

Secure AI Framework

Security Assurance in the
Age of Generative AI

Authors​
Tom Grzelak, Kara Olive, Moni Pande

Abstract
Artificial Intelligence (AI) is a rapidly growing field known for experimentation and quick
iteration, qualities that can pose challenges for traditional enterprise security
approaches. Because AI introduces unique assets and surfaces—AI-driven applications,
agents, assistants, vast training datasets, the models themselves, and supporting
infrastructure—we’re continually updating our security controls, guided by Google’s
Secure AI Framework (SAIF).1

To address the new challenges, we’ve expanded our traditional security approaches to
cover the new attack surfaces by scanning for more types of vulnerabilities, analyzing
more intel,2 preparing to respond to new kinds of incidents, and continually testing our
controls in novel ways to strengthen our security posture.

This white paper is one of a series describing our approaches to implementing Google’s
SAIF. In this paper we explain how we’re applying security assurance—a cross
functional effort aiming to achieve high confidence that our security features,
practices, procedures, controls, and architecture accurately mediate and enforce
our security policies—to AI development. Security assurance efforts help to both ensure
the continued security of our AI products and address relevant policy requirements.

2 https://cloud.google.com/blog/topics/threat-intelligence/adversarial-misuse-generative-ai
1 http://saif.google

http://saif.google
http://saif.google
https://cloud.google.com/blog/topics/threat-intelligence/adversarial-misuse-generative-ai
https://cloud.google.com/blog/topics/threat-intelligence/adversarial-misuse-generative-ai

 ​

Just as quality assurance (QA) in manufacturing meticulously examines finished products
and the processes that create them to ensure they meet quality standards, security
assurance serves a complementary role to the broader security efforts within an
organization. Those broader security efforts span the design, implementation, and
operation of controls to create secure software products; security assurance focuses on
verifying and improving those efforts. Security assurance identifies gaps, weaknesses,
and areas where controls may not be operating as intended, to drive continuous
improvement across all security domains. It’s two-party review in action—security
assurance helps build confidence that the software was not just built securely, but
continues to run securely.

Since AI systems—those that use AI models for reasoning—present a combination of well
understood and novel risks, AI technologies require a combination of both common and
novel controls. No matter how strong these controls are, a security assurance program is
essential to ensure they are working as intended and that they are continually updated
and improved.

The paper opens with an overview of security assurance functions, covering several
teams and capabilities that work together to ensure security controls are working across
any software development lifecycle, including the AI development lifecycle. In particular,
we focus on four functions—Red Teaming, Vulnerability Management, Detection &
Response, and Threat Intelligence, and how those work together to address issues
through Remediation.3

We then describe the features specific to AI that affect assurance functions and give
examples of how we’re adapting our approaches to account for AI-specific technologies
and risks. We also include guidance for organizations considering creating their own AI
assurance programs, including best practices for assuring training data, models, the AI
software supply chain, and product integrations.

We intend this paper to be useful for a broad technical audience, including both
assurance specialists who are new to AI technologies, and AI developers who are new to
assurance practices.

3 This paper does not cover closely related fields to security assurance, such as security policy and
compliance, risk assessment, and risk management.

 ​ 2

 ​

Table of contents
Abstract​ 1

Table of Contents​ 3

Security assurance in the age of generative AI​ 5

Vulnerability management​ 6

Detection and response​ 6

Threat intelligence​ 6

Red teaming​ 7

Remediation​ 7

Specific considerations for AI assurance​ 8

Developing AI with assurance in mind​ 8

Develop AI threat modeling​ 9

Create an asset inventory​ 9

Set a detection and response baseline​ 9

Conduct periodic reviews​ 9

Security assurance for training data​ 9

Best practices​ 10

Security assurance for models​ 10

Best practices​ 11

Security assurance for infrastructure and the AI software supply chain​ 13

Best practices​ 13

Maintain strong access control and authentication​ 13

When possible, run the inference process on end-user devices for
privacy-sensitive use cases​ 14

Inventory third-party and open-source code use​ 15

Sandbox the AI model​ 15

 ​ 3

 ​

Security assurance for agentic integration​ 16

Test the integration​ 16

Harden AI integrations with third-party MCP servers​ 17

A baseline for security assurance​ 17

Acknowledgements​ 18

 ​ 4

 ​

Security assurance in the age of
generative AI
When fundamental new technologies like AI are introduced, malicious actors are among
the first to explore them, looking for new avenues to achieve their malicious intent.
Understanding the potential impact of these attack vectors on AI systems can help AI
developers ensure that their tools are deployed safely. At Google, we’re working to find
and overcome security vulnerabilities and weaknesses by extending our approach to
security assurance from traditional software development into the AI model development
and deployment lifecycle.

