
Fast ACS: Low-Latency File-Based Ordered Message Delivery at Scale

Sushant Kumar Gupta Anil Raghunath Iyer Chang Yu Neel Bagora
Olivier Pomerleau Vivek Kumar Prunthaban Kanthakumar

Google LLC

fast-acs-wp@google.com

Abstract
Low-latency message delivery is crucial for real-time systems.
Data originating from a producer must be delivered to con-
sumers, potentially distributed in clusters across metropolitan
and continental boundaries. With the growing scale of com-
puting, there can be several thousand consumers of the data.
Such systems require a robust messaging system capable of
transmitting messages containing data across clusters and
efficiently delivering them to consumers. The system must
offer guarantees like ordering and at-least-once delivery while
avoiding overload on consumers, allowing them to consume
messages at their own pace.

This paper presents the design of Fast ACS (an abbreviation
for Ads Copy Service), a file-based ordered message deliv-
ery system that leverages a combination of two-sided (inter-
cluster) and one-sided (intra-cluster) communication prim-
itives—namely, Remote Procedure Call and Remote Mem-
ory Access, respectively—to deliver messages. The system
has been successfully deployed to dozens of production clus-
ters and scales to accommodate several thousand consumers
within each cluster, which amounts to Tbps-scale intra-cluster
consumer traffic at peak. Notably, Fast ACS delivers mes-
sages to consumers across the globe within a few seconds or
even sub-seconds (p99) based on the message volume and
consumer scale, at a low resource cost.

1 Introduction

Low-latency message delivery is crucial for real-time systems
such as advertising, dynamic pricing, retail inventory manage-
ment, fraud detection, activity monitoring, online matching,
and online gaming. The explosion of data is driving a cor-
responding growth in the size and complexity of real-time
systems. These systems are often geographically distributed
across numerous clusters. This distribution is essential for
handling the immense volume of requests and maintaining
a low-latency response. Furthermore, these systems are de-
signed to scale horizontally, which is vital because they of-
ten handle internet-scale traffic with user numbers that can

fluctuate dramatically. This also makes them vulnerable to
internet-scale threats like DDoS attacks.

Consider the example of Google Ads, a large-scale online
advertising system. The Ads serving system is geographically
distributed across multiple clusters to handle massive user
traffic. Each cluster runs numerous jobs with multiple repli-
cas to ensure high availability and low response time. Some
jobs may have thousands of replicas per cluster, while others
may have tens of thousands, resulting in hundreds of thou-
sands of replicas globally. Another example of a large-scale
real-time system is online shopping serving. They need to
be highly scalable to accommodate peak shopping periods
when demand can increase dramatically. This requirement for
dynamic scalability is common to many real-time systems
that serve internet-scale traffic.

Such real-time systems rely on real-time data pipelines to
receive updates for their states. These pipelines utilize real-
time extractors [5, 6, 11, 56] that depend on a robust message
delivery subsystem. This subsystem transports messages con-
taining extracted data to the real-time systems. Depending on
the specific needs of the real-time system, the message de-
livery subsystem must offer certain guarantees. For example,
stateful real-time systems that can handle duplicate messages
require in-order sequencing (messages delivered in the order
they were produced) and at-least-once delivery (each message
delivered at least once to all consumers). Ordered delivery
encompasses unordered delivery and at-least-once delivery
subsumes at-most-once delivery. While exactly-once deliv-
ery is desirable too, it requires two-phase commit, which is
challenging for cross-cluster delivery and hence beyond the
scope of this paper. Beyond delivery guarantees, low latency
is paramount for these messaging systems, as is the ability to
handle a massive number of consumers.

Existing Message Delivery System Message delivery sys-
tems are available in two variants: push-based and pull-
based. Pioneered by systems like Scribe [42], Siena [12],
and Gryphon [49], push-based asynchronous message de-
livery has found widespread adoption in RabbitMQ [19],

1



0 10 20 30 40 50 60

1

10

Num Consumers

T
hr

ou
gh

pu
t(

in
G

bp
s)

Producer Throughput Consumer Throughput

Figure 1: Results for Kafka consumer-scaling experiment. As con-
sumers scaled, the consumer throughput went up to 14 Gbps, after
which the performance degraded.

Facebook’s Wormhole [44], Google Cloud PubSub [34], and
Apache ActiveMQ [14]. However, relying on a push-based
model presents challenges for many systems. When a diverse
set of consumers, with their varying latency-sensitive back-
ends, needs to be supported, push-based delivery becomes
impractical. Handling push messages can block critical CPU
cores, leading many systems to prefer pulling messages at
their own pace. Moreover, pull-based messaging systems can
deliver higher throughput that push-based systems.

Systems such as Apache Kafka [33] have implemented pull-
based models, employing brokers to store messages in files
on their local file system. Each broker handles one or more
partitions of a topic. Within a partition, messages are totally
ordered, while across partitions, they are partially ordered.
The throughput of brokers, for both writing and reading, is
constrained by the capabilities of the storage medium (like
SSDs, currently maxing out at about 4.84 Gbps). Kafka per-
forms well when message volume is high (in the Gbps range)
and consumer count is limited. However, it is not optimized
for scenarios with a large fan-out; tens of thousands of con-
sumers can lead to potential meltdown, at the very least cause
a significant increase in latency. There are ongoing efforts to
replace local file system with Hadoop Distributed File Sys-
tem (HDFS) [47]. However, low-latency delivery to several
consumers requires enormous tail-reading of file bytes, and
so HDFS data node servers with a 64 MB file block size can
still face throughput issues. In-memory caching of "hot" mes-
sages within brokers offers a potential workaround for storage
bottlenecks. However, hot-spotting and network congestion
can occur even within a single partition, for instance, when
global total order is required.

To demonstrate consumer throughput issues, we conducted
an experiment on Google Cloud [15]. The experiment in-
volved a Kafka cluster with the following specifications: 3
brokers in a zone, each configured with 8 vCPUs, 32 GB of
RAM, and NVMe SSD; and one topic with 9 non-replicated
partitions.The partitioning ensured even distribution of load
across brokers, preventing hot-spotting. A producer was ini-
tiated, sending 1 KB-sized messages at a rate of 240 Mbps.
Then, consumers were scaled up incrementally, adding four
at each step. Figure 1 shows the results. Initially, consumer

throughput scaled linearly, reaching a peak of 14 Gbps. How-
ever, beyond this point, we observed a drop in the write rate
due to throughput conflict between writes and reads. The pro-
ducer byte rate decreased to 120 Mbps, consequently causing
a drop in overall consumer throughput. The maximum con-
sumer throughput achieved in this Kafka setup was 14 Gbps,
after which performance degraded.

Apache Pulsar [32] is a geo-replicated message delivery
system. It uses Apache BookKeeper [21] for storage. Book-
Keeper persists messages in distributed write-ahead logs, and
indexes them in a cache for fast retrieval. These logs are
segmented to optimize performance. However, their large seg-
ment size (typically 128 MB) can lead to throughput issues
when several consumers tail-read from them.

Our Contributions To the best of our knowledge, there are
no messaging systems that can handle large consumer fan-
out and provide low-latency ordered message delivery. Our
contribution lies in the development of such a system.

In summary, our system utilizes files on a distributed file
system, namely Colossus [27] (formerly Google File Sys-
tem [22]). Producers append messages to these files, while
consumers poll and read them. We introduce an in-memory
layer on top of Colossus specifically designed for low-latency
message delivery at scale. The system leverages one-sided net-
work primitives, namely Remote Memory Access (RMA), for
intra-cluster reads, while utilizing traditional two-sided com-
munication, namely Remote Procedure Call (RPC), for inter-
cluster byte transfer. The system provides essential guarantees
for message delivery: in-order sequencing and at-least-once
delivery to all consumers. Additionally, it enables consumers
to pull messages at their own pace.

Our contributions are fourfold: 1) We demonstrate how
RMA-based in-memory caching overcomes tail-read through-
put limitations, enabling low-latency message delivery. 2)
We show that proper chunking and distribution eliminate hot-
spotting, even with global total ordering constraints. 3) We
demonstrate that scaling out resources horizontally effectively
mitigates network limitations. 4) We highlight the resource
efficiencies achieved by leveraging RMA.

Our contribution targets real-time systems with high con-
sumer throughput requirements, rather than systems that need
extremely low latency, say, under 50ms. While achieving such
low latency is possible with enhanced resources, it can be ex-
pensive. The ideas discussed in this paper can be adapted to
enhance the consumer scalability of existing systems, leading
to improvements in their benchmark performance.

We have materialized the design to build Fast ACS (an
abbreviation for Ads Copy Service). Fast ACS has been de-
ployed in production, consistently delivering messages to
thousands of consumers across dozens of production clusters
within a few seconds or even sub-seconds (p99). Fast ACS
is adopted by systems that demand ordering, at-least-once
delivery and low-latency on a large scale.

2



Extractors
ExtractorsReal-time Extractors
(Producers)

Datastores Storage

Source
Cluster

Log
Processors

1730915029.msg

Message 1

Message 2

Message 3

Storage

Real-time Systems
(Consumers)

Destination

Cluster

Message 1

Message 2

Message 3

1730915029.msg

Network

Figure 2: File-based ordered messaging for a real-time systems. Each message stream can have multiple destination clusters based on its
consumers. Message files are tail-copied from the source cluster’s storage to the destination clusters’ storage.

2 Design Overview

We will begin by outlining how our system achieves ordered
message delivery through files. Starting from Section 2.2, we
will detail our system’s core components.

2.1 File-Based Ordered Message Delivery

Files provide a mechanism for ordered message delivery. Pro-
ducers append messages to message files and consumers read
from them. To limit their size, the message files undergo peri-
odic rollover. Each message file includes its creation times-
tamp in its name, enabling chronological sorting.

