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Abstract 
Artificial Intelligence (AI) is a rapidly growing field known for experimentation and quick 
iteration, qualities that can pose challenges for traditional enterprise security 
approaches. Because AI introduces unique assets and surfaces—AI-driven applications, 
agents, assistants, vast training datasets, the models themselves, and supporting 
infrastructure—we’re continually updating our security controls, guided by Google’s 
Secure AI Framework (SAIF).1 

To address the new challenges, we’ve expanded our traditional security approaches to 
cover the new attack surfaces by scanning for more types of vulnerabilities, analyzing 
more intel,2 preparing to respond to new kinds of incidents, and continually testing our 
controls in novel ways to strengthen our security posture. 

This white paper is one of a series describing our approaches to implementing Google’s 
SAIF. In this paper we explain how we’re applying security assurance—a cross 
functional effort aiming to achieve high confidence that our security features, 
practices, procedures, controls, and architecture accurately mediate and enforce 
our security policies—to AI development. Security assurance efforts help to both ensure 
the continued security of our AI products and address relevant policy requirements.  

2 https://cloud.google.com/blog/topics/threat-intelligence/adversarial-misuse-generative-ai 
1 http://saif.google 
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Just as quality assurance (QA) in manufacturing meticulously examines finished products 
and the processes that create them to ensure they meet quality standards, security 
assurance serves a complementary role to the broader security efforts within an 
organization. Those broader security efforts span the design, implementation, and 
operation of controls to create secure software products; security assurance focuses on 
verifying and improving those efforts. Security assurance identifies gaps, weaknesses, 
and areas where controls may not be operating as intended, to drive continuous 
improvement across all security domains. It’s two-party review in action—security 
assurance helps build confidence that the software was not just built securely, but 
continues to run securely. 

Since AI systems—those that use AI models for reasoning—present a combination of well 
understood and novel risks, AI technologies require a combination of both common and 
novel controls. No matter how strong these controls are, a security assurance program is 
essential to ensure they are working as intended and that they are continually updated 
and improved. 

The paper opens with an overview of security assurance functions, covering several 
teams and capabilities that work together to ensure security controls are working across 
any software development lifecycle, including the AI development lifecycle. In particular, 
we focus on four functions—Red Teaming, Vulnerability Management, Detection & 
Response, and Threat Intelligence, and how those work together to address issues 
through Remediation.3  

We then describe the features specific to AI that affect assurance functions and give 
examples of how we’re adapting our approaches to account for AI-specific technologies 
and risks. We also include guidance for organizations considering creating their own AI 
assurance programs, including best practices for assuring training data, models, the AI 
software supply chain, and product integrations. 

We intend this paper to be useful for a broad technical audience, including both 
assurance specialists who are new to AI technologies, and AI developers who are new to 
assurance practices.  

 

3 This paper does not cover closely related fields to security assurance, such as security policy and 
compliance, risk assessment, and risk management.  
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Security assurance in the age of 
generative AI 
When fundamental new technologies like AI are introduced, malicious actors are among 
the first to explore them, looking for new avenues to achieve their malicious intent. 
Understanding the potential impact of these attack vectors on AI systems can help AI 
developers ensure that their tools are deployed safely. At Google, we’re working to find 
and overcome security vulnerabilities and weaknesses by extending our approach to 
security assurance from traditional software development into the AI model development 
and deployment lifecycle.  

As background for the discussion of AI, let’s first summarize security assurance for 
traditional software. In security programs for traditional software systems,4 assurance 
teams contribute to securing deployed systems primarily through four areas: 
Vulnerability Management, Detection and Response, Threat Intelligence, and Red 
Teaming. These teams work both independently and together—strengthening each other 
via feedback loops—with all of them feeding into the work of Remediation. 