As background for the discussion of AI, let’s first summarize security assurance for
traditional software. In security programs for traditional software systems,4 assurance
teams contribute to securing deployed systems primarily through four areas:
Vulnerability Management, Detection and Response, Threat Intelligence, and Red
Teaming. These teams work both independently and together—strengthening each other
via feedback loops—with all of them feeding into the work of Remediation.

4 Adkins, H., Beyer, B., Blankinship, P., Lewandowski, P., Oprea, A. and Stubblefield, A., 2020.
Building secure and reliable systems: Best practices for designing, implementing, and maintaining
systems. O'Reilly Media, Inc.

 ​ 5

 ​

Vulnerability management
The search for potential vulnerabilities never stops. To maintain post-launch security, we
continuously scan for known vulnerabilities across our entire infrastructure. This includes
our storage systems, code repositories, and AI-specific systems like AI data, training, and
testing systems, as well as data recipes.

This approach helps safeguard models and AI-powered products and ensures that the
model inference environment is secure, preventing it from becoming a potential attack
surface.

Ensuring automatic and robust reporting and remediation of the common vulnerabilities
also helps us focus the efforts of our Red Teams, letting them concentrate on novel and
unique attacks. The information they gather through this process then feeds back into the
vulnerability detection implementation.

Detection and response
While Vulnerability Management ensures known vulnerabilities in infrastructure, software,
and their dependencies are quickly identified and mitigated, Detection and Response
(D&R) focuses on attacks—malicious actions that have bypassed existing controls.

Detection acts as a monitoring layer constantly looking for any suspicious internal or
external activities. Those suspicious activities can include unauthorized access to
sensitive data, unusual traffic patterns, suspect code execution, unauthorized or
questionable file modifications, and attempts at exfiltrating AI intellectual property.

When suspicious events are identified, Response is prepared to quickly act on the threat in
order to first contain and then neutralize it. Using processes that are regularly practiced
through red team exercises, they issue customer notifications, investigate, and respond to
security issues.

Threat intelligence
Threat Intelligence5 looks to the external world, analyzing an ever-evolving cast of threat
actors to provide insights into current and future risks. Given the rapidly changing
technical landscape, it’s more important than ever to have up-to-date information about
who adversaries are, their motives, and the specific techniques that they’re using and
developing.

5 https://blog.google/threat-analysis-group/

 ​ 6

https://blog.google/threat-analysis-group/

 ​

A strong Threat Intelligence team (or vendor provided service) can help to reason about
both potential targets for attackers and how those attackers might abuse a company’s
capabilities for nefarious purposes. Threat Intelligence is a key assurance input for D&R
teams, ensuring that they are able to defend against relevant threats. Threat intelligence
also helps make certain that the work of Red Teams is informed by real-world scenarios.

Red teaming
Red Teaming6 applies adversarial techniques against their organization’s own
infrastructure, applications, processes, and technologies to test for insufficient defenses
and the ability of D&R teams to respond to compromised systems.

Red Teams help organizations prepare for potential attacks, raise concerns, and propose
new or improved defenses against adversaries. Red Teams can both simulate attacks that
Threat Intelligence teams are seeing right now, as well as anticipate and execute attacks
that they believe adversaries might attempt in the future. They also collaborate closely
with D&R teams to ensure attacks can be swiftly spotted and shut down, and to validate,
or, if necessary, identify potential gaps in detection capability.

Proactively attacking an organization's own AI systems and products can help provide
assurance that in the event of a real attack, their D&R team is capable of detecting the
attack, and is appropriately prepared to respond.

The Red Teams’ findings and insights into attack chains are subsequently analyzed as
candidates for Vulnerability Management, and D&R automations and monitoring, and
inform secure design considerations for future product iterations. This proactive approach
ensures that potential threats are promptly detected and addressed, strengthening the
overall assurance function.

