

Secure AI Framework

Our Approach to
Protecting AI Training Data
Authors​
Jason Novak, David Deutscher, Jeremy Wiesner, Ben Kamber, Niha Vempati, Yurii Sushko,
Cindee Madison, Cindy Muya, Reiner Critides

Abstract
Google has over 25 years experience protecting data from inappropriate access and
unauthorized use. In the era of AI, Google has extended these best practices in data
protection to ensure that the right data is used the right way to train models. This paper
presents a number of these best practices, describes how Google applies them in its
systems, and describes how Google Cloud customers can use Google Cloud capabilities
to implement these practices themselves.

Protecting data requires both technical controls to enable safe data use at scale, and
governance processes to ensure that companies have visibility and control over how their
data is used. This fundamentally requires: understanding data and ensuring it has
sufficient metadata in the form of attributes, controlling the data and implementing
policies to allow (or disallow) certain usage based on those attributes, transforming data
to enable its usage in policy compliant ways, and human oversight and governance.

Protecting data in AI inherits these requirements and introduces new requirements to
account for unique AI-specific risks including memorization/recitation and the costs of
training foundational models. Meeting these new risks requires new capabilities including
enhanced understanding of data and model lineage as well as an increased ability to
control data usage through checks on data for policy compliance at the time a training job
is configured before it is run.

 ​

This white paper offers an in-depth look at data protection best practices and
Google’s data protection capabilities, and is one of a series of publications about
Google's Secure AI Framework (SAIF). Building upon its secure development practices,
Google has developed and deployed a number of capabilities to understand, control, and
transform data in its infrastructure so that data is both protected and used appropriately.
This involves robust annotation systems to represent metadata and enable granular
understanding of data at both an item and dataset level, policy engines that evaluate
machine readable policies on that data using the metadata attributes, and sensors to
understand how data is flowing across Google’s systems and raise alerts when policy
violations occur. Moreover, Google has developed de-identification and anonymization
systems to transform data to make it policy compliant and safer to use for AI training.

 ​ 2

 ​

Table of contents
Abstract​ 1
Table of contents​ 3
Best Practices for Protecting AI Training Data​ 6

Requirements​ 6
Understanding training data​ 7

Lineage​ 8
Metadata​ 9

Data structure and metadata​ 9
Taxonomy​ 11
Manual versus automated application​ 13
Propagation​ 14

Control​ 14
Policy engines​ 14
Transformers​ 15
Governance​ 16
Lineage​ 17

Google’s capabilities​ 17
Understanding training data​ 18

Metadata​ 18
Sensors​ 18

Event sensors​ 18
Semantic sensors​ 19

Control​ 19
Policy engines​ 19

Config-time checks​ 19
Runtime filtering​ 20
Lineage enforcement​ 20

Transform​ 20
Data de-identification​ 20
Anonymization​ 21

Governance​ 21
Guidance​ 21
Reviews​ 22

Conclusion​ 22

 ​ 3

 ​

Best Practices for Protecting AI Training
Data
At an abstract level, AI models can be considered to consist of two parts: their
architecture and the statistical correlations made by the model during training on data.
For the model to be policy compliant, the training data used to build the model must itself
be appropriate for use and policy compliant. As this paper discusses in the following
sections, ensuring policy compliance implies that: 1) the data is well understood with
standardized metadata in the form of attributes (“Understanding training data”); 2) the
policy enforcement can be readily applied to exclude non-compliant data (“Control: Policy
engines”); 3) data can be modified to reduce training risks (“Control: Transformers”); 4)
the organization has observability into these processes to be certain what data is used to
train AI (“Governance”). This paper discusses each of these points in detail and then
describes Google’s data protection capabilities in these areas.

Requirements

AI data protection is similar to other data protection
efforts.

AI data protection is similar to other data protection efforts. It requires the consideration
of a number of factors including the nature of the organization, its location, how it has
collected its data, the type of data the organization is using, its customers, its agreements
with customers and partners, and its regulatory and legal requirements.

These corporate governance and regulatory requirements will impact multiple parts of a
model’s lifecycle including: the metadata that is necessary to apply to training data and
report on; policies that are enforced on training data; and reporting regarding the training
of a model.

AI data protection typically exists in the context of companies having already addressed
data protection for other existing obligations and having developed technical capabilities
to do so. An organization should leverage these existing technical capabilities by

 ​ 4

 ​

determining what opportunities exist to extend them and what limitations are present in
them. This assessment itself serves as technical requirements for an organization’s
approach to AI training data protection, and where and how they implement
understanding and control as described below.

