
State-of-the-art
Filtered Vector Search
Research Opportunities
Yannis Chronis

Helena Caminal

Yannis Papakonstantinou

Fatma Özcan

Anastasia Ailamaki

Acknowledgements to: Manos Chatzakis

Outline

2

1) Background

2) Databases and Vector Search & Quality Performance Tradeoff

3) Basic Execution Methods & Challenges

4) Specialized Filtered Vector Search Indices

5) Future Research Directions

Background
Why and how do we search vectors?

Filtered Vector Search State-of-the-art & Research Opportunities

Vector Search: Searching multi-modal data

Shop inventory Query: find t-shirt like

o1

o2

o3

o4

q

o1 o2

o3
o4

q
o6

o9
o8

Embedding
model

Near-neighbor search (NNS)
finds the most similar vectors

vectors[] Vector Search radius 4

Recommendation system
Find the 10 most similar products to my purchase

Semantic search
Find 5 modern and minimal apartments

Information retrieval
Google search

RAG
Find relevant data and augment an LLM prompt

Vector search is already a core operator

5

SELECT …
FROM tableX
ORDER BY distance(q, vector_col)
LIMIT BY K

- Models embed objects in a multidimensional space
- Modality-specific → toward general models
- Dimension sizes: [100s - 1000s dimensions]* (e.g.: [0.2, 0.1, 0.42, 1.2, …])
- Distance captures similarity

Embeddings

*Openai large3 models is 3072 dimensions 6

top-K nearest neighbors

sort on the distance from a
query vector

[https://openai.com/index/clip/]

Embeddings make data “structured”

Near-neighbor search (NNS) is not scalable when it’s accurate

7

[0.2, 0.1, …]

[0.5, 0.1, …]

[0.3, 0.6, …]

[0.5, 0.1, …]

…

[0.5, 0.1, …]

0.5

1.1

2

5

50

[0.2, 0.1, …]

[0.5, 0.1, …]

[0.3, 0.6, …]

[0.5, 0.1, …]

…

[0.5, 0.1, …]

Calculate distance
from q and sort

Query: find top-3 vectors close to vector q

Expensive: O(#vectors)

Approximate-NNS
via Vector Indices

NNS

[…]
[…]

[…]
[…]

[…]
[…] […] […]

[…]

Trade-off
accuracy for performance

distance

Visit subset of
vectors

Leaf Centroids

Root node

Leaf Node

Vector Indices: Tree/Clustering

SCANN [Ruiqi Guo et al ICML 2020]
IVF [Dmitry Baranchuk et al ECCV 2018]

Tree/Clustering Graph Hashing

8

Tree/Clustering Graph Hashing

Query Vector

Given a query vector,
find the closest centroids/leaves,
compute the distances to their
vectors

Vector Indices: Tree/Clustering

9

Tree/Clustering Graph Hashing

Entry point

Query Vector

num_neighbors = 2
(typically ~20 in practice)

Vector Indices: Graph

DiskANN [Suhas Jayaram Subramanya et al NeurIPS 2025]
HSNW [Yury Malkov et al ITPM 2020] 10

Tree/Clustering Graph Hashing

Vector Indices: Hash

h()

LSH based, …

LSH [Alexandr Andoni et al NeurIPS 2015] 11

N1

N3

N4

N5

N2

Measuring the quality of ANN

12

Typically, we use recall@k:

𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 = |𝐴𝑁_k ∩ 𝑁_𝑘 | / 𝑘 Not always a good metric!!

q

N1-5 are the NN for q

Algorithm 1: Recall@5 = 4
Algorithm 2: Recall@5 = 4

Alternative methods
- RDE@k
- TDK@k
[Marco Patella et al SISAP 2008]

Filtered Vector Search State-of-the-art & Research Opportunities

Databases and Vector Search
Controlling the
Quality vs Performance Trade-off

Performance vs Recall Trade-off
in Approximate Nearest Neighbor Search

14

ANNS_search(q, K, search_effort_params)

How many vectors to visit to achieve a user specified target recall ?