This file-based messaging approach is agnostic to the under-
lying message formats, focusing primarily on the storage and
delivery of bytes. Consequently, producers and consumers can
define their own protocols for serializing and deserializing
messages to and from the files.

Producers write messages into distinct message streams in
the source cluster, each representing an individual bundle of
messages, analogous to topics in pub-sub systems. Produc-
ers can write to multiple message streams, while consumers
can read from multiple ones as well. Each message stream
is sharded for scalability, with each shard comprising a set
of chronological message files containing the messages. A
message stream shard resides within a single directory of
the file system, simplifying organization. Thus, all ordered
messages for a single message stream shard can be found in
chronological files under one directory.

To accommodate geographically distributed consumers,
message files must be copied from the source cluster’s stor-
age to the destination cluster’s storage. Consumers in the
destination cluster can then tail-read the file from their cluster-
local storage system. Figure 2 provides an illustration of our
cross-cluster file-based ordered message delivery for a real-
time system.

2.2 Multi-Layer Storage

As illustrated in Figure 3, the message files are stored in a
multi-layered storage system: Colossus [27], a distributed
file system, serves as the primary layer, while a replicated
in-memory cache acts as the secondary layer. This additional

1730915029.msg
Producer/
Writers

Chunk 0 Chunk 1 Chunk 2

Data Cache

Colossus

Length: 10240 Consumers/
Readers

Metadata Cache

RPC RMA Expired Non-Expired

1

2

3 4

5

5’

Figure 3: The multi-layer storage design. The producers/writers
write the bytes to the Colossus file (1) and shadow the bytes as
chunks to the data cache (2), and then update the length of the file
in the metadata cache (3). The consumers/readers poll the metadata
cache for the latest length of the file (4) and read the chunks from the
data cache preferably (5), with Colossus acting as a fallback (5’). All
the reads from caches happen over RMA. In this illustration, chunk
0 has expired while chunk 2 is only partially-filled. The length stored
in the metadata cache points to the current position within this last,
partially-filled chunk.

layer ports minimal Colossus features and operates in par-
allel to it. All message stream bytes are replicated to both
layers. Given its finite capacity, the in-memory cache layer
only stores the most recently written, "hot" bytes for the files.
The layer absorbs the majority of queries for tail-reads, with
Colossus serving as a fallback. This offers a low-latency,
high-throughput path for message delivery.

The In-Memory Cache Layer Files are segmented into a
series of fixed-size chunks, each 4 KB in size. These chunks
are then represented as key-value pairs. The key for each
chunk is a hash of two components - the absolute Colossus
file path, which is globally unique across Colossus, and the
chunk’s sequence number. The value comprises the corre-
sponding chunk bytes. The 4 KB chunk size is partly based
on the observed message size and partly on the maximum
transmission unit in the cluster fabric, allowing a chunk to be
read in a single packet.

3



We employed CliqueMap [4] as the underlying system
for the in-memory storage layer. CliqueMap is a remote in-
memory key-value cache that facilitates writes through RPC
and intra-cluster reads via RMA. The latter proves advanta-
geous given the read-heavy nature of our intra-cluster con-
sumer traffic. Each key-value pair in the cache is subject to
garbage collection (GC) upon either the expiration of its Time-
To-Live (TTL) or when the cache approaches its storage ca-
pacity limit. CliqueMap employs consistent hashing [31] for
key distribution among replicas. Within a replica, CliqueMap
divides its memory into fixed-size slabs, and key hashes are
divided into buckets via set-associative mapping.

CliqueMap supports r=3.2 replication, which provides
resilience against single-point failures. With replication,
CliqueMap offers a range of read consistency modes, two
of which we leverage: the consistent mode, which reads val-
ues from at least 2 out of 3 replicas, thereby delivering the
most recent value, and the relaxed mode, which reads from a
random replica that may provide a stale value.

In constructing a file system atop CliqueMap, we employ
two instances per cluster: a data cache and a metadata cache.
These are analogous to the Colossus chunkservers and meta-
data servers respectively, except lacking processing capabili-
ties. As a result, unlike Colossus, the data and metadata for
a file cannot be atomically written to the cache layer. The
data cache acts as the repository for file chunks while the
metadata cache stores file metadata, particularly (a) the cur-
rent length of the file and (b) the file lock. The current length,
a monotonically increasing number, reflects the file length
of the append-only file, stored as chunks, in the data cache,
while the file lock serves to prevent concurrent writers in a
best-effort manner. As elaborated subsequently, locks primar-
ily contribute to performance optimization and do not impact
the system’s correctness. While both file chunks and meta-
data stored in such volatile caches remains vulnerable to data
loss, our system is designed to withstand such occurrences,
as detailed in the subsequent sections.

The data cache has two types of chunks for each file: com-
plete chunks and a last, partially filled chunk (if any). Each
chunk in the data cache possesses the following property:
reading any part of a chunk will always yield the correct
bytes, if present, for the corresponding file positions, even if
the chunk is partially filled. This is guaranteed by always writ-
ing a chunk starting from its beginning and never from any
other position, as detailed later. TTL expiration automatically
removes older, non-hot chunks.

2.3 Routing

Directly streaming bytes from the source cluster to all the des-
tination clusters of a message stream would be prohibitively
expensive. To address this, we utilize a Prim-based [41] opti-
mizer to construct a minimum spanning tree (MST), hereafter
referred to as a copy tree, for each message stream, as illus-

Europe

US

A

B

C

D

E F G H

I

Source

J
Asia-

Pacific

Figure 4: An MST for a message stream. The source cluster is in
the US, and the stream is copied to three clusters within the US, two
clusters in Europe, and four clusters in the Asia-Pacific region.

trated in Figure 4. While prioritizing bandwidth cost, the opti-
mizer is also fine-tuned to minimize both, the tree’s depth and
the fan-out per node. Minimizing the tree’s depth is essential,
as each hop along the copy tree introduces some delay. The
first hop from source typically traverses continental bound-
aries, followed by a hop across metro boundaries. A typical
copy tree has a maximum of 4 hops from the source cluster
which can accommodate a few hundred clusters.

Outages in a cluster, often caused by factors such as bad
releases, connectivity problems, or bulk maintenance events,
can delay all descendant clusters in the copy tree. Such dis-
ruptions frequently led to significant Service-Level Objective
(SLO) misses, which prompted us to automate the outage
handling process. We employ a breadth-first search algorithm
to penalize the problematic nodes and links, and then delegate
reconstruction of the copy tree to the optimizer. The recon-
struction usually sets the problematic nodes as leaf nodes in
the copy tree. Consumers in the affected cluster are re-routed
to a nearby healthy cluster, sacrificing the ability to perform
RMA reads. Similarly, when a new cluster is added to a mes-
sage stream, it starts as a leaf node with rate-limited delivery
and is then promoted to a regular node once the catch-up to
the head is complete.

Along each hop of the copy tree, we have a pair of worker
jobs - readers and writers. Readers are responsible for polling,
reading, and sending bytes from the current hop to the next
hops of the copy tree while writers write the bytes to the desti-
nation storage. This design provides the necessary decoupling
for the jobs to scale independently. The readers scale based on
the egress bandwidth demands, which depends on the fan-out
from the current cluster, and the writers scale based on the
ingress bandwidth demands.

Each file is tail-copied independently through an operation,
identified by the Colossus target file path and the storage type
- either Colossus or cache. As a result, for each file, the op-
erations for Colossus and cache are independent along the
entire copy tree, which also doubles the bandwidth utilization.
While pairing them was technically feasible, it led to addi-
tional complexity in implementation and introduced avoidable
latency. For example, invoking the Colossus Open file func-

4



tion in the write mode is prohibitively expensive as it needs
to acquire lock on the file. The cache operation bypasses
such costly Colossus operations and is heavily-optimized for
parallelization, enabling the fastest possible byte delivery rate.

Finally, operations are scheduled by a cluster-local sched-
uler, which is triggered by a notification from the producer.
The schedulers establish a continuous stream along the tree.

2.4 Components

Producers Producers (i.e., real-time extractors) are respon-
sible for generating update files and appending serialized
messages to them. Our File interface implementation writes
the serialized messages to the underlying Colossus file and
then asynchronously shadows (copies) the bytes to the data
cache. The length of the Colossus file and the length of the
file in the data cache are then recorded in the metadata cache.
This allows for low-latency retrieval of the file lengths from
the metadata cache via RMA, especially for Colossus, where
Colossus Bigtable [13] often runs into hot-spotting issues
when several consumers poll it simultaneously.

Flushing messages to Colossus establishes a single source
of truth, with all other copies (in other Colossus clusters and
caches) reflecting this committed state. To amortize disk write
costs, producers typically buffer messages before flushing.

In order to shadow the bytes to the data cache, the file imple-
mentation tracks the last partially-filled chunk (if any) for the
append-only file. When new bytes are flushed to Colossus, the
file implementation computes the chunks for the data cache
and performs a bulk-write operation on the corresponding
key-value pairs. Since a write to a chunk is atomic, slow-
growing files often end up overwriting the same bytes to the
same chunk multiple times, thereby increasing intra-cluster
bandwidth usage unnecessarily. This can be partially resolved
by reducing the chunk size to fit the file’s byte rate.

Readers For each operation, a reader replica in an upstream
cluster initiates a long-lived streaming RPC connection [24]
with a writer replica in a downstream cluster. The operation
polls the file systems for file length changes and subsequently
reads and sends the bytes downstream.