 

4 Adkins, H., Beyer, B., Blankinship, P., Lewandowski, P., Oprea, A. and Stubblefield, A., 2020. 
Building secure and reliable systems: Best practices for designing, implementing, and maintaining 
systems.  O'Reilly Media, Inc. 
 

  ​ 5 



  ​  

Vulnerability management 
The search for potential vulnerabilities never stops. To maintain post-launch security, we 
continuously scan for known vulnerabilities across our entire infrastructure. This includes 
our storage systems, code repositories, and AI-specific systems like AI data, training, and 
testing systems, as well as data recipes.   

This approach helps safeguard models and AI-powered products and ensures that the 
model inference environment is secure, preventing it from becoming a potential attack 
surface.  

Ensuring automatic and robust reporting and remediation of the common vulnerabilities 
also helps us focus the efforts of our Red Teams, letting them concentrate on novel and 
unique attacks. The information they gather through this process then feeds back into the 
vulnerability detection implementation. 

Detection and response  
While Vulnerability Management ensures known vulnerabilities in infrastructure, software, 
and their dependencies are quickly identified and mitigated, Detection and Response 
(D&R) focuses on attacks—malicious actions that have bypassed existing controls. 

Detection acts as a monitoring layer constantly looking for any suspicious internal or 
external activities. Those suspicious activities can include unauthorized access to 
sensitive data, unusual traffic patterns, suspect code execution, unauthorized or 
questionable file modifications, and attempts at exfiltrating AI intellectual property. 

When suspicious events are identified, Response is prepared to quickly act on the threat in 
order to first contain and then neutralize it. Using processes that are regularly practiced 
through red team exercises, they issue customer notifications, investigate, and respond to 
security issues. 

Threat intelligence 
Threat Intelligence5 looks to the external world, analyzing an ever-evolving cast of threat 
actors to provide insights into current and future risks. Given the rapidly changing 
technical landscape, it’s more important than ever to have up-to-date information about 
who adversaries are, their motives, and the specific techniques that they’re using and 
developing.  

5 https://blog.google/threat-analysis-group/ 
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A strong Threat Intelligence team (or vendor provided service) can help to reason about 
both potential targets for attackers and how those attackers might abuse a company’s 
capabilities for nefarious purposes. Threat Intelligence is a key assurance input for D&R 
teams, ensuring that they are able to defend against relevant threats. Threat intelligence 
also helps make certain that the work of Red Teams is informed by real-world scenarios.  

Red teaming 
Red Teaming6 applies adversarial techniques against their organization’s own 
infrastructure, applications, processes, and technologies to test for insufficient defenses 
and the ability of D&R teams to respond to compromised systems. 

Red Teams help organizations prepare for potential attacks, raise concerns, and propose 
new or improved defenses against adversaries. Red Teams can both simulate attacks that 
Threat Intelligence teams are seeing right now, as well as anticipate and execute attacks 
that they believe adversaries might attempt in the future. They also collaborate closely 
with D&R teams to ensure attacks can be swiftly spotted and shut down, and to validate, 
or, if necessary, identify potential gaps in detection capability.  

Proactively attacking an organization's own AI systems and products can help provide 
assurance that in the event of a real attack, their D&R team is capable of detecting the 
attack, and is appropriately prepared to respond. 

The Red Teams’ findings and insights into attack chains are subsequently analyzed as 
candidates for Vulnerability Management, and D&R automations and monitoring, and 
inform secure design considerations for future product iterations. This proactive approach 
ensures that potential threats are promptly detected and addressed, strengthening the 
overall assurance function. 

Remediation 
The findings and insights from Vulnerability Management, D&R, Threat Intelligence, and 
Red Teams work together to flag vulnerabilities, simulate real-world attacks, stay ahead of 
threat actors, and quickly respond to security incidents. The feedback from each of these 
areas creates a continuous cycle of improvement. 

