
Glimmers: Resolving the Privacy/Trust Quagmire

David Lie
University of Toronto/Google Brain

Petros Maniatis
Google Brain

ABSTRACT

Users today enjoy access to a wealth of services that rely
on user-contributed data, such as recommendation services,
prediction services, and services that help classify and inter-
pret data. The quality of such services inescapably relies on
trustworthy contributions from users. However, validating the
trustworthiness of contributions may rely on privacy-sensitive
contextual data about the user, such as a user’s location or
usage habits, creating a conflict between privacy and trust:
users benefit from a higher-quality service that identifies and
removes illegitimate user contributions, but, at the same time,
they may be reluctant to let the service access their private
information to achieve this high quality.

We argue that this conflict can be resolved with a prag-
matic Glimmer of Trust, which allows services to validate
user contributions in a trustworthy way without forfeiting
user privacy. We describe how trustworthy hardware such
as Intel’s SGX can be used on the client-side—in contrast
to much recent work exploring SGX in cloud services—to
realize the Glimmer architecture, and demonstrate how this
realization is able to resolve the tension between privacy and
trust in a variety of cases.

CCS CONCEPTS

� Security and privacy � Privacy-preserving proto-
cols; Hardware-based security protocols;

KEYWORDS

Privacy, SGX, Glimmers

ACM Reference format:
David Lie and Petros Maniatis. 2017. Glimmers: Resolving the
Privacy/Trust Quagmire. In Proceedings of HotOS ’17, Whistler,
BC, Canada, May 08-10, 2017, 7 pages.

https://doi.org/10.1145/3102980.3102996

1 PRIVACY AND CLOUD SERVICES
AT ODDS

Many Internet services collect data contributed by users. User
data contributions and aggregates gleaned from processing
them are then often shared across all users of the service.
For example, a predictive keyboard on a client device could
benefit from a trained machine-learning model that uses

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

HotOS ’17, May 08-10, 2017, Whistler, BC, Canada

© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5068-6/17/05.
https://doi.org/10.1145/3102980.3102996

inputs from different users’ keyboards (Figure 1a). As current
topics (such as “the world series” or “Donald Trump”) trend
up—because many users type them on their keyboards in a
short time span—an up-to-date model can suggest “Trump”
as the next word when Alice types “Donald”, even if she has
never typed that name herself before. Similar benefits exist
for a wide range of applications, such as image recognition,
recommendation systems, and activity detection.

Sadly, sharing of information, especially deeply personal
information such as key clicks, naturally introduces a tus-
sle between information utility and user privacy. If Alice’s
keyboard streams all her key clicks to a shared, predictive
keyboard service, she will almost certainly reveal sensitive
information about her political beliefs. Although they can
meaningfully contribute to learning a global predictive word
model, Alice’s individual key clicks are not public informa-
tion, and permitting their use for training is not tantamount
to publishing them on a world-readable web page. Yet most
service providers release scant, if any, information about
what precisely they do with data they collect, which can
be troubling for users who both want to help but are also
concerned about privacy. For example, Bob’s disparaging
remarks in Figure 1a can enable a malicious service provider
to discriminate against him or aid in his prosecution. Even if
the service provider is well-meaning, it could be compelled by
a court order to release this information to the government
to persecute Bob, stolen by hackers to extort him or dam-
age the service brand, or used by regulatory bodies to slam
the service provider with privacy-violation fines. Therefore,
unmediated information sharing is undesirable to users and
services alike.

One way to alleviate this tussle is to process user data at
the client, so that it is never disclosed to the service in the
raw [12, 16]. With Federated Machine Learning [12], every
client computes a local partial model, and the service sums
those models together to generate a global one. For example,
a simplistic keyboard model in Figure 1b associates a weight
between 0 and 1 for an ordered pair of words, without re-
vealing the actual sentences typed. However, learned models,
even ones much more sophisticated than our straw-man il-
lustration, can still reveal information about the raw inputs
used to train those models (e.g., machine-learning models
can be inverted [6]).