File length is periodically polled from the metadata cache,
which stores lengths for both the data cache file and the Colos-
sus file. To reduce overhead, a single background thread per-
forms consistent bulk reads from the metadata cache on be-
half of all the operations scheduled on the reader replica. The
polling interval for the metadata cache is set to 50ms, and
can be reduced to 10ms or less based on latency require-
ments. Additionally, the Colossus file length is also polled
from Colossus Bigtable, albeit less frequently. This serves as
a fallback, in case the metadata cache becomes unavailable.

The data cache reads employ a two-step process. Initially, a
relaxed read for chunks is performed, followed by consistent
reads for those chunks that return fewer bytes than expected
— a scenario that may occur when reading from a lagging

Replica 1

Replica 3

Replica 2

Chunk 0 Chunk 1

Readers/
Consumers

Relaxed Read

Consistent Read

New Write

Figure 5: An illustration of relaxed reads followed by consistent
reads. Suppose new bytes are written across multiple chunks, fill-
ing up the previously partially-filled chunk 0. The new chunk 1 is
successfully written to all replicas, but the updated chunk 0 is only
written to replicas 2 and 3. When a reader detects a new length from
the metadata cache and performs a relaxed read for chunk 0 from
replica 1, it will receive fewer bytes than expected. The reader will
then perform a consistent read to obtain the complete chunk 0.

Read Range from Data Cache

Fallback Read Range from ColossusMissed

Read

Figure 6: An illustration of fallback reads to Colossus in the event
of misses from the data cache. All missed chunks are fetched in a
single Colossus read to amortize the RPC cost.

data cache replica, as illustrated in Figure 5. Empirical ob-
servations show that consistent reads are infrequent. Hence,
relaxed reads contribute to saving substantial intra-cluster
bandwidth and processing resources. An alternative approach
could involve using 2xR, where a quorum on the version num-
ber of the key-value pair is first established. However, this
necessitates two round-trips, which introduces latency. The
relaxed read is hedged after a short delay of 30ms.

Note that because the data cache is volatile, it is possible
to encounter a missing chunk even after a consistent read. A
missing chunk is retrieved from Colossus by reading from
the positions corresponding to the chunk. In scenarios where
multiple chunks are missing, the corresponding read from
Colossus spans the combined positions of all the missing
chunks as illustrated in Figure 6.

For a Colossus operation, the bytes are retrieved oppor-
tunistically from the data cache first and then from Colossus
upon a miss, as described above. Opportunistic reads from
the data cache in Colossus operations are best-effort but save
valuable disk time. The Colossus Flash Cache [53] is ineffec-
tive as it only caches immutable blocks, which is not useful
for tail-reading growing files. The read bytes are relayed to
the downstream cluster sequentially, in line with Colossus’s
append-only operation support.

5



W1

W2

Chunk 0 Chunk 1 Chunk 2 Chunk 3

Figure 7: An illustration of writes to data cache. Consider a scenario
where the 0th chunk is partially-filled and there are two concurrent
write requests: W1 with a few bytes (not enough to fill the 0th chunk)
and W2 with large bytes (spanning over the 0th, 1st and 2nd chunk
fully, and the 3rd chunk partially). It is possible for W2 to arrive
before W1, leading to the 1st, 2nd chunk and 3rd chunk being written
before the 0th chunk. Consequently, the W2th write for the 0th chunk
needs to be serialized after W1 is received and the chunk is complete.
The length, shown as pointer, is updated only after all bytes up to
the pointer are filled.

Similarly, for a cache operation, chunks are fetched from
the data cache first, followed by a fallback to Colossus upon
a miss. However, unlike a Colossus operation, the bytes are
read and sent to the writer in parallel, i.e., the processing of
the next file length delta does not wait for the previous one to
complete.

Astute readers may notice a circular dependency between
Colossus and cache operations. However, this circularity is
resolved by the fact that actual byte reads are limited to the
length of the file in the corresponding storage only. The cache
reads by Colossus operations are opportunity-based while the
Colossus reads by the cache operations are fallback-based.

Writers For a Colossus file, the operation employs single-
threaded appends, which also updates the metadata in Colos-
sus Bigtable, constituting an atomic step.

For the data cache, the operation differentiates between
complete chunks and the last partially-filled chunk. Complete
chunks are written in parallel as they will only be written
once. On the other hand, writes to partially filled chunks are
serialized to ensure that the prefix of bytes in the chunk is
always correct, as illustrated in Figure 7. This creates per-
chunk dependencies between write requests and the operation
maintains a map of such write relationships for each chunk.
Once all writes are complete, the length in the metadata cache
is then updated to reflect the position up to which all complete
chunks and the last partially-filled chunk have been written
to the data cache. As noted earlier, unlike a Colossus file, the
writes to the data and the metadata cache do not constitute an
atomic step.

Note that this out-of-order parallel-write scheme for the
data cache interferes with evictions based on TTL where
chunks with higher sequence number may be evicted before
chunks with lower sequence number. In practice, this has

Algorithm 1 Delayed Colossus Reads for a File

1: maxDelay← 1s . Maximum tolerable read delay.
2: cfsSizeRec← queue() . Colossus file size historian.
3:
4: procedure SHOULDREADFROMCOLOSSUS
5: cacheSize← cache.size()
6: cfsSize← colossus.size()
7: cfsSizeRec.push({time: time(), size: cfsSize})
8:
9: while !cfsSizeRec.empty() do

10: if cfsSizeRec.front().size > cacheSize then
11: break
12: cfsSizeRec.pop() . Remove caught-up positions.
13: if cfsSizeRec.empty() then
14: return false . Cache is caught-up.
15: if time() > cfsSizeRec.front().time + maxDelay then
16: cfsSizeRec.clear()
17: return true . Cache is delayed.
18: return false . Cache may catch-up soon.

not been a significant problem because consumers rarely fall
behind enough to be impacted by chunk expiration.

Consumers Consumers (i.e., real-time systems) are respon-
sible for reading bytes from the storage and deserializing
the messages in a sequential manner. Our design guarantees
eventual progress for the consumers, regardless of the volatile
state of either the metadata or data caches. This is due to the
persistent, append-only nature of Colossus files.

Like readers, consumers actively poll the metadata cache
to get the file length for both the Colossus file and the data
cache file. Consumers then have the option to read from
either of the two storage layers. A naive approach would be
to read the chunks from the storage which is ahead of the
other in order to minimize latency. Typically, the data cache
file leads the Colossus file, making this strategy suitable for
most cases. However, we have observed that Colossus files
can often overtake the data cache intermittently, particularly
when a data cache stream is interrupted along some copy tree
hop. This used to result in a significant reads from Colossus,
leading to increased latency penalties when Colossus throttled
the requests. To address this, our objective was to prioritize
reading from the data cache as long as latency requirements
are met. This is achieved by postponing reads from Colossus
unless message delivery latency is at risk. The implementation
for delayed Colossus reads is illustrated in Algorithm 1. Our
File interface implementations makes this process transparent
to the consumer jobs.

Sometimes, some consumers might start late or fall behind.
In such cases, past reads from the data cache will fail as the
chunks would have expired, and the consumers are forced to
fallback to Colossus until they catch up to the head and can
resume reading from the cache. Upon cache miss, the fallback

6



mechanism is same as that described for readers.
Lastly, each consumer passively rate-limits the reads to cap

the read bandwidth in the event that the producer restarts and
writes a large backlog to the cache. Without the rate limit, the
read amplification would overwhelm the data cache.

3 Implementation Details

Start Position for Cache Copies In essence, the data cache
is designed to serve only non-lagging consumers. Consumers
who have fallen behind are expected to catch up using Colos-
sus file before reading chunks from the data cache. This sim-
plification allows us to help keep the data cache stream ahead
of the Colossus stream. In cases of cache outages and sub-
sequent recovery, the data cache stream jumps to the chunk
where the Colossus file is currently positioned, and the length
in the metadata cache is updated accordingly.

Dueling Writers The scheduler employs Slicer [2] for
sharding, which, like many sharding schemes, provides weak
consistency guarantees. While strong consistency could have
been achieved by employing a lock service like Chubby [10]
or ZooKeeper [28], or by utilizing Slicer’s strong consistency
mode, these approaches compromise availability. Prioritizing
availability, we opted for Slicer’s weak consistency model.
Consequently, multiple operations can exist for the same tar-
get path and storage.

For Colossus files, multiple writers are prohibited since
the Open operation on a file invalidates all existing file han-
dles used by other processes. This allows a new operation to
automatically supersede an older one for a target path.

However, such a mechanism is not available for cache op-
erations as the cache storage layer cannot execute logic. This
can result in multiple writers competing, causing clobbering
of key-value pairs in both the data and the metadata caches.
For instance, complete chunks would be overwritten with
partial chunks or the file length would intermittently go back-
wards. This would negatively impact performance, forcing
consumers to frequently fallback to Colossus. Note that the
correctness remains unaffected, and appendix A provides a
formal specification verifying the system’s correctness.

To address the performance issue, we utilize locks stored
in the metadata cache. These locks are essentially leases that
can be marked as poisoned. Each lock is a key-value pair,
where the key is derived from a hash of the Colossus file
path, and the value is a unique signature for each operation.
This signature consists of a unique identifier for the writer
replica and a random nonce to distinguish the operation on
that replica. A lock for a file is obtained at the beginning
of an operation and released when the operation completes.
After acquisition, the writer continuously checks the lock
for poisoning. When another operation for the same file is
scheduled, it poisons the existing lock. Upon detecting the
poison, the existing operation is then forced to terminate,

allowing the new operation to acquire the lock. Additionally,
if a writer terminates without releasing the lock, the new
operation seizes the lock after a small delay.