Challenge
Queries have different

hardness, different search effort
is needed

[Manos Chatzakis et al SIGMOD 2026]

Wasted Effort

Lower Recall.
Even more effort
was needed

Wasted Effort

Challenge: tuning the search effort parameters

15

Uniform autotuning for all queries
Learned offline models (eg Google’s CloudSQL VectorAssist)

Hard for users and experts to tune

ANNS_search(q, K, search_effort_params)

Different for each query
A model predicts the search effort parameters for each query/index

Adaptive
Decide to continue/stop (early stop) based on the current search state

[Manos Chatzakis et al SIGMOD 2026, Tiannuo Yang et al ICDE 2024, Jason Ansel et al PACT 2014]

Proprietary

Vector Search in SQL
Increases search quality by making use of
structured + unstructured

AlloyDB AI

Vector Index
(ScaNN & HNSW)

SQL & AI Query Engine
Structured &

Multimodal Data

Deep integration in SQL
=> always up-to-date results

Combines & optimizes SQL + vector queries
=> ease-of-use, higher relevance and optimized
performance
-> filtered vector search increasingly hot in R&D

At Target, we used AlloyDB to improve our online
search experience. We used the ability to combine our
structured and unstructured data to enhance the
accuracy of natural language search queries by 20%!”

Visagan Subburayalu, VP of Infrastructure & Cybersecurity,
Target 16

Filtered Vector Search (FVS): query structured and unstructured data

SELECT …
FROM shop_invectory
WHERE col1 = True and col2 > 5
ORDER BY distance(q, vector_col)
LIMIT BY K

[0.2, 0.1, …]
[0.5, 0.1, …]

…
[0.5, 0.1, …]

True
False

True

vector_col col1
(A)NNS

⋂

𝜎
K
rowsChallenging but a “subcase”

3
4

5

col2

FVS = SQL + Vectors : + Joins
+ Subquery expressions
+ Multiple vectors search (on both sides of a join)
+ Dataset is not vector + tag stored in main memory

(common setup for most information retrieval
scenarios) 17

018

Query Vector

For a query vector q,
find the closest centroids/leaves,
compute the distances to their
vectors that satisfy the conditions

For a LIMIT k query
-> there may not even be k
rows/vectors that satisfy the condition
-> there may be k but the ones
furthest away are inferior solutions

Inspect more centroids/leaves but
the wasted effort Vs recall tradeoff
becomes harder

Filtered Vector Search (FVS)

18

Quality & Ease-of-Use North Star(s) of Filtered Vector Search

19

Stable recall
Developer tunes parameters for ~ target recall of pure vector search.
System more-or-less delivers target recall for filtered vector searches.

Declarative Recall
Developer declares the target recall of the query. The database configures all
the parameters to achieve the dev specified target recall and works for
filtered vector search also.

* with high performance

Deliver performance & quality in a user-friendly way

Out-of-the-box high recall
Should also work for filtered vector searches of many selectivities

Filtered Vector Search State-of-the-art & Research Opportunities

Filtered Vector Search
Basic Execution Methods + Challenges

Recall &
Performance
Challenge

Basic execution methods

21

𝜎 NNS

𝜎: filter

No index
Pre-filter Expensive

if filter is not selective
K
rows

ANNS 𝜎Post-filter K
rows

K’
rows

Recall Challenge Performance Challenge

K’ > K // 𝜎(K’) < K
Low recall

K’ >> K
Wasted effort

Inline-Filter

22

ANNS

AND 𝜎 K
rows

Vector
Search

Vector Search
Stopping Condition

Blur the line between ANNS and filtering
to improve accuracy and performance

* multiple implementations of inline filtering

Recall Challenge Performance Challenge

𝜎: filter

X

Predicate Subgraph Traversal

3

23

Recall Challenge Performance Challenge

Filtered-out nodes
DO NOT
participate in navigation

33

1

q

Start
2

4 5

Result

(a) Visit 1

Next to Visit

2 13

(b) Visit 2 1
2

Search Stops -> Low Recall
Connectivity Breaks

X

[https://weaviate.io/blog/speed-up-filtered-vector-search]

Graph Inline-Filtering #1

1

1 2
2 X

X

[https://weaviate.io/blog/speed-up-filtered-vector-search]

Sweeping

24

33

1

q

Start
2

4 5

Result

(a) Visit 1

Next to Visit

2 13

(b) Visit 3

Graph remains connected at the cost
of more distance computations

3X1
2

5
4

Recall Challenge Performance Challenge

1

1

3 3X

Graph Inline-Filtering #2

Filtered-out nodes
DO
participate in navigation

Tree/Hashing Inline-Filtering

25

X Data vectors are only in the
leaves, filter here

Recall Challenge Performance Challenge

X
X

Internal node navigation
does not change

Indices are built on unfiltered data

26

q

ANNS_search(q, K, search_effort_params)

How do we tune the search_effort_params?