Consequently it behooves users to reduce the amount of
their private information the service has access to, whether
pre-processed at the client or not. Note, furthermore, that
many services need no access to the contributions of any
individual, but only to aggregates over a large population
of users; for such services, receiving and storing the private
data of individual users brings unnecessary cost, risk, and
liability. Therefore, and satisfying both sides of the divide,

1

https://doi.org/10.1145/3102980.3102996
https://doi.org/10.1145/3102980.3102996


HotOS ’17, May 08-10, 2017, Whistler, BC, Canada David Lie and Petros Maniatis

“I’m voting for Donald Trump”

“I don’t like Donald Trump.”

Alice

Bob

Donald

Trump

Predictive Model

(a) A next-word predictive service for users’ keyboards.

Alice

Bob

NextWordPredictive.com

Donald

Trump

voting 
for

don’t 
like

0.5

0.5

0.9

Donald

Trump

voting 
for

0.9

0.8

don’t 
like 0.1

Donald

Trump

voting 
for 0.9

0.1

don’t 
like 0.8

(b) Federated machine learning.

Alice

Bob

NextWordPredictive.com

Donald

Trump

voting 
for

don’t 
like

0.5

0.5

0.9

Donald

Trump

voting 
for

72b

ae7

don’t 
like 0f9

Donald

Trump

voting 
for bb1

d7c

don’t 
like 99a

Blind(0.8) Unblind(ae7⊕d7c)

(c) Secure model aggregation.

NextWordPredictive.com

Donald

Trump

voting 
for

don’t 
like

0.99

0.1

0.9

Alice

Bob

Donald

Trump

voting 
for

72b

7e1

don’t 
like 0f9

Donald

Trump

voting 
for bb1

d7c

don’t 
like 99a

Blind(538)

(d) Attack against secure model aggregation.

Figure 1: A predictive keyboard service

the service could have users contribute information using
cryptographic blinding [4] (Figure 1c), or similar techniques
that enable accurate aggregation of a data set while still
hiding the individual data items contributed.

Unfortunately, such techniques hide the raw inputs from
the service and, consequently, afford malicious users the op-
portunity to contribute illegitimate inputs undetected, derail-
ing the quality of the shared service. For example, Alice could
contribute a blinded local model for her own keyboard se-
quences that has been maliciously manipulated to over-weight
her personal political convictions (i.e., contributing an illegal
value of 538 for one model parameter, violating the valid rage
of [0, 1]), making it seem extremely popular beyond what
a single user might make it (Figure 1d). When the service
aggregates the blinded local models together, it cannot detect
such induced bias, even if specific validation checks such as
range checks existed, because of the blinding. As a result,
the service ends up with a catastrophically skewed global
predictive model towards inaccurate predictions, degrading
the experience of all users.

Such attacks are not of marginal import and should be
taken seriously: changing the order of predictions might skew
thought processes, as has been shown for search-rank ma-
nipulation affecting election results [5]. In our example, the
obvious way to check Alice’s contribution is before blinding
occurs, but the service cannot trust Alice to do that faith-
fully, since she is the adversary in that threat. Even if the
actual user contributions are not themselves private, e.g.,
users’ photos associated with a location on a mapping ser-
vice, validating those contributions might require access by
the service to otherwise private data (e.g., location history
through GPS and ambient WiFi, to validate that the user
did go to a claimed location) on the device of the very user
whose malice the validation is meant to protect from.

Services affected by this trust-privacy trade-off have sim-
ilar characteristics: a) they consume user-contributed data
to build global state benefiting all users; b) service quality is
highly dependent on the trustworthiness of data contributed
by users; and c) they can only verify the legitimacy of user
contributions through direct access to sensitive user data (the
contributions themselves, or contextual user information such

2



Glimmers: Resolving the Privacy/Trust Quagmire HotOS ’17, May 08-10, 2017, Whistler, BC, Canada

Validation

BlindingUser Contribution

Client

Blinded 
Contribution

Glimmer Validation 
Predicate

Service

Tr
us

t 
Bo

un
da

ry

Private
Data

Figure 2: Glimmer architecture.

