
ICCV
#*****

ICCV
#*****

ICCV 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Global-to-Local or Local-to-Global? Enhancing Image Retrieval with Efficient
Local Search and Effective Global Re-ranking

Anonymous ICCV submission

Paper ID *****

Abstract

The dominant paradigm in image retrieval systems to-001
day is to search large databases using global image fea-002
tures, and re-rank those initial results with local image fea-003
ture matching techniques. This design, dubbed global-to-004
local, stems from the computational cost of local matching005
approaches, which can only be afforded for a small number006
of retrieved images. However, emerging efficient local fea-007
ture search approaches have opened up new possibilities, in008
particular enabling detailed retrieval at large scale, to find009
partial matches which are often missed by global feature010
search. In parallel, global feature-based re-ranking has011
shown promising results with high computational efficiency.012
In this work, we leverage these building blocks to introduce013
a local-to-global retrieval paradigm, where efficient local014
feature search meets effective global feature re-ranking.015
Critically, we propose a re-ranking method where global016
features are computed on-the-fly, based on the local feature017
retrieval similarities. Such re-ranking-only global features018
leverage multidimensional scaling techniques to create em-019
beddings which respect the local similarities obtained dur-020
ing search, enabling a significant re-ranking boost. Exper-021
imentally, we demonstrate unprecedented retrieval perfor-022
mance on the Revisited Oxford and Paris datasets, setting023
new state-of-the-art results.024

1. Introduction025

Searching vast image databases efficiently with a query pic-026
ture enables a number of multimodal applications, e.g. vi-027
sual shopping [14, 21, 30], fine-grained entity identifica-028
tion [12, 39, 40], knowledge-based visual question answer-029
ing [5, 10, 16], among others. Today, such image retrieval030
systems are generally designed leveraging a global-to-local031
paradigm [4, 13, 31, 32], where global image features are032
used in a first search stage and local image features are used033
to re-rank the initial list of retrieved candidates via detailed034
matching. This approach benefits from the discriminative035
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Figure 1. In contrast to conventional Global-to-Local (G2L) image
retrieval systems (left), where global features are used for the ini-
tial search followed by re-ranking with local features, we introduce
a new Local-to-Global (L2G) paradigm (right). In L2G, efficient
retrieval with local features meets effective re-ranking with global
features. Critically, we propose a novel global feature re-ranking
stage leveraging multidimensional scaling (MDS) to create query-
specific re-ranking embeddings, which are sensitive to localized
similarities. Experimentally, our system improves upon the state
of the art significantly.

power and compactness of global representations for large- 036
scale similarity computation, combined with the localized 037
similarity verification capabilities of local representations. 038

Despite the success of this framework, a significant con- 039
cern is the lack of localized search capabilities at large 040
scale, which lead to recall losses at the global feature search 041
stage. For example, when the query image only has partial 042
matches with relevant database images, the system is usu- 043
ally unable to return pertinent results due to the limitations 044
of global feature similarity estimation. Besides, while the 045
local feature-based re-ranking stage helps refining the initial 046
matches, it generally does not leverage information across 047
the shortlisted database images to enhance the refinement 048
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process, which ends up limiting the final performance.049
In this work, we address these challenges by proposing050

a local-to-global (L2G) retrieval system, illustrated in Fig.051
1. For the initial search stage, we build on top of recent052
advances in scalable local feature retrieval [1], which en-053
ables localized search at large scale, enhancing the initial054
set of retrieved candidates. We then develop a novel global055
feature re-ranking process, which allows information shar-056
ing between the shortlisted images, based on detailed local057
similarities. More precisely, we propose to leverage multi-058
dimensional scaling (MDS) [26] to create a global feature059
for re-ranking purposes, on-the-fly, and to feed it into an060
effective re-ranking process [27]. MDS enables us to com-061
pute global features which respect the detailed local feature062
similarities. In summary, the key advantage of our pro-063
posed system is that it can efficiently retrieve and re-rank064
based on localized and detailed similarities – in particular,065
the re-ranking process can refine relevance scores with a066
customized embedding that approximates rich local similar-067
ities between a given query and its most relevant database068
images.069
Contributions. In summary, this paper makes three main070
contributions:071

(1) We propose a new local-to-global (L2G) image re-072
trieval paradigm, which flips the conventional script, lever-073
aging local feature search and global feature re-ranking.074
Our system enables image retrieval based on localized and075
precise similarities, which is generally difficult to achieve076
with previous methods.077

