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Background
Why and how do we search vectors?
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Vector Search: Searching multi-modal data

Shop inventory Query: find t-shirt like
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Embedding 
model

Near-neighbor search (NNS)
finds the most similar vectors

vectors[] Vector Search radius 4



Recommendation system
Find the 10 most similar products to my purchase

Semantic search
Find 5 modern and minimal apartments

Information retrieval
Google search

RAG
Find relevant data and augment an LLM prompt

Vector search is already a core operator
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SELECT … 
FROM tableX
ORDER BY distance(q, vector_col)
LIMIT BY K

- Models embed objects in a multidimensional space
- Modality-specific → toward general models
- Dimension sizes: [100s - 1000s dimensions]* (e.g.: [0.2, 0.1, 0.42, 1.2, …])
- Distance captures similarity

Embeddings

*Openai large3 models is 3072 dimensions 6

top-K nearest neighbors

sort on the distance from a 
query vector

[https://openai.com/index/clip/]

Embeddings make data “structured”



Near-neighbor search (NNS) is not scalable when it’s accurate
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[0.2, 0.1, …] 

[0.5, 0.1, …] 

[0.3, 0.6, …] 

[0.5, 0.1, …] 

…

[0.5, 0.1, …] 

Calculate distance 
from q and sort

Query: find top-3 vectors close to vector q

Expensive: O(#vectors) 

Approximate-NNS 
via Vector Indices

NNS

[…] 
[…] 

[…] 
[…] 

[…] 
[…] […] […] 

[…] 

Trade-off 
accuracy for performance 

distance

Visit subset of 
vectors



Leaf Centroids

Root node

Leaf Node

Vector Indices: Tree/Clustering

SCANN [Ruiqi Guo et al ICML 2020]
IVF [Dmitry Baranchuk et al  ECCV 2018]

Tree/Clustering Graph Hashing

8



Tree/Clustering Graph Hashing

Query Vector

    
    

 
    

    
 

Given a query vector,
find the closest centroids/leaves,
compute the distances to their 
vectors

Vector Indices: Tree/Clustering 

9



Tree/Clustering Graph Hashing

Entry point

Query Vector

num_neighbors = 2
(typically ~20 in practice)

Vector Indices: Graph

DiskANN [Suhas Jayaram Subramanya et al NeurIPS 2025]
HSNW [Yury Malkov et al ITPM 2020] 10



Tree/Clustering Graph Hashing

Vector Indices: Hash

h(   )

LSH based, …

LSH [ Alexandr Andoni et al NeurIPS 2015] 11



N1

N3

N4

N5

N2

Measuring the quality of ANN

12

Typically, we use recall@k:

𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 = |𝐴𝑁_k ∩ 𝑁_𝑘 | / 𝑘 Not always a good metric!!

q

N1-5 are the NN for q

Algorithm 1: Recall@5 = 4 
Algorithm 2: Recall@5 = 4 

Alternative methods
- RDE@k
- TDK@k
[Marco Patella et al SISAP 2008]
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Databases and Vector Search
Controlling the
Quality vs Performance Trade-off



Performance vs Recall Trade-off
in Approximate Nearest Neighbor Search 
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ANNS_search(q, K, search_effort_params)

How many vectors to visit to achieve a user specified target recall ?

Challenge
Queries have different 

hardness, different search effort 
is needed 

[Manos Chatzakis et al SIGMOD 2026]

Wasted Effort

Lower Recall.
Even more effort 
was needed 

Wasted Effort



Challenge: tuning the search effort parameters

15

Uniform autotuning for all queries
Learned offline models (eg Google’s CloudSQL VectorAssist)

Hard for users and experts to tune

ANNS_search(q, K, search_effort_params)

Different for each query
A model predicts the search effort parameters for each query/index

Adaptive
Decide to continue/stop (early stop) based on the current search state

[Manos Chatzakis et al SIGMOD 2026, Tiannuo Yang et al ICDE 2024, Jason Ansel et al PACT 2014]



Proprietary

Vector Search in SQL
Increases search quality by making use of 
structured + unstructured

AlloyDB AI

Vector Index 
(ScaNN & HNSW)

SQL & AI Query Engine
Structured &

Multimodal Data

Deep integration in SQL 
=> always up-to-date results

Combines & optimizes SQL + vector queries
=> ease-of-use, higher relevance  and optimized 
performance 
-> filtered vector search increasingly hot in R&D

At Target, we used AlloyDB to improve our online 
search experience. We used the ability to combine our 
structured and unstructured data to enhance the 
accuracy of natural language search queries by 20%!”

