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Abstract

We introduce predictive state smoothing (PRESS), a novel semi-parametric regres-
sion technique for high-dimensional data using predictive state representations. PRESS
is a fully probabilistic model for the optimal kernel smoothing matrix. We present ef-
ficient algorithms for the joint estimation of the state space as well as the non-linear
mapping of observations to predictive states and as an alternative algorithms to mini-
mize leave-one-out cross validation error. The proposed estimator is straightforward to
implement using (stochastic) gradient descent and scales well for large N and large p.
LASSO penalty parameters as well the optimal smoothness can be estimated as part
of the optimization. Finally we show that out-of-sample predictions are on par with or
better than alternative state-of-the-art regression methods on the abalone and MNIST
benchmark datasets. Yet unlike alternative methods PRESS gives meaningful domain-
specific insights and can be used for statistical inference via regression coefficients.

Keywords: kernel regression, predictive states, LOOCV optimization, non-parametric
smoothing, variable selection, high-dimensional data, minimal sufficient statistics, non-
parametric dimension reduction, distribution clustering.



1 INTRODUCTION

1 Introduction

Consider the high-dimensional regression problem

y = f(x) + u, u
iid∼ G(0, σ2), (1)

where p-dimensional features x ∈ Rp are mapped to a continuous noisy y ∈ R through

an unknown function f : Rp → R and G is some well-behaved error distribution (not

necessarily Normal). The statistical and machine learning literature covers parametric,

semi-parametric, and non-parametric models for f , algorithms to estimate f , or to directly

optimize probabilistic or point predictions, P (y | x) or E(y | x), respectively. References

on specific models are too many to list, but any book on statistical learning contains most

common techniques (e.g., Murphy, 2012; Hastie et al., 2001; Bishop, 2006). Statistical re-

gression models can easily be used for further inference and as building blocks in generative

models, but fall short in predictive performance compared to machine learning approaches.

The latter, however, might be difficult or even impossible to use as part of a proper prob-

abilistic inference and calculus as they are often solely defined in terms of an optimization

algorithm. The method we propose achieves predictive performance en par with state-of-

the-art machine learning approaches such as Random Forests, SVMs, or neural nets; yet it is

a generative model with probabilistic predictions and hence estimates are easy to interpret

using parametric inference familiar from logistic regression.

To achieve this we put regression in a predictive state framework, introduced in Lauritzen

(1974b) and further developed in the causal state (Shalizi and Crutchfield, 2001; Shalizi,

2003) as well as the sufficient dimension reduction literature (Wang and Xia, 2008; Cook

and Li, 2002). This approach reverses the usual procedure to define a statistical model

first, and then analyze it for estimation and inference. Instead, Lauritzen (1974b) suggest

to rather let the model be informed by the planned statistical analysis. The main objective

for the regression problem in (1) often is not to estimate f directly, but most applications

rather call for optimal predictions P (y | x) or E(y | x). In order to obtain such optimal

predictions we borrow from the causal state literature on non-linear time series and dynamic

systems (Shalizi and Crutchfield, 2001; Shalizi and Shalizi, 2004; Boots et al., 2013) and

define a function ε that maps features x ∈ X to a predictive state space S. This state space

is constructed in such a way that it is minimal sufficient to predict y (see also adequate

statistics in Lauritzen, 1974a; Dawid, 1979). It makes y independent of x given its state,

P (y | x, ε(x)) = P (y | ε(x)), and it does so in way that achieves maximal compression of

x while not losing any information to predict y. Following this approach naturally leads

to a smoothing method that estimates a generative model for the optimal kernel matrix

from the data, which by construction is minimal sufficient for prediction. It is related to

sliced inverse regression (SIR) (Li, 1991; Wang and Xia, 2008) and mean subspace dimen-

sion reduction (Cook and Li, 2002); however, our proposed method is non-linear, works for
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2 PREDICTIVE STATES FOR REGRESSION

univariate x as well, and we propose a joint maximum likelihood estimator for the subspace

and the mapping rather than iterative EM-like algorithms.

This work is organized as follows. Section 2 presents the predictive state framework and

adapts it to the general high-dimensional, non-parametric regression setting. We also estab-

lish the connection to linear smoothers, metric learning methods, sliced inverse regression

and sufficient dimension reduction, and reproducing kernel Hilbert spaces (RKHS). Section 3

explains how to obtain probabilistic and point predictions for new unseen data. In Section 4

we present efficient algorithms for maximum likelihood estimation (MLE) of the state space

S and the mapping ε. As a useful alternative the closed-form leave-one-out and generalized

cross-validation (LOOCV and GCV) MSE can be computed efficiently from the training

data alone. LASSO penalty parameters as well as the optimal smoothness of the function

f can also be estimated automatically from the data. In Section 5 we apply PRESS to the

motorcycle, abalone, and MNIST dataset and show that it does not only match or even

outperform state-of-the-art prediction methods, but can also be used statistical inference

via an interpretable state space. Moreover PRESS models have a much lower-dimensional

parameter space compared to deep neural nets or random forests. Finally, Section 6 sum-

marizes the methodology and highlights its main advantages over existing regression and

smoothing methods. Proofs and derivations are given in Appendix A.

2 Predictive States for Regression

Predictive state representations are statistically and computationally efficient for obtaining

optimal forecasts of non-linear dynamical systems (Shalizi and Crutchfield, 2001). Examples

include time series forecasting via ε-machines (Shalizi and Shalizi, 2004), learning non-linear

dynamics of spatial fields (Jänicke and Scheuermann, 2009), and signal processing for arti-

ficial intelligence, e.g., moving robot arms or modeling car trajectories (Boots et al., 2013).

In a nutshell, any observation Xt at time t has a corresponding latent predictive state St,

which is minimal sufficient to predict the future Xt+1, i.e., P (Xt+1 | Xt, St) = P (Xt+1 | St).
Consequently all Xt with the same state St = s share the same conditional predictive dis-

tribution P (Xt+1 | St = s). Goerg and Shalizi (2013) and Boots et al. (2013) propose

algorithms for the non-parametric estimation of the continuous state space as well as the

mapping from Xt to St.