(2) A critical component to make the L2G paradigm078
work effectively is a new re-ranking method, which cre-079
ates global features on-the-fly at query time, respecting lo-080
cal similarities. Leveraging multidimensional scaling, this081
process creates re-ranking embeddings specific to a given082
query, allowing us to jointly process the shortlisted images083
and reorder them effectively.084

(3) We showcase strong performance on the conventional085
Revisited Oxford and Paris datasets [24], with 2− 3% gain086
with respect to previous work, setting a new state of the art.087

2. Related Work088

Image retrieval and re-ranking systems have a long his-089
tory in computer vision, even before deep learning tech-090
niques dominated the field. Initial promising results in this091
area were dominated by local-to-local methods, where local092
feature search was used to find candidates and re-ranking093
employed geometric verification [15, 18, 22]. While these094
traditionally leveraged hand-crafted local features [3, 15],095
they were later revisited in the deep learning era with096
deep image features [1, 19]. Little by little, direct lo-097
cal search techniques gave way to methods which aggre-098
gated hand-crafted local features into a global feature for099
search [11, 29, 34], instantiating the first global-to-local100

systems. These had the advantages of much simpler and 101
lighter search mechanisms, also delivering improved re- 102
call. Such aggregation techniques were also shown effec- 103
tive with deep learned features [33, 35, 37]. Most of the 104
deep learning work for image retrieval, though, has been fo- 105
cused on enhancing global features [2, 9, 17, 25, 38], which 106
generally surpassed the performance of local aggregation 107
techniques. This also led to a deep learned version of the 108
global-to-local paradigm, with both global and local fea- 109
tures being extracted in the same model [4, 13], possibly 110
with additional learnable modules for local similarity esti- 111
mation [31, 32]. More recently, researchers demonstrated 112
that global features can also be used effectively for the re- 113
ranking stage [27], which introduced a global-to-global sys- 114
tem. Our work goes beyond these existing directions to in- 115
troduce the local-to-global paradigm, which presents sig- 116
nificant advantages compared to previous ones. We build 117
on top of recently-proposed techniques for efficient local 118
feature search and global feature re-ranking, which enables 119
localized search at large scale and effective re-ranking that 120
merges information across the query and shortlisted images. 121
Global feature-based re-ranking is a recent idea to im- 122
prove retrieval systems, as introduced by [27], to efficiently 123
reorder the shortlisted images found in the initial search 124
stage. Its key insight is to leverage pairwise similarities 125
among all shortlisted images, which can guide an aggre- 126
gation process that refines the global features for re-ranking 127
purposes. In this work, we go beyond to introduce the usage 128
of multidimensional scaling [26] to create a new global fea- 129
ture at re-ranking time. This can help leverage detailed pair- 130
wise local feature-based similarities between the images, by 131
converting them on-the-fly into an embedding space which 132
respects those similarities. Such a re-ranking embedding 133
can then be used in the procedure introduced in [27], to re- 134
fine all of the embeddings based on pairwise similarities, 135
enabling a significantly improved final list of shortlist im- 136
ages. 137

3. Local-to-Global Image Retrieval 138

The initial approaches to image retrieval relied heavily on 139
hand-crafted local features. However, extracting and match- 140
ing a large number of these features can be computationally 141
expensive. With the advent of deep learning, global fea- 142
tures, which capture the overall content and semantics of an 143
image in a single vector representation, gained prominence. 144
While global features offer efficiency, local features provide 145
finer granularity and robustness to changes in viewpoint or 146
occlusions. Some methods try to combine the strengths of 147
both. For example, they might use global features for an 148
initial retrieval and then re-rank results using local feature 149
matching. 150

Recent advances in efficient algorithms have enabled the 151
use of local features even in the initial retrieval stage, not 152
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Figure 2. Block diagram of the proposed Local-to-Global (L2G) retrieval system. Left: given a query image, we extract local features
which are used for efficient search via CANN [1]. Right: the top-ranked candidates from the local feature search stage undergo a re-ranking
process leveraging embeddings computed on-the-fly via multidimensional scaling (MDS), based on the pairwise dissimilarities of the query
and shortlisted database images.