Remediation
The findings and insights from Vulnerability Management, D&R, Threat Intelligence, and
Red Teams work together to flag vulnerabilities, simulate real-world attacks, stay ahead of
threat actors, and quickly respond to security incidents. The feedback from each of these
areas creates a continuous cycle of improvement.

For example, Threat Intelligence identifies threat actors and shares their Tactics,
Techniques, and Procedures (TTPs) with the Red Team, which helps them create new
adversarial test scenarios that they use in red team exercises. This, in turn, guides the
Vulnerability Management in building automatic testing for the newly found vulnerabilities,

6 https://blog.google/technology/safety-security/meet-the-team-responsible-for-hacking-google/

 ​ 7

https://blog.google/technology/safety-security/meet-the-team-responsible-for-hacking-google/

 ​

further enabling their remediation. Additionally, red team exercises also inform the
decisions of the D&R team on what new detection capabilities are necessary to address
any residual risk.

Until this point in the assurance lifecycle, these efforts have primarily focused on threat
and vulnerability identification; this is not sufficient, and in order to defend against
attackers, Remediation efforts are necessary to ensure any findings are properly mitigated
and closed. Remediation efforts permanently address any identified issues with the
storage systems, code, AI models and underlying infrastructure.

Securing AI is a cross-functional imperative: the most
robust and trustworthy AI products will be built by
teams where AI and security expertise are not siloed,
but rather work together from the start.

Specific considerations for AI assurance
In this section, we will explore several fundamental properties that differentiate AI
technologies from traditional software,7 and we’ll discuss our current approach for
addressing these differences within our security assurance functions. In many cases,
security assurance for AI depends on the extension of security practices that are common
in traditional software development. As we look at some of the unique elements of AI
development, we’ll also highlight some of the security practices that can help mitigate
those new security challenges. Note that all of these approaches also apply to AI agents,
though the challenges of securing AI agents are more expansive.

Developing AI with assurance in mind
While many security considerations are broadly applicable, organizations should still
create security assurance programs tailored to their specific business needs and risk
tolerance. By adhering to the following best practices, organizations will be better able to
create effective security, and meaningful assurance.

7 https://services.google.com/fh/files/misc/ociso_securing_ai_different_similar.pdf

 ​ 8

https://services.google.com/fh/files/misc/ociso_securing_ai_different_similar.pdf
https://services.google.com/fh/files/misc/ociso_securing_ai_different_similar.pdf
https://storage.googleapis.com/gweb-research2023-media/pubtools/1018686.pdf

 ​

Develop AI threat modeling
As with classic software products, threat modelling can help proactively identify which AI
risks are most applicable and where security investments have the largest impact. For a
comprehensive threat model, take into account both the SAIF AI risks as well as relevant
Threat Intelligence. Organizations must analyze external adversaries, their goals, and their
methods (Tactics, Techniques, and Procedures, or TTPs), paying close attention to emerging
AI-specific attacks like model evasion or data poisoning. This foresight allows anticipation
of how AI systems might be compromised or exploited. The resulting intelligence is vital for
tuning Detection & Response capabilities and ensuring Red Team activities mimic relevant,
real-world threats.

Create an asset inventory
It’s impossible to secure what you don’t understand, and assurance starts with
understanding your tools, datasets, models and infrastructure. A good first step is to
centralize information on all critical assets such as data, models, controls, and systems, as
well as their intended use cases, to prioritize their protection and understand their
relationships and interdependencies.

Set a detection and response baseline
Once you have a clear understanding of your assets and systems, you can analyze the
potential paths an attacker might take to understand how your AI system can be attacked
or used for malicious purposes. This will form the basis for testing detection and response
mechanisms within the organization.

Conduct periodic reviews
While the security landscape is always changing, AI is going through a dramatic growth
phase, so it’s important to engage product area and infrastructure teams in regular
reviews to validate controls and processes end to end.

Security assurance for training data
Modifications made to a model’s training data can create effects that are as significant as
manipulating code in traditional software. The vast size of the training datasets and the
fact that a significant amount of data comes from the public domain can make it difficult
to assess changes to the datasets. In some cases, that can also make it difficult to detect

 ​ 9

https://saif.google/secure-ai-framework/risks

 ​

Data Poisoning8—a type of attack where malicious content is injected into the training sets
to influence the final behavior of the model.