Visagan Subburayalu, VP of Infrastructure & Cybersecurity, 
Target 16



Filtered Vector Search (FVS): query structured and unstructured data

SELECT … 
FROM shop_invectory
WHERE col1 = True and col2 > 5
ORDER BY distance(q, vector_col)
LIMIT BY K

[0.2, 0.1, …] 
[0.5, 0.1, …] 

…
[0.5, 0.1, …] 

True
False

True

vector_col col1
(A)NNS

⋂

𝜎
K 
rowsChallenging but a “subcase”

3
4

5

col2

FVS = SQL + Vectors : + Joins
+ Subquery expressions
+ Multiple vectors search (on both sides of a join)
+ Dataset is not vector + tag stored in main memory 

(common setup for most information retrieval 
scenarios) 17
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Query Vector

    
    

 
    

    
 

For a query vector q,
find the closest centroids/leaves,
compute the distances to their 
vectors  that satisfy the conditions

For a LIMIT k query
-> there may not even be k 
rows/vectors that satisfy the condition
-> there may be k but the ones 
furthest away are inferior solutions

Inspect more centroids/leaves but 
the wasted effort Vs recall tradeoff 
becomes harder

Filtered Vector Search (FVS)

18



Quality & Ease-of-Use North Star(s) of Filtered Vector Search

19

Stable recall 
Developer tunes parameters for ~ target recall of pure vector search.
System more-or-less delivers target recall for filtered vector searches.

Declarative Recall 
Developer declares the target recall of the query. The database configures all 
the parameters to achieve the dev specified target recall and works for 
filtered vector search also.

* with high performance

Deliver performance & quality in a user-friendly way

Out-of-the-box high recall 
Should also work for filtered vector searches of many selectivities
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Filtered Vector Search 
Basic Execution Methods + Challenges



Recall & 
Performance 
Challenge

Basic execution methods

21

𝜎 NNS

𝜎: filter

No index 
Pre-filter Expensive

if filter is not selective
K 
rows

ANNS 𝜎Post-filter K 
rows

K’ 
rows

Recall Challenge Performance Challenge

K’ > K // 𝜎(K’) < K 
Low recall

K’ >> K
Wasted effort



Inline-Filter

22

ANNS

AND  𝜎 K 
rows

Vector 
Search

Vector Search 
Stopping Condition

Blur the line between ANNS and filtering 
to improve accuracy and performance

* multiple implementations of inline filtering

Recall Challenge Performance Challenge

𝜎: filter



X

Predicate Subgraph Traversal 

3
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Recall Challenge Performance Challenge

Filtered-out nodes 
DO NOT
participate in navigation

33

1

q

Start
2

4 5

Result

(a) Visit 1

Next to Visit

2 13

(b) Visit 2 1
2

Search Stops -> Low Recall
Connectivity Breaks

X

[https://weaviate.io/blog/speed-up-filtered-vector-search]

Graph Inline-Filtering #1

1

1 2
2 X

X



[https://weaviate.io/blog/speed-up-filtered-vector-search]

Sweeping
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1

q

Start
2

4 5

Result

(a) Visit 1

Next to Visit

2 13

(b) Visit 3

Graph remains connected at the cost 
of more distance computations

3X1
2

5
4

Recall Challenge Performance Challenge

1

1

3 3X

Graph Inline-Filtering #2

Filtered-out nodes 
DO
participate in navigation



Tree/Hashing Inline-Filtering

25

X Data vectors are only in the 
leaves, filter here

Recall Challenge Performance Challenge

X
X

Internal node navigation 
does not change



Indices are built on unfiltered data
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q

ANNS_search(q, K, search_effort_params)

How do we tune the search_effort_params?
 