Given the speed at which AI is evolving, an organization may have to start with a best
guess approach for building infrastructure and tooling that anticipates that specifics may
change or come late in the process.

Understanding training data
To fully understand training data, including fine tuning and evaluation data, requires
technical comprehension of how data moves through a company’s infrastructure, a clear
understanding of how that data is processed, and insight into the type of processing that
is appropriate for that data. Moreover, these three types of knowledge need to be reduced
into a singular machine-readable and human-understandable set of metadata values that
can be applied to data, with rules that operate on that metadata to determine whether a
given process can access that data.

The processing of data in an organization’s infrastructure can broadly be described as a
structured graph—a series of interconnected storage nodes with directional edges that
represent processing. This graph represents the various stages of processing the data
went through before it was used to train a model. However the graph alone is not
sufficient to understand the data. The details of processing—what type of job was run on
the data, what filtering was applied, and so on—are necessary to gain semantic
understanding of the processed data and its properties; and some of these details have to
be provided by humans.

Once an organization has the graph that shows how the training data was processed, as
well as metadata that shows the results of that processing, the organization can address
specific questions such as “what is the inventory of all models” and “what data was used
to train which models,” as well as identify the most advantageous places in the graph to
implement controls to ensure compliant use of the data. Answering these questions with
mechanical answers (which data was processed, for example) is necessary, but a
complete answer requires the semantics of why data was processed and the outcomes of
that processing.

 ​ 5

 ​

Model cards

Organizations’ understanding of data is increasingly expected to be expressed in the form
of model and data cards, which provide a structured report of what data was processed to
train a core model. At a high level, a data card describes what types of data a model was
trained on and what preprocessing occured; a model card describes the architecture and
capabilities of the model. As a result, model and data cards are effective point in time
views on the processing graph. Because the graph can change, model and data cards
need to be frozen at a point in time to reflect the view of the graph at that point in time.
This conception of cards combined with their structure makes them effective tools to use
for both governance of models as well as for reporting to customers and regulators. In
addition, the fact that model and data cards are views on the processing graph also
implies that model and data cards naturally travel with the model insofar as an
organization has complete lineage of a model, its copies, and fine tuning of those copies.
If the lineage graph is broken—for example, if a model is copied in such a way that
disassociates it from prior processing—then the model and data cards need to be
manually copied and transmitted with the model as metadata of the model itself. This need
to support both point in time views of the lineage graph as well as frozen copies of the
model and data cards means that model storage needs to support linking a model to its
predecessors as well as manual associations of models with model and data cards.

Lineage
Given the iterative nature of AI development—where a model may be derivative of
predecessor models and data may be reused across training runs—understanding the
relationship of data and models takes on additional importance for an organization. We
call these relationships—which data is used to train which models, which models are
derived from each other, and the interrelated processing—lineage. Having a complete view
of lineage allows automated and manual governance of data and model usage, reporting

 ​ 6

https://arxiv.org/abs/2204.01075
https://arxiv.org/abs/2204.01075

 ​

that can be used to demonstrate what data was used to train which models, improved
model training efficiency, and the ability to calculate aggregate training costs.

Lineage relies on building the structured graph discussed above to understand how data
has been processed. There are two primary ways that lineage is developed. It can be
collected automatically by sensor systems that observe reads and writes to storage and
processing jobs, or manually by a human who declares the process they used to modify
the data. These systems bring complementary perspectives: while automatic collection
can provide a complete picture of the graph (that is sometimes overconnected as in the
case of multi-tenant systems used across a wide variety of purposes), it does not have
semantic understanding of why certain actions were taken to process data or what the
goal of that data processing was. This semantic understanding often needs to be provided
by humans as they understand why a job was run. This human understanding can be
provided through a hybrid approach where observed reads/writes are aggregated and
enriched by human declared lineage. This combination of lineage approaches also helps
resolve overconnected graphs (that tend to be created through automated metadata
propagation alone) by adding additional manual declarations of lineage as needed.