Therefore, maintaining model integrity requires not only sourcing training data responsibly,
but also explicitly tracking the organization's trust level in each dataset, controlling access,
and preventing unauthorized modifications of datasets. While there are well-established
processes for handling changes to code—like mandatory code review and unit
tests—changes in datasets with billions of data points are more challenging.

Best practices

To assure the security of training data, you need to have a clear understanding of what
that data looks like and establish control over it. This means identifying and inventorying
all the relevant datasets used for training models, as well as all the tooling used for
automated filtering, quality scanning, or manual training data entry.

Data curation tools that are built in-house often lack robust security mechanisms, which
puts them in added jeopardy for attacks. It’s therefore essential to include them in the
scope of Red Teaming, D&R, and Vulnerability Management efforts.

These teams should continuously monitor who has access to those data stores and tools,
and lock down access, limiting it to essential personnel only. This alone will significantly
reduce the likelihood of certain attacks such as exfiltration and access abuse.

Teams should also develop and maintain data provenance—tamper-evident metadata
about the source and contents of each dataset. Provenance9 is essential for creating
high-quality models because it provides attestations about the quality and lineage of the
underlying data.

Security assurance for models
AI models are trained to recognize patterns, make predictions, and perform tasks without
being explicitly programmed for every possible scenario. To accomplish this, models rely
on the fundamental elements of weights and hyperparameters that capture the
probabilities for each type of behavior trained into the model. Because weights are core to
a model’s decision-making process, they are an attractive target for malicious actors, and
therefore important assets to secure.

9 https://github.com/cosai-oasis/ws1-supply-chain/blob/main/risks-and-controls-for-the-ai-supply-
chain-v1.md#mitigation-through-data-provenance

8 https://saif.google/secure-ai-framework/risks#data-poisoning

 ​ 10

https://saif.google/secure-ai-framework/risks#data-poisoning
https://github.com/cosai-oasis/ws1-supply-chain/blob/main/risks-and-controls-for-the-ai-supply-chain-v1.md#mitigation-through-data-provenance

 ​

Unauthorized access to model weights and the ability to manipulate them could allow
attackers to modify a model in malicious ways, undermining its integrity in ways that create
a risk to users and their data.

An important consideration when working with models is their unique storage formats.
Certain formats allow arbitrary code to be embedded within the model file. This code can
execute automatically during the loading process or inference phase, creating significant
security risks when downloading models from untrusted sources. This specific
vulnerability spurred the development of inherently safer formats, such as Safetensors10,
which are designed to store only the necessary data (weights and metadata) and prevent
arbitrary code execution by design upon loading.

Another factor that distinguishes models from traditional software is that the output from
complex AI models—especially large language models (LLMs) that use deep learning—is
inherently non-deterministic, meaning that identical prompts may generate different
responses from the model at different times.

This probabilistic nature means it’s not only difficult to replicate some of the unexpected
or undesirable behaviors. Testing a few times with the same favorable result no longer
offers the same level of security assurance as it might when testing non-AI code. Due to
large models' inherent complexity, testing on a sample set of inputs cannot rule out
undesirable behaviors elicited by a different, maliciously-crafted input. This reduces the
effectiveness of automated testing, so Red Team testing and complementary approaches
to discover and contain novel attacks are even more critical for security assurance.

Best practices

One approach worth exploring is using another AI model as a judge11 to evaluate the
responses of the model being tested. This judging AI model (often referred to as
"auto-rater") should be given a comprehensive description of the desired result and asked
to assess the responses accordingly. This approach of stacking AI models is becoming
increasingly popular, with applications ranging from a mixture of experts12 to more novel
agent systems. Note, however, that this approach could be vulnerable to multi-stage
attacks that propagate adversarial inputs to the judging AI model via the primary model.13

13 Mangaokar, N., Hooda, A., Choi, J., Chandrashekaran, S., Fawaz, K., Jha, S. and Prakash, A., 2024.
PRP: Propagating universal perturbations to attack large language model guard-rails. arXiv preprint
arXiv:2402.15911.

12 https://huggingface.co/blog/moe
11 https://cloud.google.com/vertex-ai/generative-ai/docs/models/evaluation-overview

10 Casey, B., Damian, K., Cotaj, A., & Santos, J. (2025). An Empirical Study of Safetensors' Usage
Trends and Developers' Perceptions. arXiv preprint arXiv:2501.02170.