In a regression problem one is usually concerned with obtaining estimates for P (y | x) or

E(y | x) if only a point prediction is required. Following causal state literature (Shalizi and

Crutchfield, 2001) and borrowing notation and terminology from Goerg and Shalizi (2013)
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2.1 Predictive state examples 2 PREDICTIVE STATES FOR REGRESSION

Figure 1: Univariate regression examples discussed in Section 2.1.

we introduce a latent predictive state random variable S ∈ S, which is a function of x,

ε : X 7→ S, S = ε(x). (2)

The function ε is such that it maps x to an equivalence class [x], which consists of all points

in X that have the same predictive distribution P (y | x) as x. Formally,

ε : x 7→ [x] = {x̃ | P (y | x) ≡ P (y | x̃)}. (3)

The set [x] is non-empty as it contains at least x itself. It is important to point out that

two observations xi1 6= xi2 can lie in the same state, s, even if xi1 and xi2 are very distinct

from each other, i.e., they do not have to lie close in X as long as they predict the same

y. Put in other words, it is advantageous to find similar observations in the conditional

distribution space p(y | x), rather than just locally in the Euclidean space of x.

Lemma 2.1 (Sufficiency). ε(x) is sufficient to predict y from x,

P (y | ε(x),x) = P (y | ε(x)). (4)

Corollary 2.2 (Minimal sufficiency). ε(x) is minimal sufficient to predict y from x.

See also Lauritzen (1974a) and Dawid (1979) on an adequate statistic.

Lemma 2.1 and Corollary 2.2 are key for prediction and estimation as

P (y | x) =

∫
s∈S

P (y | s,x)P (s | x)ds =

∫
s∈S

P (y | s)P (s | x)ds, (5)

where the second equality follows from conditional independence of y and x given the

(minimal) sufficient ε(x).
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2.1 Predictive state examples

For sake of illustration we present several examples of a true f with their corresponding

predictive state space. Figure 1 shows random draws for several examples (u
iid∼ N(0, σ2)

and xi ∼ U(0, 1)) plus the motorcycle dataset we analyze in Section 5.1.

independent y and x: The true model is

y = u, σ = 1, (6)

which implies that y is independent of x. Hence S = {s} is just one state that contains

the entire observation space s = {x | x ∈ Rp}. ε is a constant, mapping every x to

s. The best prediction in mean squared error (MSE) sense is E(y | s), which can be

estimated using the sample average 1
N

∑N
i=1 yi.

step functions: The step function

y = 1 (0.5 < x < 0.75) + u, σ = 0.5 (7)

has two predictive states partitioning the observation space in

s1 = {x | x ≤ 0.5 or x ≥ 0.75} and s2 = {x | 0.5 < x < 0.75}. (8)

The ε mapping needs to learn the inequality restrictions defining each set in (8). The

MSE-minimizing predictions for any x̃ ∈ R

E(y | x̃) = E(y | ε(x̃) = sj), (9)

can be estimated using a sample average in each partition 1
Nj

∑
i|ε(xi)=sj yi, where

Nj =| sj | is the number of observations in state sj or the size of state j.

linear regression: For a simple linear regression

y = α+ β · x+ u, σ = 1, (10)

ε is the identity function (assuming β 6= 0) as [x] = {x} consists only of itself with

P (y | x) = P (y | [x]) = G(α+ β · x, σ2) (assuming G is a location family).

continuous, univariate: The Doppler function (see p. 77-78 of Wasserman, 2006)

f(x) =
√
x(1− x) sin

(
2.1π

x+ 0.05

)
, 0 ≤ x ≤ 1, (11)
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2.2 Probabilistic predictive states 2 PREDICTIVE STATES FOR REGRESSION

has an infinite state space S = ∪ysy with

sy = {x | f(x) = y}. (12)

As an application we consider the motorcycle dataset (Section 5.1), where the state

space is a combination of discrete and continuous components.

continuous, multivariate f : The abalone dataset (see Section 5.2) contains observations

of several sea shells features. The goal is to predict the number of rings y > 0 – which

serves as a proxy for their age – from several covariates (e.g., diameter, weight, or

height) collected in X:

yi = f(xi,1, . . . , xi,7) + ui. (13)

Section 5.2 shows that in this context the (estimated) predictive states are even in-

terpretable as s1 = infant, s2 = adult, and s3 = senescent.

We want to highlight that our proposed methodology with 3 states and 16 parameters

total (2 logistic regressions with 1 + 7 parameters each) achieves the same out-of-

sample predictive performance as a 2 layer neural net with 10 nodes each (∼ 200

parameters). A 4 state model estimate (24 parameters) outperforms the neural net.

The step-function example illustrates why the predictive state approach improves upon

typical kernel methods. A standard kernel method does not pool observations from x < 0.5

and x > 0.75 to estimate the true y = 0. The predictive state approach does that and

achieves smaller variance, while keeping bias the same, hence reducing MSE.

Put in other words, the crucial difference between typical kernel regression and PRESS is

that the latter does not rely on geometry of the Euclidean X alone, but on the conditional

distribution space Y | X . Hence points can be close in the PRESS framework, even if they

are not close in X . This is especially useful to reduce variance, while keeping bias the same

since points are close in Y by construction.

2.2 Probabilistic predictive states

In real-world applications the unknown f is neither constant nor piecewise constant. We

thus generalize discrete, deterministic states to a continuous probabilistic state space by

convex combinations of a finite basis space S = {s1, . . . , sJ}. Doing this naturally leads to

our novel semi-parametric kernel regression method that we term predictive state smoothing

(PRESS).

For the remainder of this work we consider a finite S = {s1, . . . , sJ} with 1 ≤ J < ∞. As

we will show S forms the basis of a continuous, probabilistic state space, where each sj is
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a deterministic or extremal state (see below). For finite J , (5) becomes

P (y | x) =

J∑
j=1

P (y | sj)P (sj | x) =

J∑
j=1

wj(x) · P (y | sj), (14)

which is a finite mixture over state-conditional distributions with weights wj(x) := P (sj |
x). Each weightvector w(x) = (w1(x), . . . , wJ(x)) lies in the J-dimensional probability

simplex ∆(J) := {p ∈ RJ | pj ≥ 0 and
∑J

j=1 pj = 1}.

Probabilistic predictive state representation: Let w ∈ ∆(J), with wj = P (S = sj | x),

j = 1, . . . , J , be the probabilistic predictive state space representation of x.

Each sj can be represented as a deterministic mapping w(sj) = (0, . . . , 0, 1, 0, . . . , 0) with 1

in the j-th position and lies in the jth corner of the probability simplex ∆(J). Any non-

deterministic w is a convex combination of w(sj), j = 1, . . . , J . A deterministic sj cannot

be represented as a convex combination of any other states – deterministic or probabilistic

– since sj 6= sk by definition. Following extremal point models (Lauritzen, 1974b; Lauritzen

et al., 1984) we thus also refer to the deterministic sj as an extremal state.

