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Abstract
We present a quantum algorithm for simulating the dynamics of a first-quantized 
Hamiltonian in real space based on the truncated Taylor series algorithm. We 
avoid the possibility of singularities by applying various cutoffs to the system 
and using a high-order finite difference approximation to the kinetic energy 
operator. We find that our algorithm can simulate η interacting particles using 
a number of calculations of the pairwise interactions that scales, for a fixed 
spatial grid spacing, as Õ(η2), versus the Õ(η5) time required by previous 
methods (assuming the number of orbitals is proportional to η), and scales 
super-polynomially better with the error tolerance than algorithms based on 
the Lie–Trotter–Suzuki product formula. Finally, we analyze discretization 
errors that arise from the spatial grid and show that under some circumstances 
these errors can remove the exponential speedups typically afforded by 
quantum simulation.

Keywords: quantum computing, Hamiltonian simulation, quantum 
algorithms, many-body physics
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1.  Introduction

Simulation of quantum systems was one of the first applications of quantum computers, 
proposed by Manin [1] and Feynman [2] in the early 1980s. Using the Lie–Trotter–Suzuki 
product formula [3], Lloyd demonstrated the feasibility of this proposal in 1996 [4]; since 
then a variety of quantum algorithms for quantum simulation have been developed [5–13], 
with applications ranging from quantum chemistry to quantum field theories to spin models 
[14–17].

Until recently, all quantum algorithms for quantum simulation were based on implement-
ing the time-evolution operator as a product of unitary operators, as in Lloyd’s work using 
the Lie–Trotter–Suzuki product formula. A different avenue that has become popular recently 
is the idea of deviating from such product formulas and instead using linear combinations of 
unitary matrices to simulate time evolution [18–21]. This strategy has led to improved algo-
rithms that have query complexity sublogarithmic in the desired precision, which is not only 
super-polynomially better than any previous algorithm but also optimal.

Of the many methods proposed so far, we focus here on the BCCKS algorithm which 
employs a truncated Taylor series to simulate quantum dynamics [20]. The algorithm has been 
applied to yield new algorithms for several problems, including linear systems [22], Gibbs 
sampling [23], and simulating quantum chemistry in second quantization [24] as well as in 
the configuration interaction representation [25]. For this reason, it has become a mainstay 
method in quantum simulation and beyond.

The algorithms in [24, 25] build on a body of work on the simulation of quantum chem-
istry using quantum computers: following the introduction of Aspuru-Guzik et al’s original 
algorithm for quantum simulation of chemistry in second quantization [15], Wecker et al [26] 
determined the first estimates on the gate count required for it; these estimates were reduced 
through a better understanding of the errors involved and their origins, and the algorithm 
improved in several subsequent papers [27–31]. All these papers focused on second-quantized 
simulation: only a handful have considered the problem of simulating chemistry or physics in 
position space.

The reason for this is that second-quantized simulations require very few (logical) qubits. 
Important molecules, such as ferredoxin or nitrogenase, responsible for energy transport in 
photosynthesis and nitrogen fixation, could be studied on a quantum computer using on the 
order of 100 qubits using such methods. Simulations that are of great value both scientifically 
and industrially could be simulated using a small quantum computer using these methods. By 
contrast, even if only 32 bits of precision are used to store each coordinate of the position of an 
electron in a position space simulation then methods such as [32–35] would require 96 qubits 
just to store the position of a single electron. Since existing quantum computers typically have 
fewer than 20 qubits, such simulations have garnered much less attention because they are 
challenging to perform in existing hardware.

However, there are several potential advantages to position space simulations. Most nota-
bly, these methods potentially require fewer gates than second-quantized methods. In par
ticular, Kassal et al found that position space simulation is both more efficient and accurate 
for systems with more than  ∼4 atoms. This is also important because the more gates an algo-
rithm needs, the more physical qubits it requires to implement in hardware. This potentially 
allows position space simulation to have advantages in space, time, and accuracy over second-
quantized simulations once fault-tolerant quantum computing comes of age [36]. For these 
reasons, research has begun to delve more deeply into such simulations in recent years.