Filters increase 
search effort and the
challenge of tuning the search parameters

X
X X

X

X

X

Recall Challenge Performance Challenge



Filter Selectivity
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Selective filters make it harder to find valid nodes

Selective filters

q X X

X
q X

X X
X

X

X

…

Recall Challenge Performance Challenge

X

search effort 

search effort increases



Value-Vector Correlation 

28

Captures the relationship between 
the probability of satisfying the filters 
and
the distance from the query vector.

qX

XX
X

XX
X

X

Positive correlation

Recall Challenge Performance Challenge

[Liana Patel et al SIGMOD 2024]



Value-Vector Correlation 
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Captures the relationship between 
the probability of satisfying the filters 
and
the distance from the query vector.

qX

XX
X

XX
X

X

Positive correlation

Recall Challenge Performance Challenge

[Liana Patel et al SIGMOD 2024]



Filter and Vector Correlation
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K=5

Positive correlation

Items like and category=
”summer clothes”

Negative Correlation

Items like and 
price > 10K $

search effort increases

search effort 

qX

XX
X

XX
X

X

q

XX

XX

XXX

No correlation

…

Recall Challenge Performance Challenge

Is using an index a 
good idea?



Performance challenge & Query Optimization
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COST =  f( #distance computations * cost_distcomp,   #filter evaluations * cost_filter )

Multiple 
access  
paths

Tree/graph/hash indices
ANN vs KNN
Batch vs one-at-time eval (*trees)
Index memory access pattern 

heap/columnar/b+tree
*not covering in-mem index

Multiple 
execution 
methods  

Choose: Pre-/post-/inline-filtering
- access path/query complexity affect costs
- selectivity and correlation impact # of filters/#dist comps

Recall Challenge Performance Challenge



Performance is query dependent
Filter-first vs Distance compute-first

32VS: filter first VS: distance comp first

20% Selectivity (filter-first wins)

Q
P

S

Recall

Dataset: beir-cohere-500k-filtered-dot-X

50% Selectivity (distcomp-first wind)

Recall Challenge Performance Challenge

[https://weaviate.io/blog/speed-up-filtered-vector-search]



- Dimensionality reduction (PCA, ...)

- Quantization
- Reduces precision 
- Trees offer more opportunities with residualization
- Best of both worlds: Score fast with quantized vectors, then, re-score 

with full precision 

Quantization + dimensionality reduction
Distance computation and access cost is relative to vector size 

 

33[Philip Sun et al NeurIPS 2023, RaBitQ Jianyang Gao et al SIGMOD 2024]

Recall Challenge Performance Challenge

Additional tuning knob : How much score vs re-score to do?



Not all datasets+queries are equally easy
and filters change hardness

34

Recall Challenge Performance Challenge

q

Easy Query

q
XX

X
X

Filters make it a 
Hard Query

[Zeyu Wang et al VLDB 2024, Martin Aumüller et al Information Systems 2020] 



Not all datasets+queries are equally easy
and filters change hardness

35

Recall Challenge Performance Challenge

q

Easy Query

q
XX

X
X

Filters make it a 
Hard Query

Local Intrinsic Dimensionality (LID) / Local Relative Contrast (LRC)
“How hard is it to distinguish kNN points from other points wrt the distance 
to the query?”

Steiner-Hardness 
Minimum Effort (ME) for graphs: Search effort specific to graphs. 

     Adapt for FVS queries?

[Zeyu Wang et al VLDB 2024, Martin Aumüller et al Information Systems 2020] 
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Avoid predictions: Adaptive Execution
DARTH 

Recall Challenge Performance Challenge

R
ec

al
l

Latency

[Manos Chatzakis et al SIGMOD 2026]



FVS with specialized indices
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Composite Indexes Classification

❏ Index shape
❏ Hashing 
❏ Graph 
❏ Tree (multi/single level)
❏ IVF

❏ Filter agnosticism

38

Already covered 
(and not specific to filtered search)

❏ Index types
❏ Value-induced 

neighborhood
❏ Predicate subgraph 

traversal

❏ Supported Filters
❏ Limited values 

(i.e. labels)
❏ Limited operations

❏ Limited filter cardinality 
ranges

Sometimes inherent to the 
composite index’ nature



Tightly coupled 
filter+search operators

More general 
(reuses off-the-shelve indexes)