as logs and other user activity). Many popular services have
these properties. For example, image recognition can benefit
from local partial models trained on the private photos of
users, but to verify that contributed photos are legitimate
requires direct access to them before they are blinded; rec-
ommender services learn similarities among products from
individual users’ registered likes, dislikes, and shopping habits,
but detecting spurious reviews requires access to individual
users’ purchasing history; activity-recognition models im-
prove from analyzing silhouettes and image structure from
in-home cameras, but checking that silhouettes are legitimate
requires analysis of full video streams captured at people’s
homes. Given the state of things, one may sadly conclude that
trust and privacy in such services is a zero-sum game—an
increase in individual privacy results directly in a decrease
in the amount of trust all the users can collectively place in
the service. In the next section, we introduce Glimmers to
exit this quagmire.

2 A GLIMMER OF TRUST IN
BETWEEN

To visualize the conundrum between privacy and trust, we
introduce the concept of a Trust Boundary between the client
and the service; no private data should cross from the client
to the service, but the correctness of client contributions must
be checked according to criteria set by the service on the
client’s side. The server cannot establish trust without access
to the private data, but at the same time the client does not
want the server to access its private data unrestricted.

Such “air-gap” problems can be solved with the introduc-
tion of a trusted third party that performs validation on
private client data before submitting user contributions to
the service. We call our logical trusted third party a Glimmer
of Trust, or Glimmer for short, since it performs very limited
but essential trusted functionality: validation of private data
as specified by the service, followed by submission to the
service (Figure 2).

We use the term validation loosely here to capture any va-
lidity predicate delegated to the trusted third party; different
validation predicates may trade off computational complexity
for result accuracy. For example, in the next-word prediction
service, range-checking model parameters ensures that Alice
cannot send a user contribution of 538 when a value between

0 and 1 is expected; however, she can still send arbitrary
fictitious values within that range that may not correspond
to her actual keyboard activity. A more sophisticated val-
idator might instead observe actual keyboard behavior (a
la NAB [7]) to match keyboard events to reported model
weights; or even observe CPU branches [20] to identify a
plausible execution of the model-construction code that pro-
duced contributed partial results, as has been suggested for
on-line game cheat detection [3]. While more invasive vali-
dation increases the complexity and resources required by
the Glimmer, it also increases the adversary’s cost to cheat
undetected, since she now has to fabricate keyboard activity
or program executions that corroborate her deceptive inputs
to the service.

Regardless of the actual validation semantics, the Glimmer
must satisfy certain properties to be helpful. First, it must
guarantee that it either discards private inputs after process-
ing, or that it blinds them if the private data is part of the
contribution, thus bounding the amount of information about
private data that is leaked (Input Confidentiality). Sec-
ond, it only endorses for use by the service those contributions
that it has validated (Input Integrity).

Having an actual third party performing the role of the
Glimmer is, arguably, the realization of this architecture.
For example, the Electronic Frontier Foundation (EFF), or
a consortium of privacy-advocacy organizations could, in
ensemble, perform validation and blinding, perhaps using
multi-party computation, or simpler threshold cryptography
on inputs. However, the deployment cost for such a solu-
tion would be high. In this vision paper, we focus on using
trustworthy hardware, because of its current broad availabil-
ity, as an implementation platform for Glimmers performing
privacy-preserving user-data validation. Our work revisits the
early vision of using secure computing elements as client-local
trusted third parties [1], in particular within the context of
protecting user privacy.

3 GLIMMERS ON SGX

There are several instances of trustworthy hardware com-
monly available on computing clients today, such as Intel
TXT, AMD SVM, ARM TrustZone, and Intel SGX. In gen-
eral, all these platforms provide a hardware-enforced trusted
execution environment (TEE), which can execute functional-
ity isolated from any vulnerabilities or malicious code.