Let y = (y1, . . . , yN )
ᵀ
∈ Y = RN×1 be N real-valued observations that we want to predict

using p features collected in the design matrix X = (x1, . . . ,xN )
ᵀ
∈ X = RN×p, where

xi = (xi,1, . . . , xi,p) (for simplicity assume that x·,1 is the intercept). The probabilistic

predictive states for X ∈ RN×p can be represented as an N × J matrix W with

[0, 1] 3Wi,j = P (sj | xi), i = 1, . . . , N ; j = 1, . . . , J, (15)

with all elements being non-negative and rows adding up to 1. In particular, ‖W‖1 =∑N
i=1

∑J
j=1 Wi,j = N .

Notation: To avoid confusion, wi refers to the i-th row of W; wj to the j-th element of

wi; Wj to the j-th column of W; and Wi,j to the (i, j) element of W.

2.3 Interpreting the probabilistic predictive state space

For deterministic states the size of state sj is the number of observations in each state

Nj =
N∑
i=1

1 (ε(xi) = sj) , (16)
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where clearly
∑J

j=1Nj = N . For probabilistic predictive states (16) can be generalized to

the column sums of W,

σj =
N∑
i=1

Wi,j = ‖Wj‖1, (17)

which reduces to (16) if all xi have deterministic mappings. Since ‖W‖1 = N , it also holds

that
∑J

j=1 σj = N and hence σj can be interpreted as total number of (partial) observations

credited to state j.

The J-dimensional wi represents how far xi lies from each of the J corners of the probability

simplex ∆(J) – the extremal states. For example, if wi = (0.5, 0, . . . , 0, 0.5), then observa-

tion i lies halfway between state s1 and sJ with P (y | xi) = 1
2P (y | s1) + 1

2P (y | sJ). The

rows of W induce a similarity between features xi and xj , which can be used for dimension

reduction, clustering, and visualization (see Fig. 5 in Section 5).

The function ε can vary between two extremes: either it is deterministic or it assigns states

uniformly at random. Put differently, the mapping from observation to state can either be

entirely certain or completely uncertain. As in Goerg and Shalizi (2013) we use Shannon

entropy (Shannon, 1948)

ηi = H (wi) , where H(p) = −
J∑
j=1

pj log2 pj , (18)

to measure the uncertainty about the predictive state of observation xi. For a deterministic

mapping ηi = 0; for a completely uninformative observation to state mapping, wj = 1
J

for all j, entropy achieves its maximum log2(J). A low ηi does not imply though that the

prediction per se, P (y | xi), is uncertain; it just means one is sure about which of the J

predictive distributions to pick from.

The states themselves are characterized by the equivalence classes in (3). With the proba-

bilistic mapping wi for each observation it is not anymore possible to consider exact equiv-

alence classes. Instead state j is characterized by all xi with probability wj = P (sj = ε(xi))

falling into state sj ; i.e., states sj , j = 1, . . . , J are characterized by the column space of

W. As S partitions the observation space (Y,X ) we suggest to examine p(y | Wj) and

E(X |Wj).
1 In real world applications, we propose to estimate summary statistics condi-

tional on the j-th state, i.e., column j of W, to gain a better understanding of what each

sj ∈ S represents. These will give typical predictions and features for the j-th predictive

state – see for example Fig. 6a for the average handwritten digit of state s0, . . . , s9 for the

1SinceX is usually high-dimensional, it is less intuitive to consider p(X | Wj) – especially for visualization
when p > 2.
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3 PREDICTION

MNIST dataset. As an alternative we suggest to find that observation x∗i with largest value

in the j-th column. This serves as a representative and realistic example of state j. It has

the advantage that such a x∗i has been observed, whereas E(X |Wj) might not make sense

for the domain-specific use case (akin to median vs. mean).

3 Prediction

The causal state literature has mostly focused on the characterization and estimation of the

full predictive distribution p(y | ε(x)). For regression though, we are primarily concerned

with estimating E(y | X) – which is a much simpler problem.

Just as the predictive distribution is a mixture over state-conditional distributions, so is the

conditional expectation as – due to sufficiency of sj –

E(y | x) =
J∑
j=1

P (S = sj | x)E(y | sj), (19)

is a weighted average of state-conditional expectation.

Assume that both S and ε are known (see Section 4 for how to estimate them), i.e., we can

map any new x̃ to its state space representation w̃ = ε(x̃). The prediction in (19) can be

estimated as

ŷ(x̃) =
J∑
j=1

w̃j(x̃) · ȳ(j), ȳ(j) =
1

σj

N∑
i=1

Wi,j · yi, (20)

where the state-conditional point prediction ȳ(j) is a weighted average of observations in

state j from observed (training) data {xi | i = 1, . . . , N}. Eq. (20) holds for in-sample and

out-of-sample predictions.

The in-sample fit can be written in matrix notation as

RN 3 ŷ = S× y, (21)

RN×N 3 S := S(W) = W ×D(W)×W
ᵀ
, (22)

where D(W) is a diagonal matrix with Dj,j = σ−1
j . This shows that PRESS is just a linear

smoother with kernel matrix S in (22).

Unlike traditional kernel smoothers, PRESS can rely on the kernel trick (Hofmann et al.,

2008) and does not ever need to compute the N × N matrix explicitly, but predictions

can be obtained in two steps with linear scaling in N . First, estimate J state-conditional

point-predictions using a weighted average of y according to the re-normalized columns of
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W,

RJ×1 3 ȳ(1:J) = D(W)×W
ᵀ × y. (23)

The prediction ŷi can be obtained as a weighted average of the J point predictions, where

the weight of state-prediction j equals the probability of observation i being in state sj –

which is just wi –,

RN×1 3 ŷ = W × ȳ(1:J). (24)

This property is essential for highly scalable and efficient implementations for prediction

and estimation and distinguishes PRESS from traditional kernel smoothers, as they have

to evaluate the full N ×N matrix.

Another computational advantage is that once a model has been learned, only the J state

point-predictions in (23) need to be stored for future (test) prediction. This is highly

advantageous for large N datasets as usually J � N . For example, the MNIST handwritten

digit dataset has Ntrain = 60, 000, Ntest = 10, 000, but J = 10 (see Section 5.3).

3.1 Predictive distributions

While often a point-prediction and prediction intervals suffice, PRESS provides fully prob-

abilistic predictions as

P (y | x̃) =
J∑
j=1

w̃j · P (y | sj). (25)

The mixture components P (y | sj), j = 1, . . . , J can be estimated in parallel using a

weighted non-parametric density estimator with weight of yi proportional to Wi,j .