Tuning the Caches We tuned both data and metadata
caches for low-latency. These caches operate within the stan-
dard shared Borg [52] environment, where various jobs com-
pete for resources. Network bandwidth is the most critical
resource for the caches due to the high fan out within each
cluster. Both data and metadata caches scale horizontally [43]
based on the bandwidth and QPS usage.

I. Data Cache: A 1-minute TTL is assigned to the chunks,
accommodating most, if not all, consumers. GC is configured
to start once the cache reaches 80% of its capacity. The initial
RAM for each replica and the minimum number of replica
per cluster is configured to accommodate a minute worth
of most recent chunks. The slabs and buckets for key-value
pairs are pre-allocated to avoid delays caused by resizing.
Chaining is enabled to accommodate overflowing buckets
to prevent undesired forced evictions. Furthermore, the data
cache utilizes a least-recently modified policy, prioritizing the
removal of the oldest written chunk.

II. Metadata Cache: The TTL is set to 24 hours which
is much larger than the usual rollover time for update files.
Since the number of key-value pairs in metadata cache is
inherently restricted by the number of files, most capacity and
GC settings were deemed unnecessary.

CPU usage on the caches is typically minimal, as most
traffic is read-heavy that utilizes a highly efficient software
RMA implementation running on Pony Express [38].

To ensure low latency, clients set strict sub-second dead-
lines on cache operations. Additionally, we tuned the
CliqueMap client-side executor for high parallelism by in-
creasing both the number of threads and the buffer space
allocated per thread. The underlying execution of operations
can be parallelized because we manage concurrency at the ap-
plication layer. However, as a side-effect, this also increased
RAM usage on the consumer side. We then performed man-
ual tuning to optimize for a low resource footprint without
impacting latency. In the future, we wish to automate this
based on the read traffic pattern.

Finally, to avoid potential server-side resource conflicts
with write operations, reads are deliberately configured to
never resort to using RPC mode, except for overflowing bucket
reads. However, this still does not prevent OS network buffers
and bandwidth conflicts between reads and writes.

Fault Tolerance The caches can handle single point fail-
ures, though multiple failures may impact performance. Both
readers and writers can tolerate multiple failures, but this can
create temporary imbalance due to operation rescheduling,
potentially slowing down operations and increasing latency.
To mitigate this, new operations are throttled and existing
operation are periodically shed to restore balance.

The scheduler manages the entire life cycle of an operation.

7



During transient periods of scheduler unavailability, such as
restart, an operation can continue running in an orphaned
state thereby maintaining stream continuity. Once the sched-
uler is back online, it can schedule a new operation for the
same file and storage, which will force the existing orphaned
operation to terminate, as detailed previously. This straight-
forward design, inspired by the make-before-break strategy,
ensures that the stream flow remains uninterrupted.

When scheduler and workers are both unavailable, delays
are inevitable. A stream might be disrupted and will need to
be re-established.

4 Evaluation

In our evaluation, we aim to address several key questions:
I. Ideal Performance: How does the system perform under

ideal conditions?
II. Abrupt Load Management: What happens to the system

when an abrupt consumer load is exerted on it?
III. Fault Tolerance: How does the system handle faults

and ensure resilience?
IV. Scalability: How effectively does the storage layer scale

in response to egress bandwidth demands?
V. Backlog Recovery: How does the system recover from

large message backlogs?
All evaluations were performed within the shared Borg [52]

environment. Each cache replica was allocated 1 CPU core
and 8 GB RAM. Consumers were assigned 1 CPU core and 4
GB RAM. Readers and writers were assigned 2 CPU cores
and 4 GB RAM, and were configured to scale both verti-
cally and horizontally based on the demand. All jobs were
configured to utilize high-priority CPU resources and ran on
machines with Pony Express [38], providing highly-efficient
software RMA. We used the B4 network [23, 30] for WAN
traffic, which is designed for cheaper, low-priority, non-user-
facing traffic.

Producers generated messages in data-index format, ap-
pending messages into two files: the data file, containing
message contents, and the index file, which primarily stored
the offsets of the message contents within the data file. Addi-
tionally, producers had a buffering interval of 100ms.

For evaluation purposes, monitoring jobs were turned up
alongside consumers. These jobs mimicked consumers and
exported performance metrics. The key metric exported by
the monitors was message delivery delay, calculated as the
difference between the producer’s time on message produc-
tion and the consumer’s time on message consumption. The
delay was comprehensive as it included the time taken by the
producer to serialize and write the message, the time taken by
the transport layer to copy the message to the destination, and
the time taken by the consumer to read and deserialize the
message. Although Google’s TrueTime [16] could have facil-
itated cross-cluster measurements, we opted to use smeared
UTC [45] instead. This decision was based on the observation

2 4 6 8

20

40

60

80

Num Consumers (× 103)

B
an

dw
id

th
(i

n
G

bp
s) Data Cache Bandwidth

0

1

2

3

4

5

Q
P

S
(i

n
M

il
li

on
s)

Data Cache QPS

2 4 6 8

100

300

500

700

Num Consumers (× 103)

p9
9

D
el

ay
(i

n
m

s) Delivery Delay Network Delay

Figure 8: Results for experiment 1(a). The fluctuations in data cache
bandwidth and QPS are attributed to repeated reads for last partially-
filled chunk and the execution of consistent reads when relaxed reads
fail. The message delivery delay exported by monitors remained
relatively stable regardless of the number of consumers.

that clock drifts were negligible compared to the actual delays
we encountered. All reported delays have a relative error mar-
gin of less than 7%. Metrics were exported to Monarch [1] a
few minutes into steady-state after startup to avoid capturing
noise generated during the initial read up to head.

4.1 Experiment 1

In this experiment, we fixed the number of cache replicas.
We turned up 9 replicas for the data cache and 6 replicas for
the metadata cache in each cluster. To generate workload, we
enabled two message streams originating from clusters in the
us-central and euro-west regions. These streams were then
replicated to 15 destination clusters. The combined producer
write rate was 240 Mbps on average. Using r=3.2 and chunk
size of 4 KB, this configuration yielded a data cache write
QPS of approximately 22,500 in each cluster. The message
streams were 120-way sharded, and each shard contained
their own data-index file pairs. Each consumer was assigned
to read from 4 shards, resulting in a read rate of 8 Mbps per
consumer. The polling interval was set to 50ms for readers
and 100ms for consumers.

Experiment 1(a) - Ideal Case We started with 1,500 con-
sumers in one of the leaf clusters of the copy tree, which was
3 hops away from each source, located in asia-east region.
We scaled-up the number of consumers to see how it affects
the latency. The consumers were scaled up smoothly adding
5 replicas every 5 seconds. Throughout the experiment, all
upstream clusters reported stable delays. This represents a
fairly ideal scenario.

Observations: The experiments concluded with 7,950 ac-

8



0 1 2 3 4 5 6 7 8 9
0

400

800

1,200

1,600

Time (in mins)

D
el

ay
(i

n
m

s)

Delivery Delay (p99)
Write Latency (p999)

0

4

8

12

16

F
al

lb
ac

k
R

at
e
(×

10
3 )

Fallback

Figure 9: Results for experiment 1(b). The elevated cache write
latency led to a substantial increase in fallbacks to Colossus by
consumers, consequently impacting delivery delay.

tive consumers. Figure 8 shows the results. Notably, no fall-
back to Colossus was observed during stable state of con-
sumers. Peak read bandwidth from the data cache reached 70
Gbps, exceeding the anticipated 62 Gbps by approximately
13%. A similar trend was noted for QPS, although the de-
viation from expectations was more pronounced. The peak
QPS to the data cache was 4.5M, surpassing the expected 2M
by 2.25x. The elevated bandwidth can be attributed to two
factors. First, the last partially-filled chunk is read multiple
times until it reaches its full size. Second, the chunks that fail
relaxed reads are followed up with consistent reads. The latter
results in elevated QPS as well.

Monitors consistently reported a p99 message delivery de-
lay of approximately 500ms. This delay stemmed from several
factors: producer-side buffering and serial flushing of data and
index (120ms), network transit (180ms), and consumer-side
periodic polling followed by serial reading of index and data
(100ms). Our system added only around 25ms of processing
delay along each hop, which included source read I/O, net-
work transmission/receive queuing, and destination write I/O,
with the majority of the delay attributed to I/O.

In the following experiments, we capped the number of
consumers at 4,000 to ensure we stayed within the resource
constraints allocated for each cache replica.

Experiment 1(b) - Abrupt Consumer Spike Utilizing the
same cluster setup as in Experiment 1(a), we abruptly scaled
the number of consumers from 0 to 4,000 to observe the
system’s response. This simulates an atypical scenario, like
during incident mitigation, where the consumer size surges
unexpectedly, putting the system under stress.

Observations: The data cache experienced a sharp increase
in read QPS, reaching as high as 4.7M, due to numerous re-
quests for trailing bytes of files stored in non-expired chunks.
This surge in read QPS created back pressure on writes be-
cause both read and write operations shared the same OS net-
work buffers and bandwidth (lacking isolation at that level),
temporarily increasing write latency. Consequently, cache op-
erations encountered failures, forcing consumers to fallback
to Colossus to retrieve the necessary bytes. This resulted in
a noticeable delivery delay increase of approximately 1s for
about 150 seconds as shown in Figure 9. The system eventu-

0 2 4 6 8 10 12 14 16 18 20
0

400

800

1,200

1,600

2,000

2,400

Time (in mins)

p9
9

D
el

ay
(i

n
m

s)

Source
1st Hop
2nd Hop
3rd Hop

0

4

8

12

16

20

24

O
pe

ra
ti

on
T

hr
ot

tl
in

g
R

at
e1st Hop 2nd Hop

Figure 10: Results for experiment 1(c). The solid lines represent p99
delays and non-solid lines represent throttling caused by imbalance.
Delay in a hop impacted the delay in downstream hops.

ally recovered and resumed normal performance.