In this paper we focus on realizing Glimmers using In-
tel’s SGX [9]. SGX has spawned renewed interest in trusted
computing, with a number of server-side uses [2, 8, 15]. We
are instead studying how SGX can be used on clients to
realize Glimmers of Trust—note that, at the time of writing,
SGX is only available on client-class CPUs. SGX provides
a TEE called an enclave. In addition to isolation, an SGX
enclave also supports remote attestation, which allows it to
prove cryptographically to a remote party that it is running
correctly in a legitimate enclave. Finally, it provides sealed
storage, which allows it to encrypt data so that only it or
other designated binaries, running in a legitimate enclave, can

3



HotOS ’17, May 08-10, 2017, Whistler, BC, Canada David Lie and Petros Maniatis

Blinding

Validation

Signed
Validated 

Contributions

User 
Contributions

Client 
Device

Service
(Verify 

contributions)

Signing

Private 
Contributions

Blinded 
Private

Contributions

Signed 
Validated 

Contributions

SGX Enclave

Private 
Validation Data

Non-private 
Contributions

Figure 3: SGX Glimmer design

decrypt it. Although very powerful, SGX enclaves operate us-
ing limited resources, have no direct access to privileged CPU
operations such as IO, and must mediate system services via
the untrusted host OS. As a result, Glimmers implemented
as enclaves must be simple and run mostly in isolation.

Figure 3 describes the design of an SGX-based Glimmer.
The Glimmer has 3 main components. A Validation compo-
nent takes two types of input from the client device: user
contributions, which will be sent to the service, and private
validation data, which is used internally by the Glimmer to
run the validation predicate. In some cases, user contribu-
tions are used in the validation predicate directly, while in
other cases separate contextual private information is used
there instead. For example, in the predictive keyboard service,
model parameters are range-checked against the valid weight
range [0, 1]. In contrast, more invasive validation predicates
could request additional data, not contributed to the service,
such as individual key presses and timings or web browser
logs showing the typed data in user-triggered HTTP GET
requests to corroborate the user contributions. For an appli-
cation that attaches photographs of places to locations on
a map, the Glimmer could request validation information
such as exact GPS location and tracks, a fingerprint of the
camera hardware, and access to other photos on the device
to establish context. Note that the Glimmer cannot directly
obtain such information; it must request it from the host
system.

Blinding is the second Glimmer component. Its purpose is
to hide private, user-contributed values so that the service
can compute aggregates on them without revealing individ-
ual contributed data. Blinding must be performed together
with Validation, since validation is impossible after blind-
ing has occurred. To illustrate how this could work, we give
a simple example [4]. Assume the existence of a trusted
blinding service—which could, itself, be implemented as a
separate enclave on one of the clients, or as a distinct trusted
service—that computes 𝑁 random blinding values 𝑝𝑖 such
that

∑︀𝑁−1
𝑖=0 𝑝𝑖 = 0. It then seals each 𝑝𝑖 value to the Glimmer

code, and encrypts one of the sealed values to each of 𝑁

clients’ public keys, distributing the encrypted blinding val-
ues to the Glimmers running on each client. Each Glimmer
for user 𝑖 can decrypt and unseal its blinding value. The
Blinding component then computes the blinded user contri-
bution 𝑦𝑖 = 𝑥𝑖 + 𝑝𝑖. 𝑦𝑖 is safe to send to the service, since
the service cannot compute the private 𝑥𝑖 from it (because
the blinding value 𝑝𝑖 is secret). However, once the service
sums all 𝑦𝑖’s together, it can compute the accurate sum of
all 𝑥𝑖’s:

∑︀𝑁−1
𝑖=0 𝑦𝑖 =

∑︀𝑁−1
𝑖=0 𝑥𝑖 +

∑︀𝑁−1
𝑖=0 𝑝𝑖 =

∑︀𝑁−1
𝑖=0 𝑥𝑖. Recall

that non-private user contributions need not be blinded; for
instance, in the crowd-sourced photos for map locations, user-
contributed photos are meant to be shared, so they do not
need to be blinded.

The third Glimmer component, Signing, takes a user-
contributed input (blinded or unblinded) and the result of
the Validation component, which can be a boolean “valid” /
“invalid”, or a confidence value. If validation passed, the Sign-
ing component signs the user-contributed input and returns
it to the client for transmission to the service. To close any
side channels, if validation fails, the Glimmer may still sign
the contribution, but that contribution would contain a bit
indicating that it is invalid, which only the service should
be able to interpret. The signing key used can be provided
by the service, and sealed (using the SGX sealing facility) to
the Glimmer code, so that it is only available to instances of
Glimmer enclaves.