4 Estimation

Section 3 showed how to obtain predictions ŷ from a weight matrix W and weigtvector

w̃, i.e., under the assumption that both S and ε are known. In this section we present

estimators for S and ε given observations (yi,xi). In case the error distribution is Normal

they are maximum likelihood estimators (MLEs).

Recall that our principal goal is to obtain optimal predictions of y given x; estimating f in

(1) is only secondary. As common we find the best model by minimizing the mean squared

error (MSE). Following (21) & (22) the in-sample residuals are

û = y − ŷ = R(W)y, (26)
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4 ESTIMATION

where for better readability we define a residual operator

RN×N 3 R(W) :=
(
IN −W ×D(W)×W

ᵀ)
. (27)

The MSE then becomes a quadratic form

MSE (W; y) =
1

N
(R(W)y)

ᵀ
(R(W))y) ,

subject to wi = ε(xi), i = 1, . . . , N.
(28)

Without any further specification of ε this is over-parametrized as W contains (J − 1) ·N
free parameters; moreover optimizing (28) directly would not allows us to get weights for a

new x̃, but only for training data.

Since w ∈ ∆(J), we specify ε as the probability predictions of a multi-class classifier Cθ
parametrized by θ, i.e., a softmax function,

Cθ(x) 7→ {s1, . . . , sJ},
ε(x) = (P (Cθ(x) = s1), . . . , P (Cθ(x) = sJ)).

(29)

For example, for a logistic classifier θ = {βj}Jj=1 are p-dimensional coefficients for each

class prediction X · βj ; for a neural net, θ are node weights of all layers combined. As the

softmax parametrization is unidentifiable for all J parameters, we add the restriction that

the J coefficients related to the output layer must add up to 0 ∈ Rp. For logistic PRESS

this means that a J state model, only requires estimating β1, . . . ,βJ−1 as β̂J = −
∑J−1

j=1 β̂j .

As state labels are invariant under permutation, we order the columns of W in increasing

order of the state-conditional expectation E(y | Wj) – which makes interpretation easier

and keeps estimates consistent across re-runs with different initialization.2

The (i, j) element of W(θ; X) is the predicted probability of Cθ for observation i being in

class j. The resulting optimization problem (dropping the constant 1
N )

θ∗ = arg min
θ

(R(W(θ; X))y)
ᵀ

(R(W(θ; X))y) . (30)

can be solved using (stochastic) gradient descent.3 To avoid over-fitting θ can be tuned

using a training vs. test split to optimize out of sample MSE.

We want to highlight that for the abalone dataset a simple logistic PRESS already provides

excellent out-of-sample predictions. Adding hidden layers to obtain a deep PRESS variant

did not further improve performance. This suggests that a wide net with just one softmax

layer is enough for regression prediction, rather than a deep net. We will explore this in

2For some applications it might be more useful to order states by their size σj .
3We implement it in TensorFlow (Abadi et al., 2015).
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future work with extensive simulation studies.

Maximum likelihood estimator (MLE): If u ∼ N(0, σ2), then θ∗ = θ̂MLE is the max-

imum likelihood estimator (MLE) for θ.4

This joint optimization formulation and an ML estimate is one of our main statistical

contributions compared to previous work on estimation in Goerg and Shalizi (2013), who

propose an EM algorithm to estimate the state space and the mapping iteratively.

Sufficiency vs. minimal sufficiency: PRESS is not simply clustering y and then build-

ing a classifier to map to the clusters. Such an approach is not minimal sufficient to predict

y. As an example consider a Bernoulli yi ∈ {−1, 1} with independent xi. Clustering in

y-space leads to J = 2 clusters around y = −1 and y = 1. As x is independent of y,

with enough training data a classifier will yield ŵi ≈
(

1
2 ,

1
2

)
for each i and predictions

are equal weight mixtures of P (y | s−1) = −1 and P (y | s1) = 1. However, there is a

more compact representation of this data-generating process with J = 1 state, s, with

P (y | x, s) = P (y | s) = 1
21 (y = −1) + 1

21 (y = 1). The ability to estimate such a minimal

sufficient representation is a main advantage of PRESS compared to an iterative procedure

that clusters first, and learns a classifier later.

4.1 Closed-form leave one out cross-validation (LOOCV)

Since PRESS is a linear smoother leave one out cross-validation (LOOCV) residuals and

MSE can be computed in closed form based on training fit alone (see e.g., Wasserman,

2006), which greatly reduces computational complexity. LOOCV residuals are

ũi =
ui

1− si,i
, ui = yi − ŷi, (31)

where si,i is the i-th diagonal entry of S, and ui is the i-th residual. The LOOCV MSE is

MSE(LOOCV ) =
1

N

N∑
i=1

(
ui

1− si,i

)2

. (32)

For any linear smoother the diagonal element si,i ∈ [0, 1] measures the contribution of yi to

its own prediction ŷi: the closer si,i to 1 the more the prediction relies on its own observed

value, hence leaving it out would lead to a larger error during cross validation. Hence,

minimizing (32) faces a trade-off between lower magnitude residuals ui, yet not letting si,i
to get too close to 1 as then the MSE(LOOCV ) diverges to infinity.

4Theoretical properties of the MLE in the PRESS setting are beyond the scope of this work.
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Corollary 4.1 (LOOCV for PRESS). The i-th diagonal element of S equals

si,i =

J∑
j=1

1

σj
·W2

i,j , (33)

and si,i ≤
∑J

j=1
1
σj

.

Proof. This follows directly from (22) and D being diagonal with Dj,j = σ−1
j .

4.2 Smoothness, predictive manifold dimension, and generalized cross

validation (GCV)

Computing si,i for all i = 1, . . . , N might be prohibitive for large N – especially if this is

used in every gradient descent step. In this case an alternative is to minimize generalized

cross-validation (GCV) MSE

MSE(GCV ) =
1

N

N∑
i=1

(
ui

1− ν
N

)2

(34)

where ν = tr (S) =
∑N

i=1 si,i is the effective degrees of freedom of the smoother (see e.g.,

Wasserman, 2006). Instead of summing all si,i from (33), ν can be computed more efficiently

using the cyclic property of the trace operator.

Corollary 4.2. The effective degrees of freedom ν of the PRESS smoother in (22) satisfies

1 ≤ ν = tr
(
W ×D(W)×W

ᵀ)
=

J∑
j=1

‖Wj‖22
‖Wj‖1

≤ J. (35)

ν = J if and only if all N state mappings are deterministic. ν = 1 if and only if all N state

assignments occur uniformly at random, i.e., Wi,j = 1
J for all i and j.