More robust against new query filters

39

Filter agnosticism is a spectrum

Filters unknown 
at build time

Unmodified Index, Modified 
search

Inline filtering

Filters (values, ops) 
known at build time

Composite indexes
Search + filter

simultaneously

Prepartitioned 
Indexes

Search a partition

Filter Search Filter Search Search

Index by filter
Search

Filter agnosticism Types of composite indexes



Value-induced neighborhood

40

Ideally, we would build an index 
per filter

filter A
filter B

filter C

But…

Footprint is too high 
because of 
duplicated nodes!
or
Not enough data to 
build an index on 
small partitions

Emulate this partitioning with 
efficient footprint

Monolithic graph with 
pruning 

Composite index type #1 Composite index type #2 Composite index type #3
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Typically, similarity refers to 
embedding distance

dist = L2(p1, p2)

Involve attribute 
values in similarity
calculation

Generate new index based on 
attribute + embedding similarity

dist = f(L2(p1, p2), 
          sim(att1, att2)) 

Value-induced neighborhood

Composite index type #1 Composite index type #2 Composite index type #3



Predicate traversal
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Predicate traversal

Alternatively, we can reuse unfiltered 
indexes

Then, light up the right neighborhood 
at search time!

Current 
node

Use inline filtering to 
discover filter-passing 
nodes

Composite index type #1 Composite index type #2 Composite index type #3



Densified Predicate traversal
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Alternatively, we can reuse unfiltered 
indexes

Then, light up the right neighborhood 
at search time!

Use inline filtering to 
discover filter-passing 
nodes

Add edges to 
alleviate connectivity 
issue

Current 
node

Composite index type #1 Composite index type #2 Composite index type #3



Value-induced neighborhood

The archetypes of composite (graph) indexes

qp

qp
ep

Approximate prefiltered graph

Prefilter + stitch                        

Ex: StitchedVamana ep
qp

Composite distance

distance = f(attribute,embeddings)      

Ex: NHQ [2]

Filters known at 
build time

Filters unknown 
at build time

More general 
More robust 

Tightly coupled 
filter+search 

Patel@SIGMOD’24

Gollapudi@WWW’23

Wang@NIPS’23

Composite index type #1 Composite index type #2 Composite index type #3

Inline filtering to emulate 
pre-filtered subgraphs                              

ep

Densified predicate traversal

Ex: ACORN 

44

https://dl.acm.org/doi/10.1145/3543507.3583552#


Approximate subgraph traversal

45

Filters unknown 
at build time

Filters (values, ops) 
known at build time

Unmodified
Indexes

Value-induced neighborhood Prepartitioned 
Indexes

FilteredDiskANNACORN

NHQ

Composite index type #1 Composite index type #2 Composite index type #3

[Siddharth Gollapudi et al WWW 2023]

[Mengzhao Wang et al NeurIPS 2023]



Deep Dive on Filtered DiskANN (Gollapudi WWW ’23)

StitchedVamana FilteredVamana

Based on DiskANN (Vamana).

Better QPS @same recall
Faster index building
&
More amenable to incremental updates

46

Composite index type #1 Composite index type #2 Composite index type #3

Filter Stitch

Prune
For each attribute

Dataset 
points

Subgraph

Final graph

Dataset 
points

Find neighbors 
with similar 
labels

Insert

Prune

Final graph

https://dl.acm.org/doi/10.1145/3543507.3583552
https://dl.acm.org/doi/10.1145/3543507.3583552#
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Composite index type #1 Composite index type #2 Composite index type #3

Deep Dive on Filtered DiskANN (Gollapudi WWW ’23)

https://dl.acm.org/doi/10.1145/3543507.3583552
https://dl.acm.org/doi/10.1145/3543507.3583552#
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Composite index type #1 Composite index type #2 Composite index type #3

Deep Dive on Filtered DiskANN (Gollapudi WWW ’23)

https://dl.acm.org/doi/10.1145/3543507.3583552
https://dl.acm.org/doi/10.1145/3543507.3583552#


Composite distance: NHQ (Wang NIPS’23)
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Filters unknown 
at build time

Filters (values, ops) 
known at build time

Unmodified
Indexes

Value-induced neighborhood Prepartitioned 
Indexes

ACORN

Composite index type #1 Composite index type #2 Composite index type #3

FilteredDiskANN

NHQ
[Siddharth Gollapudi et al WWW 2023]

[Mengzhao Wang et al NeurIPS 2023]



Composite 
graph index

Similarity 
distance

Attribute 
distance

Dist 
fusion

Vector 
embedding

Attribute(s) 

(k) Filtered 
most similar 
datapoints

The more filter values in common two edges 
ei, ej, have, the smaller the distance 𝘟.