For example, Threat Intelligence identifies threat actors and shares their Tactics, 
Techniques, and Procedures (TTPs) with the Red Team, which helps them create new 
adversarial test scenarios that they use in red team exercises. This, in turn, guides the 
Vulnerability Management in building automatic testing for the newly found vulnerabilities, 

6 https://blog.google/technology/safety-security/meet-the-team-responsible-for-hacking-google/ 
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further enabling their remediation. Additionally, red team exercises also inform the 
decisions of the D&R team on what new detection capabilities are necessary to address 
any residual risk. 

Until this point in the assurance lifecycle, these efforts have primarily focused on threat 
and vulnerability identification; this is not sufficient, and in order to defend against 
attackers, Remediation efforts are necessary to ensure any findings are properly mitigated 
and closed. Remediation efforts permanently address any identified issues with the 
storage systems, code, AI models and underlying infrastructure.  

 

Securing AI is a cross-functional imperative: the most 
robust and trustworthy AI products will be built by 
teams where AI and security expertise are not siloed, 
but rather work together from the start. 

 
Specific considerations for AI assurance 
In this section, we will explore several fundamental properties that differentiate AI 
technologies from traditional software,7 and we’ll discuss our current approach for 
addressing these differences within our security assurance functions. In many cases, 
security assurance for AI depends on the extension of security practices that are common 
in traditional software development. As we look at some of the unique elements of AI 
development, we’ll also highlight some of the security practices that can help mitigate 
those new security challenges. Note that all of these approaches also apply to AI agents, 
though the challenges of securing AI agents are more expansive.  

Developing AI with assurance in mind 
While many security considerations are broadly applicable, organizations should still 
create security assurance programs tailored to their specific business needs and risk 
tolerance. By adhering to the following best practices, organizations will be better able to 
create effective security, and meaningful assurance. 

7 https://services.google.com/fh/files/misc/ociso_securing_ai_different_similar.pdf 
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Develop AI threat modeling 
As with classic software products, threat modelling can help proactively identify which AI 
risks are most applicable and where security investments have the largest impact. For a 
comprehensive threat model, take into account both the SAIF AI risks as well as relevant 
Threat Intelligence. Organizations must analyze external adversaries, their goals, and their 
methods (Tactics, Techniques, and Procedures, or TTPs), paying close attention to emerging 
AI-specific attacks like model evasion or data poisoning. This foresight allows anticipation 
of how AI systems might be compromised or exploited. The resulting intelligence is vital for 
tuning Detection & Response capabilities and ensuring Red Team activities mimic relevant, 
real-world threats. 

Create an asset inventory 
It’s impossible to secure what you don’t understand, and assurance starts with 
understanding your tools, datasets, models and infrastructure. A good first step is to 
centralize information on all critical assets such as data, models, controls, and systems, as 
well as their intended use cases, to prioritize their protection and understand their 
relationships and interdependencies. 

Set a detection and response baseline 
Once you have a clear understanding of your assets and systems, you can analyze the 
potential paths an attacker might take to understand how your AI system can be attacked 
or used for malicious purposes. This will form the basis for testing detection and response 
mechanisms within the organization. 

Conduct periodic reviews 
While the security landscape is always changing, AI is going through a dramatic growth 
phase, so it’s important to engage product area and infrastructure teams in regular 
reviews to validate controls and processes end to end. 

Security assurance for training data 
Modifications made to a model’s training data can create effects that are as significant as 
manipulating code in traditional software. The vast size of the training datasets and the 
fact that a significant amount of data comes from the public domain can make it difficult 
to assess changes to the datasets. In some cases, that can also make it difficult to detect 
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Data Poisoning8—a type of attack where malicious content is injected into the training sets 
to influence the final behavior of the model.  

Therefore, maintaining model integrity requires not only sourcing training data responsibly, 
but also explicitly tracking the organization's trust level in each dataset, controlling access, 
and preventing unauthorized modifications of datasets. While there are well-established 
processes for handling changes to code—like mandatory code review and unit 
tests—changes in datasets with billions of data points are more challenging. 