just as a post-processing step. One such approach is Con-153
strained Approximate Nearest Neighbors (CANN) [1], ini-154
tially proposed for visual localization. CANN employs a155
novel nearest neighbor search strategy that efficiently finds156
the best matches in both appearance and geometry space us-157
ing only local features and (asymmetric) Chamfer similar-158
ity. As a byproduct, the authors demonstrated the potential159
of CANN for efficient image retrieval using local features160
in the first stage. They showed that a simple weighted aver-161
age of rankings obtained from both global and local features162
significantly improves retrieval quality. Another approach,163
MUVERA [7], utilizes multiple vector embeddings. It can164
also be used for image retrieval for efficient local feature-165
based image retrieval using the Chamfer similarity.166

In this work, we present a novel and more effective167
method for merging local and global features, illustrated in168
Fig. 2. Leveraging local features for the initial search stage169
and global features for re-ranking, our Local-to-Global170
(L2G) method delivers effective retrieval performance. We171
also introduce a natural way to integrate the re-ranking tech-172
nique proposed by Shao et al. [27] with any (dis)similarity,173
not necessarily a metric.174

3.1. Re-ranking Global Features 175

Shao et al. [27] introduced a novel image re-ranking method 176
that refines global features for improved retrieval perfor- 177
mance. This method, designed to be plugged into any exist- 178
ing retrieval system, operates solely on global features, of- 179
fering a significant efficiency advantage over conventional 180
re-ranking techniques that rely on computationally expen- 181
sive local features. Notably, it was the first solution to ad- 182
dress both retrieval and re-ranking using only global image 183
features. 184

Our work builds upon this concept but deviates from the 185
convention of relying solely on global features. We lever- 186
age recent advances in efficient local feature-based retrieval, 187
specifically CANN [1], to incorporate local information into 188
the re-ranking process. To achieve this, we convert the rank- 189
ing produced by CANN, which is based on non-metric sim- 190
ilarity, into points in an embedding space. These points can 191
then be treated as “global features” representing the local 192
feature information. This transformation allows us to seam- 193
lessly integrate local and global features of any similarity. 194
By merging these “globalized” local features with exist- 195
ing global features, we can effectively utilize the re-ranking 196
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method of Shao et al. [27], resulting in improved retrieval197
accuracy.198

3.2. Enhanced Re-ranking with MDS199

Consider the following well known problem: Given200
pairwise dissimilarities, reconstruct a set of points that201
preserves pairwise distances. Multidimensional scaling202
(MDS) [26] is a family of widely used techniques for map-203
ping data from a high-dimensional to a lower-dimensional204
space and for visualizing data. It is also a known method to205
reconstruct a set of points in high dimensional space from206
their pairwise distances. Given a set of dissimilarities, one207
can ask whether these values are distances and, moreover,208
whether they can even be interpreted as Euclidean distances.209
Given a dissimilarity (distance) matrix D = (dij), MDS210
seeks to find x1, . . . , xn ∈ Rp such that dij ≈ ||xi−xj || as211
close as possible. For certain cases, for some large p, there212
exists a configuration x1, . . . , xn with exact distance match213
dij = ||xi − xj ||.214

In such a case the distance involved is called Euclidean.215
There are, however, cases where the dissimilarity is dis-216
tance, but there exists no configuration in any p with perfect217
match dij = ||xi − xj ||, for some i, j. Such a distance is218
called non-Euclidean. Classical MDS is the case where we219
have Euclidean distance matrix D = (dij). In this case,220
we have a globally optimal solution (non-unique since any221
rigid transformation of it is always a solution) at some di-222
mension p and there are efficient methods to find it. Metric223
MDS is where we are given a dimension p and a monotone224
function f , and we seek to find an optimal configuration225
X ⊂ Rp that gives f(dij) ≈ d̂ij = ||xi − xj ||2 as close as226
possible. In many applications of MDS, dissimilarities are227
known only by their rank order, and the spacing between228
successively ranked dissimilarities is of no interest or is un-229
available. This is the Non Metric MDS where we are given230
a dimension p, and we seek to find an optimal configuration231
X ⊂ Rp that gives f(dij) ≈ d∗ij = ||xi − xj ||2 as close as232
possible. Different approaches exist for Non-Metric MDS,233
including stress minimization techniques like SMACOF,234
which aim to minimize a stress function that quantifies the235
discrepancy between the disparities and the distances in the236
embedded space. Unlike metric MDS, here f is much gen-237
eral and is only implicitly defined. f(dij) = d∗ij are called238
disparities, which only preserve the order of dij , i.e.,239

dij < dkl ⇐⇒ f(dij) ≤ f(dkl) ⇐⇒ d∗ij ≤ d∗kl240

Our goal is to find an embedding in a high-dimensional241
space for the dissimilarity matrix of index and query im-242
ages This method requires a complete set of pairwise dis-243
tances between all images (both index and query) to per-244
form nearest neighbor operations (for averaging) within a245
metric space.246

