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Abstract
Recently, very deep networks, with as many as hundreds of
layers, have shown great success in image classification tasks.
One key component that has enabled such deep models is the
use of “skip connections”, including either residual or high-
way connections, to alleviate the vanishing and exploding gra-
dient problems. While these connections have been explored
for speech, they have mainly been explored for feed-forward
networks. Since recurrent structures, such as LSTMs, have pro-
duced state-of-the-art results on many of our Voice Search tasks,
the goal of this work is to thoroughly investigate different ap-
proaches to adding depth to recurrent structures. Specifically,
we experiment with novel Highway-LSTM models with bottle-
necks skip connections and show that a 10 layer model can out-
perform a state-of-the-art 5 layer LSTM model with the same
number of parameters by 2% relative WER. In addition, we ex-
periment with Recurrent Highway layers and find these to be on
par with Highway-LSTM models, when given sufficient depth.
Index Terms: speech recognition, recurrent neural networks,
residual networks, highway networks.

1. Introduction
In recent years Long-Short Term Memory Recurrent Neural
Networks (LSTMs), [1] have become a popular alternative
to feed-forward deep neural networks (DNNs) [2], producing
state-of-the-art results in various large vocabulary continuous
speech recognition (LVCSR) tasks [3, 4]. An LSTM network
with a single layer models a shallow mapping from the input at
time t to the output at time t, where depth is achieved by let-
ting an input influence a future output at time greater than t via
state variables that persist from one time step to the next. In
contrast, feed-forward DNNs achieve deep input-output map-
ping by directly stacking feedforward transformations. A Deep
LSTM follows this approach and stacks LSTM layers to allow
depth in immediate input-output mappings. Deep networks suf-
fer from the vanishing and exploding gradients problems, and
there are many approaches to alleviate this problem. The fo-
cus of this paper is to explore various techniques to build deep
recurrent networks.

One approach to address this gradient issue was proposed
in [5], which showed that this problem can be solved by intro-
ducing skip connections that provide shorter input-output paths,
on which the gradient can propagate. On image recognition
tasks, the authors found that these deep networks with skip
connections can be trained with hundreds of layers, and also
outperformed shallow ones. The skip connections used in [5]
are named Highway Connections (HW-SKIP), and they require
additional parameters in the model. In contrast a successful
parameter-less skip connection, known as residual connection
(RES-SKIP), was introduced in [6] for an image recognition
task. In [6], the skipped layers are convolutional, and the entire
architecture is referred to as “ResNet”.

An alternative approach to build deep recurrent networks

is to use “Recurrent Highway Networks” (RHW) [7]. RHW is
a new type of recurrent layer, that allows a deep input-to-state
mapping. The authors show superior performance with RHW
networks compared to LSTMs on a language modeling task.
One novel addition we explore are HW-RHW networks, which
are stacked RHW layers with HW-SKIP connection.

It is important to note that there have been a number of
speech-related works using skip connections to train deep mod-
els, though most work has focused on feed-forward type net-
works. Xiong et al [8] used ResNet type convolutional network
for an LVCSR task (in fact they follow [9]). Lu et al. [10],
[11] have used “thin and deep” HW-DNN networks for small-
footprint speech recognition tasks, but have not applied this to
recurrent networks like LSTMs. In addition, Hsu et al. [12], and
Zhang et al. [13] explored the Highway-LSTM-RNN (HLSTM-
RNN) which incorporated the HW-SKIP structure directly into
the LSTM cell. Finally, Zhang et al. [14] used RES-SKIP con-
nections, where the residual connection was always applied af-
ter a feed-forward bottleneck layer.

Thus, while skip connections have been explored for
speech, to our knowledge, there has not been a thorough in-
vestigation on adding depth to recurrent structures, which are
an integral component of our state-of-the-art systems [3, 4].
The goal of this paper is to compare different approaches to
adding depth to recurrent networks, by comparing RES-SKIP,
HW-SKIP, RHW, and HW-RHW networks.