Best practices 

To assure the security of training data, you need to have a clear understanding of what 
that data looks like and establish control over it. This means identifying and inventorying 
all the relevant datasets used for training models, as well as all the tooling used for 
automated filtering, quality scanning, or manual training data entry. 

Data curation tools that are built in-house often lack robust security mechanisms, which 
puts them in added jeopardy for attacks. It’s therefore essential to include them in the 
scope of Red Teaming, D&R, and Vulnerability Management efforts. 

These teams should continuously monitor who has access to those data stores and tools, 
and lock down access, limiting it to essential personnel only. This alone will significantly 
reduce the likelihood of certain attacks such as exfiltration and access abuse. 

Teams should also develop and maintain data provenance—tamper-evident metadata 
about the source and contents of each dataset. Provenance9 is essential for creating 
high-quality models because it provides attestations about the quality and lineage of the 
underlying data. 

Security assurance for models 
AI models are trained to recognize patterns, make predictions, and perform tasks without 
being explicitly programmed for every possible scenario. To accomplish this, models rely 
on the fundamental elements of weights and hyperparameters that capture the 
probabilities for each type of behavior trained into the model. Because weights are core to 
a model’s decision-making process, they are an attractive target for malicious actors, and 
therefore important assets to secure. 

9 https://github.com/cosai-oasis/ws1-supply-chain/blob/main/risks-and-controls-for-the-ai-supply- 
chain-v1.md#mitigation-through-data-provenance 

8 https://saif.google/secure-ai-framework/risks#data-poisoning 
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Unauthorized access to model weights and the ability to manipulate them could allow 
attackers to modify a model in malicious ways, undermining its integrity in ways that create 
a risk to users and their data.  

An important consideration when working with models is their unique storage formats. 
Certain formats allow arbitrary code to be embedded within the model file. This code can 
execute automatically during the loading process or inference phase, creating significant 
security risks when downloading models from untrusted sources. This specific 
vulnerability spurred the development of inherently safer formats, such as Safetensors10, 
which are designed to store only the necessary data (weights and metadata) and prevent 
arbitrary code execution by design upon loading. 

Another factor that distinguishes models from traditional software is that the output from 
complex AI models—especially large language models (LLMs) that use deep learning—is 
inherently non-deterministic, meaning that identical prompts may generate different 
responses from the model at different times. 

This probabilistic nature means it’s not only difficult to replicate some of the unexpected 
or undesirable behaviors. Testing a few times with the same favorable result no longer 
offers the same level of security assurance as it might when testing non-AI code. Due to 
large models' inherent complexity, testing on a sample set of inputs cannot rule out 
undesirable behaviors elicited by a different, maliciously-crafted input. This reduces the 
effectiveness of automated testing, so Red Team testing and complementary approaches 
to discover and contain novel attacks are even more critical for security assurance.  

Best practices 

One approach worth exploring is using another AI model as a judge11 to evaluate the 
responses of the model being tested. This judging AI model (often referred to as 
"auto-rater") should be given a comprehensive description of the desired result and asked 
to assess the responses accordingly. This approach of stacking AI models is becoming 
increasingly popular, with applications ranging from a mixture of experts12 to more novel 
agent systems. Note, however, that this approach could be vulnerable to multi-stage 
attacks that propagate adversarial inputs to the judging AI model via the primary model.13 

13 Mangaokar, N., Hooda, A., Choi, J., Chandrashekaran, S., Fawaz, K., Jha, S. and Prakash, A., 2024. 
PRP: Propagating universal perturbations to attack large language model guard-rails. arXiv preprint 
arXiv:2402.15911. 