However, our data presents two key challenges: (1) Non- 247
metric dissimilarities: The initial ranking we obtain from 248
local feature matching is non-metric. This means it may not 249
satisfy the properties of a distance function, such as the tri- 250
angle inequality. Directly applying the re-ranking method, 251
which assumes a metric space, would lead to inconsisten- 252
cies. (2) Incomplete distances signify that the relationships 253
between certain pairs of data points are unknown. This ab- 254
sence of information can lead to a distorted representation 255
of the data’s overall structure in the embedding. In our case, 256
obtaining pairwise distances between all pairs of index im- 257
ages is impractical, as it would require computation that 258
grows quadratically with the dataset size. To maintain ef- 259
ficiency and scalability, we instead utilize a sparse distance 260
matrix. In this sparse representation, each image only stores 261
distances to its nearest neighbors, determined using an ex- 262
isting retrieval system. 263

To address these challenges, we turn to Multidimen- 264
sional Scaling (MDS). While various MDS methods exist, 265
we found the classic landmark MDS [28, 36], which relies 266
on eigenvalue decomposition and Nyström approximation, 267
less effective in our case. This is likely because landmark 268
MDS generally requires metric distances and struggles with 269
the non-metric nature of our dissimilarities. 270

Instead, we employ SMACOF (Scaling by MAjorizing a 271
COmplicated Function), an iterative optimization algorithm 272
first introduced in [6]. SMACOF minimizes a stress func- 273
tion that quantifies the discrepancy between the given dis- 274
similarities and the distances in the reconstructed configu- 275
ration. This iterative approach is well-suited for handling 276
non-metric dissimilarities and incomplete data. 277

Specifically, SMACOF allows us to: (i) Handle non- 278
metric dissimilarities: Effectively address the non-metric 279
nature of our ranking data. (ii) Complete the dissimilarity 280
matrix: Infer the missing entries to construct a complete 281
distance matrix required for the re-ranking method. (iii) 282
Weight dissimilarities: Assign weights to different dissimi- 283
larities based on their reliability and importance, potentially 284
improving the embedding quality. 285

Complexity The computational complexity of MDS 286
varies significantly depending on the specific method and 287
the size of the data. Here’s a breakdown of the complex- 288
ity for some common MDS approaches: Classical MDS 289
(Eigenvector-based) has complexity of O(N3) where N is 290
the number of data points. This is dominated by the eigen- 291
value decomposition of the N × N dissimilarity matrix. 292
SMACOF complexity is O(N2) per iteration and the num- 293
ber of iteration in our case is fairly small (≈ 5-10). Land- 294
mark MDS complexity can be significantly lower than clas- 295
sical MDS for large datasets. By using a smaller set of 296
“landmark” points (say, L landmarks), the complexity can 297
be reduced to approximately O(NL2 + L3). This makes 298
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it more scalable for large N when L << N . FastMap [8]299
complexity is O(Nk) where N is the number of data points300
and k is the desired dimensionality of the embedding.301

3.3. On-the-fly MDS per query302

Similarity embedding using MDS can be viewed as gen-303
erating “global features” derived from a specific similarity304
measure, as opposed to generic embeddings trained on sep-305
arate data. We take a similarity matrix and compute a global306
representation of the points that best preserves these simi-307
larities.308

We assume that for an appropriate similarity (e.g.,309
Chamfer), we have an efficient method (CANN, MU-310
VERA) to index a large dataset and retrieve the top-k311
most similar images for any given query. We denote312
this method as EFF-INDEX-QUERY. Using EFF-INDEX-313
QUERY, we can pre-compute the top-k nearest index im-314
ages for each image in the index offline. This results315
in a sparse set of pairwise distances, denoted as INDEX-316
SPARSE-DISTANCES, with a size linear in the number of317
data points since k is constant.318