Our experiments are conducted on a 10,000 hour English
Voice Search task. We compare HW-SKIP, RES-SKIP and
models without skip connections and find HW-SKIP to outper-
form the rest, even when using parameter-saving bottlenecks.
We show that a 10 layer HW-LSTM model can outperform a
state-of-the-art 5 layer LSTM model with the same number of
parameters by 2% relative. We also attempt to use highway
gates to guide a layer-pruning procedure for HW-LSTM mod-
els, albeit with limited success. In addition, we find that HW-
RHW models can achieve results that similar to our best HW-
LSTM, thus presenting an attractive modeling alternative.

2. Deep recurrent neural networks with
skip connections

A single step of a recurrent layer in a neural network at time
t can be described by a transform function ht = H(xt, st−1),
where xt, ht, st are real valued vectors, and a transition func-
tion that defines a state update st−1 ⇒ st. In this work we are
interested in stacking L such layers in a feed forward manner.
The output of layer l can then be computed recursively by:

ht
l = Hl(h

t
l−1, s

t−1
l ) (1)

Where ht
0 = xt is the input to the network. The output of the

network will be obtained as y = softmax(hL). We defer the
choice of spcific transfer and transition functions to section 2.2.



2.1. Skip Connections

To be able to train deeper networks, we introduce skip connec-
tion skip(x, h) that allow information to pass from the lower
layer directly to the upper layers by “skipping” intermediate
transformations. Skip connections are added by updating Equa-
tion 1 to: ht

l = skip(ht
l−1, Hl(h

t
l−1, s

t−1)).
One popular skip connection is the residual connection [6]

(RES-SKIP) defined by:

skip(x, h) = x+ h (2)

This connection type does not add parameters to the model
and is easy to implement, thus presenting an attractive model-
ing option. This definition requires that x and h have the same
dimension, and we assume this throughtout.

Another type of skip connection, named highway connec-
tion [5] is obtained by intoducing two gates: a carry gate,C(x),
that controls how much information flows from the lower layer,
and a transform gate, T (x), that controls how much informa-
tion should be read from current layer. With these, the highway
connection is defined by:

skip(x, h) = h · T (x) + x · C(x) (3)
T (x) = σ(WTx+ bT ) (4)
C(x) = σ(WCx+ bC) (5)

where “·” denotes the element-wise product, σ is the sig-
moid function, and WT , bT ,WC , bC , are matrices and bias
terms that parametrize the connection. This is in sharp con-
trast with RES-SKIP connection, that doesn’t require any ad-
ditional parameters. To reduce the number of parameters a
common modeling choice is to couple the gates by setting
T (x) = 1−C(x), where 1 is the vector of 1’s. Another option,
which we explore in this paper for the first time is to enforce a
low-rank structure on WT and WC by adding a low rank pro-
jection P :

WC = PUC (6)
WT = PUT (7)

Where P projects to a dimension which is lower than that of x.

2.2. Recurrent Layers

We now describe two options for the recurrent layers used in
our experiments: the LSTM layer and the RHW layer.

2.2.1. LSTM Layer

One popular recurrent layer is the LSTM layer, which we
briefely discuss below. For more details see [3]. For each time
step t, the LSTM layer takes as input xt, previous cell state ct−1

and previous output ht−1, all real valued vectors, and computes
the new cell state, ct by:

x̂t = [xt;ht−1]

it = σ(Wix̂
t + bi)

f t = σ(Wf x̂
t + bf ) (8)

ct = f t · ct−1 + it · tanh(Wcx̂
t + bc)

where it and ft are called the input and forget gates. In the
second step we transform ct to an output by passing it though a

tanh and multiplying with an output gate, ot.

ot = σ(Wox̂
t + bo)

ht = ot · tanh(ct) (9)

At this work we use coupled-input-forget-gates, as suggested in
[15], i.e. instead of equation (8) we set f t = 1 − it, where
1 is the vector of 1’s. This formulation has the advantage of
bounding the value of the cell state and reducing the number of
parameters by tying the input and forget gates.

It is worth noting that RES-LSTM and HW-LSTM are sim-
ilar in their ability to control the output of a layer, since a RES-
SKIP connection (Eq. 2) will sum in this case two gated LSTM
outputs (Eq. 9), which is exactly what at HW-SKIP connection
does (Eq. 3). Nevertheless the HW-SKIP connection adds more
depth, and thus has a potential advantage.