Transformations with lineage

Once this lineage is built, reports can be built from it that can address specific questions
about the properties of a dataset, or what datasets were used to train a model. As
discussed below, there are different levels of metadata granularity that an organization
can collect and there are tradeoffs to collecting metadata at different levels. It may be
faster for an organization to collect coarse-grained metadata; however, doing so
inherently limits that organization’s ability to provide detailed reporting. If the organization
is later required to provide fine-grained reporting, they have to undertake an expensive
retroactive metadata collection process. Given that collecting lineage is a time consuming
process that is difficult to do post-facto, collecting metadata at a fine-grained level at the
time of model training provides an organization with options in reporting, and helps
future-proofs metadata collection.

 ​ 7

 ​

Metadata
Metadata—or data that describes properties of data—can be used to apply automated
policy enforcement, while human interpretation is needed to make data management easy
during development and for governance. An organization’s approach to metadata will
depend on its data use and governance requirements. This is an extension of historical
data governance practices to the needs of AI.

Data structure and metadata

Data can be stored in a variety of formats with different types of storage: files on a hard
drive, rows in a database, or even unstructured data like emails. Each of these storage
solutions have implications about metadata, including the technical feasibility of collecting
it, and the level of granularity it provides. The way that an organization stores its data is
related to how it labels its data with attributes. Other considerations include how the data
is used, and what policies the organization wants to enforce on its data. Moreover,
applying metadata attributes to one level (an entire database, for example) does not rule
out applying metadata attributes to other levels (such as a single row in the database). In
fact, applying metadata attributes to multiple levels may be necessary to achieve the
organization’s goals. The cost of this flexibility might be additional checks or reconciliation
logic to ensure that the metadata stays consistent across these levels.

Another part of an organization’s metadata strategy is how it chooses to collect and store
data. If a dataset is homogeneous—from a single source, stored in a single format, with
uniform properties—metadata about the dataset can be recorded at the dataset level. For
example, if a dataset contains data from a single product, the dataset can be labeled with
the product name (or an identifier that can stay stable if the product’s name changes). If
the dataset is heterogeneous in sourcing and storage—that is, it comes from different
products and each product records different information—metadata has to be stored
about each record in the dataset alongside the record itself. Even in this case, there may
be metadata that is desirable to capture at the dataset level—for example, the responsible
party for governance inquiries or other operational needs like billing.

The lifecycle of metadata is similar to the lifecycle of the data itself. When data is acquired
by an organization, the appropriate origination metadata should be recorded with the
data, such as date acquired, source, authority, relevant consents, and licenses. As data is
processed, its metadata should be updated to reflect that processing, including metadata
from human-based reviews of the data. And, as data is used to train models, those
models’ metadata may take upon relevant attributes from the source data.

 ​ 8

 ​

Different levels of granularity allow for different types of enforcement. Dataset level
metadata allows an organization to check at the file level whether a data is valid for its
intended use. Row level metadata allows for an organization to achieve more use of its
data as it enables heterogeneous datasets to be used in policy compliant ways. Finally,
applying metadata at the field level allows for organizations to apply field level policies to
data—for example, selective redaction of records or masking of fields when displayed in
various tools.

There are advantages and disadvantages to each level of granularity, and an organization
has to consider these in its metadata strategy. File level metadata is more efficient—it is
generally faster to label at the file level, just a single check can determine whether the
data is valid for the intended use, and it requires less storage space as only one copy has
to be stored for all records in the file. However, the coarseness that gives file level
metadata its efficiency may also make the data less useful if the data is
heterogeneous—for example, a single record in a file containing location would require the
entire file to be treated as location data even if no other record contained location. As a
result, row level data allows for an organization to achieve more use of its data at the cost
of increased labeling time, storage, processing time, and number of policy evaluations
computed. Each row has to be labeled, and each row’s metadata has to be stored and
evaluated for policy compliance, but then individually compliant rows can be used for
training.

Attributes on datasets
Different levels of granularity of metadata and policy enforcement are appropriate at
different points in model development. Broadly, in model pretraining there are fewer
researchers operating on fewer—but larger—datasets than in model finetuning where
there are more researchers working on more datasets of different properties. Therefore,
during pretraining, dataset level attributes and policy enforcement is possible and
effective without introducing significant overhead. In contrast, during finetuning, when a
researcher may be mixing examples from diverse datasets and or hand curating data in
experiments, it is important to support row level enforcement so that policy can be

 ​ 9

 ​

consistently applied. In addition, this means that row level metadata needs to be
propagated throughout the finetuning process and across tools.