Filters increase
search effort and the
challenge of tuning the search parameters

X
X X

X

X

X

Recall Challenge Performance Challenge

Filter Selectivity

27

Selective filters make it harder to find valid nodes

Selective filters

q X X

X
q X

X X
X

X

X

…

Recall Challenge Performance Challenge

X

search effort

search effort increases

Value-Vector Correlation

28

Captures the relationship between
the probability of satisfying the filters
and
the distance from the query vector.

qX

XX
X

XX
X

X

Positive correlation

Recall Challenge Performance Challenge

[Liana Patel et al SIGMOD 2024]

Value-Vector Correlation

29

Captures the relationship between
the probability of satisfying the filters
and
the distance from the query vector.

qX

XX
X

XX
X

X

Positive correlation

Recall Challenge Performance Challenge

[Liana Patel et al SIGMOD 2024]

Filter and Vector Correlation

30

K=5

Positive correlation

Items like and category=
”summer clothes”

Negative Correlation

Items like and
price > 10K $

search effort increases

search effort

qX

XX
X

XX
X

X

q

XX

XX

XXX

No correlation

…

Recall Challenge Performance Challenge

Is using an index a
good idea?

Performance challenge & Query Optimization

31

COST = f(#distance computations * cost_distcomp, #filter evaluations * cost_filter)

Multiple
access
paths

Tree/graph/hash indices
ANN vs KNN
Batch vs one-at-time eval (*trees)
Index memory access pattern

heap/columnar/b+tree
*not covering in-mem index

Multiple
execution
methods

Choose: Pre-/post-/inline-filtering
- access path/query complexity affect costs
- selectivity and correlation impact # of filters/#dist comps

Recall Challenge Performance Challenge

Performance is query dependent
Filter-first vs Distance compute-first

32VS: filter first VS: distance comp first

20% Selectivity (filter-first wins)

Q
P

S

Recall

Dataset: beir-cohere-500k-filtered-dot-X

50% Selectivity (distcomp-first wind)

Recall Challenge Performance Challenge

[https://weaviate.io/blog/speed-up-filtered-vector-search]

- Dimensionality reduction (PCA, ...)

- Quantization
- Reduces precision
- Trees offer more opportunities with residualization
- Best of both worlds: Score fast with quantized vectors, then, re-score

with full precision

Quantization + dimensionality reduction
Distance computation and access cost is relative to vector size

33[Philip Sun et al NeurIPS 2023, RaBitQ Jianyang Gao et al SIGMOD 2024]

Recall Challenge Performance Challenge

Additional tuning knob : How much score vs re-score to do?

Not all datasets+queries are equally easy
and filters change hardness

34

Recall Challenge Performance Challenge

q

Easy Query

q
XX

X
X

Filters make it a
Hard Query

[Zeyu Wang et al VLDB 2024, Martin Aumüller et al Information Systems 2020]

Not all datasets+queries are equally easy
and filters change hardness

35

Recall Challenge Performance Challenge

q

Easy Query

q
XX

X
X

Filters make it a
Hard Query

Local Intrinsic Dimensionality (LID) / Local Relative Contrast (LRC)
“How hard is it to distinguish kNN points from other points wrt the distance
to the query?”

Steiner-Hardness
Minimum Effort (ME) for graphs: Search effort specific to graphs.

 Adapt for FVS queries?

[Zeyu Wang et al VLDB 2024, Martin Aumüller et al Information Systems 2020]

36

Avoid predictions: Adaptive Execution
DARTH

Recall Challenge Performance Challenge

R
ec

al
l

Latency

[Manos Chatzakis et al SIGMOD 2026]

FVS with specialized indices

Filtered Vector Search State-of-the-art & Research Opportunities

Composite Indexes Classification

❏ Index shape
❏ Hashing
❏ Graph
❏ Tree (multi/single level)
❏ IVF

❏ Filter agnosticism

38

Already covered
(and not specific to filtered search)

❏ Index types
❏ Value-induced

neighborhood
❏ Predicate subgraph

traversal

❏ Supported Filters
❏ Limited values

(i.e. labels)
❏ Limited operations

❏ Limited filter cardinality
ranges

Sometimes inherent to the
composite index’ nature

Tightly coupled
filter+search operators

More general
(reuses off-the-shelve indexes)