 ​ 11

https://huggingface.co/blog/moe

 ​

Another technique to regain some predictability is to build a deterministic filtering or
sanitization layer on top of the model, processing all data coming into and out of the
model. This sanitization layer can be tested separately from the model using predictable
unit tests, achieving a high level of assurance when filtering for properties based on
structured output (“is the input within a safe subset of html/markdown?”). Deterministic
constraints become especially important in the case of agents, which can use tools to
initiate actions, sometimes autonomously. In this case, agents can be limited in access so
that they’re allowed only to interact with a well defined, narrow list of tools, in specific
situations.

A proactive, transparent, and continuous security
assurance program is not a constraint on innovation.
On the contrary, it provides the confidence to build
boldly, deploy responsibly, and deliver on the
transformative promise of artificial intelligence.

 ​ 12

 ​

Security assurance for infrastructure and the AI

software supply chain
Many AI training and inference workloads require extensive computational capabilities
from highly advanced hardware, like GPUs or TPUs, which present an enticing target for
attackers. Without appropriate security measures, these infrastructure stacks can be
susceptible to attempts to exploit the hardware for compute-intensive tasks like
crypto-mining, or costly DDoS attacks which might impede serving the model to
customers.

Google’s Secure AI Framework classifies all code and model frameworks as components
of the AI infrastructure. This includes open source libraries (such as TensorFlow and
PyTorch), which are also attractive targets as part of the AI software supply chain.14
Establishing an appropriate balance between the significant acceleration and
simplification of AI systems offered by third-party libraries and the risks of vulnerable
dependencies is a critical element of security assurance. Vulnerabilities in external
dependencies create a cascading risk for AI systems, as seen in classical software
development, potentially allowing attackers to exploit libraries or packages and
compromise dependent models.

The assurance approach for AI infrastructure systems depends on deployment.
Cloud-based models enjoy the benefits of centralized security, robust infrastructure, and
dedicated response teams, making assurance simpler. However, it requires transmitting
user data, which introduces privacy concerns. In contrast, on-device AI enhances user
privacy by processing data locally, but its decentralized nature requires teams to account
for device-specific vulnerabilities, limited resources, and the risk of physical tampering,
making it harder to ensure model integrity and protect against extraction.

Best practices

Many of the assurance practices to help secure AI product infrastructure represent
extensions of best practices for software development:

Maintain strong access control and authentication
●​ Securing compute resources (GPUs or TPUs) used for training and inference

requires strong authentication and access controls. This includes authenticating the
systems that access these resources, as well as authenticating the AI models

14 https://research.google/pubs/securing-the-ai-software-supply-chain/

 ​ 13

https://research.google/pubs/securing-the-ai-software-supply-chain/

 ​

themselves when they interact with external systems. Implementing robust
rate-limiting alongside authorization mechanisms to secure user-facing
infrastructure or APIs can help to limit risks such as model inversion or model
extraction, where attackers attempt to infer information about training data or
recreate a model’s weights based on its responses to mass queries.

●​ Comprehensive monitoring of APIs used to access models is critical for preventing
unauthorized access attempts. Detection and Response teams can build targeted
detection logic that identifies access attempts by looking for anomalous patterns
outside the “baseline.”

●​ To assure that a model hasn’t been tampered with, developers can use Sigstore,15
co-developed by the Google Open Source Security Team, which provides a helpful
tool for signing models. Its ML-specific library16 provides tools for developers,
package managers, and security experts for digital signing, verification, and
provenance checks needed to make open-source software safer to use and
distribute.

When possible, run the inference process on end-user devices for
privacy-sensitive use cases

●​ Running inference on a user’s device allows private user data to be processed
directly in a private environment, reducing the risk of data breaches and
unauthorized access. This approach is becoming more important as a growing
number of applications are expected to gain access to on-device models. This
trend will make local inference a key strategy for enhancing user privacy and
security.

●​ For on-device deployments, it's crucial to determine the specific need for both
model security and model integrity. To protect the model file, secure storage
mechanisms like hardware-backed encryption or secure enclaves can be
employed to mitigate the risk of unauthorized access, modification, or
extraction. However, it's important to acknowledge that mitigation and defense
models are fallible, and a determined well-funded attacker can compromise the
models and device.

●​ The model integrity should be verified to detect and prevent any unauthorized
modifications that could occur during model installation, updates, and ideally every
time it’s launched on the device.