The equality conditions are intuitive: a) ν = J re-iterates that there are J (deterministic)

states; b) ν = 1 means that there is effectively only one state and S is over-parametrized:

if all states occur uniformly at random, then there is no point of having J states to begin

with but S could be reduced to just 1 state, implying independence between x and y.

Corollary 4.2 suggests to use ν as a measure of smoothness: ν = 1 gives a constant predic-

tion, ν = J a step function with J levels, and for 1 < ν < J the prediction function varies

in between the two extremes. It is important to point out that ν is an inherent property of

the predictive manifold describing y | X. Hence in practice, as long as J is set large enough

the estimated ν̂ should stay relatively stable for J greater than the (true, but unknown) ν
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– similar to the “elbow“ rule for PCA.

We can also view ν as a tuning parameter and let the user specify a target smoothness,

νsmooth, which can be incorporated in the optimization algorithm by adding a penalty of

the form

θ∗ = arg min
θ

LOOCV(θ; X) + µ · (νsmooth − ν(W(θ; X))2, (36)

where µ ≥ 0. We recommend to keep νsmooth fairly close – but not equal – to J . If

νsmooth � J this suggests that the model is overparametrized and a smaller J should be

used.

4.3 Model selection: choosing the number of states

In principle one could choose any of J = 1, . . . , N states. One state corresponds to inde-

pendence and a simple sample average prediction for each i, ŷi = ȳ. On the other extreme,

N states mean that each observation is its own state – which gives perfect in-sample pre-

dictions, a trivial ε function as the identity, but infinite LOOCV MSE since si,i = 1 for all

i. In practice the best J lies somewhere in between 1 ≤ J∗ < N . Viewing it as a tuning

parameter, we estimate J∗ from the data.

While out-of-sample MSE is useful to avoid overfitting and parameter tuning, we observe

that it is quite noisy for model selection. We notice that out-of-sample MSE stabilizes

after a large enough J – supporting the proposition that there is a true ν for any predictive

dependency y | x and one just has to choose J large enough. For model selection this means

that choosing the best J according to minimum out-of-sample MSE is largely influenced by

small variations due to noise in the out-of-sample estimate. Since PRESS is based on the

principle of minimal sufficiency we should clearly favor smaller models over larger ones. We

thus choose the best J∗ according to minimum AIC, where

AIC(k) = N · log(MSE(k)) + 2 · k, (37)

where k is the number of free parameters. For logistic PRESS k = (J − 1) · p. We follow

the suggestion of Sober (2002) and choose AIC over BIC as we are mainly interested in

choosing the best model for prediction, rather than finding a true model.

Rather than trying every single J ∈ {1, . . . , N} we suggest to start with J ≈ logN and

monitor how far ν̂ is away from J . If ν̂ � J this suggest that J was too large to begin

with and smaller J should be used; if ν̂ ≈ J this suggest that J is too small and PRESS

estimates the best step function (for a fixed, but too small J).
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4.4 Variable selection

Even though PRESS is a kernel smoothing method, it is straightforward to include variable

selection. For the MNIST dataset (Section 5.3) we use a LASSO (Tibshirani, 1994) penalty

PRESSLASSO(θ) = LOOCV (θ) + λ · ‖θX‖1, (38)

where θX ⊆ θ is the set of parameters that act directly on x. For example, for logistic

regression these are the non-intercept coefficients; for a neural net with several hidden

layers θX are the weights from observations to the first hidden layer.

4.5 Predictive state estimation as a metric learning problem

The predictive state mapping ε can be viewed as a metric learner (Kulis, 2013), by refor-

mulating (3) as

ε : x 7→ {x̃ | dX (x, x̃) = 0}, (39)

where

dX (x, x̃) =

{
0, if P (y | x̃) = P (y | x),

τ > 0 otherwise.
(40)

Metric learning approaches do not rely on an a-priori specified distance (or similarity)

dX (xi,xj), e.g., Euclidean, but learn the best metric for the task at hand. In that sense

PRESS is closely related to Weinberger and Tesauro (2007), who estimate the optimal

distance function dX (xi,xj) in a Gaussian kernel regression K
(
dX (xi,xj)

h

)
to minimize leave

on out cross validation (LOOCV) error. However, unlike Weinberger and Tesauro (2007)

we estimate ε – and hence the factorization of the kernel matrix – directly from (y,X) (see

Section 4). We avoid the N ×N evaluation of the kernel matrix on an estimated distance

function, as the latter is merely a useful by-result using any metric or divergence d∆(J)(·, ·)
on the probabilistic predictive state space w ∈ ∆(J). For example, information theoretic

measures such as Kullback-Leibler (KL) or Jensen-Shannon (JS) divergence; or simply using

cosine distance

d
(cos)

∆(J) (wi,wj) = 1− 〈wi,wj〉
‖wi‖2‖wj‖2

. (41)

A zero distance implies that xi and xj have the same predictive distribution since their

mixture weights are equal.

4.6 Step-functions, level sets, and eigen-approximations

By L2-normalizing columns, vj := wj/‖wj‖2, and adjusting the diagonal matrix accord-

ingly, λj,j = Dj,j · ‖wj‖22, (21) can be rewritten as

14 of 28



5 APPLICATIONS

ŷ = V ×Λ(V)×V
ᵀ × y, λk,k =

‖wj‖22
σj

, (42)

which resembles an eigen-decomposition of S. However, (42) is not a true eigen-decomposition

since the columns of V are in general not orthogonal.

Lemma 4.3 (Eigen-state representation). The column vectors of V in (42) are orthogonal

if and only if the state space is deterministic for each xi, i = 1, . . . , N . In this case V only

contains zeros and ones.

Lemma 4.3 highlights another difference of PRESS to other eigen- and singular-value de-

composition based methods, e.g., Laplacian clustering, diffusion maps, PCA, factors mod-

els. These approaches often take as input an estimated kernel matrix, K = K(X;h) =

K
(
d(xj ,xi)

h

)
ij

evaluated on some pre-defined or estimated metric d(·, ·), and then compute

exact eigenvectors of the observed matrix for clustering, dimension reduction, or regression.

PRESS instead estimates the ε mapping from data (y,X), which approximates eigenvectors

of the – optimally predictive, but unobserved – smoothing operator S in (22).