Taxonomy

Effectively leveraging metadata to protect AI data requires a common taxonomy of
metadata definitions and values to ensure that data can be understood consistently over
time, between systems, and across organizational boundaries. If an organization does not
have a common taxonomy, data will end up having the wrong metadata applied to it, which
could lead to it having the wrong protections—or no protections at all—applied to it.

It’s essential for an organization to create a consistent and common taxonomy for their
metadata. For example, a location can be many things: it can be a user’s current
whereabouts, or it can be the destination the user is searching for, or it can be a point of
interest a user is browsing. A location also exists at different granularities: precise (like a
street address) or coarse (like a postal code). Location information can also originate from
a variety of sources like a user’s device, an IP address, or a listing provided by a store.
Each of these dimensions require common terms that an organization can use and reuse
over time to determine what a location datapoint is and is not, which in turn can be used to
determine what policies should be applied.

Metadata’s usefulness also makes the metadata itself sensitive and necessitates a
multilayered approach to metadata security. Fine grained information about what precise
files were used to train a model is appropriate for model developers, but may not be
appropriate for an entire organization to know; in many cases, users and finetuners of the
model would need only summarized metadata describing the training set. For example,
model developers need to know which videos were used to train a model, while a model
user or fine tuner may need to know only that a model was trained on videos.

Moreover the security of the metadata should not be the same as the security of the data.
Metadata’s usefulness (including for compliance purposes) also makes the metadata itself
sensitive (from a strategic business or privacy perspective). Broadly, by default, it is
desirable to make metadata world-readable to enable broad reuse of data while keeping
access to the underlying data based on business needs and tightly controlled. This
approach empowers model developers to more readily discover datasets that can be
useful for training—for example, a model developer can more readily find a location-based
data set if location data is labeled and those labels discoverable, even if the data is
restricted.

Each organization should develop its own taxonomy based on its data, products, and
regulatory requirements. Determining the proper granularity and span of an organization’s

 ​ 10

 ​

data taxonomy is crucial. When a taxonomy is too granular, it can result in an explosion of
values. This can cause confusion for individuals collecting and labeling the data and make
it difficult for individuals trying to understand data by wading through multiple attributes.
On the other hand, too coarse a taxonomy can prevent the reuse of attributes across
policies.

Consistent use of attributes is also important. For example, in the case of location, if a nine
digit US Postal Code were being stored, there are equally valid reasons for it to have
metadata describing it as “POSTAL CODE”, “ZIP”, “ZIP+4”, or “COARSE”. The appropriate
metadata attributes for an organization depend on the organization itself, but there always
needs to be a balance between describing data, and effectively using (and reusing)
attributes.

Development of a common taxonomy is challenging as it involves both technical and
human demands. It should be assumed that taxonomies will change over time as
individuals develop experience using them and identify gaps and new attributes needed. It
is not atypical for the meaning of an attribute to evolve over time as it is applied to new
datasets and for new regulations. Building the taxonomy so that it can be versioned allows
for an organization to adjust its granularity as needed and prevents the perfect from being
the enemy of the good.

Manual versus automated application

Metadata attributes can be applied manually (by humans) or through automation (by
computers) and both have their place in data protection. There are also drawbacks for
both, and therefore a hybrid approach is needed.

Humans have context regarding data that a machine may not and, as a result, they can be
more descriptive in their metadata—while a computer can tell you which file was used, a
human can explain why that file was used to train a model. However, human application of
metadata is manual, fixed at a point in time, does not scale, and prone to error—for
example, applying an incorrect attribute (applying “coarse” on street address level
location data when they should apply “granular”), or applying the correct attributes
incorrectly (mistyping an attribute as “ZIP4” instead of “ZIP+4”).

Key to effective human labelling is it being done in the same context and at the same time
as the data collection code being written. It is much easier for a human to add context at
the time that context is in mind rather than doing so post-facto. Computers can analyze
data and provide metadata for it at scale but are limited to specific heuristics—for
example, that data matches a given pattern or which processes have touched a given file.
In practice, these limitations mean that manual metadata should be seen as very high

 ​ 11

 ​

signal low volume, and used to augment automatically collected metadata that, without
context, may be low signal high volume. Notably, these approaches can be hybridized—for
example, ML inferences can be made automatically about what metadata should be
applied to data, systems can surface those suggestions to humans in context, and humans
can then approve or reject that metadata.

