, we suggest refactoring the codebase
of scoped storage to have unified gating access. This will be
easier for developers to maintain, as a single issue in one part
of the codebase will not automatically lead to multiple issues
in various components requiring fixes. It will also be easier for
testing, as a centralized codebase makes automatic analysis of
the source code much easier.

B. Conflicting Requirements of Scoped Storage

Scoped storage aims to allow apps to contribute files to
shared storage without restrictions while also preventing them
from interfering with other apps’ files in shared storage.
However, these two requirements are logically conflicting and
therefore infeasible to achieve if apps physically share the
same folder. We believe this is the root cause of most privacy
issues found in shared storage by the verifier.

In the current storage scheme, when an app writes a file to
a shared folder, a conflict naturally arises if there is a file with
the same name already present. In fact, when there is a name
conflict, the API will either automatically rename the newly
created file or throw an exception, both of which inevitably
reveal the existence of another app’s file.

To achieve the same goal, we suggest having virtually
shared folders. In this case, apps will have their own des-
ignated sharing folders where they put files to be shared with
other apps, making it impossible to have naming conflicts
Then, when apps with the required permissions want to access

the files of other apps, the operating system could scan the
sharing folders all apps and display all files in a virtual folder.
In this implementation, it is fine for two apps to create files
with the same name in the same shared folder. Selecting a
shared file in this virtual shared storage could be done using
the file path along with its owner.

C. Unclear Documentation of Storage APIs

Other issues ScopeVerif found are all due to discrepancies
between documentation and implementations. While these
issues do not directly lead to security or privacy issues, they
might cause unexpected usability issues or misunderstandings.

For example, Download Leak in Table II is caused by
unclear documentation. While the documentation claims ac-
cessing files in the Download collection mandates user consent
via the SAF picker (T1 in Table I), there is an undocumented
exception: the MANAGE_EXTERNAL_STORAGE permission.
In scoped storage, the MANAGE_EXTERNAL_STORAGE per-
mission is highly regulated and implies full access to shared
folders in external storage. Therefore, it was not considered
as a security issue.

However, developers unfamiliar with the details of scoped
storage might mistakenly believe their files in the Down-
load collection are protected unless access is explic-
itly granted via the SAF picker. In fact, apps with the
MANAGE_EXTERNAL_STORAGE permission, such as file
backup applications, can also access these files. To prevent
any misunderstanding, we recommend having unified docu-
mentation that explains how various Storage APIs and per-
missions interact within scoped storage and explicitly outlines
all exceptions.

VIII. LIMITATIONS AND FUTURE WORK

Adding new rules. ScopeVerif is extensible since it allows
specifying new security rules to be verified. As long as new
security rules can be described in terms of CIA properties,
they can be verified using the existing design of the violation
oracle.

For example, if future Android versions no longer allow
apps to write to shared storage (except in the Downloads
folder), we can simply add two rules to the ones listed in
Table I: (1) When writing to the Downloads folder, Availability
must hold. In this case (referring to Table I), ID could
be A4 and Actions is C, D, U, N. Attributes and
APIs both enumerate all available options. Targets is
Self_Download and Permissions is None. (2) When
writing to other folders in shared storage, Integrity must hold.
This would require another rule. In this case, ID could be
T3 and Targets is Other_Media. For all other columns,
the values are the same as A4. After adding these rules,
the violation oracle can automatically verify rule compliance
without implementing ad-hoc checks.

However, ScopeVerif can currently only verify rules that
can be described in terms of confidentiality, integrity, or
availability. For instance, if a new rule for Non-Repudiation
is introduced, requiring the Android system to always track

13

who last edited a file, ScopeVerif cannot currently verify
this property. Future work can extend our approach to use
differential analysis, constructing baselines accordingly, and
extending the violation oracle to verify additional types of
security or privacy properties.

Another limitation arises when security rules involve newly
introduced Android APIs. In this case, it may be necessary to
update ScopeVerif (in particular, Algorithm 1) to enumerate
the usage of new APIs during test case generation. The
worker apps may need modifications as well to perform file
operations using these new APIs. However, in this case, the
core component of ScopeVerif (i.e., the violation oracle) does
not require updates.
Scope Limited to File Operations. ScopeVerif is designed
to generate and verify test cases consisting exclusively of
file operations (e.g., create, delete, copy, rename). As such,
it cannot detect vulnerabilities, such as the Downgrade Attack
discussed in Section II, which require non-file operations, such
as app updates or SDK version changes. Furthermore, since
ScopeVerif focuses on verifying the enforcement of scoped
storage when fully activated, scenarios where apps opt out
of scoped storage are considered out of scope. The minimum
Android version examined by ScopeVerif is Android 12, where
opting out of scoped storage is no longer possible.