5 Applications

We apply PRESS to three benchmark datasets and demonstrate its usefulnessfor visual-

ization (adding smooth lines to a scatterplot, dimension reduction), for prediction (en par

or outperforming state-of-the-art regression methods), and last but not least for statistical

inference and interpretation (MLE via logistic regression coefficients).

We implement the PRESS estimator from (30) in TensorFlow (Abadi et al., 2015).5 In-

terestingly we found that adding hidden layers to ε id not improve predictions, suggesting

that wide nets are sufficient for regression. We plan to investigate this in future work in

more detail. For parameter tuning we optimize GCV (see Section 4.2) and use a true 80/20

hold-out split on the training data to determine an early stopping rule for the optimiza-

tion algorithm: if the (20%) hold-out MSE has not decreased for more than 500 iterations,

we stop the optimizer and pick the best model found so far. For model selection we use

minimum AIC from (37).

For reproducibility and comparison to deep neural net predictions we use the training/test

datasets provided on the online TensorFlow documentation. See each section for links to

respective datasets.

5All other methods we show for comparison are based on the default options in their respective imple-
mentations in R (R Core Team, 2015).
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5.1 Motorcycle dataset

The motorcycle dataset contains N = 94 measurements of head acceleration after impact

(t = 0 milliseconds) in a simulated motorcycle accident for crash helmet testing. See Figure

2a for a scatterplot and several smooth fits. Here the true function f is continuous and the

state space is unknown. However, given the domain specific context we can characterize at

least one state as the “resting” state, sresting = {t | f(t) = 0}, which can be approximated

by examining again Figure 2a as

sresting ≈ {t | 0 ≤ t ≤ 12, t ≥ 45}. (43)

Figure 2b shows the Gaussian Kernel matrix with optimal bandwidth h > 0 according to

LOOCV. While it fits the data very well (Fig. 2a), it could be improved in the beginning

and end, i.e., for those t with ε(t) = sreting. The reason that usual kernel methods cannot

use this information is that they rely on geometry of X alone, hence the smoothing matrix

is always monotonically decreasing off the diagonal.

We estimate a series of PRESS models with varying number of states, (J = 1, . . . , 15) and

pick the one with smallest AIC (J∗ = 4, ν̂ = 2.705). Figure 2c shows the minimal sufficient

weights wi and Fig. 2d the corresponding Kernel matrix Ŝ, which does show a distinct

pattern illustrating that PRESS a) is prone to fitting step functions, and b) has an auto-

matically adapting bandwidth (unlike a typical kernel smoother with a fixed h∗ “optimal“

bandwidth), and c) can pool observations far apart in X which keeps bias approximately

the same but can greatly reduce variance (especially for t < 12).

For this example competing methods such as a Gaussian kernel or loess smoothing provide

better fits to the data than PRESS . We identified three potential reasons for this: a) the

number of data points is fairly small; b) θ is currently initialized randomly, which could be

improved by first clustering the data and use classifier estimates as starting values for the

regression; and c) the conditional variance of y given x (and y given ε(x)) is not constant;

estimating the full conditional distribution might turn out helpful.

5.2 Abalone dataset

The abalone datset is a standard benchmark for regression and (ordered) classification

methods and consists of p = 7 features (not including the categorical “sex” variable – we will

revisit this later for interpretation of results) and Ntrain = 3, 320 obervations (Ntest = 850).

The TensorFlow documentation contains an example of a 2-layer deep net with 10 nodes

each. After 5, 000 iterations of fitting approximately 200 parameters it achieves an out-of-
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(a) Smoothing fits for acceleration as a func-
tion of time: acceleration = f(t)

(b) Gaussian Kernel with LOOCV bandwidth
selection and degrees of freedom df = 10.33

(c) Probabilistic predictive state estimates Ŵ
(transposed with states in the rows and ob-
servations in columns so it matches up with
coordinates above)

(d) PRESS Kernel estimate with J = 4 states
and ν̂ = 2.71 degrees of freedom.

Figure 2: Motorcycle dataset: comparison of several smoothing methods

sample test MSE of 5.581 (in-sample training MSE: 4.858).6

Again we fit PRESS for all J = 1, . . . , 15 and pick the one with minimum AIC, J∗ = 10.

Additionally we also present J = 3 and J = 4 estimates: J = 3 estimate lends itself for

visiualization as weightvectors wi in the 3-dimensional probability simplex can be plotted

in 2 dimensions; we want to relate the J = 4 state approximation to recent work by Golay

et al. (2016) who suggests that the intrinsic fractal dimension of the abalone dataset lies

between 3 and 4 (their estimate is M̂2 = 3.66).

Training PRESS in Tensorflow reaches a stable optimum after around ∼ 500 steps; the

early stopping rule becomes active after 1, 523 iterations. Figure 3 summarizes the model

6We obtained data and MSE metrics from https://www.tensorflow.org/extend/estimators on May
12, 2017.
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Table 1: Out-of-sample MSE for Abalone dataset. ’mse.rel.lm’ is a normalized MSE relative to the
linear model baseline.

method mse mad mse.rel.lm rmse

PRESS(10) 5.265 1.566 0.953 2.295
earth 5.266 1.592 0.953 2.295
svm 5.279 1.517 0.956 2.298

randomForest 5.335 1.567 0.966 2.310
PRESS(4) 5.413 1.615 0.980 2.326

lm 5.523 1.654 1 2.350
PRESS(3) 5.556 1.664 1.006 2.357

DNN(10x10) 5.581 1.010 2.362
cv.glmnet 5.642 1.665 1.021 2.375

mean 10.850 2.410 1.965 3.294

estimates and the resulting decomposition of the marginal distribution p(y) into its mixture

of predictive state distributions, p(y | sj). For J = 3 Table 2 presents coefficient estimates

and state-conditional feature averages for easier interpretation for what state sj represents.

It is worthwhile to point out that PRESS only needs to fit J logistic regressions with p

parameters each; hence it has a total of only p · (J − 1) parameters (minus 1 as we impose

the
∑J

j=1 βj ≡ 0p identifiability condition for J logistic regressions). This means just 16 or

72 parameters, respectively, (much) less than a 10× 10 deep neural net.

Apart from the deep neural net results, we also compare PRESS predictions to several

state of the art regression methods such as SVM, RandomForest, or MARS. We use their

respective R implementations without any particular tuning or feature engineering. Based

on out-of-sample MSE a PRESS (3) model is as good as the deep neural net implementation.

PRESS (10) has the best out-of-sample predictions amongst all considered methods with

an MSE of 5.265.