Here k refers to each filter values 
(m is max # of filter values).

Deep Dive on NHQ  (Wang NIPS’23)

50

Composite index type #1 Composite index type #2 Composite index type #3

https://dl.acm.org/doi/10.5555/3666122.3666814


Experimental setup

51

Composite index type #1 Composite index type #2 Composite index type #3



NHQ vs. FilteredDiskANN

NHQ-DiskANN >> Filtered–DiskANN (in-memory or disk)

Note: Equality filter conditions for non-intersecting sets may benefit from 
Stitched/FilteredVamana over NHQ. 52

Composite index type #1 Composite index type #2 Composite index type #3



Densified predicate traversal: ACORN
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Filters unknown 
at build time

Filters (values, ops) 
known at build time

Unmodified
Indexes

Value-induced neighborhood Prepartitioned 
Indexes

ACORN

Composite index type #1 Composite index type #2 Composite index type #3

[Liana Patel et al SIGMOD 2024] FilteredDiskANN

NHQ
[Siddharth Gollapudi et al WWW 2023]

[Mengzhao Wang et al NeurIPS 2023]
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Deep Dive on ACORN (Patel SIGMOD’24)

Densified Predicate traversal

Reuse unfiltered indexes Then, light up the right neighborhood 
at search time!

Use inline filtering to 
discover filter-passing 
nodes

Current 
node

Add edges to 
alleviate connectivity 
issue

Composite index type #1 Composite index type #2 Composite index type #3

https://dl.acm.org/doi/10.1145/3654923
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Deep Dive on ACORN  (Patel SIGMOD’24)
1) Adds edges to avoid islands

2) Filter Agnostic

3) Not composite

Composite index type #1 Composite index type #2 Composite index type #3

https://dl.acm.org/doi/10.1145/3654923


Deep Dive on ACORN  (Patel SIGMOD’24)

56

Two variants:

1) ACORN-1: faster to build 

2) ACORN-γ: faster to search

Composite index type #1 Composite index type #2 Composite index type #3

https://dl.acm.org/doi/10.1145/3654923


Experimental setup of ACORN (Patel SIGMOD’24)
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Composite index type #1 Composite index type #2 Composite index type #3

https://dl.acm.org/doi/10.1145/3654923


Experiments of ACORN (Patel SIGMOD’24)

ACORN outperforms both Filtered DiskANN and NHQ for a fixed recall, while maintaining 
generality (not specialized to a single filter value).

Oracle Partitions = Ideal Filtered HNSW (upper bound for performance)

Composite index type #1 Composite index type #2 Composite index type #3

58

https://dl.acm.org/doi/10.1145/3654923


Future directions
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Many research challenges ahead…

● Autotuning: High quality and efficient filtered vector search
○ Index hyperparameter auto-tuning

○ Index data structure: Tree vs graph vs other

○ Search algorithm for inlined FVS: Iterative, sweeping, others…

● Quality metrics better suited for filtered vector search

● Benchmarking
○ Focus on filtered search and correlation between relational columns and vectors

[In progress effort led by Yannis Chronis @ ETH]



61

Many research challenges ahead…

● Query optimization
○ Correct choice is highly sensitive to selectivity, which could be erroneous 

○ Adaptive execution 

○ Correlation within tables, across joins 

○ No longer just about latency/throughput but also about high quality

● Embedding similarity metrics
○ Other metrics beyond cosine

○ User-specified metrics

○ Auto-selection based on workloads



Many research challenges ahead…

Hybrid search: combining 
full-text keyword search and 
vector similarity 

How to merge the two ranked 
lists?

● Fixed weights
● Dynamically adjust to 

workload

How to add relational filters to 
the mix?

62

FT
Index

Vector
Index

ranked list ranked list

Merged ranked list



Optimization of the complete pipeline…

63

Vector
Search

LLM

How many 
candidates and 
how accurate 
optimize the 

global tradeoff?

Final answer

RAG pipeline

End-to-end accuracy is what 
the customers see

Automating the entire pipeline 
becomes challenging
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