In addition to observing which files are used by which processes, automated metadata
can also refer to how the data is processed. For example, if a process anonymizes data,
that process should automatically apply attributes to the data indicating that the data is
anonymous, how it was anonymized including software version and configuration, and the
date at which the anonymization occurred. Applying this metadata automatically as part of
the process is less error prone than a human manually applying this information as a
post-processing step.

Automated metadata also helps address the gap between conceptual descriptions of data
and their physical representation. It is typical for a researcher to have multiple copies of a
dataset with different filtering and preparation applied. For example, if a researcher has an
economics dataset, they may have multiple copies of it filtered in different ways: by year,
by century, by country, by region. Saying “the economics dataset” does not distinguish
between these different copies, each of which is a different subset of the data with its own
physical storage on disk. Automatically applied metadata can make it clear that there are
different copies of the data with different filters applied over time and can help
practitioners be precise as to which copy of the dataset they refer to when they refer to
“the economics dataset”.

Finally, metadata should be understood as dynamic rather than static. For example, if
metadata is meant to reflect a user’s current preferences, it may be preferable to store an
identifier for the user and look up the current state of the preference when processing the
data, rather than storing an attribute of that preference. For posterity and retrospective
analysis, it may be desirable to store metadata as a versioned attribute that can track
historical values or to store historical snapshots of the graph.

Propagation

Metadata attributes should propagate with data to ensure consistent enforcement across
time and systems. Labeled data in a storage system can be used to enforce that system’s
policy on reads and writes. When data leaves the source storage system, the attributes
present on that data should travel with the data through processing systems and
ultimately be written into destination storage systems. This ensures that provenance or
other properties of data is not lost as it undergoes processing. Moreover, processing
systems should add or remove attributes as appropriate given the processing they

 ​ 12

 ​

undertake. For example data may be marked “user data” at its source, but if it is read and
processed by an anonymization system, that system should remove the user data attribute
before writing the now anonymized data to the destination storage system.

Control
There are multiple types of controls and control implementations that can be applied to AI
data to ensure that it is being used in a policy compliant way. For AI data protection, four
primary controls are: policy engines, transformers, governance processes, and lineage.
Policy engines, transformers, and governance processes are largely extensions of existing
practices and concepts, while lineage takes on new importance and depth in the AI space
due to the cost of training models.

Policy engines
A policy engine is a control that determines whether data or a dataset is allowed to be
used for training based on the understanding the system has about the data and policy
presented to the engine. To effectively enforce policy on AI training data, it is important to
both enforce policy at the dataset level at training job configuration time—that is,
determine the compliance of the entire dataset before processing begins—and to enforce
policy at an object level at processing time—that is, determine on an object-by-object
basis whether that object can be used for training based on the semantic properties of its
metadata.

Training a foundational model is extremely costly, and because of the inherently stochastic
nature of training, finetuning, and retraining means that the results are not always
reproducible. Given such, understanding the properties of the data prior to using it for
training is preferable to filtering it in real time. Real-time filtering can result in inefficient
use of resources as a data set may be filtered out to be useful for training purposes.
Understanding the amount of data that will be filtered out before training begins and
allowing for an organization to evaluate whether to run training at all on the remainder
allows for the efficient allocation of resources.

An organization should consider if its policy engines should “fail open” (allow data use) or
“fail closed” (block data use) if metadata is missing from a dataset or object. This decision
may be different for different types of metadata. It may be appropriate for an organization
to assume that if certain metadata fields are missing that a default value can be assumed
and the data can fail open and be processed. However, there are some metadata fields

 ​ 13

 ​

(for example, metadata for regulatory compliance) where having no metadata should
cause the policy to fail closed, blocking the training job.

Transformers
Transformer controls modify—or transform—data so that it may be used to train models in
policy compliant ways. These differ from policy engines as they do not return verdicts on
the use of data but rather modify the data to make it policy compliant. These
modifications include de-identification and anonymization.

De-identification is a data processing technique that removes personal identifiers from
data.

Anonymization is the process of rendering personal data unidentifiable, so that no one
associated with the data can be identified either directly or indirectly through auxiliary
information. At a technical level, anonymizing data can be achieved through techniques
such as differential privacy and k-anonymity. Care must be taken when anonymizing to
avoid potential pitfalls such as re-identification.

When applied to training data before or during model training, anonymization and
de-identification prevent models from memorizing (and eventually reciting) identifiable
information linkable to individuals who contributed the data.