Recent work by Somma has investigated the simulation of harmonic and quartic oscillators 
using Lie–Trotter–Suzuki formulas [37, 38]. This work highlights the challenges faced when 
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trying to go beyond previous work using recent linear combination-based approaches [19, 21], 
because the complexity of such methods depends on the norm of the Hamiltonian, which is 
unbounded. This work highlights the fact that going beyond the Lie–Trotter–Suzuki formal-
ism for these continuous simulations, as well as simulations of the Coulomb Hamiltonian, is 
not a straightforward extension of previous work.

However, a subject not considered in past literature is the errors incurred by discretizing 
a continuous system into a uniform mesh, a prerequisite for existing such quantum simula-
tion algorithms. We revisit the encoding of Wiesner and Zalka [32–34] as used in Lidar and 
Wang as well as Kassal et al’s works, conducting a rigorous analysis of the errors involved 
in discretizing the wave function of a many-particle system, and determining the number of 
grid points necessary for simulation to arbitrary precision. We find that these errors scale 
exponentially in the number of particles in the worst case, give an example of a wave func-
tion with this worst-case scaling, and finally discuss which cases we expect to be simpler. 
Further, we present an algorithm for position space quantum simulation of interacting par-
ticles using the BCCKS truncated Taylor series method [20]. Our algorithm uses arbitrary 
high-order finite difference formulae [39] to suppress the errors in the kinetic energy opera-
tor with only polynomial complexity, which seems challenging for approaches based on the 
quantum Fourier transform.

This paper is structured as follows. In section 2 we outline our results. We review the BCCKS 
Taylor series algorithm in section 3. Section 4 details the approximations to the Hamiltonian 
which we make, including imposing bounds on the potential energy and its derivatives, as well 
as the high-order finite difference approximation to the kinetic energy operator. In section 5, 
we discuss the problem of applying terms from the decomposition of the Hamiltonian into a 
linear combination of unitary operators. Section 6 presents the complexity of evolving under 
the Hamiltonian. Finally, in section 7 we discuss the various errors incurred by discretizing a 
continuous system (under various assumptions) and what is required to control them.

2.  Summary of results

Here we focus on simulating the dynamics of systems that have a fixed number of parti-
cles η in D dimensions, interacting through a spatially varying potential energy function 
V(x) : RηD �→ R. We further assume that the simulation is performed on a bounded hyper-
torus: x ∈ [0, L]ηD. In practice the assumption of periodic boundary conditions is just to sim-
plify the construction of our approximate Hamiltonian, and non-periodic boundary conditions 
can be simulated by choosing the space [0, L]ηD to be appropriately larger than the dynami-
cally accessible space for the simulation.

Under the above assumptions, we can express the Hamiltonian for the continuous system 
as

H = T + V ,� (1)

where T = −
∑

i
∇2

i
2mi

 is the usual kinetic energy operator and V = V(x) is some position-

dependent potential energy operator, with mi the mass of the ith particle and ∇2
i =

∑
n

∂2

∂xi,n2  

for x ∈ [0, L]ηD. i indexes the η particles, and n indexes the D dimensions. We begin with 
the definition of the finite difference approximation [39] to the kinetic energy operator. The 
kinetic operator in the Hamiltonian is not bounded, which means that simulation is under most 
circumstances impossible without further approximation. We address this by discretizing the 
space and defining a discrete kinetic operator as follows.
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Definition 1.  Let Si,n be the centered finite difference approximation of order 2a and 
spacing h to the kinetic energy operator for the ith particle along the nth dimension, and let 

T̃ =
∑

i,n

(
Si,n − d2a+1,j=0

2mih2 1
)

, where d2a+1,j=0 = −
∑a

j=−a,j �=0 d2a+1,j , with

d2a+1,j�=0 =
2(−1)a+j+1(a!)2

(a + j)!(a − j)!j2
.� (2)

Our kinetic energy operator differs from the usual discretized operator by a term propor-

tional to the identity, D
∑

i
d2a+1,j=0

2mih2 1. Since the identity commutes with the remainder of the 

Hamiltonian, it does not lead to an observable difference in the dynamics and we thus neglect it 
from the simulation. In cases where the user wishes to compute characteristic energies for the 
system, this term can be classically computed and added to the final result after the simulation.