16 https://github.com/sigstore/model-transparency
15 https://www.sigstore.dev/

 ​ 14

https://www.sigstore.dev/
https://github.com/sigstore/model-transparency

 ​

Inventory third-party and open-source code use
●​ While managing dependencies is a standard challenge in software engineering, the

rapid pace of AI development often involves integrating numerous external libraries,
potentially increasing exposure to vulnerabilities. To mitigate these risks and
enhance the security of the servers, containers, and cloud platforms hosting AI
models, a key objective should be to catalog AI infrastructure that uses third-party
or open-source code as comprehensively as possible, and integrate it as fully as
possible into Vulnerability Management processes.

●​ Conduct Red Team exercises and continuously monitor for potential security
vulnerabilities, such as remote code execution exploits, that could compromise
your AI infrastructure.

Sandbox the AI model
The runtime environment where an AI model executes is itself a critical piece of
infrastructure that must be secured. This is especially true for agentic models that can
take actions, such as executing generated code or interacting with other systems. For
these use cases, the model—and any code used to run agents, tools or code generated by
the model—must be run within a strictly controlled sandbox environment to contain its
actions and limit potential harm. The specific sandboxing technologies to use are a deep
and complex topic, but could include anything from virtual machine or hardened container
runtime or even separate physical machines.

To safely handle actions initiated by AI models—especially when they involve executing
model-generated code or interacting with other systems—run them in a strictly controlled
sandbox environment. This environment must enforce clear security policies and limit the
AI’s capabilities. Grant only the minimum permissions essential for the task to limit the
scope of potential impact. In particular, define and block risky or irreversible operations
like sending emails or modifying data without explicit user approval.

You can create these secure environments using confidential computing technologies (like
Project Oak)17 for isolation, working alongside secure enclaves designed to protect code
and data from the rest of the system. Alternatively, when AI interacts with external
systems, enforce strict identity and authorization using methods like OAuth or service
accounts with limited scope.

17 https://github.com/project-oak/oak

 ​ 15

https://github.com/project-oak/oak

 ​

While filtering the AI’s output (whether using simple regex or complex safety models) can
add a layer of safety, the fundamental security assurance comes from the strong
limitations imposed by the sandboxed execution environment itself.

Security assurance for agentic integration
The evolution of AI toward agentic systems—applications that allow models to reason
about inputs and autonomously use digital tools on the user’s behalf—adds another layer
to the security paradigm.18 The agent itself, armed with permissions to act and real-time
connections to external tools and APIs, can become a vector for attack, potentially
compromising the security and trustworthiness of previously secure applications.

The core challenge lies in the agent’s ability to take action. For example, if an AI agent
managing a user’s email encounters a prompt injection attack involving malicious
instructions hidden within the text, the risk goes beyond a faulty summary. The agent
could be tricked into executing harmful commands with the user’s authority, such as
forwarding sensitive information, deleting critical data, or interacting with other
applications in unintended ways.

To perform useful tasks, agents often rely on standards, such as the Model Context
Protocol (MCP),19 to access these external capabilities. This integration, however,
introduces a significant new attack surface. Protocols that use natural language to
describe tools are inherently susceptible to indirect prompt injection, where malicious
instructions hidden in a tool's description or output data can be executed by the agent. A
compromised or poorly secured tool could be used to exfiltrate sensitive data, perform
unauthorized actions, or attack other parts of the infrastructure, making rigorous security
assurance for these integrations an essential component of protecting the entire AI
system.

Test the integration
To ensure the security of the final product, end-to-end testing of the entire system is
critical. While individual components and application layers are often tested in isolation
(for example, using unit tests), this approach doesn’t guarantee overall system security.
This is because complex and often unpredictable interactions between these layers can
introduce vulnerabilities that are only apparent when the system operates as a whole.

Therefore, true end-to-end assurance requires testing the AI model's integration into the
product, including its agentic interactions with other products and APIs. By adversarially

19 https://modelcontextprotocol.io/docs/getting-started/intro
18 https://storage.googleapis.com/gweb-research2023-media/pubtools/1018686.pdf

 ​ 16

https://storage.googleapis.com/gweb-research2023-media/pubtools/1018686.pdf
https://storage.googleapis.com/gweb-research2023-media/pubtools/1018686.pdf
https://modelcontextprotocol.io/docs/getting-started/intro
https://modelcontextprotocol.io/docs/getting-started/intro

 ​

testing these integrations within simulated environments that closely mimic real-world
scenarios, we can uncover novel vulnerabilities. This holistic approach provides verifiable
evidence that previously mitigated threats remain resolved and that the agentic system is
resilient against attacks.