One last requirement is that the Glimmer convince both
the user and service that it is correct—i.e., that it has both
input confidentiality and integrity properties. To convince
the user, we envision vetting and formal verification by a
third-party, such as the EFF; while the service could perform
its own vetting and verification to convince itself. Once it
has been vetted, the hash of the Glimmer is published, and
the user can use SGX to attest that their client is running
the approved Glimmer. Similarly the service can ensure that
signing keys are sealed to the approved Glimmer. Because
the Glimmer is, necessarily, small and limited in its external
interactions, it is amenable to formal verification for absence
of runtime errors such as buffer and integer overflows [11, 19].
Furthermore, much research has been recently devoted to
verifying formally the confidentiality of secret values in SGX
enclaves [17, 18]. The burden on programmers is relatively
low: programming in a simple programming language (e.g.,
C) with relatively low-complexity idioms (e.g., bounded loops,
no function pointers, etc.), explicitly marking secret inputs,
explicitly marking declassification functions (e.g., blinding
and encryption). Simple functional property verification can
establish that every signed value has been validated and that
no private information leaves the Glimmer without being
blinded.

We have shown all components in Figure 3 within a single
SGX enclave, which is more efficient as there is only one
transition in and out of the enclave. However, to increase ease
of verification, the Glimmer can be decomposed so that each
component runs in its own enclave. Naturally, communication
between components must now also be secured.

4



Glimmers: Resolving the Privacy/Trust Quagmire HotOS ’17, May 08-10, 2017, Whistler, BC, Canada

4 DEPLOYMENT CONSIDERATIONS

In this section we consider how Glimmers can be applied
in challenging deployment scenarios, either with sensitive
validation predicates, or when SGX is not readily available
at the client devices needing Glimmer functionality.

4.1 Validation confidentiality

So far, we have described the use of Glimmers in applications
where user contributions are used for a shared service. How-
ever, Glimmers have applications to other problems where
privacy and trust are at odds. For example, consider the
case of bot detection in a web service. While CAPTCHAs
are a standard method for detecting bots, they have their
drawbacks, such as vulnerability to computer vision and
CAPTCHA farms, and annoyance to legitimate human users.
An alternative solution is embedding a JavaScript “detector”
in the web page that heuristically detects whether a human—
as opposed to a bot—is present. Such solutions collect a
large set of signals, such as how faithfully the client executes
JavaScript, fingerprints of the client’s system software and
hardware, and the timing and frequency of UI interactions
such as mouse movements and changes in focus [7, 14]. These
signals are sent back to the web service, which uses them
to determine if the sender is a bot or a human. However,
these signals often contain private information, such as the
user’s cookies, browsing history, and browsing interests [10].
A Glimmer can protect individual privacy by performing
the validation, which requires access to sensitive informa-
tion locally on the client machine, and sending only 1 bit of
information—whether the user is human or not—back to the
web service.

In such an adversarial example, the web service may wish
to hide the exact validation predicate from the adversary,
a property we call Validation Confidentiality. Glimmers
can provide validation confidentiality by accepting encrypted
code and data from the web service and decrypting and
running that code inside the enclave where the plain text
code is protected from observation by the hardware TEE.

One challenge is to make sure that the keys used to sign
and encrypt the code and data are transferred securely to
the Glimmer and that the Glimmer only accepts keys from a
legitimate web service. This can be accomplished using remote
attestation, which enables data, such as Diffie-Hellman (DH)
handshake values, to be bound to code running in an enclave.
This would assert to the service that the DH handshake is
occurring with a legitimate Glimmer. Similarly, the Glimmer
would need to ensure that the DH handshake is occurring
with a legitimate service, which can be accomplished by the
service signing its DH handshake values and embedding the
signature verification key in the Glimmer code. Once shared
secrets are negotiated with DH key exchange, secret code
and data can be securely transferred from the service to the
Glimmer.