5.2.1 Interpreting the predictive state space for Abalone

One way to intepret 3 states in the lifetime of a shell is as s1 = “infant′′, s2 = “adult′′

(reproductive), and s3 = “senescent′′ (non-reproductive) (see also Rogers-Bennet et al.,

2007). This also clearly visible in the estimated predicted distributions in Figure 3a (Fig.

3b shows the J = 10 estimate for comparison). Figure 4 shows the corresponding Kernel

smoothing matrices.

We can further explore the “infant” → “adult” → “senescent” state interpretations by

looking at the categorical “sex” covariate – which contains an “infant”, “female”, and

“male” category. We did not use this variable as a predictor, and also the TensorFlow
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Table 2: Estimates for logistic PRESS with 3 predictive states: MLE for β and state-conditional
average features.

E(X) E(X | s1) E(X | s2) E(X | s3) β̂s1 β̂s2 β̂s3
intercept -1.85 3.85 -2.00
length 0.52 0.38 0.57 0.59 3.32 -1.57 -1.75
diameter 0.41 0.29 0.45 0.47 -1.71 1.70 0.01
height 0.14 0.10 0.15 0.17 -1.73 -0.12 1.85
weight.w 0.82 0.32 0.99 1.16 -15.71 -4.40 20.11
weight.s 0.36 0.15 0.44 0.42 14.60 4.15 -18.75
weight.v 0.18 0.07 0.22 0.24 1.85 1.44 -3.29
weight.sh 0.24 0.09 0.28 0.38 -4.90 1.25 3.65

(a) Model selection (BIC and
AIC have been scaled to match
y-axis of MSE)

(b) J = 3 states (ν̂ = 2.51) (c) J = 10 states (ν̂ = 6.18)

Figure 3: Model fit for Abalone dataset: model selection and estimates with marginal and condi-
tional distribution for y, state, and y | state.

datasets do not contain this variable. Hence we obtained the original data from the UCI

repository7 and re-fit a 3 state model (again without the “sex” co-variate). Out-of-sample

metrics and state-conditional distributions are essentially the same as for the TensorFlow

datasets. Hence while the individual observations change, the aggregate model estimates

and insights are comparable to the TensorFlow datasets. Figure 5 shows how the embedding

space is related to the categorization of shells in “infant”, “female”, or “male”. The left

figure depicts the probability simplex ∆(3), where each point in the scatterplot corresponds

to the embedding space wi = ε(xi). The right figure shows the J conditional distribution

P (sex | sj), which makes it clear that for predicting age it is important to distinguish

between “infant” vs. “female / male”, but not between “female” and “male”. In fact,

PRESS provides a better three-category variable for predicting age: the three predictive

states s1, s2, and s3.

7https://archive.ics.uci.edu/ml/datasets/abalone
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(a) J = 3 states (ν̂ = 2.51) (b) J = 4 states (ν̂ = 3.12) (c) J = 10 states (ν̂ = 6.18).

Figure 4: Optimal smoothing matrix for predicting abalone ring data. For better visualization
rows and columns have been reordered according to increasing predicted number of rings from the
3 state model (since data is iid, the reordering does not change results).

Figure 5: Predictive state space embedding of Abalone dataset for J = 3 states (ν̂ = 2.51). Only
w1 and w3 are shown since w2 = 1− w1 − w3 by definition.

5.3 MNIST dataset

The MNIST dataset is commonly used for benchmarking classification methods. However,

it is an ideal example for PRESS regression as well since: a) J = 10 digits is known;

b) predictive state space summary statistics, E(X | sj) and V ar(X | sj), can be visual-

ized and easily interpreted; c) it demonstrates the ability of variable selection for a large

number of covariates p = 784 (pixels in a 28 × 28 image) and d) it proves to be easily

scalable (Ntrain = 60, 000, Ntest = 10, 000). Especially c) and d) are often computation-

ally challenging for any traditional smoothing method or even SVMs with non-linear kernel

function.

For training we again just use logistic regressions with J vectors, βj ∈ Rp, where each entry

of βj corresponds to one pixel of the 28 × 28 image (plus intercept). We set J = 10 and

νsmooth = 10 with a small µ > 0 penalty parameter – since we know that the true function

is a step function with a step at each digit 0, . . . , 9.

Figure 6 shows that PRESS recovers interpretable predictive states and the excellent quality

of images suggests that predictions work well as well. Figure 6b shows the coefficient

estimates for all 10 states. As coefficient estimates are quite heavy-tailed it distorts the color
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(a) State-conditional summary statistics: E(X |Wj) and V ar(X |Wj)

(b) Parameter estimates β̂j

(c) Parameter estimates after heavy-tail removal using Lambert W × Gaussian transformation

Figure 6: Statistical inference for logistic PRESS model with J = 10 states for MNIST dataset

scale and does not allow much insight. We thus remove heavy tails from the coefficients

using the bijective Lambert W × Gaussian transformation (Goerg, 2015) estimated from

all coefficients jointly. The transformed parameters still have the same mean and keeps

sign and monotonicity of coefficients, but do not have heavy tails anymore. Hence color

coded images now do indeed show interesting patterns (Fig. 6c). The state conditional

distributions p(y | sj) in Figure 7 show again that PRESS can correctly recover the best

predictions as the conditional distributions peak around each digit, with small variation.

5.3.1 Intepreting the MNIST predictive state space

Predicting the value of a handwritten digit is easy if the image has a clear handwriting. We

can revisit the measure of uncertainty ηi in (18) to rank images by how certain (low ηi) vs.

uncertain (high ηi) their predictive state is. Figure 7b shows the top/bottom 5 images and

indeed some of the images in the top row are even for a human hard to decipher.
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(a) Minimal sufficient predictive es-
timates with marginal state and
state-conditional predictive distri-
butions

(b) Handwritten digits with high and low entropy ηi for digit
→ state mapping: top panel shows images with uncertain
state mapping; bottom panel examples of images with certain
state mapping

Figure 7: Prediction: Logistic PRESS for MNIST dataset

5.4 Discussion of application results

We want to emphasize that PRESS is fully probabilistic, able to predict and estimate for

large N and p without running into the curse of dimensionality, useful for statistical in-

ference as it is straightforward to intepret using regression coefficients on observed – not

hidden – features, yet it outperforms highly complex models that are often hard to optimize,

suffer from curse of dimensionality, or are difficult or impossible to interpret.

We plan to run extensive simulation studies to compare PRESS on a variety of datasets

with tuned alternative methods. The applications suggest that PRESS is well-suited for

high-dimensional regression. We also want to explore the options of adding hidden layers

to PRESS – which has not yet proven to improve performance.