2.2.2. Recurrent Highway Layer

A Recurrent Highway layer (RHW) [7] borrows some of its gat-
ing mechanism from the LSTM layer, while allowing an arbi-
trary depth within a layer, called recurrence depth (RD). With
RD=M , we have M sub-layers in a single RHW layer. We de-
note the RHW’s output by yt, and the output of sub-layer m by
stm. yt is read from the last sub-layer, thus, yt = stM , and is
also fed into the first layer by letting: st0 = yt−1. The layer is
defined recursively for l = 1, . . . ,M by:

stm = ht
m · T t

m + stm−1 · Ct
m

ht
m = tanh(WHx

tδ1,m +RHms
t
m−1 + bHm)

T t
m = σ(WTx

tδ1,m +RTms
t
m−1 + bTm)

Ct
m = σ(WCx

tδ1,m +RCms
t
m−1 + bCm)

Where δi,j is the Kronecker delta and W∗, b∗ are the ma-
trix and bias terms that parametrize the connection. Thus the
output of the first sub-layer, st1 is obtained from current input
xt and previous output, yt−1, and the rest of the computation is
done in a feedforward manner with internal HW-SKIP connec-
tions. This formulation shares an arbitrarily deep mapping for
the layers transition and transfer functions.

3. Experiments
3.1. Neural Network Architecture
The input and output of our networks closely resemble those
used for the LFR models in [16]. The acoustic features used for
all experiments are 128-dimensional log-mel filterbank energies
computed using a 32ms window every 10ms. At the current
frame t, these features are stacked with l = 3 frames to the
left and downsampled to 30ms, to produce a 512-dimensional
feature xt−l : xt. This is the same feature used for all NN
experiments in this paper.

The LSTM models used in this work have coupled-input-
forget-gates, and peephole connections [15]. Our baseline mod-
els consist of 5 layers, beyond that we found training to be
unstable due to vanishing gradients. All acoustic models have
8,192 CD-phone output targets [17]. The HW-Skip connections
used for the LSTM models used projection to reduce parame-
ters. The first layer of these models is never skipped since the
input features have a different dimension than the internal layers
width.

The RHW models used in this work have coupled-carry-
transform-gates and we have found that non-projected HW-Skip



connections work best for them. The model weights are initial-
ized with values chosen uniformly at random from the range
[−0.2, 0.2].

3.2. Training procedure

The models are trained with CE using asynchronous stochastic
gradient descent (ASGD) optimization [18]. The models use
an existing forced-alignment generated by an existing CLDNN
CD-state model [4]. Features are extracted and stacked, and we
keep every n-th feature-frame (e.g. n=3 for 30ms) and drop
the rest. The LFR models map the CD-states to CD-Phones
and subsample by averaging n 1-hot target labels, producing
soft targets. All LFR models are trained with a 1-state HMM.
During training, recurrent networks are unrolled for 20 time
steps for training with truncated back-propagation through time
(BPTT) [19].

3.3. Decoding procedure

All acoustic models are decoded with a single pass WFST-based
decoder which uses a 100-million n-gram language model and a
vocabulary larger than 5 million words. The decoder performs
beam search and only keeps 7,000 active arcs at any point in
time.

3.4. Data Sets

For our experiments we use a mutli-style training procedure
[20], where we first start with clean 15 million utterances (about
12,500 hrs) which are anonymized and hand-transcribed voice
search queries, and are representative of Google’s voice search
traffic. Next, we create a noisier version by adding varying
degrees of noise and reverberation at the utterance level, such
that overall SNR is between 5dB and 30dB. Samples of noise
were taken from YouTube and daily life noisy environmental
recordings. Our evaluation set consists of a separate set of about
13,000 utterances (about 11 hours) with similar noise conditions
to the training set.