More robust against new query filters

39

Filter agnosticism is a spectrum

Filters unknown
at build time

Unmodified Index, Modified
search

Inline filtering

Filters (values, ops)
known at build time

Composite indexes
Search + filter

simultaneously

Prepartitioned
Indexes

Search a partition

Filter Search Filter Search Search

Index by filter
Search

Filter agnosticism Types of composite indexes

Value-induced neighborhood

40

Ideally, we would build an index
per filter

filter A
filter B

filter C

But…

Footprint is too high
because of
duplicated nodes!
or
Not enough data to
build an index on
small partitions

Emulate this partitioning with
efficient footprint

Monolithic graph with
pruning

Composite index type #1 Composite index type #2 Composite index type #3

41

Typically, similarity refers to
embedding distance

dist = L2(p1, p2)

Involve attribute
values in similarity
calculation

Generate new index based on
attribute + embedding similarity

dist = f(L2(p1, p2),
 sim(att1, att2))

Value-induced neighborhood

Composite index type #1 Composite index type #2 Composite index type #3

Predicate traversal

42

Predicate traversal

Alternatively, we can reuse unfiltered
indexes

Then, light up the right neighborhood
at search time!

Current
node

Use inline filtering to
discover filter-passing
nodes

Composite index type #1 Composite index type #2 Composite index type #3

Densified Predicate traversal

43

Alternatively, we can reuse unfiltered
indexes

Then, light up the right neighborhood
at search time!

Use inline filtering to
discover filter-passing
nodes

Add edges to
alleviate connectivity
issue

Current
node

Composite index type #1 Composite index type #2 Composite index type #3

Value-induced neighborhood

The archetypes of composite (graph) indexes

qp

qp
ep

Approximate prefiltered graph

Prefilter + stitch

Ex: StitchedVamana ep
qp

Composite distance

distance = f(attribute,embeddings)

Ex: NHQ [2]

Filters known at
build time

Filters unknown
at build time

More general
More robust

Tightly coupled
filter+search

Patel@SIGMOD’24

Gollapudi@WWW’23

Wang@NIPS’23

Composite index type #1 Composite index type #2 Composite index type #3

Inline filtering to emulate
pre-filtered subgraphs

ep

Densified predicate traversal

Ex: ACORN

44

https://dl.acm.org/doi/10.1145/3543507.3583552#

Approximate subgraph traversal

45

Filters unknown
at build time

Filters (values, ops)
known at build time

Unmodified
Indexes

Value-induced neighborhood Prepartitioned
Indexes

FilteredDiskANNACORN

NHQ

Composite index type #1 Composite index type #2 Composite index type #3

[Siddharth Gollapudi et al WWW 2023]

[Mengzhao Wang et al NeurIPS 2023]

Deep Dive on Filtered DiskANN (Gollapudi WWW ’23)

StitchedVamana FilteredVamana

Based on DiskANN (Vamana).

Better QPS @same recall
Faster index building
&
More amenable to incremental updates

46

Composite index type #1 Composite index type #2 Composite index type #3

Filter Stitch

Prune
For each attribute

Dataset
points

Subgraph

Final graph

Dataset
points

Find neighbors
with similar
labels

Insert

Prune

Final graph

https://dl.acm.org/doi/10.1145/3543507.3583552
https://dl.acm.org/doi/10.1145/3543507.3583552#

47

Composite index type #1 Composite index type #2 Composite index type #3

Deep Dive on Filtered DiskANN (Gollapudi WWW ’23)

https://dl.acm.org/doi/10.1145/3543507.3583552
https://dl.acm.org/doi/10.1145/3543507.3583552#

48

Composite index type #1 Composite index type #2 Composite index type #3

Deep Dive on Filtered DiskANN (Gollapudi WWW ’23)

https://dl.acm.org/doi/10.1145/3543507.3583552
https://dl.acm.org/doi/10.1145/3543507.3583552#

Composite distance: NHQ (Wang NIPS’23)

49

Filters unknown
at build time

Filters (values, ops)
known at build time

Unmodified
Indexes

Value-induced neighborhood Prepartitioned
Indexes

ACORN

Composite index type #1 Composite index type #2 Composite index type #3

FilteredDiskANN

NHQ
[Siddharth Gollapudi et al WWW 2023]

[Mengzhao Wang et al NeurIPS 2023]

Composite
graph index

Similarity
distance

Attribute
distance

Dist
fusion

Vector
embedding

Attribute(s)

(k) Filtered
most similar
datapoints

The more filter values in common two edges
ei, ej, have, the smaller the distance 𝘟.

Here k refers to each filter values
(m is max # of filter values).