6 Summary & Discussion

In this work we introduce predictive state smoothing (PRESS), a novel semi-parametric

kernel regression method for high-dimensional data. PRESS is a metric learner, which

determines that kernel function which gives the best predictions for y ∈ R given x ∈ Rp. It

is not only statistically optimal in a theoretical sense, but also computationally efficient as

prediction and estimation can rely on the kernel trick and thus compute predicted values

linearly in N (instead of N2 for typical kernel regression methods). The method also scales

well in the number of variables and we propose a LASSO adaptation to perform variable

selection for the p � N case. We present algorithms for maximum likelihood estimation
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as well as to optimize LOOCV MSE, which can be easily implemented in data flow graphs

such as TensorFlow. PRESS compares well with state-of-the-art smoothing and regression

methods, yet it remains interpretable and can be used for statistical inference as shown in

the abalone and MNIST dataset.

6.1 Key properties

PRESS combines advantages of several popular regression techniques:

non-linear dependencies for optimal prediction: PRESS estimates the minimal suf-

ficient statistic for predicting y from x. The feature space is mapped onto an opti-

mally predictive state space S, which generates non-linear dependencies. Moreover,

the mapping ε : X → S can be non-linear as well, e.g., we use a multilayer neural net

as one example of a deep PRESS .

linear smoother, fast cross-validation: It is linear in y, which allows us to rely on

theory and properties of linear smoothers. In particular, leave-one-out cross validation

(LOOCV) can be computed on the training data only without actually running a

proper cross-validation procedure.

variable selection: Being semi-parametric allows standard hypothesis testing and penal-

ization techniques such as LASSO or Ridge. It is particularly noteworthy that it is a

kernel smoother that can easily accommodate the p� N case.

avoid curse of dimensionality: PRESS performs variable selection and tuning as part

of the kernel matrix estimation, hence scales well with large p. Using the kernel trick

it avoids the full N × N Kernel matrix computation for prediction and estimation.

This is a major advantage compared to traditional kernel smoothers, which run into

statistical and computational scaling issues for even moderate p or N .

mix of discrete and continuous covariates: PRESS can handle discrete and continu-

ous covariates.

scalability for large N and large p: We present efficient algorithms based on stochastic

gradient descent that can be easily implemented in data flow graphs such as Tensor-

Flow. The proposed algorithm solve the joint optimization problem of findings the

states and estimating ε : X → S including variable selection.

family of smoothers: PRESS is a family of methods depending on the classifier used to

model ε. In this work we use logistic PRESS and a variant of a deep PRESS .
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A APPENDIX

A Appendix

A.1 Proofs

The proofs of Lemma 2.1 and Corollary 2.2 are completely analogous to proofs of Theorem

1 and 2 in Shalizi (2003). For sake of completeness we replicate the proofs for the regression

setting. The interested reader is referred to Shalizi (2003) for several other important

properties of predictive states for stochastic processes.

Proof of Lemma 2.1. The conditional distribution of y given state s is the average over all

conditional distributions P (y | x) for which x is in state s. Thus,

P (y | s) =

∫
χ∈ε−1(s)

P (y | x = χ) · P (x = χ | s)dχ. (44)

By construction, P (y | χ) is the same for all χ in the domain of the integral. Hence we can

pick out a representative element in ε−1(s), e.g., x, and take it out of the integral

P (y | s = ε(x)) = P (y | x)

∫
χ∈ε−1(s)

P (x = χ | s)dχ (45)

= P (y | x), (46)

where (46) holds as P (χ | s) is a proper probability distribution that integrates to 1. Hence

ε(x) is sufficient to predict y.

Proof of Corollary 2.2. Assume there is another sufficient statistic R = η(x) 6= ε(x). If we

can show that there is always a function h which maps h : R 7→ S = ε(x), then this implies

that ε is minimal sufficient.

Since η is sufficient for predicting y, η(x) = η(x̃) if and only if P (y | x̃) = P (y | x). This

implies that also ε(x) = ε(x̃). Thus all x with the same value of η also have the same ε(x),

and thus S can be determined from R. Hence the required function h exists.

Proof of Lemma 4.3. If all wi have this property, then it is straightforward to see that the

crossproduct of column j1 and j2 is a sum of 1 · 0 and 0 · 1 terms for any (j1, j2) pair. Hence

the vectors are orthogonal.

For the reverse direction assume the opposite is true, and there exists at least one wi with a

non-deterministic state mapping. That is there are at least two entries 0 < Wi,j1 ,Wi,j2 < 1

and Wi,j1 + Wi,j2 = 1. Without loss of generality say i = 1. The cross product between
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column j1 and j2 equals

〈Wj1 ,Wj2〉 =

N∑
i=1

Wi,j1Wi,j2 ≥W1,j1 ·W1,j2 > 0, (47)

which contradicts the orthogonality assumption. The first inequality holds since Wi,j ≥ 0;

the second strict inequality holds since by assumption the first observation has a non-zero

probability of being in (at least) two states with probabilities Wi,j1 > 0 and Wi,j2 > 0,

respectively.

Proof of Corollary 4.2. The trace is invariant under cyclic permutations, i.e., tr (ABC) =

tr (CAB). Hence

tr (S) = tr
(
W ×D(W)×W

ᵀ)
= tr

(
W

ᵀ ×W ×D(W)
)
, (48)

The matrix D ∈ RJ × J is diagonal with Dj,j = 1
σj

and W
ᵀ ×W ∈ RJ×J has the squared

`2 norm of Wj in its diagonal. Hence, (48) satisfies

tr
(
W

ᵀ ×W ×D(W)
)

=

J∑
j=1

‖Wj‖22
‖Wj‖1

≤ J, (49)

since W2
i,j ≤ Wi,j ≤ 1 with equality if and only if each wi is deterministic, since W2

i,j =

Wi,j if and only if Wi,j = 0 or 1.

If states are deterministically obtained from xi, i.e., Wi,j = 0 or 1, then

tr (S) =

J∑
j=1

∑N
i=1 W2

i,j∑N
i=1 Wi,j

=

J∑
j=1

∑
i|Wi,j=1 12∑
i|Wi,j=1 1

=

J∑
j=1

1 = J. (50)

If each xi is mapped to J states uniformly at random, wi = ( 1
J , . . . ,

1
J ), then

tr (S) =

J∑
j=1

∑N
i=1(1/J)2∑N
i=1 1/J

=

J∑
j=1

N/J2

N/J
=

J∑
j=1

(1/J) = 1 (51)
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