Governance
Governance processes generally refer to human-driven controls. Similar to the discussion
of manual vs. automated application of metadata, process controls provide more nuanced,
adaptable oversight in fast-evolving, complex domains. AI products continue to evolve,
and with the use of new techniques, new data protection implications appear. Process
controls enable us to recognize emerging risks and patterns. This, in turn, creates new
opportunities to apply technical controls that provide a higher consistency and volume of
data protection.

Governance processes have three major components: guidance, reviews, and
observability. Guidance refers to written and approved documentation directing the use,
development, and deployment of ML data, models, and applications, and includes:

-​ Formal company-wide requirements in Policies and Standards, reviewed and
commonly approved by privacy, security, and legal subject matter experts.

 ​ 14

 ​

-​ Guidelines that specify recommended ways to adhere to requirements, as well as
best practices for data handling.

Reviews are assessments and approvals made at various junctures in the software
development lifecycle (SDLC). These range from advisory (non-blocking) reviews and
consultations, to formal, gating (blocking) reviews that are required to proceed to the next
step in the SDLC or to launch. Reviews may be conducted by governance professionals
(such as privacy, security, legal, and trust and safety), or by product or company
leadership.

In the context of governance, observability refers to the organization’s ability to see and
validate that its actions and outcomes match its intent, and that all of the controls
developed and applied are functioning as expected and protecting data in practice.
Observability combines some of the capabilities for understanding data (metadata,
lineage, and so on) with data about the controls, decisions, and actions taken. That
information is aggregated and shared with key stakeholders who are accountable for data
protection governance. Governance processes generally mature over time as an
organization gains experience and familiarity with AI development and identifies
opportunities to automate or refine its tooling.

Initially, organizations drive governance through policies and guidance that anticipate
specific risks and requirements based upon subject matter experts’ prior work in the field
and risk forecasting. This governance broadly is manual as it requires consideration of new
architectures, patterns, and risks. This work provides immediate coverage and oversight of
high risk areas as well as early, manual telemetry on AI risks and practices, which can be
used to develop automated controls as the organization’s understanding of risk matures.

As an organization develops a better understanding and observability of risks and
mitigations in the AI space, those learnings can be provided to infrastructure teams to
inform the creation of technical controls. Reviews can be streamlined, allowing some
manual checks to be automated using source-of-truth understanding and lineage that is
manifested in artifacts such as data cards and model cards. When guidelines are
supported by automated data policy enforcement tools or systems, and the adoption of
that enforcement is part of most keystone systems, those guidelines can be promoted to
formal written policy/requirements, further discouraging the use of bespoke systems that
don’t have protected-by-default capabilities.

 ​ 15

 ​

Lineage
In addition to providing understanding of data, lineage can also serve as a control on data.
Before training begins, the lineage of datasets can be used to determine whether datasets
have undergone all necessary policy checks and filtering for use. Moreover, the lineage of
a model can be used to determine whether it is fully approved and policy compliant for
use in a given application; this is similar conceptually to a Software Bill of Materials.
Lineage is needed in addition to other controls for preparing data for training as it is a
post-facto control: it tells you what has happened. In the AI space, given the high costs of
training, other controls are needed to ensure that only compliant data is used for training.
Lineage can then be used as a verification step.

Google’s capabilities

Different data protection capabilities may be deployed
in each step depending on existing infrastructure,
regulatory needs, and other requirements.

Google’s approach to protecting AI data is to extend our existing data protection
capabilities—the steps we take to understand, control, transform, and govern data—and
apply them as appropriate to steps in the AI lifecycle. These steps include data sourcing,
training and tuning, model serving, and input/output handling. Different data protection
capabilities may be deployed in each step depending on existing infrastructure, regulatory
needs, and other requirements. Google thinks about these requirements and data
protection holistically and, as such, applies appropriate data protections at the
appropriate places in the end-to-end path training data takes in training a model.

Understanding training data
Google has developed robust systems for understanding data and expanded them for AI.
These include a unified, interoperable taxonomy that allows for engineers to express both

 ​ 16

 ​

what data is and how it may be processed. Google has also developed systems that allow
for the labeling of data at the field, object, and dataset level with appropriate attributes.

Metadata
Google’s systems for understanding data were extended for AI by adding definitions for AI
concepts and policies, including distinguishing between evaluation and training data.
These terms were defined in both row and dataset level vocabularies. For example, if the
entire dataset is evaluation data, the dataset level can be marked as such, but, if a dataset
is heterogeneous and consists of both evaluation and training data, each row can be
indicated appropriately.