This scope limitation is a deliberate design choice to em-
phasize the security properties of the active scoped storage
implementation. Future work could extend ScopeVerif test
case generation to include non-file operations by modifying
the controller app’s enumeration logic and implementing cor-
responding functionality in the worker apps.
Violation Oracle Assumptions. Based on the methodology
of ScopeVerif, the conclusion of ScopeVerif is valid only if
the control result retains the property. Given that ScopeVerif
uses dynamic analysis, controlling variables can be complex.
Currently, ScopeVerif resets storage between test cases without
reinstalling apps or resetting the device to maintain efficiency.
However, if certain test cases permanently alter the state of the
operating system, the initial state for subsequent tests may be
compromised. As a result, the security property in the control
result might be violated, leading to incorrect conclusions by
the verifier.

This limitation is evident in the issue SAF Loophole D,
discussed in Section VII-A, which causes non-deterministic
behavior and has been acknowledged by Google. In this issue,
the SAF Picker records an app’s Last Accessed Stack and
relaunches to the same stack if the given initialUri is
blocked. ScopeVerif does not reset the SAF Picker state, which
persists even after reboot and system updates. Without access
control for the last accessed stack, this creates an abnormal
state where an attacker can always create files in the last
accessed folder using the SAF Picker. This issue initially
caused false positives and negatives in our analysis, which we
resolved by manually adding explicit handling for this corner
case. The latest version of our tool is no longer affected by this
problem, and reproducing the results now requires no manual
effort to remove false positives.

Nevertheless, this issue highlighted a current limitation of
our violation oracle: it must start from a normal device state
to detect any abnormal state triggered by a test case. As future
work, we can improve our oracle to be less dependent on such
assumption, or we may find better ways to efficiently reset a
device’s state between each test case.
Fuzzing Heuristics. Currently, our testing tool generates the
entire search space and randomly selects a set of test cases for
evaluation. It does not rely on any heuristics to guide more
efficient sampling based on known results. We conducted an
exploration using existing experimental results to train a model
that predicts the likelihood of unexplored test cases resulting
in violations. The initial results are promising, showing an
increase in the violation ratio relative to the total number of
tested cases. However, the number of bugs identified does
not consistently increase and, in some instances, decreases.
Thus, we found that random sampling identifies no fewer bugs
than our heuristic-based methods. In future work, we intend
to explore methods for selecting test cases more effectively,
particularly with respect to uncovering new security issues
rather than merely counting violations.
Emerging Mobile Operating Systems. While this work
focuses on Android’s scoped storage enforcement, future re-
search could extend these methodologies to other emerging
mobile operating systems, such as Huawei’s Harmony-NEXT,
which represents Huawei’s shift away from Android to its pro-
prietary platform. As these systems evolve, it will be important
to analyze their storage models and security frameworks to
identify potential vulnerabilities and assess compliance with
security properties like confidentiality, integrity, and availabil-
ity.

IX. RELATED WORK

A. Storage Vulnerabilities on Android

Previous research has shown that Android storage is vul-
nerable due to its coarse-grained access control mechanisms.
Bianchi et al. [4] demonstrated that authentication credentials
could be stolen via shared storage, allowing unauthorized
attackers to bypass authentication and access victim accounts.
Reardon et al. [36] and Dong et al. [5] revealed that shared
storage can be exploited to transfer user identifiers between
apps, bypassing Android’s permission system and compro-
mising user privacy. Liu et al. [37] discovered that shared
storage on Android can be used to leak users’ phone numbers,
locations, and other sensitive information. Gisdakis et al. [38]
used data mining and machine learning techniques to infer
user gender, age, race, and other sensitive information from
photos and voice messages stored in shared storage. Not
only privacy, but also data integrity is threatened, as shown
by Du et al. [39], who found that files stored in shared
storage can be corrupted, potentially leading to voice message
hijacking, installing malicious apps, or even phishing attacks.
Additionally, Tuncay has shown that adversaries can obtain
unauthorized access to all files by downgrading their app to
use legacy storage (i.e., by opting out of scoped storage or

14

by downgrading their target SDK level to 28) after having
obtained the storage permission on a device with active scoped
storage [9].

Most of these studies were either conducted before the
introduction of scoped storage or they did not evaluate its
security impact. In contrast, our work explicitly considers
scoped storage and systematically uncovers issues that persist
despite its introduction.