4. Results
4.1. Skip-LSTM networks

Our first set of experiments is concerned with Skip-LSTM net-
works. First, to assess the effect of skip connections, we com-
pare LSTM, RES-LSTM and HW-LSTM models with 5 layer
in Table 1. The LSTM and RES-LSTM models have the same
number of parameters. For the HW-LSTM model to have a
comparable number of parameters we used projection to 64 di-
mensions (as in eq. 6, 7). For these shallow models, we find
HW-LSTM to be as effective as LSTM, while RES-LSTM lags
behind. We conjecture the reason for this is that HW-LSTM has
more control over the skip connection than RES-LSTM, thus
allows a learnt, input-driven, balance between skipping a layer
and using it.

Model Type Layers Units Parameters WER (%)
DLSTM 5 512 12M 22.4

RES-LSTM 5 512 12M 23.9
HW-LSTM 5 512 12.6M 22.2

Table 1: Comparison of skip types for a 5 layer LSTM model.

To illustrate this point, we track the change in the trans-
form gates during training. We plot the mean normalized trans-
form gates gain, computed by t̂ = Ex[

T (x)
C(x)+T (x)

] where C and

T are defined in eq. (4)-(5), and the expectation is taken over
samples and units. t̂ is an indicator for how much are the trans-
form gates used. As can be seen in Figure 1, at the beginning
of training the (normalized) transform gates, at all layers, have
mean value of 0.5, thus give equal weight to both input of the
skip-connections. This is similar to having a fixed RES-SKIP
connection. However, as training progresses, some layers reach
higher values, thus are using mostly the transformed input. The
flexibility to tune the usage of each of the inputs is what gives
HW-SKIP an advantage over RES-SKIP connections. Based on
these observations, the rest of the experiments in this paper will
use HW-SKIP and not RES-SKIP.

Figure 1: Mean of normalized transform gate activations of a 5
layer HW-LSTM model thoughout training. Each curve corre-
sponds to a different layer.

Next, we trained a few models with about 20M parameters
and different depths (Table 2). These models were trained with
uncoupled HW-SKIP connections with projection as above.
When experimenting with LSTMs and have found that it is pos-
sible to train up to 5 of the layers without skip connections, and
these are the results we report here. When using skip connec-
tions (HW-LSTM), we can increase the depth, and the results
show that 10 layers is the optimal depth for our task, with a
budget of 20M parameters. In addition, note that with increased
depth, the HW-LSTM offers improvements over the shallow
LSTM with matched parameters.

Model Type Layers Units Parameters WER (%)
LSTM 5 700 20M 20.4

HW-LSTM 10 512 21.1M 19.8
HW-LSTM 14 430 20.4M 20.7
HW-LSTM 18 384 20.7M 21.1

Table 2: Comparison of models with about 20M parameters.

To see what happens if we allow more parameters we
trained a few models with 36M parameters which is a practical
upper bound on the size of the models we serve in our produc-
tion systems (Table 3). The conclusion remains - up to 10 layers
we see gains and beyond that we see degradation. Again, notice
the improvement in performance with the HW-LSTM compared
to the LSTM with matched parameters.

4.1.1. Pruning skip networks

So far we have found that there is an optimal depth for our
task, namely 10 layers. Next, we wanted to check if this depth
can be found without an exhaustive search, by pruning a deeper



Model Type Layers Units Parameters WER (%)
LSTM 5 1,024 36M 18.9

HW-LSTM 10 700 36M 18.5
HW-LSTM 14 590 35.6M 19.4
HW-LSTM 18 512 34.5M 19.7

Table 3: Comparison of models with about 36M parameters.

model. Our pruning strategy was to remove some layers from a
trained model and continue to train the pruned model for addi-
tional 50M steps. We tried this with a trained 18 layer model,
and found that pruning upto 5 layers produces results which are
similar to a model that was trained from scratch, but beyond that
results are degraded. For example a 10 layer pruned model was
5% relative worse than a 10 layer model that was trained from
scratch. More complex pruning strategies like relaying on gate
activations didn’t seem to help. We conclude that this method
is effective to some extent, but is not reliable enough to detect
the optimal depth.