12 https://huggingface.co/blog/moe 
11 https://cloud.google.com/vertex-ai/generative-ai/docs/models/evaluation-overview 

10 Casey, B., Damian, K., Cotaj, A., & Santos, J. (2025). An Empirical Study of Safetensors' Usage 
Trends and Developers' Perceptions. arXiv preprint arXiv:2501.02170. 
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Another technique to regain some predictability is to build a deterministic filtering or 
sanitization layer on top of the model, processing all data coming into and out of the 
model. This sanitization layer can be tested separately from the model using predictable 
unit tests, achieving a high level of assurance when filtering for properties based on 
structured output (“is the input within a safe subset of html/markdown?”). Deterministic 
constraints become especially important in the case of agents, which can use tools to 
initiate actions, sometimes autonomously. In this case, agents can be limited in access so 
that they’re allowed only to interact with a well defined, narrow list of tools, in specific 
situations. 

 

A proactive, transparent, and continuous security 
assurance program is not a constraint on innovation. 
On the contrary, it provides the confidence to build 
boldly, deploy responsibly, and deliver on the 
transformative promise of artificial intelligence. 
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Security assurance for infrastructure and the AI 

software supply chain 
Many AI training and inference workloads require extensive computational capabilities 
from highly advanced hardware, like GPUs or TPUs, which present an enticing target for 
attackers. Without appropriate security measures, these infrastructure stacks can be 
susceptible to attempts to exploit the hardware for compute-intensive tasks like 
crypto-mining, or costly DDoS attacks which might impede serving the model to 
customers. 

Google’s Secure AI Framework classifies all code and model frameworks as components 
of the AI infrastructure. This includes open source libraries (such as TensorFlow and 
PyTorch), which are also attractive targets as part of the AI software supply chain.14 
Establishing an appropriate balance between the significant acceleration and 
simplification of AI systems offered by third-party libraries and the risks of vulnerable 
dependencies is a critical element of security assurance. Vulnerabilities in external 
dependencies create a cascading risk for AI systems, as seen in classical software 
development, potentially allowing attackers to exploit libraries or packages and 
compromise dependent models.   

The assurance approach for AI infrastructure systems depends on deployment. 
Cloud-based models enjoy the benefits of centralized security, robust infrastructure, and 
dedicated response teams, making assurance simpler. However, it requires transmitting 
user data, which introduces privacy concerns. In contrast, on-device AI enhances user 
privacy by processing data locally, but its decentralized nature requires teams to account 
for device-specific vulnerabilities, limited resources, and the risk of physical tampering, 
making it harder to ensure model integrity and protect against extraction. 

Best practices 

Many of the assurance practices to help secure AI product infrastructure represent 
extensions of best practices for software development: 

Maintain strong access control and authentication 
●​ Securing compute resources (GPUs or TPUs) used for training and inference 

requires strong authentication and access controls. This includes authenticating the 
systems that access these resources, as well as authenticating the AI models 

14 https://research.google/pubs/securing-the-ai-software-supply-chain/ 
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themselves when they interact with external systems. Implementing robust 
rate-limiting alongside authorization mechanisms to secure user-facing 
infrastructure or APIs can help to limit risks such as model inversion or model 
extraction, where attackers attempt to infer information about training data or 
recreate a model’s weights based on its responses to mass queries.   

●​ Comprehensive monitoring of APIs used to access models is critical for preventing 
unauthorized access attempts. Detection and Response teams can build targeted 
detection logic that identifies access attempts by looking for anomalous patterns 
outside the “baseline.”   

●​ To assure that a model hasn’t been tampered with, developers can use Sigstore,15 
co-developed by the Google Open Source Security Team, which provides a helpful 
tool for signing models. Its ML-specific library16 provides tools for developers, 
package managers, and security experts for digital signing, verification, and 
provenance checks needed to make open-source software safer to use and 
distribute. 

When possible, run the inference process on end-user devices for 
privacy-sensitive use cases 

●​ Running inference on a user’s device allows private user data to be processed 
directly in a private environment, reducing the risk of data breaches and 
unauthorized access. This approach is becoming more important as a growing 
number of applications are expected to gain access to on-device models. This 
trend will make local inference a key strategy for enhancing user privacy and 
security. 