B. Access Control Design for Android’s Storage

Ahmad et al. [40] compared the storage access mechanisms
between Android and iOS and found that, while iOS always
requires user interaction each time an app accesses files from
other apps, Android employs a persistent coarse-grained access
control mechanism that allows apps with the appropriate
permissions to maintain access to all files in shared storage.

This behavior is the fundamental reason for most vulnera-
bilities discussed above, stemming from the different access
control mechanisms between Android and iOS. To address
these issues, a line of work has proposed fine-grained access
control models for Android’s shared storage [41], [1]. These
models introduce file-level granularity to Android’s access
control system, providing users with more control over file
access and enhancing data isolation between applications.
The latest file access control model (i.e., scoped storage)
has adopted some of these ideas, allowing for fine-grained
access control policies for shared storage. However, despite
the fine-grained permission control model in scoped storage,
we identified design flaws in its access policies. These flaws
could lead to potential cross-app user identification without
requiring any permission.

C. Automated Analysis of Access Control Policies

It is important to evaluate the implementation of fine-
grained permission control mechanisms. However, as dis-
cussed in Section III-B, existing studies have limitations
in fully addressing all research challenges. PolyScope [11]
triages the combinations of access control policies of Android
storage, but it does not consider the underlying Java code, nor
does it dynamically confirm identified issues, as discussed in
Section III-B. ACMiner [42] and AceDroid [43] assess the
actual implementation, but do not focus on evaluating file-
access permission checks, which depend on a combination
of checks in different codebases, including the Linux kernel,
FUSE [16], SAF picker, and Media Provider. Their analysis
is constrained by limited code coverage due to challenges
in decompilation and runtime modifications, and are fragile
to differences in Android versions, OEMs, and APIs. They
also do not build baselines directly from documentation,
leading to false positives and requiring manual intervention
for resolution.

X. CONCLUSION

This paper presents a systematic security analysis of the
scoped storage defense. In particular, we implemented a dy-
namic testing tool, ScopeVerif, to verify the correctness of An-

droid storage implementations as well as studying the incon-
sistencies between Android versions and devices. ScopeVerif
found 10 distinct issues, nine out of which were previously
unknown, including two security or privacy concerns. We
reported these issues to Google and OEMs. Both Google and
Huawei offered us bug bounties for our findings. Finally, we
proposed improvements to the current scoped storage design,
implementations, and documentation.

XI. ACKNOWLEDGMENTS

This work was supported by Google’s ASPIRE funding
program. The views and opinions expressed in this paper are
those of the authors only and do not necessarily reflect the
views or positions of the funding agencies. We thank Haining
Chen, René Mayrhofer, Dave Kleidermacher, and Roxanna
Aliabadi Walker for their feedback on this paper.

REFERENCES

[1] Feiqiao Huang, Wenjia Wu, Ming Yang, and Junzhou Luo. A Fine-
Grained Permission Control Mechanism for External Storage of An-
droid. In Proceedings of the 2016 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), pages 2911–2916. IEEE, 2016.

[2] Jinseong Jeon, Kristopher K Micinski, Jeffrey A Vaughan, Ari Fogel,
Nikhilesh Reddy, Jeffrey S Foster, and Todd Millstein. Dr. Android
and Mr. Hide: Fine-Grained Permissions in Android Applications. In
Proceedings of the Second ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices (SPSM), pages 3–14, 2012.

[3] Güliz Seray Tuncay, Soteris Demetriou, and Carl A Gunter. Draco: A
System for Uniform and Fine-Grained Access Control for Web Code
on Android. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2016.

[4] Antonio Bianchi, Eric Gustafson, Yanick Fratantonio, Christopher
Kruegel, and Giovanni Vigna. Exploitation and Mitigation of Authenti-
cation Schemes Based on Device-Public Information. In Proceedings of
the 33rd Annual Computer Security Applications Conference (ACSAC),
pages 16–27, 2017.

[5] Zikan Dong, Tianming Liu, Jiapeng Deng, Haoyu Wang, Li Li,
Minghui Yang, Meng Wang, Guosheng Xu, and Guoai Xu. Exploring
Covert Third-Party Identifiers Through External Storage in the An-
droid New Era. Prepublication at https://www.usenix.org/system/files/
sec24summer-prepub-442-dong.pdf, 2024.

[6] Slava Makkaveev. Man-in-the-Disk: Android Apps Exposed via Exter-
nal Storage. https://research.checkpoint.com/2018/androids-man-in-the-
disk/, 2019.

[7] Scoped Storage on Android. https://developer.android.com/about/
versions/11/privacy/storage.