The other challenge is to prove input confidentiality to
the user when part of the Glimmer can no longer be audited
because it is encrypted and set dynamically at runtime. This

can be done by making the message format between the Glim-
mer and the service public, and having a runtime auditor
check that each message is well formed and contains only one
bit of information (i.e., a single bit plus a well-defined signa-
ture and challenge response). While this does not preclude a
covert channel, it puts a hard upper bound on the capacity
of such a channel.

4.2 Glimmer-as-a-Service

So far we have proposed that Glimmers run on client devices.
However, given the increasing trend towards Internet of things
(IoT) devices, there are likely to be some devices that will
make user contributions that must be trustworthy, but do not
have a processor with trusted computing capabilities. In this
case, we envision that a neutral—but not necessarily trusted—
third party may supply the capability to run a Glimmer as a
service, on behalf of clients. This third party could simply be
another device owned by the same user (such as a set-top box
or home service), a local group of people that the user knows
(such as their University, community, or church), or even a
well-known entity that is willing to sell or provide resources to
improve user privacy. Note that unlike trusted third parties, a
Glimmer service still relies on SGX to provide its guarantees,
and need not necessarily be trusted organizationally.

The main criterion is that the client device needs to estab-
lish that it is sending its private data to a genuine Glimmer.
Fortunately, this can be accomplished using the same attes-
tation mechanism to establish a secure channel as described
above. Attestation enables the client to be assured that the
other endpoint of a secure communication channel is within
an approved Glimmer. Once this is done, the client can trans-
mit the user contribution and private data and receive in
return a signed (and if necessary, blinded) user contribution,
which it can then forward to the service.

5 CHALLENGES AND FUTURE
WORK

The effectiveness of a Glimmer depends on the effectiveness
and practicality of the validation predicate used to decide
whether a user contribution is trustworthy. Without a trusted
path to the point of collection for user-contributed data, the
validation function must be resistant to data forgery. Thus,
the validation problem consists of a) checking the consistency
of multiple, untrusted sources of data to detect the existence
of forged contributions, and b) checking the contributed data
against a model describing typical, trustworthy contributions.
As a result, the success of validation depends on the secrecy
(i.e., validation confidentiality) of some aspects of the predi-
cate: either the exact data it collects, or the validation model
it uses. Fortunately, TEEs are designed to protect the confi-
dentiality and integrity of intermediate values of functions
they execute; even so, functions that are hard or impossible
to reverse-engineer by observing their inputs and outputs
are an active, open research problem. Some initial thoughts
for our future work include collecting much more validation
data than the model requires, hiding or perturbing randomly

5



HotOS ’17, May 08-10, 2017, Whistler, BC, Canada David Lie and Petros Maniatis

the outcome of validation, and obfuscating the validation
predicate itself.

In addition, TEEs such as SGX and Trustzone have re-
strictions on what types of functionality they support; for
example, SGX enclaves can only invoke user-space, ring-3 in-
structions. As a result, they cannot directly take system-level
observations about inputs and outputs to devices, device
drivers, buffer caches, browser histories, etc. This has been a
persistent problem with TEEs even from prior generations.
Although some research proposals on establishing trusted
path have been published [21], no pervasive solutions exist.
This obstacle can be partially surmounted through the use
of external observations that are less amenable to tampering
(e.g., by middleboxes or trusted external services observing
and recording a client’s behavior). Another promising ap-
proach may involve the attested communication of a relatively
performant but user-space-only TEE (e.g., an SGX enclave)
with a slower-to-use, but system-level capable TEE (e.g., a
verified mini hypervisor booted via Intel’s TXT [19], or a
late-launched TEE [13]); the latter can collect trustworthy
system observations, which it can periodically attest to, for
the use of the former’s frequent validation checks. Our fu-
ture work is studying how such approaches can improve the
quality of validation checks for Glimmer’s use cases.

6 CONCLUSION

We propose Glimmers of Trust, implemented on trusted com-
puting hardware, that can provide trustworthiness guarantees
of user-contributed data to services without compromising
user privacy. We describe a design using Intel SGX, which
we are currently implementing. While many previous pro-
posals for SGX are for server-side uses [2, 8, 15], or confer
mainly server-side benefits (i.e., DRM, mobile payments), we
see Glimmers as one of the first uses of client-side trusted
computing that can benefit both services and users.