Understanding of data is achieved through a combination of manual labeling (specifying
attributes) and automated labeling (approving ML suggested attributes). For example:
when a Google engineer defines a protobuf, they can add attributes as extensions to the
protobuf’s fields for purposes of providing a semantic description of what the data is.
Similarly, when a Spanner database schema is declared, attributes can be applied as
options in the schema to declare properties such as data type, retention, and source. In
addition, attributes are automatically suggested. For example, when an engineer submits
code, an ML-powered presubmit check can automatically suggest relevant labels, which
the engineer can review and apply before submitting the code.

Sensors
There are a variety of ways that Google engineers can interact with data and transform it
for use in AI models. Rather than have developers manually attest to every interaction they
have with data, Google has developed sensors to automatically observe the
transformations that data undergoes as it is read or written by different processes.

Event sensors

Processing and storage systems integrate with Google’s automated event sensor library to
send information regarding read and write events to centralized logging storage. A
recording of a read or write events can be thought of as a tuple that includes: the
processing job identifier, the identifier of the data storage being accessed, the action
(read, write, delete), and select privacy and security metadata. This is high fidelity, high
volume data that requires mapping between identifiers and semantic meanings, since a
job identifier or storage identifier is not inherently meaningful (for instance, a job id could
just be a numeric indicator). This mapping adds additional attributes to data even as it is
read, written, and transformed throughout our systems. For example, if a specific job is an

 ​ 17

http://protobuf.dev
https://static.googleusercontent.com/media/research.google.com/en//archive/spanner-osdi2012.pdf

 ​

anonymization job and the output data is anonymous, the output data has metadata
automatically added to indicate that it is anonymous.

Semantic sensors

In addition to the fine-grained processing data collected by event sensors, Google also
collects semantic metadata and enriches its understanding of data with it. AI data
processing applications incorporate a sensor logging library to provide semantic
understanding to processing activities. For example, an anonymization process may call
the manual sensor library to record to Google’s central logging systems that
“anonymization was run on dataset 123”.

To fully map declared semantic data usage and processing in AI systems, this data must
be combined with information from automated sensors.

Control

Policy engines
Google has developed policy engines that integrate with its storage, processing, and
serving systems. When data is used (read, written, sent to a different system, or
transformed), the policy engine evaluates a tuple composed of the action, metadata
attributes, and context. This tuple is checked against all relevant policies (often hundreds or
more constraints) to determine whether to permit the operation. Similar to the capabilities
for understanding, Google has policy engines that operate on the dataset level or row level
for purposes of enabling fine-grained policy control as needed.

These policy engines provide a comprehensive policy enforcement solution that provides
both config-time checks and runtime filtering to ensure compliance in data processing
pipelines. This combined approach ensures that data usage adheres to predefined policies
throughout the entire data lifecycle, from pipeline configuration to runtime execution.

To protect AI data, Google extended these policy engines to operate on systems that store
and process training data to enforce AI specific policies.

Config-time checks

Config time checks operate on processing pipelines to determine whether that pipeline is
compliant by evaluating the datasets, their metadata attributes, and the processing to

 ​ 18

 ​

occur. The mechanism does so through an examination of the complete graph of training
and the attributes present on datasets in the graph. In turn, this requires training systems
to declare all of its inputs and outputs prior to processing.

Runtime filtering

Runtime filtering can be used to prevent individual data objects from being used to train
models. It does this by evaluating the metadata of an object (the type of data, the
purposes for which it was collected, the transformations applied to it and so on) against a
policy (for example, whether consent is required for the purpose of training a model) and
filters out data whose metadata indicates its use is not policy compliant in this context,
permitting only compliant data to be trained upon.

Lineage enforcement

Lineage enforcement provides review flows for ML input artifacts and enforcement of
policies before a given dataset can be used for training. This enforcement is based on
reviewing the lineage of data and determining if the dataset has been either approved or
transformed as necessary for the intended use.

Transform
Google has developed capabilities to reduce or remove the risk of using certain data in AI
training, including de-identification and anonymization technologies. .

Data de-identification
Cloud DLP is a tool for filtering out personal identifiers and sensitive information from text
data including transcribed audio, alt text in images, and OCR’ed images. Using regular
expressions, semantic context, and dictionary-based lookups, Cloud DLP can detect more
than 190 different types of information and allows clients to redact, replace, or mask its
findings. Running Cloud DLP on text-based training data substantially reduces the risk of
models memorizing sensitive, personally identifiable information.