Deep Dive on NHQ (Wang NIPS’23)

50

Composite index type #1 Composite index type #2 Composite index type #3

https://dl.acm.org/doi/10.5555/3666122.3666814

Experimental setup

51

Composite index type #1 Composite index type #2 Composite index type #3

NHQ vs. FilteredDiskANN

NHQ-DiskANN >> Filtered–DiskANN (in-memory or disk)

Note: Equality filter conditions for non-intersecting sets may benefit from
Stitched/FilteredVamana over NHQ. 52

Composite index type #1 Composite index type #2 Composite index type #3

Densified predicate traversal: ACORN

53

Filters unknown
at build time

Filters (values, ops)
known at build time

Unmodified
Indexes

Value-induced neighborhood Prepartitioned
Indexes

ACORN

Composite index type #1 Composite index type #2 Composite index type #3

[Liana Patel et al SIGMOD 2024] FilteredDiskANN

NHQ
[Siddharth Gollapudi et al WWW 2023]

[Mengzhao Wang et al NeurIPS 2023]

54

Deep Dive on ACORN (Patel SIGMOD’24)

Densified Predicate traversal

Reuse unfiltered indexes Then, light up the right neighborhood
at search time!

Use inline filtering to
discover filter-passing
nodes

Current
node

Add edges to
alleviate connectivity
issue

Composite index type #1 Composite index type #2 Composite index type #3

https://dl.acm.org/doi/10.1145/3654923

55

Deep Dive on ACORN (Patel SIGMOD’24)
1) Adds edges to avoid islands

2) Filter Agnostic

3) Not composite

Composite index type #1 Composite index type #2 Composite index type #3

https://dl.acm.org/doi/10.1145/3654923

Deep Dive on ACORN (Patel SIGMOD’24)

56

Two variants:

1) ACORN-1: faster to build

2) ACORN-γ: faster to search

Composite index type #1 Composite index type #2 Composite index type #3

https://dl.acm.org/doi/10.1145/3654923

Experimental setup of ACORN (Patel SIGMOD’24)

57

Composite index type #1 Composite index type #2 Composite index type #3

https://dl.acm.org/doi/10.1145/3654923

Experiments of ACORN (Patel SIGMOD’24)

ACORN outperforms both Filtered DiskANN and NHQ for a fixed recall, while maintaining
generality (not specialized to a single filter value).

Oracle Partitions = Ideal Filtered HNSW (upper bound for performance)

Composite index type #1 Composite index type #2 Composite index type #3

58

https://dl.acm.org/doi/10.1145/3654923

Future directions

Filtered Vector Search State-of-the-art & Research Opportunities

60

Many research challenges ahead…

● Autotuning: High quality and efficient filtered vector search
○ Index hyperparameter auto-tuning

○ Index data structure: Tree vs graph vs other

○ Search algorithm for inlined FVS: Iterative, sweeping, others…

● Quality metrics better suited for filtered vector search

● Benchmarking
○ Focus on filtered search and correlation between relational columns and vectors

[In progress effort led by Yannis Chronis @ ETH]

61

Many research challenges ahead…

● Query optimization
○ Correct choice is highly sensitive to selectivity, which could be erroneous

○ Adaptive execution

○ Correlation within tables, across joins

○ No longer just about latency/throughput but also about high quality

● Embedding similarity metrics
○ Other metrics beyond cosine

○ User-specified metrics

○ Auto-selection based on workloads

Many research challenges ahead…

Hybrid search: combining
full-text keyword search and
vector similarity

How to merge the two ranked
lists?

● Fixed weights
● Dynamically adjust to

workload

How to add relational filters to
the mix?

62

FT
Index

Vector
Index

ranked list ranked list

Merged ranked list

Optimization of the complete pipeline…

63

Vector
Search

LLM

How many
candidates and
how accurate
optimize the

global tradeoff?