●​ For on-device deployments, it's crucial to determine the specific need for both 
model security and model integrity. To protect the model file, secure storage 
mechanisms like hardware-backed encryption or secure enclaves can be 
employed to mitigate the risk of unauthorized access, modification, or 
extraction. However, it's important to acknowledge that mitigation and defense 
models are fallible, and a determined well-funded attacker can compromise the 
models and device.   

●​ The model integrity should be verified to detect and prevent any unauthorized 
modifications that could occur during model installation, updates, and ideally every 
time it’s launched on the device.  

16 https://github.com/sigstore/model-transparency 
15 https://www.sigstore.dev/ 
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Inventory third-party and open-source code use 
●​ While managing dependencies is a standard challenge in software engineering, the 

rapid pace of AI development often involves integrating numerous external libraries, 
potentially increasing exposure to vulnerabilities. To mitigate these risks and 
enhance the security of the servers, containers, and cloud platforms hosting AI 
models, a key objective should be to catalog AI infrastructure that uses third-party 
or open-source code as comprehensively as possible, and integrate it as fully as 
possible into Vulnerability Management processes. 

●​ Conduct Red Team exercises and continuously monitor for potential security 
vulnerabilities, such as remote code execution exploits, that could compromise 
your AI infrastructure. 

Sandbox the AI model 
The runtime environment where an AI model executes is itself a critical piece of 
infrastructure that must be secured. This is especially true for agentic models that can 
take actions, such as executing generated code or interacting with other systems. For 
these use cases, the model—and any code used to run agents, tools or code generated by 
the model—must be run within a strictly controlled sandbox environment to contain its 
actions and limit potential harm. The specific sandboxing technologies to use are a deep 
and complex topic, but could include anything from virtual machine or hardened container 
runtime or even separate physical machines. 

To safely handle actions initiated by AI models—especially when they involve executing 
model-generated code or interacting with other systems—run them in a strictly controlled 
sandbox environment. This environment must enforce clear security policies and limit the 
AI’s capabilities. Grant only the minimum permissions essential for the task to limit the 
scope of potential impact. In particular, define and block risky or irreversible operations 
like sending emails or modifying data without explicit user approval.  

You can create these secure environments using confidential computing technologies (like 
Project Oak)17 for isolation, working alongside secure enclaves designed to protect code 
and data from the rest of the system. Alternatively, when AI interacts with external 
systems, enforce strict identity and authorization using methods like OAuth or service 
accounts with limited scope. 

17 https://github.com/project-oak/oak 
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While filtering the AI’s output (whether using simple regex or complex safety models) can 
add a layer of safety, the fundamental security assurance comes from the strong 
limitations imposed by the sandboxed execution environment itself.  

Security assurance for agentic integration 
The evolution of AI toward agentic systems—applications that allow models to reason 
about inputs and autonomously use digital tools on the user’s behalf—adds another layer 
to the security paradigm.18 The agent itself, armed with permissions to act and real-time 
connections to external tools and APIs, can become a vector for attack, potentially 
compromising the security and trustworthiness of previously secure applications.  

The core challenge lies in the agent’s ability to take action. For example, if an AI agent 
managing a user’s email encounters a prompt injection attack involving malicious 
instructions hidden within the text, the risk goes beyond a faulty summary. The agent 
could be tricked into executing harmful commands with the user’s authority, such as 
forwarding sensitive information, deleting critical data, or interacting with other 
applications in unintended ways.  

To perform useful tasks, agents often rely on standards, such as the Model Context 
Protocol (MCP),19 to access these external capabilities. This integration, however, 
introduces a significant new attack surface. Protocols that use natural language to 
describe tools are inherently susceptible to indirect prompt injection, where malicious 
instructions hidden in a tool's description or output data can be executed by the agent. A 
compromised or poorly secured tool could be used to exfiltrate sensitive data, perform 
unauthorized actions, or attack other parts of the infrastructure, making rigorous security 
assurance for these integrations an essential component of protecting the entire AI 
system. 