Experiment 1(c) - Multi-hop Abrupt Consumer Spike
We repeated experiment 1(b), but along all the hops of the
longest branch of the copy tree of one of the message stream.
We turned up 4,000 consumers in 4 clusters, including source.

Observations: The results are shown in Figure 10. We no-
ticed spikes in write latency in the affected clusters, similar
to experiment 1(b), which occasionally resulted in operation
failures. Although the scheduler rescheduled the operations
within 100ms, this rescheduling led to imbalances that caused
operation throttling. As a consequence, throttled cache opera-
tions triggered Colossus fallbacks. The impact was amplified
as a delay in a parent hop affected the entire subtree. The
p99 message delivery delay stayed mostly below 600ms, with
spikes up to 1.8 seconds coinciding with Colossus fallbacks.

Experiment 1(d) - Fault Tolerance Similar to experiment
1(b), we turned up 4,000 consumers within a single leaf clus-
ter. Additionally, we turned up two backup replicas for both
the data cache and the metadata cache. Subsequently, we
terminated the cache replicas, followed by the readers and
writers, to analyze the resulting impact.

Observations: Data caches demonstrated resilience to
single-point failures, maintaining quorum and experiencing
no read/write failures when one replica was terminated. How-
ever, unavailability and cache operation failures occurred
when two replicas of a key-shard were terminated. The backup
replica’s CPU utilization spiked as it replicated key-value
pairs from the remaining replica. This further elongated
the unavailability, causing significant Colossus fallbacks of
60,000 reads/seconds and a spike in latency up to 2 seconds
as shown in Figure 11. A similar pattern emerged for meta-
data cache when two replicas of a key-shard were terminated,
although recovery was faster due to the significantly smaller
number of key-value pairs.

In contrast, terminating readers and writers had a negligible
impact on latency (not shown), as operations were swiftly
rescheduled by the scheduler within 50ms. However, there
was a minor effect on load distribution among the remaining

9



0 5 10 15 20 25 30 35 40
0

400

800

1,200

1,600

2,000

2,400

2,800

Time (in mins)

p9
9

D
el

ay
(i

n
m

s)

Delivery Delay

0 5 10 15 20 25 30 35 40
0

400

800

1,200

1,600

2,000

2,400

2,800
Replica Termination

106

107

D
at

a
C

ac
he

R
ea

d
F

ai
lu

re
R

at
e

Err Unavailable
Err Not Found

Figure 11: Results for experiment 1(d). Scatter points represent the
specific times when a data cache replica for a particular key-shard
was terminated. A significant increase in failures was observed,
primarily attributed to key-shard unavailability during the repair
process.

replicas, which was gradually resolved through load shedding
and operation rescheduling.

4.2 Experiment 2

In this experiment, we enabled horizontal scaling for caches,
triggered by bandwidth and QPS pressure. We turned up 18
replicas for the data cache and 6 replicas for the metadata
cache in one of the leaf cluster. Scaling was configured to
trigger whenever a replica breached either 4 Gbps of band-
width or 400,000 QPS. We simulated a heavier workload by
enabling two message streams from clusters in the us-central
and euro-west regions. Together, these streams had an average
producer write rate of 480 Mbps. The data cache write QPS
in each cluster reached approximately 45,000. The message
streams were 120-way sharded, and each consumer was as-
signed 20 shards to read from. Thus, each consumer had a
read rate of 80 Mbps. The polling interval was set to 50ms
for readers and 500ms for consumers, as a shorter duration
led to metadata cache overload.

Experiment 2(a) - Smooth Scaling We began with an ini-
tial 1,000 consumers and ramped up to 20,000 consumers,
incrementally adding 50 replicas every 10 seconds.

Observations: The maximum read bandwidth observed
from the data cache reached 1.8 Tbps as shown in Figure 12.
Meanwhile, the metadata cache experienced a peak QPS of
19.2M (20,000 consumers x 2 message streams x 20 shards
x 2 files per shard x 2 keys per file x 2 polls per second x 3
replicas). In response to the workload, the data cache scaled
up from its initial 18 replicas to 481, surpassing the expected
460 replicas by 4%. This scale-up led to chunk migrations
due to re-sharding, causing transient unavailability of the data
cache. This, in turn, forced fallbacks to Colossus, resulting in
intermittent drops in data cache bandwidth. Despite this, the
p99 message delivery delays exported by monitors remained
under 2.5 seconds.

0 2 4 6 8 10 12 14 16 18 20
0

0.4

0.8

1.2

1.6

2

Num Consumers (× 103)

B
an

dw
id

th
(i

n
T

bp
s) Data Cache Bandwidth

0

20

40

60

80

100

Q
P

S
(i

n
M

il
li

on
s)

Data Cache QPS

0 2 4 6 8 10 12 14 16 18 20
0

500

1,000

1,500

2,000

2,500

3,000

Num Consumers (× 103)

D
el

ay
(i

n
m

s)

Delivery Delay (p99)
Write Latency (p999)

0

1

2

3

4

5

6

7

F
al

lb
ac

k
R

at
e
(×

10
5 )

Fallback

Figure 12: Results for experiment 2(a). Dips were observed in data
cache bandwidth and QPS, attributed to two factors. First, the spikes
in cache write latency. Second, the transient unavailability of the data
cache during scale-ups. These dips were accompanied by fallbacks
to Colossus.

The metadata cache also expanded, growing from 6 repli-
cas to 81, which was 68% higher than the anticipated 48
replicas. This steeper-than-expected increase in the metadata
cache was due to an uneven distribution of key-value pairs,
particularly during scale-up events. This imbalance poten-
tially overloaded certain replicas, triggering further scaling.
Increasing the replication factor from r=3 to, say, r=10 could
address the metadata cache overload issue, but it would come
at the cost of increased tail latency during writes. Unfortu-
nately, CliqueMap’s current limitations only allowed for a
replication factor of 3.

Another interesting observation is the fact that with 27x
more data cache replicas after scale-up, we also increased
the chunk storage capacity by 27x and so the TTL of chunks
could have been as large as 30 minutes. However, in practice,
consumers rarely experience such significant delays. We are
exploring strategies to vertically scale-down the caches as
they are horizontally-scaled.

Experiment 2(b) - Abrupt Scaling We scaled up the con-
sumers suddenly from 0 to 6,500. While such large-scale
increases in consumers are infrequent, they can occur in cer-
tain clusters during regional outages.

Observations: The peak data cache bandwidth surged to
645 Gbps, and the metadata cache QPS reached 6.24M. This
abrupt increase triggered aggressive scaling in both caches,
leading to a significant imbalance that necessitated further
scaling. The data cache expanded from 18 to 406 replicas,

10



0 1 2 3 4 5 6 7 8 9 10 11 12
0

1,000

2,000

3,000

4,000

5,000

Time (in mins)

D
el

ay
(i

n
m

s)

Delivery Delay (p99)
Write Latency (p999)

0

50

100

150

200

250

300

350

400

F
al

lb
ac

k
R

at
e
(×

10
3 )

Fallback

Figure 13: Results for experiment 2(b). The delivery delay was ad-
versely affected for a period of several minutes. A significant number
of Colossus fallbacks were observed during this time. Ultimately,
the system stabilized and achieved a consistent delivery delay.

while the metadata cache grew from 6 to 29 replicas. Dur-
ing this period, prolonged cache read and write failures were
observed, causing a substantial number of fallbacks to Colos-
sus, peaking at 300,000 reads/second. Consequently, the p99
latency exported by monitors spiked beyond 3 seconds as
shown in Figure 13. The system eventually recovered after 7
minutes, with delays subsiding to under 1.5 seconds. Once
stabilized, the data and metadata caches scaled back down to
171 and 19 replicas respectively, to save resources.

Experiment 2(c) - Backlog Recovery Building on sce-
nario 2(b), we initiated the test with 6,500 consumers, each
passively capped at a read rate of 160 Mbps. We then stopped
the producer for one of the message stream and started it after
a 15-minutes delay. This action resulted in a substantial accu-
mulation of messages awaiting extraction and delivery. Such
scenarios can occur when a backlog of messages accumulates
due to producer downtime.

Observations: After the producer restart, the peak band-
width surged to over 1.6 Tbps as shown in Figure 14. This
peak was temporary, lasting for only 2 minutes before settling
down to 600 Gbps. Due to the transient nature of the spike,
the data cache experienced only a minor scale-up from 171 to
184 replicas. The imposed limit on the read rate effectively
managed the fan out. However, a significant delivery delay
was observed, which eventually resolved once a steady state
was reached.

5 Experiences

Development From early design to deployment, the system
required an investment of 8 SWE-years. The development
process added 17,500 lines of new, non-test C++ code.

The system underwent extensive testing before production
deployment. We run regression tests in the pre-production
environment before releasing to production. In production,
we monitor the metrics outlined in the evaluation and offer

0 1 2 3 4 5 6 7 8 9 10
0

2,000

4,000

6,000

8,000

10,000

Time (in mins)

p9
9

D
el

ay
(i

n
m

s) Delivery Delay

0

0.4

0.8

1.2

1.6

2

B
an

dw
id

th
(i

n
T

bp
s)

Bandwidth

Figure 14: Results for experiment 2(c). A sudden surge in read
bandwidth was observed, which lead to high delivery delay.

SLOs on latency and cache byte availability.
We have correctness monitors that ensure the bytes read

by consumers exactly match the bytes written by producers.
While incorrect bytes in compressed message streams would
lead to decompression failures, some message streams are
uncompressed where it would be particularly concerning if
consumers successfully parse malformed messages.