[8] Yu-Tsung Lee, Haining Chen, William Enck, Hayawardh Vijayaku-
mar, Ninghui Li, Zhiyun Qian, Giuseppe Petracca, and Trent Jaeger.
Polyscope: Multi-policy Access Control Analysis to Triage Android
Scoped Storage. IEEE Transactions on Dependable and Secure Com-
puting, 2023.

[9] Güliz Seray Tuncay. Android Permissions: Evolution, Attacks, and Best
Practices. IEEE Security & Privacy, 2024.

[10] Mishaal Rahman. Android 13 Makes File Managers Less Useful by
Fixing a Loophole. Esper Blog, https://www.esper.io/blog/android-
dessert-bites-28-file-manager-loophole-closed-73891524, 2022.

[11] Yu-Tsung Lee, William Enck, Haining Chen, Hayawardh Vijayakumar,
Ninghui Li, Zhiyun Qian, Daimeng Wang, Giuseppe Petracca, and Trent
Jaeger. PolyScope: Multi-Policy Access Control Analysis to Compute
Authorized Attack Operations in Android Systems. In Proceedings of the
30th USENIX Security Symposium (USENIX Security 21), pages 2579–
2596, 2021.

[12] ScopeVerif. https://github.com/purseclab/ScopeVerif.
[13] Google. Android Developer Guides. https://developer.android.com/

guide, 2024.
[14] Demystifying Internal vs External Storage in Modern Android.

https://tdcolvin.medium.com/demystifying-internal-vs-external-storage-
in-modern-android-c9c31cb8eeec.

15

https://www.usenix.org/system/files/sec24summer-prepub-442-dong.pdf
https://www.usenix.org/system/files/sec24summer-prepub-442-dong.pdf
https://research.checkpoint.com/2018/androids-man-in-the-disk/
https://research.checkpoint.com/2018/androids-man-in-the-disk/
https://developer.android.com/about/versions/11/privacy/storage
https://developer.android.com/about/versions/11/privacy/storage
https://www.esper.io/blog/android-dessert-bites-28-file-manager-loophole-closed-73891524
https://www.esper.io/blog/android-dessert-bites-28-file-manager-loophole-closed-73891524
https://github.com/purseclab/ScopeVerif
https://developer.android.com/guide
https://developer.android.com/guide
https://tdcolvin.medium.com/demystifying-internal-vs-external-storage-in-modern-android-c9c31cb8eeec
https://tdcolvin.medium.com/demystifying-internal-vs-external-storage-in-modern-android-c9c31cb8eeec

[15] René Mayrhofer, JV Stoep, Chad Brubaker, Dianne Hackborn, Bram
Bonné, Güliz Seray Tuncay, Roger Piqueras Jover, and Michael A
Specter. The Android platform security model (2023). arXiv, 2023.

[16] Use Scoped Storage with FUSE. https://source.android.com/docs/core/
storage/scoped#using-scoped-storage-with-fuse.

[17] Request All-Files Access. https://developer.android.com/training/data-
storage/manage-all-files#all-files-access.

[18] Opt Out in Your Production App. https://developer.android.com/training/
data-storage/use-cases#opt-out-in-production-app.

[19] Storage Updates in Android 11. https://developer.android.com/about/
versions/11/privacy/storage#scoped-storage.

[20] File — Android Developers. https://developer.android.com/reference/
java/io/File.

[21] MediaStore — Android Developers. https://developer.android.com/
reference/android/provider/MediaStore.

[22] Open Files Using the Storage Access Framework. https://developer.
android.com/guide/topics/providers/document-provider.

[23] FileDescriptor — Android Developers. https://developer.android.com/
reference/java/io/FileDescriptor.

[24] Abbas Acar, Güliz Seray Tuncay, Esteban Luques, Harun Oz, Ahmet
Aris, and Selcuk Uluagac. 50 Shades of Support: A Device-Centric
Analysis of Android Security Updates. In Proceedings of the Network
and Distributed System Security Symposium (NDSS), 2024.

[25] App Access Restrictions. https://source.android.com/docs/core/storage/
scoped#app-access-restrictions.

[26] Access Your Own Media Files. https://developer.android.com/training/
data-storage/shared/media#media store, 2023.

[27] Access Other Apps’ Media Files. https://developer.android.com/training/
data-storage/shared/media#access-other-apps-files.

[28] Access to App-Specific Directories on External Storage.
https://developer.android.com/about/versions/11/privacy/storage#other-
app-specific-dirs.

[29] Storage Access Framework Required for Accessing Other Apps’
Downloads. https://developer.android.com/training/data-storage/shared/
media#saf-other-apps-downloads.