Notably, not all personally identifiable information is risky to memorize. “George
Washington” is personally identifiable but rarely risky to have memorized because he is a
historic, public figure. As a result, some filters may not be appropriate for the goals of a
model. Cloud DLP usage may also need to be supplemented with human review to remove
personally identifiable information from a dataset. The risk of personally identifiable
information being memorized depends on a number of factors including: the source of the

 ​ 19

https://cloud.google.com/security/products/dlp

 ​

data that contains this information, the goals of the model, and the intended deployment
of the model.

Anonymization
Google has developed multiple methods and technologies to support anonymization. In
the context of AI, anonymization can be applied in two general ways.

The first approach is to mitigate any memorization risks during model training. An example
of how this can be achieved is through use of Tensor Flow Privacy and JAX privacy,
Google’s machine learning libraries that enable the training of anonymized models using
differentially-private training protocols.

The second approach is to use anonymous data itself for model training. For example,
anonymous training data can be created with Google’s differential privacy libraries or via
BigQuery’s differential-privacy integration. Another promising and rapidly evolving area is
differentially private synthetic data generation, which may provide greater usability for
developers because such data is designed to resemble real data by shape and properties,
while providing strong anonymization guarantees.

Governance
Google’s data protection capabilities are supplemented by governance experts who
leverage Google’s capabilities to provide guidance and to conduct reviews at scale for
product teams.

Guidance
Google has dedicated subject matter experts who define formal policies, and who
participate in standards bodies to continually align with and promote data protection best
practices in the industry. Google also creates training, documentation, and advocacy
efforts to ensure that its workforce understands, internalizes, and adheres to these
policies and standards.

Google also proactively participates in research and development of innovative data
protection solutions, including solutions that respond to emerging risks and trends in the
development and use of AI. These activities become the source for establishing new data
protection guidance and best practices at the company.

 ​ 20

https://github.com/tensorflow/privacy
https://github.com/google-deepmind/jax_privacy
https://arxiv.org/pdf/1607.00133
https://github.com/google/differential-privacy
https://cloud.google.com/bigquery/docs/differential-privacy
https://research.google/blog/protecting-users-with-differentially-private-synthetic-training-data/

 ​

Reviews
Google requires every user-facing product to undergo a review process prior to launch,
conducted by subject matter experts in privacy, security, safety, and compliance risks, who
also deeply understand each of Google’s products and their implications for data
protection. Google also maintains teams of experts to provide additional consultations and
exercise depth of judgement over complex domains such as AI.

Google has developed robust, flexible platforms and tools to support tamper-proof,
optimized, and observable reviews, approvals, and related workflows. These platforms
integrate with Google’s other data protection capabilities to enable informed reviews with
enforceable outcomes.

These platforms include tooling to track approvals for launches through an interface that
is highly customizable, letting product teams design and manage their launch processes
efficiently and consistently. This tooling generates governance artifacts that are
auto-populated with relevant metadata obtained from integrated systems, and provides
triage tools to help connect product developers with the right set of reviewers and experts
at critical moments.

Conclusion
The approaches outlined in this white paper are intended to guide organizations on best
practices for protecting their data in AI by extending existing data protection practices to
AI systems.

As we’ve discussed in this paper, protecting AI training data starts with having a complete
understanding of what that data is, where it comes from, and how it has been modified.
That understanding should be recorded as metadata with a consistent and clearly
understood taxonomy. This metadata can be added to the training automatically through
compute processes, or manually through human curation. When data is understood and
described clearly by its metadata, its use in training can be controlled through automated
policy enforcement modeled on your data needs and governance requirements.

 ​ 21

	Secure AI Framework
	Our Approach to Protecting AI Training Data
	Abstract
	Table of contents

	Best Practices for Protecting AI Training Data
	Requirements
	Understanding training data
	Lineage
	Metadata
	Data structure and metadata
	Taxonomy
	Manual versus automated application
	Propagation

	Control
	Policy engines
	Transformers
	Governance
	Lineage

	
	Google’s capabilities
	Understanding training data
	Metadata
	Sensors
	Event sensors
	Semantic sensors

	Control
	Policy engines
	Config-time checks
	Runtime filtering
	Lineage enforcement

	Transform
	Data de-identification
	Anonymization

	Governance
	Guidance
	Reviews

	Conclusion