ACKNOWLEDGMENTS

The ideas presented in this paper were inspired by a number

of discussions with Úlfar Erlingsson. Keith Bonawitz, Arnar
Birgisson, and Mart́ın Abadi gave us valuable feedback on
earlier drafts of this document.

REFERENCES
[1] Mart́ın Abadi. 2004. Trusted Computing, Trusted Third Parties,

and Verified Communications. In Security and Protection in
Information Processing Systems. Springer US, Toulouse, France,
291–308. https://doi.org/10.1007/1-4020-8143-X 19

[2] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth,
Andre Martin, Christian Priebe, Joshua Lind, Divya Muthuku-
maran, Dan OtextquoterightKeeffe, Mark L. Stillwell, David
Goltzsche, Dave Eyers, Rdiger Kapitza, Peter Pietzuch, and
Christof Fetzer. 2016. SCONE: Secure Linux Containers with
Intel SGX. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16) (2016). USENIX As-
sociation, 689–703. https://www.usenix.org/conference/osdi16/
technical-sessions/presentation/arnautov bibtex: 199364.

[3] Darrell Bethea, Robert A. Cochran, and Michael K. Reiter. 2008.
Server-side Verification of Client Behavior in Online Games. ACM
Trans. Inf. Syst. Secur. 14, 4, Article 32 (Dec. 2008), 27 pages.
https://doi.org/10.1145/2043628.2043633

[4] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marce-
done, H Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron
Segal, and Karn Seth. 2016. Practical Secure Aggregation
for Federated Learning on User-Held Data. In Proceedings of
the 2016 Workshop on Private Multi-party Machine Learning
(PMPML’16).

[5] Robert Epstein and Ronald E. Robertson. 2015. The
Search Engine Manipulation Effect (SEME) and its Pos-
sible Impact on the Outcomes of Elections. Proceedings
of the National Academy of Sciences 112, 33 (2015),
E4512–E4521. https://doi.org/10.1073/pnas.1419828112
arXiv:http://www.pnas.org/content/112/33/E4512.full.pdf

[6] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015.
Model Inversion Attacks That Exploit Confidence Information
and Basic Countermeasures. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (CCS
’15). ACM, New York, NY, USA, 1322–1333. https://doi.org/10.
1145/2810103.2813677

[7] Ramakrishna Gummadi, Hari Balakrishnan, Petros Maniatis, and
Sylvia Ratnasamy. 2009. Not-a-Bot: Improving Service Availabil-
ity in the Face of Botnet Attacks. In Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation
(NSDI’09). USENIX Association, Berkeley, CA, USA, 307–320.
http://dl.acm.org/citation.cfm?id=1558977.1558998

[8] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Em-
mett Witchel. 2016. Ryoan: A Distributed Sandbox for Un-
trusted Computation on Secret Data. In 12th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI
16) (2016). USENIX Association, 533–549. https://www.usenix.
org/conference/osdi16/technical-sessions/presentation/hunt bib-
tex: 199358.

[9] Intel 2014. Intel® Software Guard Extensions Programming
Reference. (Oct. 2014). Available at https://software.intel.com/
sites/default/files/managed/48/88/329298-002.pdf.

[10] Dongseok Jang, Ranjit Jhala, Sorin Lerner, and Hovav Shacham.
2010. An Empirical Study of Privacy-Violating Information Flows
in JavaScript Web Applications. In Proceedings of CCS 2010,
Angelos Keromytis and Vitaly Shmatikov (Eds.). ACM Press,
270–83.

[11] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien
Signoles, and Boris Yakobowski. 2015. Frama-C: A Software
Analysis Perspective. Formal Aspects of Computing 27, 3 (2015),
573–609. https://doi.org/10.1007/s00165-014-0326-7

[12] Jakub Konecný, H. Brendan McMahan, Daniel Ramage, and Peter
Richtárik. 2015. Federated Optimization: Distributed Machine
Learning for On-Device Intelligence. In Proceedings of the NIPS
Workshop on Optimization for Machine Learning.