One approach is to apply MDS to the entire index at in-319
dex time, creating and storing the embeddings just as we320
would store global features. This can be achieved in ap-321
proximately linear time using fast MDS methods. At query322
time, we obtain the distances from the query to the top in-323
dex images using EFF-INDEX-QUERY and then compute324
the query image embedding using the same methods used325
in landmark MDS, which requires only a constant number326
of images. With all embeddings computed, we can proceed327
with re-ranking in a metric space.328

However, we propose a more efficient alternative that329
avoids applying MDS to the entire index. Instead, we com-330
pute MDS specifically for each query image and its top-k331
ranked index images, retrieved initially using EFF-INDEX-332
QUERY. This localized approach generates an embedding333
for only k + 1 points, significantly reducing the computa-334
tional burden.335

For each query image, we use EFF-INDEX-QUERY to336
retrieve the top-ranked images and obtain their pairwise dis-337
tances from INDEX-SPARSE-DISTANCES. If the distance338
between a pair of images is not present in INDEX-SPARSE-339
DISTANCES, we set it to 1 (the maximum possible dis-340
tance). We then apply standard MDS to the (k+1)×(k+1)341
similarity matrix to obtain an Euclidean embedding of the342
query and its top-k neighbors. This computation takes343
O(k2) time, where k is typically a constant. While this344
can be further improved to O(k) using landmark MDS or345
other fast approximate MDS methods, we opted for stan-346
dard MDS in our experiments due to its efficiency for mod-347
erate k and our focus on demonstrating the core concept.348

This localized embedding strategy allows us to apply ef-349
ficient re-ranking techniques, similar to those in [27], with-350

out requiring index-time embedding. While the embedding 351
is recomputed for each query, the overall computational cost 352
remains manageable due to the small number of points in- 353
volved. 354

4. Experiments 355

4.1. Experimental Setup 356

Our experiments are conducted on well-established bench- 357
marks. Concretely, we use Oxford [22] and Paris [23] with 358
revisited annotations, referred to as ROxf and RPar, respec- 359
tively. There are 4993 (6322) database images in the ROxf 360
(RPar) dataset, and each dataset contains a query set with 361
70 images. Large-scale results are further reported with the 362
R1M distractor set [24], which contains 1M database im- 363
ages. 364

We report the effectiveness of SMACOF MDS [6] re- 365
ranking when combined with local feature retrieval. We 366
leverage the FIRE [37] image features, and to ensure high 367
retrieval efficiency, we follow the algorithm proposed by the 368
CANN paper [1] and utilize the official implementation1 369
and tune it on the ROxford dataset. For re-ranking with 370
global features, we employ a weighted average between the 371
MDS embeddings and SuperGlobal global features, where 372
the MDS embeddings are obtained directly using the pair- 373
wise FIRE Chamfer similarities. We further tune the fol- 374
lowing hyperparameters on the ROxford dataset in order to 375
obtain optimized re-ranking performance. 376

- ϵ which controls the convergence threshold for the 377
MDS algorithm. A smaller ϵ generally leads to a more ac- 378
curate embedding but requires more iterations. 379

- p (power), the modulation parameter that adjusts the 380
influence of small and large distances in the Chamfer simi- 381
larity metric. Higher values of p emphasize larger distances. 382

- w (weight) that determines the relative importance of 383
the SuperGlobal features and the MDS embeddings when 384
combining them for re-ranking. A higher w gives more 385
weight to the MDS embeddings. 386

- k (top ranked for MDS) that specifies the number of 387
top-ranked images from the initial retrieval that are used for 388
MDS embedding. It’s important to note that this is distinct 389
from the M parameter used in the re-ranking stage, which 390
determines the number of top-ranked images considered for 391
neighborhood analysis. 392

In our experiments, re-ranking is always conducted 393
among the top 1600 candidates. We use the standard mean 394
Average Precision (mAP) as the evaluation metric. 395

4.2. Results 396

We compare our results with state-of-the-art models in Ta- 397
ble 1. The results are split into four settings: (1) Global 398
feature retrieval. (2) Global feature retrieval + Local feature 399

1https://github.com/google-research/google-research/tree/master/cann
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Medium Hard