[30] Media Location Permission. https://developer.android.com/training/data-
storage/shared/media#media-location-permission.

[31] Update Other Apps’ Media Files. https://developer.android.com/training/
data-storage/shared/media#update-other-apps-files.

[32] Commit: 070e145. https://android.googlesource.com/platform/packages/
apps/DocumentsUI/+/070e14547db2e03590e295ac25b76cfb9f45fc78.

[33] Commit: 1e78acf. https://android.googlesource.
com/platform/packages/providers/MediaProvider/+/
1e78acfaa147d89f2bbbd9803582738dc0ca10a8.

[34] Commit: fe79a43. https://android.googlesource.
com/platform/packages/providers/MediaProvider/+/
fe79a43a890d9c54655b0ad0beeab58958aa1cfb.

[35] Commit: 7f5667b. https://android.googlesource.com/platform/
frameworks/base/+/4af5db76f25348849252e0b8a08f4a517ef842b7.

[36] Joel Reardon, Álvaro Feal, Primal Wijesekera, Amit Elazari Bar On,
Narseo Vallina-Rodriguez, and Serge Egelman. 50 Ways to Leak
Your Data: An Exploration of Apps’ Circumvention of the Android
Permissions System. In Proceedings of the 28th USENIX Security
Symposium (USENIX Security 19), pages 603–620, 2019.

[37] Xiangyu Liu, Wenrui Diao, Zhe Zhou, Zhou Li, and Kehuan Zhang.
Gateless Treasure: How to Get Sensitive Information from Unprotected
External Storage on Android Phones. CoRR, abs/1407.5410, 2014.

[38] Stylianos Gisdakis, Thanassis Giannetsos, and Panos Papadimitratos.
Android Privacy C(R)ache: Reading Your External Storage and Sensors
for Fun and Profit. In Proceedings of the 1st ACM Workshop on Privacy-
Aware Mobile Computing, pages 1–10, 2016.

[39] Shaoyong Du, Pengxiong Zhu, Jingyu Hua, Zhiyun Qian, Zhao Zhang,
Xiaoyu Chen, and Sheng Zhong. An Empirical Analysis of Hazardous
Uses of Android Shared Storage. IEEE Transactions on Dependable
and Secure Computing, 2018.

[40] Mohd Shahdi Ahmad, Nur Emyra Musa, Rathidevi Nadarajah, Rosilah
Hassan, and Nor Effendy Othman. Comparison Between Android and
iOS Operating System in Terms of Security. In Proceedings of the 8th
International Conference on Information Technology in Asia (CITA),
pages 1–4. IEEE, 2013.

[41] Quang Do, Ben Martini, and Kim-Kwang Raymond Choo. Enforcing
File System Permissions on Android External Storage: Android File
System Permissions (AFP) Prototype and OwnCloud. In Proceedings of
the 13th IEEE International Conference on Trust, Security and Privacy
in Computing and Communications, pages 949–954. IEEE, 2014.

[42] Sigmund Albert Gorski, Benjamin Andow, Adwait Nadkarni, Sunil Man-
andhar, William Enck, Eric Bodden, and Alexandre Bartel. ACMiner:
Extraction and Analysis of Authorization Checks in Android’s Mid-
dleware. In Proceedings of the Ninth ACM Conference on Data and
Application Security and Privacy (CODASPY), pages 25–36, 2019.

[43] Yousra Aafer, Jianjun Huang, Yi Sun, Xiangyu Zhang, Ninghui Li, and
Chen Tian. AceDroid: Normalizing Diverse Android Access Control
Checks for Inconsistency Detection. In Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2018.

[44] Media Store. https://developer.android.com/training/data-storage/shared/
media#storage-permission-not-always-needed, 2023.

APPENDIX

A. Example: Generate and Execute a Test Case for Rule C1

In this section, we first explain what a test case consists of,
then we explain how ScopeVerif concretely generates such a
test case from a security rule. Finally, we demonstrate how
ScopeVerif executes the test case and identifies a violation.
Definition. In general, a test case consists of seven key
attributes:

• Rule: The security rule being tested (e.g., C1 for Con-
fidentiality).

• Storage Location: The location where the file is
stored (e.g., a private folder of another app).

• File Type: The type of file involved (e.g., PDF, im-
age).

• API: The API used for file operations (e.g., the File
API, the MediaStore API).

• Permissions: The permissions granted to the app
executing the test case.

• File Operation: The main operation being tested
(e.g., Move, Read).

• Operation Sequence: Additional operations per-
formed before or after the main operation to test the rule
under various conditions.