[13] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anu-
pam Datta, Virgil Gligor, and Adrian Perrig. 2010. TrustVisor:
Efficient TCB Reduction and Attestation. In Proceedings of the
IEEE Symposium on Security and Privacy.

[14] KyoungSoo Park, Vivek S. Pai, Kang-Won Lee, and Seraphin B.
Calo. 2006. Securing Web Service by Automatic Robot Detec-
tion. In USENIX Annual Technical Conference, General Track
(2006). 255–260. http://static.usenix.org/event/usenix06/tech/
full papers/park/park html/

[15] Felix Schuster, Manuel Costa, Cdric Fournet, Christos Gkant-
sidis, Marcus Peinado, Gloria Mainar-Ruiz, and Mark Russi-
novich. 2015. VC3: Trustworthy Data Analytics in the Cloud
Using SGX. In Security and Privacy (SP), 2015 IEEE Sympo-
sium on (2015). IEEE, 38–54. http://ieeexplore.ieee.org/abstract/
document/7163017/

[16] Reza Shokri and Vitaly Shmatikov. 2015. Privacy-Preserving Deep
Learning. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security. ACM, 1310–1321.

[17] Rohit Sinha, Manuel Costa, Akash Lal, Nuno P. Lopes, Sriram
Rajamani, Sanjit A. Seshia, and Kapil Vaswani. 2016. A De-
sign and Verification Methodology for Secure Isolated Regions.
In Proceedings of the 37th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI ’16).
ACM, New York, NY, USA, 665–681. https://doi.org/10.1145/
2908080.2908113

[18] Rohit Sinha, Sriram Rajamani, Sanjit Seshia, and Kapil Vaswani.
2015. Moat: Verifying Confidentiality of Enclave Programs. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security (CCS ’15). ACM, New York, NY,
USA, 1169–1184. https://doi.org/10.1145/2810103.2813608

6

https://doi.org/10.1007/1-4020-8143-X_19
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://doi.org/10.1145/2043628.2043633
https://doi.org/10.1073/pnas.1419828112
http://arxiv.org/abs/http://www.pnas.org/content/112/33/E4512.full.pdf
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/2810103.2813677
http://dl.acm.org/citation.cfm?id=1558977.1558998
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/hunt
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/hunt
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://doi.org/10.1007/s00165-014-0326-7
http://static.usenix.org/event/usenix06/tech/full_papers/park/park_html/
http://static.usenix.org/event/usenix06/tech/full_papers/park/park_html/
http://ieeexplore.ieee.org/abstract/document/7163017/
http://ieeexplore.ieee.org/abstract/document/7163017/
https://doi.org/10.1145/2908080.2908113
https://doi.org/10.1145/2908080.2908113
https://doi.org/10.1145/2810103.2813608


Glimmers: Resolving the Privacy/Trust Quagmire HotOS ’17, May 08-10, 2017, Whistler, BC, Canada

[19] Amit Vasudevan, Sagar Chaki, Petros Maniatis, Limin Jia, and
Anupam Datta. 2016. überSpark: Enforcing Verifiable Object
Abstractions for Automated Compositional Security Analysis of
a Hypervisor. In USENIX Security Symposium. USENIX Associ-
ation, Austin, TX, 87–104. https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/vasudevan

[20] Amit Vasudevan, Ning Qu, and Adrian Perrig. 2011. XTrec: Secure
Real-Time Execution Trace Recording on Commodity Platforms.
In System Sciences (HICSS), 2011 44th Hawaii International
Conference on. IEEE, 1–10.

[21] Zongwei Zhou, Virgil D. Gligor, James Newsome, and Jonathan M.
McCune. 2012. Building Verifiable Trusted Path on Commod-
ity x86 Computers. In Proceedings of the IEEE Symposium on
Security and Privacy.

7

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/vasudevan
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/vasudevan

	Abstract
	1 Privacy and Cloud Services At Odds
	2 A Glimmer of Trust In Between
	3 Glimmers on SGX
	4 Deployment Considerations
	4.1 Validation confidentiality
	4.2 Glimmer-as-a-Service

	5 Challenges and Future Work
	6 Conclusion
	References