Final answer

RAG pipeline

End-to-end accuracy is what
the customers see

Automating the entire pipeline
becomes challenging

[1] 2023. Brie Wolfson. Building chat langchain. https://blog.langchain.dev/buildingchat-langchain-2/)).
[2] 2025. Facebook FAISS. https://github.com/facebookresearch/faiss.
[3] 2025. Oracle Vector Search Manual,.
https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/ai-vector-search-users-guide.pdf.
[4] 2025. Pinecone. https://www.pinecone.io/.
[5] 2025. ScaNN. github.com/google-research/google-research/tree/master/scann.
[6] 2025. ScaNN for AlloyDB,. https://services.google.com/fh/files/misc/scann_for_
alloydb_whitepaper.pdf.
[7] 2025. SPTAG: A Library for Fast Approximate Nearest Neighbor Search. https://github.com/Microsoft/SPTAG.
[8] 2025. Weviate. https://weaviate.io/.
[9] Akari Asai, Sewon Min, Zexuan Zhong, and Danqi Chen. 2023. Retrieval-based language models and applications. In Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (Volume 6: Tutorial Abstracts).
[10] Oren Barkan and Noam Koenigstein. 2016. Item2vec: neural item embedding for collaborative filtering. In 2016 IEEE 26th international
workshop on machine learning for signal processing (MLSP). IEEE, 1–6.
[11] Fedor Borisyuk, Siddarth Malreddy, Jun Mei, Yiqun Liu, Xiaoyi Liu, Piyush Maheshwari, Anthony Bell, and Kaushik Rangadurai. 2021.
VisRel: Media search at scale. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 2584–2592.
[12] Cheng Chen, Chenzhe Jin, Yunan Zhang, Sasha Podolsky, Chun Wu, Szu Po Wang, Eric Hanson, Zhou Sun, Robert Walzer, and Jianguo
Wang. 2024. SingleStore-V: An Integrated Vector Database System in SingleStore. Proc. VLDB Endow. 17, 12 (Aug. 2024), 3772–3785.
https://doi.org/10.14778/3685800.3685805
[13] James C. Corbett and et. al. 2013. Spanner: Google’s Globally Distributed Database. ACM Trans. Comput. Syst. 31, 3, Article 8 (Aug.
2013), 22 pages. https://doi.org/10.1145/2491245
[14] Sanjoy Dasgupta and Yoav Freund. 2008. Random projection trees and low dimensional manifolds. In Proceedings of the fortieth annual
ACM symposium on Theory of computing. 537–546. 64

References

[15] Xin Luna Dong. 2024. The Journey to a Knowledgeable Assistant with Retrieval-Augmented Generation (RAG) (SIGMOD/PODS ’24).
Association for Computing Machinery, New York, NY, USA, 3. https://doi.org/10.1145/3626246.3655999
[16] Ming Du, Arnau Ramisa, Amit Kumar KC, Sampath Chanda, Mengjiao Wang, Neelakandan Rajesh, Shasha Li, Yingchuan Hu, Tao Zhou,
Nagashri Lakshminarayana, et al . 2022. Amazon shop the look: A visual search system for fashion and home. In Proceedings of the 28th ACM
SIGKDD conference on knowledge discovery and data mining. 2822–2830.
[17] Karima Echihabi, Kostas Zoumpatianos, and Themis Palpanas. 2021. New trends in high-D vector similarity search: al-driven, progressive,
and distributed. Proc. VLDB Endow. 14, 12 (July 2021), 3198–3201. https://doi.org/10.14778/3476311.3476407
[18] Karima Echihabi, Kostas Zoumpatianos, and Themis Palpanas. 2021. New trends in high-d vector similarity search: al-driven, progressive,
and distributed. Proceedings of the VLDB Endowment 14, 12 (2021), 3198–3201.
[19] Jianyang Gao, Yutong Gou, Yuexuan Xu, Yongyi Yang, Cheng Long, and Raymond Chi-Wing Wong. 2024. Practical and Asymptotically
Optimal Quantization of High-Dimensional Vectors in Euclidean Space for Approximate Nearest Neighbor Search. arXiv:2409.09913 [cs.DB]
https://arxiv.org/abs/2409.09913
[20] Siddharth Gollapudi and et. al. 2023. Filtered-DiskANN: Graph Algorithms for Approximate Nearest Neighbor Search with Filters. In WWW
’23 (Austin, TX, USA). Association for Computing Machinery, New York, NY, USA, 3406–3416. https://doi.org/10.1145/3543507.3583552
[21] Martin Grohe. 2020. word2vec, node2vec, graph2vec, x2vec: Towards a theory of vector embeddings of structured data. In proceedings of
the 39th ACM SIGMOD-SIGACT-SIGAI symposium on principles of database systems. 1–16.
[22] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and Sanjiv Kumar. 2020. Accelerating Large-Scale Inference
with Anisotropic Vector Quantization. In International Conference on Machine Learning. Https: //arxiv.org/abs/1908.10396
[23] Jiawei Han, Xifeng Yan, and Philip S. Yu. 2006. Mining, Indexing, and Similarity Search in Graphs and Complex Structures. In Proceedings
of the 22nd International Conference on Data Engineering (ICDE ’06). IEEE Computer Society, USA, 106.
https://doi.org/10.1109/ICDE.2006.99
[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 770–778. 65