Generation. To generate test cases, Algorithm 1 starts by
enumerating all applicable combinations from rule config-
urations, such as APIs, Actions, and Targets. Then,
it generates multiple test cases by further enumerating all
possible Operation Sequences (i.e., “payloads”).

An Operation Sequence involves adding additional
file operations executed either before or after the main File
Operation. The purpose of these sequences is to explore
whether the security rule still holds under various conditions.
For example, the test might include writing to the file before
reading it or moving it before reading it to ensure that the
tested security rule remains enforced throughout different
sequences of operations.

For each test case, Algorithm 1 sets the Rule of the test
case to the security rule being tested. In the cases relative
to C1, Algorithm 1 sets it to “Confidentiality,” expecting no
information leakage from the accessed file. ScopeVerif also de-
termines the Storage Location from its Targets—the
private folders of other apps. Because scoped storage mandates

16

https://source.android.com/docs/core/storage/scoped#using-scoped-storage-with-fuse
https://source.android.com/docs/core/storage/scoped#using-scoped-storage-with-fuse
https://developer.android.com/training/data-storage/manage-all-files#all-files-access
https://developer.android.com/training/data-storage/manage-all-files#all-files-access
https://developer.android.com/training/data-storage/use-cases#opt-out-in-production-app
https://developer.android.com/training/data-storage/use-cases#opt-out-in-production-app
https://developer.android.com/about/versions/11/privacy/storage#scoped-storage
https://developer.android.com/about/versions/11/privacy/storage#scoped-storage
https://developer.android.com/reference/java/io/File
https://developer.android.com/reference/java/io/File
https://developer.android.com/reference/android/provider/MediaStore
https://developer.android.com/reference/android/provider/MediaStore
https://developer.android.com/guide/topics/providers/document-provider
https://developer.android.com/guide/topics/providers/document-provider
https://developer.android.com/reference/java/io/FileDescriptor
https://developer.android.com/reference/java/io/FileDescriptor
https://source.android.com/docs/core/storage/scoped#app-access-restrictions
https://source.android.com/docs/core/storage/scoped#app-access-restrictions
https://developer.android.com/training/data-storage/shared/media#media_store
https://developer.android.com/training/data-storage/shared/media#media_store
https://developer.android.com/training/data-storage/shared/media#access-other-apps-files
https://developer.android.com/training/data-storage/shared/media#access-other-apps-files
https://developer.android.com/about/versions/11/privacy/storage#other-app-specific-dirs
https://developer.android.com/about/versions/11/privacy/storage#other-app-specific-dirs
https://developer.android.com/training/data-storage/shared/media#saf-other-apps-downloads
https://developer.android.com/training/data-storage/shared/media#saf-other-apps-downloads
https://developer.android.com/training/data-storage/shared/media#media-location-permission
https://developer.android.com/training/data-storage/shared/media#media-location-permission
https://developer.android.com/training/data-storage/shared/media#update-other-apps-files
https://developer.android.com/training/data-storage/shared/media#update-other-apps-files
https://android.googlesource.com/platform/packages/apps/DocumentsUI/+/070e14547db2e03590e295ac25b76cfb9f45fc78
https://android.googlesource.com/platform/packages/apps/DocumentsUI/+/070e14547db2e03590e295ac25b76cfb9f45fc78
https://android.googlesource.com/platform/packages/providers/MediaProvider/+/1e78acfaa147d89f2bbbd9803582738dc0ca10a8
https://android.googlesource.com/platform/packages/providers/MediaProvider/+/1e78acfaa147d89f2bbbd9803582738dc0ca10a8
https://android.googlesource.com/platform/packages/providers/MediaProvider/+/1e78acfaa147d89f2bbbd9803582738dc0ca10a8
https://android.googlesource.com/platform/packages/providers/MediaProvider/+/fe79a43a890d9c54655b0ad0beeab58958aa1cfb
https://android.googlesource.com/platform/packages/providers/MediaProvider/+/fe79a43a890d9c54655b0ad0beeab58958aa1cfb
https://android.googlesource.com/platform/packages/providers/MediaProvider/+/fe79a43a890d9c54655b0ad0beeab58958aa1cfb
https://android.googlesource.com/platform/frameworks/base/+/4af5db76f25348849252e0b8a08f4a517ef842b7
https://android.googlesource.com/platform/frameworks/base/+/4af5db76f25348849252e0b8a08f4a517ef842b7
https://developer.android.com/training/data-storage/shared/media#storage-permission-not-always-needed
https://developer.android.com/training/data-storage/shared/media#storage-permission-not-always-needed