Rollout Strategy Our system spans dozens of clusters, con-
sisting of numerous jobs (with 3 to 400 replicas each) across
scheduler, worker, and storage layers. This complexity neces-
sitates a meticulous rollout strategy. During cache rollouts,
we adopt a cautious approach, updating only one replica of
a given key-shard at a time. After an update, the replicas are
given time to repair their state by retrieving key-value pairs
from other replicas.

Worker rollouts cause delay spikes due to throttling and
reschedules. Fast rollouts (updating half the replicas at a
time) can reduce reschedules but may cause hot-spotting.
Conversely, slow rollouts (updating one replica at a time) in-
creases reschedules. We have found that updating one-third
of the replicas at once strikes a good balance between hot-
spotting and reschedules.

Finally, we never rollout the scheduler and worker jobs
together, ensuring scheduler availability during worker roll-
outs. The rollout strategy discussed so far is slow, sometimes
taking several hours. We are continually refining our rollout
strategy to strike a better balance between deployment speed
and system stability.

Integration with Google Ads The Ads infrastructure relies
on an Extract, Transform, and Load [51] pipeline. Extraction
and transformation are intra-cluster operations primarily con-
sisting of MapReduce [18, 55] jobs. They extract data from
various sources such as transactional databases (e.g., Ads
F1 [25, 46]), data warehouses (e.g., Napa [3] and Mesa [26]),
and real-time log processors (e.g., Ubiq [48] and Photon [7]),
and produce data that is loaded into the serving systems. The
extraction and transformation jobs are replicated across a
few selected clusters. For instance, each replica of real-time
extractors resides in a cluster on a different continent.

The serving systems, on the other hand, are geographically
distributed across dozens of clusters. Each job in the Ads

11



0 2 4 6 8 10 12 14 16 18 20
0

2,000

4,000

6,000

8,000

Time (in mins)

D
el

ay
(i

n
m

s)

Delivery Delay (p99)

0

2

4

6

C
hu

nk
se

rv
er

E
rr

or
s

%

Err Unavailable

Figure 15: Case of data cache unavailability. Colossus chunkservers
throttled read requests resulting in unavailability.

serving system has an in-memory state represented as key-
value pairs that is used to serve requests efficiently.

An additional 7,600 lines of non-test C++ code was added
for integration with the Ads infrastructure. Each shard of a
Google Ads message stream contains two types of entities:
snapshots, which are compact summaries of a message stream
shard up to a logical time [36], and updates, which are contin-
uous, ordered sequences of messages on top of the snapshots.
The snapshots are used to build an initial server state and the
updates are applied on top of it. Each message updates the
value for a particular key. Snapshots are atomically copied
across clusters by a batch system, while updates are handled
by our system. Update files older than the recent snapshots
are garbage-collected.

We migrated several Ads message streams to the new stack.
The message delivery delay exported by monitors, measured
over a day, shows p95, p99, p999, and p9999 latency of 500ms,
630ms, 730ms, and 5.71s respectively. These latency vary de-
pending on the byte rate of the message stream. The largest
message stream experienced a p9999 latency of 8.59s over a
day. Even within a single message stream, some shards occa-
sionally experience higher delays. The opportunistic reads in
Colossus read operations have 96% hit rate, saving disk time
on the read path.

We have also noticed latency spikes in certain message
streams, some lasting several hours. A few of them were
caused by bugs, often introduced due to code complexity.
Deadlocks have been particularly challenging to debug be-
cause of their latent nature and inability of our cluster-local
monitors to distinguish between producer-stopped streams
and streams stopped due to worker deadlocks. Occasionally,
our jobs were scheduled on bad machines, significantly im-
pacting tail latency [17] without clear symptoms. In such
situations, we resort to rescheduling such jobs based on sys-
tem metrics. Other delays stemmed from infrequent inter-
continental network issues caused by link outages. Although
the routing process has automations to address this, the pas-
sive nature of the actions still results in delays.

Ablation Study In one scenario, the data cache was unavail-
able, whereas the metadata cache was available. We recorded
a substantial QPS to Colossus chunkservers for several hours.
Chunkservers throttle based on CPU, memory, and network

time usage, in addition to disk time usage. Consumers ex-
perienced throttling resulting in unavailability for 3-5% of
read requests, thereby resulting in a higher delivery delay
(Figure 15). The slight delay intentionally introduced before
reads from Colossus (Algorithm 1) proved effective in man-
aging the QPS thereby resulting in a negligible CPU-related
unavailability. The vast majority of unavailability (over 99%)
stemmed from network congestion.

On another occasion, a faulty configuration push rendered
both the data and metadata caches unavailable. We observed
latency in the order of minutes, as the Colossus file length
was polled directly from Bigtable at a much lower frequency.

Comparison with Predecessor The system before Fast
ACS lacked the capability to handle large consumer fanout.
With limited fanout, Fast ACS demonstrates greater tail la-
tency stability due to the use of RMA. Furthermore, the adop-
tion of RMA has led to a significant reduction in server-side
CPU usage, resulting in cost savings exceeding one-third of
the previous total cost.

6 Key Takeaways

This work yielded several valuable insights for designing
scalable, low-latency messaging systems:

1. NIC capacity will be the bottleneck of future network-
intensive computing: Given the limited near-term prospects
for widespread terabit NIC deployment, achieving ordered
data delivery at scale requires designs that efficiently utilize
existing NIC capabilities. Our system addresses this by hori-
zontally scaling resources to maximize cluster’s NIC capacity
utilization.

2. Ordered byte delivery does not need in-order transmis-
sion across the network: Instead, parallel out-of-order fetch-
ing of data chunks, followed by client-side reassembly, can
effectively overcome server-side throughput constraints for
low-latency delivery. This concept is already employed in
web clients that perform parallel download of file chunks
from multiple servers. Our system leverages this principle
by chunking message files, pulling these chunks out-of-order,
and then assembling and delivering them to consumers in the
correct sequence. Through consistent chunk distribution, we
also avoid hot-spotting in all scenarios.

3. RMA offers a powerful paradigm for building highly effi-
cient software by minimizing server-side processing overhead:
Our implementation strategically utilizes RMA on the client
side, reserving server-side computation for fallback scenarios,
thus providing significant resource savings.

7 Related Works

Distributed storage systems are evolving to leverage mod-
ern hardware capabilities. For example, NVM- and RDMA-
aware HDFS [29] provides remote SSD reads for file bytes.

12



Octopus [57] enhances this further with low-latency file meta-
data access. Colossus also supports similar functionality with
SSDs and CliqueMap, too, can use SSDs as the underlying
storage. However, SSDs are not ideal for our needs for several
reasons. First, their lifespan would be limited due to wear-
leveling caused by continuous writes. Second, they offer lower
read throughput and higher latency compared to RAM. Third,
our hot storage requirements are minimal, not justifying the
capacity of SSDs.

Tachyon [37] is an RMA-based in-memory file system
available for big data processing. However, it is not optimized
for tail reading due to its large block sizes, which can lead to
hot-spots on the tail block servers. Reducing the block size
can help, but it may lead to latency hits on read path since
block metadata access still relies on RPCs. Our approach
of distributing 4 KB chunks as key-value pairs significantly
reduces hot-spotting during tail reads.

Memcache [40] is a popular productionized distributed in-
memory key-value store. It provides low-latency storage and
lookup and integrates well with external sharding engines
like Slicer [2] to offer scalability. However, we decided to
use CliqueMap due to two reasons. First, CliqueMap sup-
ports replication out-of-the-box, which makes it resilient to a
single point of failure and makes our rollout process simple,
unlike Memcache, which requires certain wrappers to sup-
port replication. Second, CliqueMap makes use of RMA on
the read path, achieving significantly higher throughput and
saving valuable server-side CPU while maintaining a com-
parable median latency. Other RMA key-value systems like
FaRM-KV [20] could provide serialized consistent lookups
using primary/backup architecture; however, serialization-
based consistency was not required in our design, and so we
opted for a simpler quorum-based system. Pilaf [39] is one
such RMA KV-store with quorum-based support and resem-
bles performance similar to CliqueMap. However, CliqueMap
is already productionized at Google and serves as a backend
for critical infrastructures in Ads, Maps, and YouTube.

Lastly, while there is extensive research on userspace file
systems like FUSE [50] and its extension, extFUSE [8], which
provide a VFS-like interface for creating custom file systems,
we chose not to use them. First, our needs were limited to
dealing with files, not directories. This allowed us to utilize
hash-based addressing instead of a hierarchical file system and
a key-value store was a natural fit. Second, our caching file
system was essentially a reflection of the underlying Colossus
file system supporting append-only files. Implementing a full
file system was unnecessary.

8 Future Work

To ensure fair and efficient caching for a growing number of
message streams, we are exploring key-space isolation to pre-
vent resource contention. Currently, the shared data cache can
be overused by individual streams, impacting others. By pro-

viding dedicated cache space, each stream can independently
manage its usage and chunk expiration, improving overall
system stability and fairness.

Each Google cluster has a capacity limit ranging from hun-
dreds to tens of thousands of machines. During experiment
2, we observed that multiple consumers were running on the
same machines, sometimes up to 10. One effective technique
to limit intra-cluster bandwidth would be to implement a side-
car ambassador process [9] that retrieves messages onto local
machines and relays them to consumers. This approach would
allow us to scale up to millions of consumers per cluster while
enforcing a limit on anticipated data cache bandwidth and
metadata cache QPS.

In experiment 2, we observed that the primary factor driving
up the latency was the increased consumer polling interval.
Reducing the polling interval can help bring down latency but
can cause QPS limits breach on the metadata cache. There
can be many strategies to mitigate the QPS problem. First, the
bandwidth utilization per metadata cache replica is low and
so the network is essentially non-constraining; the QPS limits
can be raised by increasing the number of software RMA
endpoints. Second, because the write QPS is much lower than
read QPS, we can combine metadata for multiple files into
a single key-value pair. This combination can be automated
based on the consumer read pattern.