References

[25] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity search with GPUs. IEEE Transactions on Big Data 7, 3
(2019), 535–547.
[26] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2015. How good are query optimizers,
really? Proc. VLDB Endow. 9, 3 (Nov. 2015), 204–215. https://doi.org/10.14778/2850583.2850594
[27] Yu A. Malkov and D. A. Yashunin. 2020. Efficient and Robust Approximate Nearest Neighbor Search Using Hierarchical Navigable Small
World Graphs. IEEE Trans. Pattern Anal. Mach. Intell. 42, 4 (April 2020), 824–836. https://doi.org/10.1109/TPAMI.2018.2889473
[28] Yusuke Matsui, Yusuke Uchida, Hervé Jégou, and Shin’ichi Satoh. 2018. A survey of product quantization. ITE Transactions on Media
Technology and Applications 6, 1 (2018), 2–10.
[29] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt Tolton, Theo Vassilakis, Hossein Ahmadi, Dan
Delorey, Slava Min, Mosha Pasumansky, and Jeff Shute. 2020. Dremel: a decade of interactive SQL analysis at web scale. Proc. VLDB Endow.
13, 12 (Aug. 2020), 3461–3472. https://doi.org/10.14778/3415478.3415568
[30] James Jie Pan, Jianguo Wang, and Guoliang Li. 2024. Survey of vector database management systems. The VLDB Journal 33, 5 (July
2024), 1591–1615. https://doi.org/10.1007/s00778-024-00864-x
[31] Liana Patel, Peter Kraft, Carlos Guestrin, and Matei Zaharia. 2024. ACORN:Performant and Predicate-Agnostic Search Over Vector
Embeddings and Structured Data. Proc. ACM Manag. Data 2, 3, Article 120 (May 2024), 27 pages.https://doi.org/10.1145/3654923
[32] Jianbin Qin, Wei Wang, Chuan Xiao, Ying Zhang, and Yaoshu Wang. 2021. High- dimensional similarity query processing for data science.
In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 4062–4063.
[33] Parikshit Ram and Kaushik Sinha. 2019. Revisiting kd-tree for nearest neighbor search. In Proceedings of the 25th acm sigkdd
international conference on knowledge discovery & data mining. 1378–1388.
[34] Patrick Schäfer, Jakob Brand, Ulf Leser, Botao Peng, and Themis Palpanas. 2024. Fast and Exact Similarity Search in less than a Blink of
an Eye. arXiv preprint arXiv:2411.17483 (2024).
[35] Michael Stonebraker and Greg Kemnitz. 1991. The POSTGRES next generation database management system. Commun. ACM 34, 10
(Oct. 1991), 78–92. https://doi.org/10.1145/125223.125262 66

References

[36] Suhas Jayaram Subramanya, Devvrit, Rohan Kadekodi, Ravishankar Kr-ishaswamy, and Harsha Vardhan Simhadri. 2019. DiskANN: fast
accurate billion-point nearest neighbor search on a single node. Curran Associates Inc., Red Hook, NY, USA.
[37] Philip Sun, David Simcha, Dave Dopson, Ruiqi Guo, and Sanjiv Kumar. 2023. SOAR: Improved Indexing for Approximate Nearest
Neighbor Search. In Neural Information Processing Systems. https://arxiv.org/abs/2404.00774
[38] Jianguo Wang and et. al. 2021. Milvus: A Purpose-Built Vector Data Management System. In Proceedings of the 2021 International
Conference on Management of Data (Virtual Event, China) (SIGMOD ’21). Association for Computing Machinery, New York, NY, USA,
2614–2627. https://doi.org/10.1145/3448016.3457550
[39] Mengzhao Wang, Lingwei Lv, Xiaoliang Xu, Yuxiang Wang, Qiang Yue, and Jiongkang Ni. 2023. An efficient and robust framework for
approximate nearest neighbor search with attribute constraint. In NIPS ’23 (New Orleans, LA, USA). Curran Associates Inc., Red Hook, NY,
USA, Article 692, 14 pages.
[40] Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou, Chaoqun Zhan, Feifei Li, and Yuanzhe Cai. 2020. Analyticdb-v: A hybrid analytical
engine towards query fusion for structured and unstructured data. Proceedings of the VLDB Endowment 13, 12 (2020), 3152–3165.
[41] Wei Wu, Junlin He, Yu Qiao, Guoheng Fu, Li Liu, and Jin Yu. 2022. HQANN: Efficient and robust similarity search for hybrid queries with
structured and unstructured constraints. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management.
4580–4584.
[42] Qian Xu, Juan Yang, Feng Zhang, Junda Pan, Kang Chen, Youren Shen, Amelie Chi Zhou, and Xiaoyong Du. 2025. Tribase: A Vector Data
Query Engine for Reliable and Lossless Pruning Compression using Triangle Inequalities. Proc. ACM Manag.Data 3, 1, Article 82 (Feb. 2025),
28 pages. https://doi.org/10.1145/3709743
[43] Wen Yang, Tao Li, Gai Fang, and Hong Wei. 2020. Pase: Postgresql ultra-high-dimensional approximate nearest neighbor search
extension. In Proceedings of the 2020 ACM SIGMOD international conference on management of data. 2241–2253.
[44] Qianxi Zhang, Shuotao Xu, Qi Chen, Guoxin Sui, Jiadong Xie, Zhizhen Cai, Yaoqi Chen, Yinxuan He, Yuqing Yang, Fan Yang, et al. 2023.
{VBASE}: Unifying Online Vector Similarity Search and Relational Queries via Relaxed Monotonicity. In 17th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 23). 377–395 67