Test the integration 
To ensure the security of the final product, end-to-end testing of the entire system is 
critical. While individual components and application layers are often tested in isolation 
(for example, using unit tests), this approach doesn’t guarantee overall system security. 
This is because complex and often unpredictable interactions between these layers can 
introduce vulnerabilities that are only apparent when the system operates as a whole.  

Therefore, true end-to-end assurance requires testing the AI model's integration into the 
product, including its agentic interactions with other products and APIs. By adversarially 

19 https://modelcontextprotocol.io/docs/getting-started/intro 
18 https://storage.googleapis.com/gweb-research2023-media/pubtools/1018686.pdf 
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testing these integrations within simulated environments that closely mimic real-world 
scenarios, we can uncover novel vulnerabilities. This holistic approach provides verifiable 
evidence that previously mitigated threats remain resolved and that the agentic system is 
resilient against attacks. 

Harden AI integrations with third-party MCP servers 
When integrating AI with third-party MCP servers, especially those not fully trusted, it's 
crucial to mitigate potential security risks: 

●​ Employ an allowlist of the tools exposed by the MCP server; this restricts the AI's 
capabilities to only approved actions, reducing the attack surface and preventing 
your users from being exposed to potentially harmful operations. 

●​ Be aware that protocols like MCP (Model Context Protocol) and A2A 
(Agent-to-Agent), which expose tools and their natural language descriptions, are 
inherently susceptible to indirect prompt injection attacks. Therefore, all tool 
descriptions and any data flowing through MCP should be rigorously sanitized and 
validated to prevent malicious instructions from being interpreted and executed by 
the AI. The security elements around these types of protocols are still developing, 
and the industry is actively working on establishing standards to address these 
vulnerabilities.  

●​ Ensure that the MCP host, client, and server can all verify each other's identities 
before any sensitive commands or data are exchanged. This prevents unauthorized 
access and man-in-the-middle attacks, safeguarding the integrity and 
confidentiality of the interactions. 

●​ Leverage composite identities, which is crucial for hardening integrations. By 
linking a human’s intent with an AI agent’s action, these identities ensure granular 
access control and a clear audit trail, mitigating risk when extending operations to 
external environments. 

A baseline for security assurance 
The principles of security assurance—rigorous testing, adversarial thinking, and 
continuous verification—are not new. However, as this paper has detailed, their application 
in the age of generative AI represents a critical and necessary evolution. By adapting roles 
like Red Teaming, Vulnerability Management, and Threat Intelligence to address 
AI-specific risks—from data poisoning and model evasion to insecure supply chains—we 
can create a comprehensive defense that protects these systems from the inside out. 
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AI developers and data scientists can embed a security-first mindset into the development 
lifecycle, recognizing that security builds the essential foundation for confidence in a 
model’s quality and performance. Security assurance professionals can develop a new 
literacy in the probabilistic and complex nature of AI, translating traditional security 
wisdom for this new domain. Securing AI is a cross-functional imperative: the most robust 
and trustworthy AI products will be built by teams where AI and security expertise are not 
siloed, but rather work together from the start. 

Ultimately, the practices outlined here are about more than just patching vulnerabilities or 
fulfilling compliance checklists—they are about building a durable foundation of trust. This 
commitment to trust and responsible deployment echoes the core values found in 
Google’s AI Principles, which guide the creation of beneficial and safe AI systems. A 
proactive, transparent, and continuous security assurance program is not a constraint on 
innovation. On the contrary, it provides the confidence to build boldly, deploy responsibly, 
and deliver on the transformative promise of artificial intelligence. Doing so bridges the 
gap between initial experimentation and the responsible deployment of AI. 
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