Finally, we are investigating the potential of RMA and other
network enhancements to improve performance in broader
scenarios, such as cross-cluster RMA-based reads. However,
current network deployment limitations prevent us from sup-
porting this functionality in all cases.

9 Conclusion

This paper presents the design of Fast ACS, a file-based or-
dered message delivery system. At its core is a multi-layer
storage that has been demonstrated to be a valuable compo-
nent, helping the system achieve Tbps-scale consumer fan-out
per cluster and deliver messages with minimal latency. This
system has been widely deployed in production.

Acknowledgments

We gratefully acknowledge contributions to the design and im-
plementation of the system from many colleagues at Google.
Special mention for Aman Shaikh, Apar Madan, Ayush Jha,
Ben T. Harper, Bin Lyu, Chen-Han Ho, Connor Quagliana,
Erin Rovelstad, Florentina I. Popovici, Hongchen Li, Lily
Chen, Manav Prajapati, Mengjie Xia, Nick Golob, Paul D.
Bartlett, Serafi Zanikolas, Sucharitha Vasudevan, Tao Huang,
and Youer Pu. We also thank Jeff Mogul, Tao Huang, and
Ashish Gupta for their helpful suggestions on the presentation
of the work. Finally, we thank the anonymous reviewers and
our shepherd, Fernando Pedone, for their feedback.

13



References

[1] Colin Adams, Luis Alonso, Benjamin Atkin, John
Banning, Sumeer Bhola, Rick Buskens, Ming Chen,
Xi Chen, Yoo Chung, Qin Jia, et al. Monarch: Google’s
planet-scale in-memory time series database. Proceed-
ings of the VLDB Endowment, 13(12):3181–3194, 2020.

[2] Atul Adya, Daniel Myers, Jon Howell, Jeremy El-
son, Colin Meek, Vishesh Khemani, Stefan Fulger,
Pan Gu, Lakshminath Bhuvanagiri, Jason Hunter, et al.
Slicer:{Auto-Sharding} for datacenter applications. In
12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), pages 739–753, 2016.

[3] Ankur Agiwal, Kevin Lai, Gokul Nath Babu Manoha-
ran, Indrajit Roy, Jagan Sankaranarayanan, Hao Zhang,
Tao Zou, Min Chen, Jim Chen, Ming Dai, Thanh Do,
Haoyu Gao, Haoyan Geng, Raman Grover, Bo Huang,
Yanlai Huang, Adam Li, Jianyi Liang, Tao Lin, Li Liu,
Yao Liu, Xi Mao, Maya Meng, Prashant Mishra, Jay
Patel, Rajesh S R, Vijayshankar Raman, Sourashis
Roy, Mayank Singh Shishodia, Tianhang Sun, Justin
Tang, Junichi Tatemura, Sagar Trehan, Ramkumar
Vadali, Prasanna Venkatasubramanian, Joey Zhang, Ke-
fei Zhang, Yupu Zhang, Zeleng Zhuang, Goetz Graefe,
Divyakanth Agrawal, Jeff Naughton, Sujata Sunil Kos-
alge, and Hakan Hacıgümüş. Napa: Powering scal-
able data warehousing with robust query performance at
google. Proceedings of the VLDB Endowment (PVLDB),
14 (12):2986–2998, 2021.

[4] Aditya Akella, Amanda Strominger, Amin Vahdat, Ar-
jun Singhvi, Dan Gibson, Harshad Deshmukh, Mag-
gie Anderson, Milo M. K. Martin, Rob Cauble, and
Thomas F. Wenisch. Cliquemap: Productionizing an
rma-based distributed caching system. 2021.

[5] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava
Chernyak, Josh Haberman, Reuven Lax, Sam McVeety,
Daniel Mills, Paul Nordstrom, and Sam Whittle. Mill-
wheel: Fault-tolerant stream processing at internet scale.
Proceedings of the VLDB Endowment, 6(11):1033–
1044, 2013.

[6] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava
Chernyak, Rafael J Fernández-Moctezuma, Reuven
Lax, Sam McVeety, Daniel Mills, Frances Perry, Eric
Schmidt, et al. The dataflow model: a practical approach
to balancing correctness, latency, and cost in massive-
scale, unbounded, out-of-order data processing. Pro-
ceedings of the VLDB Endowment, 8(12):1792–1803,
2015.

[7] Rajagopal Ananthanarayanan, Venkatesh Basker, Sumit
Das, Ashish Gupta, Haifeng Jiang, Tianhao Qiu, Alexey

Reznichenko, Deomid Ryabkov, Manpreet Singh, and
Shivakumar Venkataraman. Photon: Fault-tolerant and
scalable joining of continuous data streams. In SIGMOD

’13: Proceedings of the 2013 international conference
on Management of data, pages 577–588, New York, NY,
USA, 2013.

[8] Ashish Bijlani and Umakishore Ramachandran. Exten-
sion framework for file systems in user space. In 2019
USENIX Annual Technical Conference (USENIX ATC
19), pages 121–134, 2019.

[9] Brendan Burns and David Oppenheimer. Design pat-
terns for container-based distributed systems. In 8th
USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 16), 2016.

[10] Mike Burrows. The chubby lock service for loosely-
coupled distributed systems. In Proceedings of the 7th
symposium on Operating systems design and implemen-
tation, pages 335–350, 2006.

[11] Paris Carbone, Asterios Katsifodimos, Stephan Ewen,
Volker Markl, Seif Haridi, and Kostas Tzoumas. Apache
flink: Stream and batch processing in a single engine.
The Bulletin of the Technical Committee on Data Engi-
neering, 38(4), 2015.

[12] Antonio Carzaniga, David S Rosenblum, and Alexan-
der L Wolf. Achieving scalability and expressiveness in
an internet-scale event notification service. In Proceed-
ings of the nineteenth annual ACM symposium on Prin-
ciples of distributed computing, pages 219–227, 2000.

[13] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C
Hsieh, Deborah A Wallach, Mike Burrows, Tushar Chan-
dra, Andrew Fikes, and Robert E Gruber. Bigtable: A
distributed storage system for structured data. ACM
Transactions on Computer Systems (TOCS), 26(2):1–26,
2008.

[14] Binildas Christudas and Binildas Christudas. Activemq.
Practical Microservices Architectural Patterns: Event-
Based Java Microservices with Spring Boot and Spring
Cloud, pages 861–867, 2019.

[15] Google Cloud. https://cloud.google.com/. Ac-
cessed: 2024-10-03.

[16] James C Corbett, Jeffrey Dean, Michael Epstein, An-
drew Fikes, Christopher Frost, Jeffrey John Furman,
Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, et al. Spanner: Google’s globally
distributed database. ACM Transactions on Computer
Systems (TOCS), 31(3):1–22, 2013.

[17] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Communications of the ACM, 56:74–80, 2013.

14

https://cloud.google.com/


[18] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simpli-
fied data processing on large clusters. Communications
of the ACM, 51(1):107–113, 2008.

[19] David Dossot. RabbitMQ essentials. Packt Publishing
Ltd, 2014.

[20] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. {FaRM}: Fast remote mem-
ory. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), pages 401–414,
2014.

[21] The Apache Software Foundation. Apache book-
keeper. https://bookkeeper.apache.org/. Ac-
cessed: 2024-10-03.

[22] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Le-
ung. The google file system. In Proceedings of the
19th ACM Symposium on Operating Systems Principles,
pages 20–43, Bolton Landing, NY, 2003.

[23] Ramesh Govindan, Ina Minei, Mahesh Kallahalla,
Bikash Koley, and Amin Vahdat. Evolve or die: High-
availability design principles drawn from googles net-
work infrastructure. In Proceedings of the 2016 ACM
SIGCOMM Conference, pages 58–72, 2016.

[24] gRPC Authors. Core concepts, architecture, and lifecy-
cle | grpc. https://grpc.io/docs/what-is-grpc/
core-concepts/#bidirectional-streaming-rpc.
Accessed: 2024-10-03.

[25] Ashish Gupta and Jeff Shute. High-availability at mas-
sive scale: Building google’s data infrastructure for ads.
In Workshop on Business Intelligence for the Real Time
Enterprise (BIRTE), 2015.

[26] Ashish Gupta, Fan Yang, Jason Govig, Adam Kirsch,
Kelvin Chan, Kevin Lai, Shuo Wu, Sandeep Dhoot,
Abhilash Kumar, Ankur Agiwal, Sanjay Bhansali,
Mingsheng Hong, Jamie Cameron, Masood Siddiqi,
David Jones, Jeff Shute, Andrey Gubarev, Shivakumar
Venkataraman, and Divyakant Agrawal. Mesa: Geo-
replicated, near real-time, scalable data warehousing. In
VLDB, 2014.

[27] Dean Hildebrand and Denis Serenyi. Colos-
sus under the hood: a peek into google’s scal-
able storage system. https://cloud.google.
com/blog/products/storage-data-transfer/
a-peek-behind-Colossus-googles-file-system,
2021. Accessed: 2024-08-02.

[28] Patrick Hunt, Mahadev Konar, Flavio P Junqueira, and
Benjamin Reed. {ZooKeeper}: Wait-free coordination
for internet-scale systems. In 2010 USENIX Annual
Technical Conference (USENIX ATC 10), 2010.

[29] Nusrat Sharmin Islam, Md Wasi-ur Rahman, Xiaoyi Lu,
and Dhabaleswar K Panda. High performance design
for hdfs with byte-addressability of nvm and rdma. In
Proceedings of the 2016 International Conference on
Supercomputing, pages 1–14, 2016.