Method ROxf ROxf+1M RPar RPar+1M ROxf ROxf+1M RPar RPar+1M
(1) Global feature retrieval
RN50-DELG [4] 73.6 60.6 85.7 68.6 51.0 32.7 71.5 44.4
RN101-DELG [4] 76.3 63.7 86.6 70.6 55.6 37.5 72.4 46.9
RN50-DOLG [38] 80.5 76.6 89.8 80.8 58.8 52.2 77.7 62.8
RN101-DOLG [38] 81.5 77.4 91.0 83.3 61.1 54.8 80.3 66.7
RN50-CVNet [13] 81.0 72.6 88.8 79.0 62.1 50.2 76.5 60.2
RN101-CVNet [13] 80.2 74.0 90.3 80.6 63.1 53.7 79.1 62.2
RN50-SuperGlobal (No re-ranking) [27] 83.9 74.7 90.5 81.3 67.7 53.6 80.3 65.2
RN101-SuperGlobal (No re-ranking) [27] 85.3 78.8 92.1 83.9 72.1 61.9 83.5 69.1
(2) Global feature retrieval + Local feature re-ranking
RN50-DELG (GV re-rank top 100) [4] 78.3 67.2 85.7 69.6 57.9 43.6 71.0 45.7
RN101-DELG (GV re-rank top 100) [4] 81.2 69.1 87.2 71.5 64.0 47.5 72.8 48.7
RN50-CVNet (Re-rank top 400) [13] 87.9 80.7 90.5 82.4 75.6 65.1 80.2 67.3
RN101-CVNet (Re-rank top 400) [13] 87.2 81.9 91.2 83.8 75.9 67.4 81.1 69.3
(3) SuperGlobal retrieval + Re-ranking
RN50-SuperGlobal (Re-rank top 400) [27] 88.8 80.0 92.0 83.4 77.1 64.2 84.4 68.7
RN101-SuperGlobal (Re-rank top 400) [27] 90.9 84.4 93.3 84.9 80.2 71.1 86.7 71.4
AMES (600,600) (Re-rank top 1600) [31] 93.6 88.2 95.3 90.1 84.8 77.7 90.7 82.0
(4) Local feature retrieval + Global feature re-ranking
L2G CANN-FIRE + MDS re-ranking (Ours) 92.9 90.5 97.1 92.1 83.0 79.8 91.7 83.4

Table 1. Comparison to the state of the art. Results of our L2G approach, compared to state-of-the-art methods on ROxford and RParis,
on their base and extended “+1M” versions. Best results per dataset in bold, second-best underlined.

re-ranking, corresponding to the Global-to-Local (G2L)400
paradigm. (3) SuperGlobal retrieval + Re-ranking. (4)401
Local feature retrieval + Global feature re-ranking, corre-402
sponding to the proposed Local-to-Global (L2G) method.403
All the comparisons in (3) assume using SuperGlobal404
for retrieval. Moreover, we present AMES(600,600)405
(re-rank top 1600) for using 600 DINOv2 [20] lo-406
cal features for both query and candidate sides and re-407
ranking with AMES similarity, with numbers directly taken408
from [31] (this is also a G2L method).409

We would like to highlight that our L2G approach,410
though applied to the FIRE feature which was proposed in411
2022, already achieves state-of-the-art performance in most412
of the evals when combined with MDS, exceeding the per-413
formance of modern approaches such as SuperGlobal (pro-414
posed in 2023) and AMES (proposed in 2024). In particu-415
lar, our L2G approach is extremely effective in large-scale416
retrieval settings and it achieves 79.8% in ROxf+1M Hard417
and 83.4% in RPar+1M Hard, beating the best AMES re-418
sults by 2.1% and 1.4%, respectively.419

We conduct a study on RParis about the total number of420
correct images retrieved at different K values for all the 70421
queries, as is shown in Fig. 3. We plot K within [400, 1600]422
since that is range for re-ranking. It shows that local feature423
retrieves more correct images at top K when K is no larger424
than 1200, but with the increase of K, the gap between local425
and global retrieval closes. For top 1600, local and global426
retrieves about the same number of correct images. It re-427
veals that MDS re-ranking is critical, since the number of428

Figure 3. Number of correct images retrieved at top K via local
feature retrieval and global feature retrieval on the RParis dataset.

correct images we get from local feature or global feature 429
retrieval is the same. But MDS re-ranking outperforms Su- 430
perGlobal when conducting re-ranking on top 1600, show- 431
ing the importance of using an embedding that is sensitive 432
to localized similarities. 433