4.2. HW-RHW networks

In our second set of experiments we explore RHW models with
coupled-carry-transform gates. For more than a few layers, we
found that skip connections are needed, or these models do not
train due to instability. We use HW-SKIP connections without
projection (i.e. these are HW-RHW models)

Our implementation follows closely that of [7]. As dis-
cussed in Section 2.2.2, RHW networks allow depth to be added
in two different ways: By adding more recurrent depth (RD) to
each layer, or by stacking more layers. Our initial set of exper-
iments, with equal width models, is reported in 4. We see that
gains can be obtained by larger RD (up to 16), for a single layer,
but stacking 5 layers with RD= 3 is much better. We attribute
this finding to the following observation: A single RHW layer
has a single state that captures the temporal dynamics of the
speech signal at all the time scales and representation depths.
In contrast, multiple RHW layers model a hierarchy of states,
each with its own temporal dynamics. We argue this is a better
modeling alternative, as “lower” states (e.g. state of background
noise) can be separated from high level states (e.g. current cd-
phone) and tracking separated states is easier than tracking a
single mixed state.

Model Type Layers RD Units Parameters WER (%)
RHW 1 4 512 6.8M 31.4
RHW 1 8 512 8.9M 28.2
RHW 1 16 512 13.1M 26.1
RHW 1 20 512 15.2M 26.0

HW-RHW 5 3 512 14.7M 23.5
Table 4: Comparison of single layer RHW models with different
recurrent depth (RD) and a 5 layer HW-RHW model.

From these initial results we conclude that stacking RHW
layers is more effective than larger RD, and in the next section
we will explore how to stack the RHW layers.

We used coupled skip-connections without projection and
found these train effectively. Attempts to reduce the number of
parameters using projections either in the RHW layers or in the
skip connections led to unstable training and degraded results.
In [7] it is stressed that RHW layers work well due to their flexi-
ble Temporal Jacobian. We suspect that adding projection hurts
that flexibility.

To further explore the different ways to add depth, we
trained a few combinations of width, RD and number of lay-
ers, all with the same number of parameters: 33M. Results are
presented in Table 5.

We find that RD= 2 does especially poorly. We attribute
this finding to the following observation: A RHW layer with
RD= 2 has the same internal depth as a standard LSTM layer,
and roughly the same number of parameters, yet the LSTM
layer has a more elaborate gating mechanism. In order to
be as effective as an LSTM layer, more internal depth (larger
RD) is required. We also find RD= 12 to be less effective.
This strengthens the conclusion from Table 4, which shows that
stacking more layers is more effective than large RD.

Model Type Layers RD Units Parameters WER (%)
HW-RHW 4 12 520 33M 20.0
HW-RHW 8 2 730 33.2M 21.0
HW-RHW 8 4 580 33.1M 19.1
HW-RHW 8 6 495 32.9M 19.0
HW-RHW 8 8 440 32.7M 19.4
HW-RHW 12 4 475 33M 18.7
HW-RHW 16 4 410 33M 18.6
HW-RHW 18 4 388 33M 19.3
Table 5: Comparison of HW-RHW models with about 33M pa-
rameters.

We conclude this section with a comparison of LSTM, HW-
LSTM and HW-RHW models. To have an equal number of
parameters (33M) we pruned our best HW-LSTM model to 9
layers as discussed in section 4.1.1 with no lost of accuracy.
The two models are compared at Table 6. As can be seen the
HW-LSTM-based model outperforms the RHW model, but not
by a huge margine. It is worth noting the the HW-LSTM model
has been optimized and perfected for more than a decade, and
the fact that the RHW model achieves a close result is quite re-
markable. More importantly, we can observe that adding depth
to the network, either through a HW-LSTM or HW-RHW, is
more beneficial than an LSTM with fewer layers and no skip or
highway connections.

Model Type Layers RD Units Parameters WER (%)
LSTM 5 - 1024 36M 18.9

HW-LSTM 9 - 700 33M 18.5
HW-RHW 16 4 410 33M 18.6

Table 6: Comparison of the best models from each type.

5. Conclusions
In this paper we have explored different ways to build deep
acoustic models (RES-LSTM, HW-LSTM, HW-RHW). We
have shown that a HW-LSTM model can be trained with more
layers and achieve results which are 2% better than those of
plain LSTM models. We also showed that HW-RHW models
are only 0.5% off from our best HW-LSTM model, thus present
an attractive modeling alternative.
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