[30] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon
Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,
Jim Wanderer, Junlan Zhou, Min Zhu, et al. B4: Expe-
rience with a globally-deployed software defined wan.
ACM SIGCOMM Computer Communication Review,
43(4):3–14, 2013.

[31] David Karger, Eric Lehman, Tom Leighton, Rina Pani-
grahy, Matthew Levine, and Daniel Lewin. Consistent
hashing and random trees: Distributed caching protocols
for relieving hot spots on the world wide web. In Pro-
ceedings of the twenty-ninth annual ACM symposium
on Theory of computing, pages 654–663, 1997.

[32] David Kjerrumgaard. Apache Pulsar in action. Simon
and Schuster, 2021.

[33] Jay Kreps, Neha Narkhede, Jun Rao, et al. Kafka: A
distributed messaging system for log processing. In Pro-
ceedings of the NetDB, volume 11, pages 1–7. Athens,
Greece, 2011.

[34] SPT Krishnan, Jose L Ugia Gonzalez, SPT Krishnan,
and Jose L Ugia Gonzalez. Google cloud pub/sub. Build-
ing Your Next Big Thing with Google Cloud Platform: A
Guide for Developers and Enterprise Architects, pages
277–292, 2015.

[35] Leslie Lamport. Specifying Systems: The TLA+ Lan-
guage and Tools for Hardware and Software Engineers.
Addison-Wesley, June 2002.

[36] Leslie Lamport. Time, clocks, and the ordering of events
in a distributed system. In Concurrency: the Works of
Leslie Lamport, pages 179–196. 2019.

[37] Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker,
and Ion Stoica. Tachyon: Reliable, memory speed stor-
age for cluster computing frameworks. In Proceedings
of the ACM Symposium on Cloud Computing, pages
1–15, 2014.

[38] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-
pher Alfeld, Sean Bauer, Carlo Contavalli, Mike Dalton,
Nandita Dukkipati, William C. Evans, Steve Gribble,
Nicholas Kidd, Roman Kononov, Gautam Kumar, Carl
Mauer, Emily Musick, Lena Olson, Mike Ryan, Erik
Rubow, Kevin Springborn, Paul Turner, Valas Valancius,
Xi Wang, and Amin Vahdat. Snap: a microkernel ap-
proach to host networking. In In ACM SIGOPS 27th
Symposium on Operating Systems Principles, New York,
NY, USA, 2019.

15

https://bookkeeper.apache.org/
https://grpc.io/docs/what-is-grpc/core-concepts/#bidirectional-streaming-rpc
https://grpc.io/docs/what-is-grpc/core-concepts/#bidirectional-streaming-rpc
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-Colossus-googles-file-system
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-Colossus-googles-file-system
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-Colossus-googles-file-system


[39] Christopher Mitchell, Yifeng Geng, and Jinyang Li. Us-
ing {One-Sided}{RDMA} reads to build a fast,{CPU-
Efficient}{Key-Value} store. In 2013 USENIX Annual
Technical Conference (USENIX ATC 13), pages 103–
114, 2013.

[40] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, et al. Scaling
memcache at facebook. In 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
13), pages 385–398, 2013.

[41] Robert Clay Prim. Shortest connection networks and
some generalizations. The Bell System Technical Jour-
nal, 36(6):1389–1401, 1957.

[42] Antony Rowstron, Anne-Marie Kermarrec, Miguel Cas-
tro, and Peter Druschel. Scribe: The design of a large-
scale event notification infrastructure. In Networked
Group Communication: Third International COST264
Workshop, NGC 2001 London, UK, November 7–9, 2001
Proceedings 3, pages 30–43. Springer, 2001.

[43] Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski,
Przemyslaw Zych, Przemyslaw Broniek, Jarek Kus-
mierek, Pawel Nowak, Beata Strack, Piotr Witusowski,
Steven Hand, et al. Autopilot: workload autoscaling
at google. In Proceedings of the Fifteenth European
Conference on Computer Systems, pages 1–16, 2020.

[44] Yogeshwer Sharma, Philippe Ajoux, Petchean Ang,
David Callies, Abhishek Choudhary, Laurent Demailly,
Thomas Fersch, Liat Atsmon Guz, Andrzej Kotulski,
Sachin Kulkarni, et al. Wormhole: Reliable {Pub-Sub}
to support geo-replicated internet services. In 12th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 15), pages 351–366, 2015.

[45] Michael Shields. Leap-smeared representation of time
for high-accuracy applications. 2016.

[46] Jeff Shute, Radek Vingralek, Bart Samwel, Ben Handy,
Chad Whipkey, Eric Rollins, Mircea Oancea, Kyle
Littlefield, David Menestrina, Stephan Ellner, John
Cieslewicz, Ian Rae, Traian Stancescu, and Himani Apte.
F1: A distributed sql database that scales. In VLDB,
2013.

[47] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,
and Robert Chansler. The hadoop distributed file system.
In 2010 IEEE 26th symposium on mass storage systems
and technologies (MSST), pages 1–10. Ieee, 2010.

[48] Alexander Smolyanov, Ashish Gupta, Divy Agrawal,
Haifeng Jiang, Manish Bhatia, Manpreet Singh, Mon-
ica Chawathe Lenart, Namit Sikka, Navin Melville,

Scott Holzer, Shan He, Shivakumar Venkataraman, Tian-
hao Qiu, Venkatesh Basker, Vinny Ganeshan, and Yuri
Vasilevski. Ubiq: A scalable and fault-tolerant log pro-
cessing infrastructure. In Workshop on Business Intelli-
gence for the Real Time Enterprise (BIRTE), 2016.

[49] Robert Strom, Guruduth Banavar, Tushar Chandra, Marc
Kaplan, Kevan Miller, Bodhi Mukherjee, Daniel Stur-
man, and Michael Ward. Gryphon: An information flow
based approach to message brokering. arXiv preprint
cs/9810019, 1998.

[50] Bharath Kumar Reddy Vangoor, Vasily Tarasov, and
Erez Zadok. To {FUSE} or not to {FUSE}: Perfor-
mance of {User-Space} file systems. In 15th USENIX
Conference on File and Storage Technologies (FAST 17),
pages 59–72, 2017.

[51] Panos Vassiliadis and Alkis Simitsis. Extraction, trans-
formation, and loading. Encyclopedia of Database Sys-
tems, 10:14, 2009.

[52] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale cluster management at google with borg. In Pro-
ceedings of the tenth european conference on computer
systems, pages 1–17, 2015.

[53] Tzu-Wei Yang, Seth Pollen, Mustafa Uysal, Arif Mer-
chant, and Homer Wolfmeister. {CacheSack}: Admis-
sion optimization for google datacenter flash caches. In
2022 USENIX Annual Technical Conference (USENIX
ATC 22), pages 1021–1036, 2022.

[54] Yuan Yu, Panagiotis Manolios, and Leslie Lamport.
Model checking tla+ specifications. In Advanced re-
search working conference on correct hardware design
and verification methods, pages 54–66. Springer, 1999.

[55] Matei Zaharia, Mosharaf Chowdhury, Michael J
Franklin, Scott Shenker, and Ion Stoica. Spark: Cluster
computing with working sets. In 2nd USENIX workshop
on hot topics in cloud computing (HotCloud 10), 2010.

[56] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy
Hunter, Scott Shenker, and Ion Stoica. Discretized
streams: Fault-tolerant streaming computation at scale.
In Proceedings of the twenty-fourth ACM symposium on
operating systems principles, pages 423–438, 2013.

[57] Bohong Zhu, Youmin Chen, Qing Wang, Youyou Lu,
and Jiwu Shu. Octopus+: An rdma-enabled distributed
persistent memory file system. ACM Transactions on
Storage (TOS), 17(3):1–25, 2021.

16



A Formal Specification for Dueling Writers

We developed a formal specification for the system, which
consists of multiple writers for the cache file and a single
writer for the corresponding Colossus file. The system was
modeled using TLA+ [35]. The goal was to check for correct-
ness of the system, manifested in the following way:

• Safety: Consumers receive bytes strictly in the order
they were produced. This is formally expressed by the
following invariant:

Invariant ==

∧ readBytes= [i∈ 1..Len(readBytes) 7→ kBytes[i]]

where readBytes are the bytes read by the consumer and
kBytes are the bytes written by the producer in source.

• Eventual Progress: The consumers eventually receives
all the bytes. Formally, the following property is satis-
fied:

Termination ==

♦ ((pc = “done”) =⇒ (readBytes = kBytes))

where pc = "done" is the termination marker.

The system’s safety is intuitively clear: data cache chunks
always contain the correct bytes, if present, corresponding
to the file positions, and each chunk write is atomic. The
corresponding Colossus file serves as a safety net for partially-
filled or missing chunks.

Eventual progress is ensured because the Colossus file
continually grows in length, eventually forcing consumers to
fall back and fetch bytes directly from Colossus.

We used the TLA+ Model Checker [54] to verify the speci-
fication under two configurations:

• Configuration 1: 4 chunks, each with 4 bytes, and 2 cache
writers. This resulted in 85,690,897 distinct states.

• Configuration 2: 2 chunks, each with 2 bytes, and 4 cache
writers. This resulted in 12,062,699 distinct states.

In both runs, the model checker successfully verified the
system’s safety and eventual progress.

17


	Introduction
	Design Overview
	File-Based Ordered Message Delivery
	Multi-Layer Storage
	Routing
	Components

	Implementation Details
	Evaluation
	Experiment 1
	Experiment 2

	Experiences
	Key Takeaways
	Related Works
	Future Work
	Conclusion
	Formal Specification for Dueling Writers