In Fig. 4, we provide qualitative results between the top 434
results from (1) SuperGlobal retrieval and re-ranking and 435
(2) our L2G approach, with images taken from ROxford 436
and RParis. The ranking positions are selected such that 437
L2G retrieves matching images (highlighted in green boxes) 438
while SuperGlobal doesn’t (highlighted in red boxes). We 439
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Configuration RParis ROxford
Full Model 91.7 83.0
- Without SuperGlobal re-ranking process 84.6 73.3
- Without merging final similarities with SuperGlobal 89.4 81.6
- Replace MDS re-ranking by SuperGlobal re-ranking 86.4 72.4
- Replace FIRE local similarity by AMES 93.6 85.2

Table 2. Ablation Study: mAP for ROxford and RParis Hard with various components of the pipeline. See the text for details.

observe that L2G resolves many failure causes of Super-440
Global.441

4.3. Ablation Study442

We conducted an ablation study to analyze the impact of443
different components and configurations on our method’s444
performance. The resulting mAP values are presented in445
Table 2. Each row in the table represents a different config-446
uration:447
Without SuperGlobal re-ranking process. This baseline448
configuration uses local FIRE/Chamfer similarity for re-449
trieval and re-ranks only using the computed MDS embed-450
dings, without the embedding refinement update proposed451
by SuperGlobal.452
Without merging final features with SuperGlobal. Here,453
we only apply MDS re-ranking to the local features454
but without merging with SuperGlobal features (w=1.0),455
demonstrating the effectiveness of local re-ranking in iso-456
lation compared with the previous row. Considering the457
performance of the full model, we would also like to high-458
light the synergy between local features and SuperGlobal459
features, where without SuperGlobal features in re-ranking460
we observe regressions in the metrics.461
Replace MDS re-ranking by SuperGlobal re-ranking.462
This configuration explores the direct use of CANN-FIRE463
for retrieval and then re-ranking with SuperGlobal features.464
The poor performance indicates the incompatibility of using465
a non-metric similarity for retrieval within the metric space466
of SuperGlobal features.467
Replace FIRE local similarity by AMES. In this con-468
figuration, during re-ranking, MDS is applied to the im-469
proved local similarity from AMES [31] instead of the470
FIRE/Chamfer similarity. This configuration achieves the471
best overall performance, demonstrating the power of com-472
bining a strong local similarity measure with MDS re-473
ranking.474

While AMES may not be computationally efficient for475
direct retrieval, last configuration in our ablation study un-476
derscores the crucial role of MDS in enabling effective re-477
ranking with local similarities. Without MDS, as in [31]478
local similarity would have to be applied after re-ranking,479
potentially limiting its impact. Our approach, by embed-480
ding the local similarity into a metric space, allows for a481
more integrated and synergistic combination of local and482

global information. 483

5. Conclusions 484

Our work presents a new local-to-global image retrieval 485
system, leveraging local image features for the initial large- 486
scale search and global image features, induced by the MDS 487
of the local similarity, for the re-ranking stage. This is a 488
significant departure from the today’s conventional global- 489
to-local paradigm, helping overcome issues with partial 490
matches at large scale and insufficient local information for 491
re-ranking a short list of images. Notably, we introduce a 492
novel global feature re-ranking process which can effec- 493
tively leverage local similarities by converting these simi- 494
larities into a new embedding space which respects those. 495
Leveraging multidimensional scaling, these re-ranking em- 496
beddings significantly boost performance. Our experiments 497
showcase state-of-the-art results in conventional image re- 498
trieval datasets. 499
Future work. This work with MDS, particularly its fast 500
variants, opens exciting possibilities for using it with di- 501
verse similarity measures, including learned ones like those 502
in AMES [31]). The key observation that embedding from 503
pairwise distances requires only a constant number of pairs 504
suggests a novel and efficient approach to building index- 505
ing and query systems for any generic similarity. This re- 506
search direction could lead to significant advancements in 507
similarity search, enabling more efficient and accurate re- 508
trieval across diverse domains and applications. 509
Limitations. The local feature retrieval process is more 510
expensive than the global feature one, however the use of 511
CANN makes it very efficient and competitive, while at the 512
same time providing better results. Our re-ranking tech- 513
nique is more expensive than SuperGlobal as it requires 514
the multidimensional scaling step to compute the re-ranking 515
embeddings – however, this can be efficiently computed, as 516
previously discussed, while at the same time enhancing the 517
accuracy of the system. 518
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Figure 4. Qualitative results. Examples comparing our L2G method with FIRE [37] local features against SuperGlobal [27] retrieval and
re-ranking, on representative queries from the ROxf and RPar datasets.
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