Harden AI integrations with third-party MCP servers
When integrating AI with third-party MCP servers, especially those not fully trusted, it's
crucial to mitigate potential security risks:

●​ Employ an allowlist of the tools exposed by the MCP server; this restricts the AI's
capabilities to only approved actions, reducing the attack surface and preventing
your users from being exposed to potentially harmful operations.

●​ Be aware that protocols like MCP (Model Context Protocol) and A2A
(Agent-to-Agent), which expose tools and their natural language descriptions, are
inherently susceptible to indirect prompt injection attacks. Therefore, all tool
descriptions and any data flowing through MCP should be rigorously sanitized and
validated to prevent malicious instructions from being interpreted and executed by
the AI. The security elements around these types of protocols are still developing,
and the industry is actively working on establishing standards to address these
vulnerabilities.

●​ Ensure that the MCP host, client, and server can all verify each other's identities
before any sensitive commands or data are exchanged. This prevents unauthorized
access and man-in-the-middle attacks, safeguarding the integrity and
confidentiality of the interactions.

●​ Leverage composite identities, which is crucial for hardening integrations. By
linking a human’s intent with an AI agent’s action, these identities ensure granular
access control and a clear audit trail, mitigating risk when extending operations to
external environments.

A baseline for security assurance
The principles of security assurance—rigorous testing, adversarial thinking, and
continuous verification—are not new. However, as this paper has detailed, their application
in the age of generative AI represents a critical and necessary evolution. By adapting roles
like Red Teaming, Vulnerability Management, and Threat Intelligence to address
AI-specific risks—from data poisoning and model evasion to insecure supply chains—we
can create a comprehensive defense that protects these systems from the inside out.

 ​ 17

 ​

AI developers and data scientists can embed a security-first mindset into the development
lifecycle, recognizing that security builds the essential foundation for confidence in a
model’s quality and performance. Security assurance professionals can develop a new
literacy in the probabilistic and complex nature of AI, translating traditional security
wisdom for this new domain. Securing AI is a cross-functional imperative: the most robust
and trustworthy AI products will be built by teams where AI and security expertise are not
siloed, but rather work together from the start.

Ultimately, the practices outlined here are about more than just patching vulnerabilities or
fulfilling compliance checklists—they are about building a durable foundation of trust. This
commitment to trust and responsible deployment echoes the core values found in
Google’s AI Principles, which guide the creation of beneficial and safe AI systems. A
proactive, transparent, and continuous security assurance program is not a constraint on
innovation. On the contrary, it provides the confidence to build boldly, deploy responsibly,
and deliver on the transformative promise of artificial intelligence. Doing so bridges the
gap between initial experimentation and the responsible deployment of AI.

Acknowledgements
We are grateful to the many individuals whose collaboration made this
white paper possible. Sincere thanks to the following people for their
insightful ideas and constructive feedback: Anton Chuvakin, Daniel
Fabian, Nick Galloway, David LaBianca, Adam Stubblefield, Christoph
Kern, Rob Mann, Nicholas Capalbo, Jon Brown, Dan Blank, Swetha
Balla, Shan Rao, Ruchi Shah, Brice Daniels, and John Stone.

 ​ 18

https://ai.google/responsibility/principles/

	Secure AI Framework
	Security Assurance in the Age of Generative AI
	Abstract
	Table of contents
	

	Security assurance in the age of generative AI
	Vulnerability management
	Detection and response
	Threat intelligence
	Red teaming
	Remediation
	Specific considerations for AI assurance
	Developing AI with assurance in mind
	Develop AI threat modeling
	Create an asset inventory
	Set a detection and response baseline
	Conduct periodic reviews

	Security assurance for training data
	Best practices

	Security assurance for models
	Best practices

	Security assurance for infrastructure and the AI software supply chain
	Best practices
	Maintain strong access control and authentication
	When possible, run the inference process on end-user devices for privacy-sensitive use cases
	Inventory third-party and open-source code use
	Sandbox the AI model

	Security assurance for agentic integration
	Test the integration
	Harden AI integrations with third-party MCP servers

	A baseline for security assurance
	Acknowledgements