References

[45] Zeqi Zhu, Zeheng Fan, Yuxiang Zeng, Yexuan Shi, Yi Xu, Mengmeng Zhou, and Jin Dong. 2024. FedSQ: A Secure System for Federated
Vector Similarity Queries. Proc. VLDB Endow. 17, 12 (Aug. 2024), 4441–4444. https://doi.org/10.14778/3685800.3685895
[46] Chaoji Zuo, Miao Qiao, Wenchao Zhou, Feifei Li, and Dong Deng. 2024. SeRF: Segment Graph for Range-Filtering Approximate Nearest
Neighbor Search. Proc. ACM Manag. Data 2, 1, Article 69 (March 2024), 26 pages.
[47] Dmitry Baranchuk, Artem Babenko, and Yury Malkov. 2018. Revisiting the Inverted Indices for Billion-Scale Approximate Nearest
Neighbors. In Computer Vision – ECCV 2018: 15th European Conference, Munich, Germany, September 8–14, 2018, Proceedings, Part XII.
Springer-Verlag, Berlin, Heidelberg, 209–224. https://doi.org/10.1007/978-3-030-01258-8_13
[48] Zeyu Wang, Qitong Wang, Xiaoxing Cheng, Peng Wang, Themis Palpanas, and Wei Wang. 2024. Steiner-Hardness: A Query Hardness
Measure for Graph-Based ANN Indexes. Proc. VLDB Endow. 17, 13 (September 2024), 4668–4682. https://doi.org/10.14778/3704965.3704974
[49] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig Schmidt. 2015. Practical and optimal LSH for angular
distance. In Proceedings of the 29th International Conference on Neural Information Processing Systems - Volume 1 (NIPS'15), Vol. 1. MIT
Press, Cambridge, MA, USA, 1225–1233.
[50] Yang T, Hu W, Peng W, Li Y, Li J, Wang G, Liu X. Vdtuner: Automated performance tuning for vector data management systems. In2024
IEEE 40th International Conference on Data Engineering (ICDE) 2024 May 13 (pp. 4357-4369). IEEE.
[51] Gao J, Long C. Rabitq: Quantizing high-dimensional vectors with a theoretical error bound for approximate nearest neighbor search.
Proceedings of the ACM on Management of Data. 2024 May 29;2(3):1-27.
[52] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey Bosboom, Una-May O'Reilly, and Saman
Amarasinghe. 2014. OpenTuner: an extensible framework for program autotuning. In Proceedings of the 23rd international conference on
Parallel architectures and compilation (PACT '14). Association for Computing Machinery, New York, NY, USA, 303–316.
https://doi.org/10.1145/2628071.2628092
[53] Aumüller M, Bernhardsson E, Faithfull A. ANN-Benchmarks: A benchmarking tool for approximate nearest neighbor algorithms. Information
Systems. 2020 Jan 1;87:101374.

68

References

https://doi.org/10.1007/978-3-030-01258-8_13
https://doi.org/10.14778/3704965.3704974
https://doi.org/10.1145/2628071.2628092