Algorithm 2 Confidentiality Test Case Execution
1: function EXECUTECONFIDENTIALITYTESTCASE(test case)
2: /* Set permissions for all apps */
3: for all app in apps do
4: if app ̸= gamma then
5: permissions ← default_settings
6: else
7: permissions ← test_case.permissions
8: setPermissions(app, permissions)
9: /* Assign attacker and victim based on scope */

10: if checkScope(test_case.path, Scope.Self) then
11: /* If the target has a scope of “Self,” the test case will be executed on the attacker’s own files. */
12: attacker ← gamma
13: victim ← gamma
14: else
15: /* If the target has a scope of “Other,” the test case will be executed on the victim’s files. */
16: attacker ← gamma
17: victim ← alpha
18: /* Collecting Baselines */
19: result_on_nonexisting_file ← attacker.run(test_case, test_case.final_action)
20: /* Execute the payload */
21: for all action in test_case.payload do
22: if action.type == "SETUP" then
23: /* Perform setup action */
24: victim.create_file(test_case)
25: else
26: /* Execute malicious action as attacker */
27: attacker.run(test_case, action)
28: /* Execute final action and obtain results */
29: result_on_existing_file ← attacker.run(test_case, test_case.final_action)
30: /* Compare Results */
31: violation ← is_different(result_on_non_existing_file, result_on_existing_file)
32: return violation

that certain folders store specific file types (e.g., DCIM and
Pictures store only pictures) [44], it deduces the File
Type based on the Storage Location.

Execution. Listing 1 shows an example of a test case, relative
to the security rule C1. For this specific example, we will detail
how ScopeVerif executes it and identifies a previously un-
known violation. In general, ScopeVerif controls three worker
apps installed on the testing device: Alpha, Beta, and Gamma.
For the test case in the example, ScopeVerif first assigns app
Gamma as the attacker and app Alpha as the victim. This
test case describes moving a PDF file from Alpha’s app-
specific directory in external storage to Gamma’s folder using
the File API. To execute the test case, ScopeVerif runs
Algorithm 2 using the test case from Listing 1. In summary,
as a result, ScopeVerif instructs Gamma and Alpha to perform
the following steps:

1) Set proper permissions for all apps
2) Move file from Alpha to Gamma
3) Read file from Alpha to collect baseline result
4) Create file in Alpha
5) Move file from Alpha to Gamma again to collect the test

case results

After executing the above steps, ScopeVerif collects the
following results:

1) Result on Non-Existing File (Baseline):
• Target: PDF file in Alpha’s private folder
• Action: Move File
• Outcome: “No Such File” Exception

2) Result on Existing File (Test Case):
• Target: PDF file in Alpha’s private folder
• Action: Move File
• Outcome: “Permission Denied” Exception

ScopeVerif (and, in particular, its violation oracle compo-
nent) then compares the results collected. In particular, in
the example, the baseline result (executed on a non-existing
file) shows “No Such File” Exception, while the test case
result shows a “Permission Denied” Exception. The difference
between the two results indicates that the app has violated rule
C1, meaning that the test case has shown how it is possible to
leak the existence of a file to an unauthorized app. We refer to
this issue as Metadata Leak (we discussed it in Section VI-A).

B. Additional Implementation Details of ScopeVerif

In this section, we provide more technical details of the
implementation for how the controller generates test cases and
how worker apps execute test cases.
Generating Test Cases in InputGenerator. After we have a
list of security rules, ScopeVerif will explore the search space
as much as possible, looking for potential violations. To define

17

Listing 1 A Test Case Generated for Rule C1
1: rule id: “C1”,
2: final action: Move,
3: api: File,
4: path: “sdcard/Android/data/”,
5: extension: “.pdf”,
6: payload: {
7: Read, File,
8: Setup, File },
9: permissions: {

10: ACCESS_MEDIA_LOCATION,
11: READ_EXTERNAL_STORAGE,
12: MANAGE_EXTERNAL_STORAGE,
13: WRITE_EXTERNAL_STORAGE,
14: WRITE_MEDIA_STORAGE }

the search space, InputGenerator enumerates all combi-
nations of variables from security rules to generate test cases,
as detailed in Algorithm 1. As discussed in Section IV-B, each
security rule has different attributes, and these attributes will
be enumerated and translated into a set of test cases. Note
that while most attributes can be exhaustively enumerated, we
opt for a heuristic approach that only enumerates common
values to avoid excessive computation. For example, we only
enumerate {".pdf", ".txt"} when enumerating different
file types to access in the Downloads collection, instead of
enumerating all file types in the real world.

In order to fairly explore each security rule, we applied a
weighted random sampling technique to InputGenerator.
For example, A1 has a search space of 3,650 cases, while T1
has a search space of 832 cases. If we want to test a total of
200 cases in A1 and C1, we might explore the T1 space more
thoroughly but not as thoroughly in the A1 space. To solve
this, we ensure each security tule has the same percentage
tested by our tool instead of the same number of cases. In
this example, ScopeVerif will explore 163 cases in A1 and 37
cases in T1.

In a test case, InputGenerator would generate a “pay-
load,” which is a sequence of actions we want the attacker
app to perform. We generate all possibilities for the attacker’s
actions, given an upper limit of length k. While Android
storage is influenced by various components, ranging from the
low-level codebase to the applications’ codebase, it does not
exhibit many deep levels of internal states within the Android
storage mode. Additionally, historical attacks on Android
storage have never required a complex sequence of actions
to be triggered. Therefore, based on our understanding and
observations from previously known issues, we opted for a
heuristic limit of 2.

Consequently, the attacker is limited to performing only two
actions before the victim app performs its action. For example,
in a traditional squatting attack, where the attacker attempts to
replace a file that will be used by the victim app, the payload
would involve a single “write” action to the victim app’s file,

followed by a “read” action performed by the victim. In this
case, the payload length is one, which means this test case
will be included in our experiments.
Worker Apps. All the test cases generated will eventually
be executed by worker apps on devices running Android.
However, worker apps have no knowledge of security rules or
test cases. They only take commands, execute them, and return
feedback. To ensure worker apps can communicate with each
other, ScopeVerif requires ADB debugging to be enabled on
the device.

In order to allow the violation oracle to conduct differential
analysis (See Section IV-C), ScopeVerif has three worker apps
in total. Before the experiments, the violation oracle assigns
different roles to these workers, based on the security rules
that the ScopeVerif is testing. To be more specific, both the
confidentiality experiment and the integrity experiment would
need at most two workers when an attacker attempts to access
or modify another app’s private files. Availability experiments
would need at most three workers because, in certain test
cases, there could be an app that has the targeted resource,
a victim app that is trying to access the resource, and another
attacker app that is attempting to prevent the victim from
accessing the resource.

In order to control variables while efficiently testing the
security properties, we use several techniques. For example,
we reset the state of Android storage to ensure each experiment
starts from a deterministic state. Since we are only testing
storage-related properties, a full app reinstall is not necessary.
Instead, before each experiment, we delete all files in the
shared storage of external storage and app-specific folders in
external storage.

Another technique to control variables is to perform string
replacement in comparison results. For example, when testing
the availability of file creation, while both the control and
comparison results might contain feedback indicating success-
ful creation, their metadata, such as modified time, could be
different. In this case, we predefine all naturally different but
irrelevant variables for each experiment and replace the strings
in the comparison result to make them the same as in the
control result. By doing this, we rule out false positives when
detecting bugs using the violation oracle.

In the confidentiality and integrity experiments, control
results are produced by timing: confidentiality control results
are collected before the creation of the tested file to ensure
zero information, guaranteeing absolute confidentiality, while
integrity control results are collected before any modifications,
ensuring absolute integrity. In contrast, the availability exper-
iment requires control results collected with full capabilities
and permissions, not achievable by timing alone. Instead, the
violation oracle uses shell privileges to perform the action
and collect the control result. ScopeVerif does not require the
device to be rooted and uses shell user privileges to produce
the control result.

18

	Introduction
	Background
	Android Storage Basics
	Known Storage Attacks

	Motivation
	Challenges
	Existing Solutions

	ScopeVerif Design and Implementation
	Formalizing Rules from Documentation
	Translating Security Rules to Test Cases
	Dynamic Analysis and Violation Oracle
	Analysis of the Results

	ScopeVerif Results
	Finding Security Issues
	Identifying Inconsistencies
	Discovery Efficiency

	Identified Security Issues
	Issues Found in Shared Storage
	Issues Found in App-specific Storage
	Documentation Discrepancies

	Discussion
	Spread-out Codebase of Scoped Storage
	Conflicting Requirements of Scoped Storage
	Unclear Documentation of Storage APIs

	Limitations and Future Work
	Related Work
	Storage Vulnerabilities on Android
	Access Control Design for Android's Storage
	Automated Analysis of Access Control Policies

	Conclusion
	Acknowledgments
	References
	Appendix
	Example: Generate and Execute a Test Case for Rule C1
	Additional Implementation Details of ScopeVerif