In order to make this process tractable on a quantum computer, we make a further discre-
tization of the space into a mesh of hypercubes and assume that the value of the wave function 
is constant within each hypercube. We take this mesh to be uniform for simplicity and assume 
that each of the D spatial dimensions is discretized into b points. We further define the side 
length of the hypercubes to be h := L/b.

Definition 2.  Let S = [0, L]ηD and let {Dj : j = 1, . . . , bηD} be a set of hypercubes 
that comprise a uniform mesh of S, let {yj : j = 1, . . . , bηd} be their centroids, and let 
y : x �→ argminu∈{yj}‖x − u‖ if the argmin is unique and define it to be the minimum index of 
the yj terms in the argmin if it is not. We then define the discretized Hamiltonian via

	 (a)	Ṽ : RηD �→ R is defined such that Ṽ(x) = V(y(x)).
	(b)	 H̃ := T̃ + Ṽ .

Figure 1 illustrates the hypercubes {Dj} and their centroids {yj} for a single particle with 
b = 5 bins in D = 2 dimensions.

The computational model that we use to analyze the Hamiltonian evolution is an oracle 
query model wherein we assume a universal quantum computer that has only two costly oper-
ations. The first operation is the computation of the potential energy Ṽ(x), which we cost at 
one query. Furthermore, we will express our kinetic operator, approximated using finite dif-
ference formulas, as a sum of unitary adders. As such, we take the cost of applying one adder 
to the state to also be one query. All other resources, including initial state preparation, are 
assumed to be free in this analysis.

With these definitions in hand we can state our main theorem, which provides an upper 
bound on the complexity of simulating such a discrete system (in a finite-dimensional Hilbert 
space) using the BCCKS Taylor series technique:

Theorem 3 (Discrete simulation).  Let V be some position-dependent potential energy 
operator such that its max norm, ‖V(x)‖∞, is bounded by Vmax, let H̃  be the discretized  
η-particle Hamiltonian in definition 2 with the potential energy operator Ṽ(x) = V(y(x)), and 
let m be the minimum mass of any particle. We can simulate time-evolution under H̃  of the 

discretized wave function ψ(y(x)), e−iH̃tψ(y(x)), for time t > 0 within error ε > 0 with

O

((
ηD
mh2 + Vmax

)
t

[
log

(
ηDt
mh2ε

+ Vmaxt
ε

)

log
(
log

(
ηDt
mh2ε

+ Vmaxt
ε

))
])

unitary adders and queries to an oracle for the potential energy.
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We will discuss a version of the Coulomb potential modified such that it is bounded, 

VCoulomb =
∑

i<j
qiqj√

‖xi−xj‖2+∆2
, where ∆ determines the maximum of the potential. For this 

potential, we can simulate discretized evolution under H̃  within error ε with

O



(

ηD
mh2 +

η2q2

∆

)
t


 log

(
ηDt
mh2ε

+ η2q2t
∆ε

)

log
(
log

(
ηDt
mh2ε

+ η2q2t
∆ε

))





unitary adders and queries to an oracle for potential energies, where q is the maximum abso-
lute charge of any particle.

This shows that if h ∈ ω(η−1) then such a simulation can be performed in time that scales 
better with η than the best known quantum simulation schemes in chemistry applications, for 
fixed filling fraction. However, this does not directly address the question of how small h will 
have to be to provide good accuracy. The answer that we find is, in worst-case scenarios, that 
the value of h needed can be exponentially small in the number of particles and can scale lin-
early with the error tolerance. This is summarized in the following theorem.

Theorem 4 (Discretizing continuous simulation).  Let V and H̃  be as in theorem 3 
with the following additional assumptions:

	 1.	The max norms of the derivatives of V, ‖∇V(x)‖∞, are bounded by V ′
max,

	 2.	Let ψ(k) : RηD �→ C and ψ(x) : RηD �→ C be conjugate momentum and position repre-

sentations of the same η-particle wave function such that e−iHsψ(k) and e−iH̃sψ(k) are 
zero if ‖k‖∞ > kmax for all s ∈ [0, t],

	 3.	ψ(x) is smooth at all times during the evolution,
	 4.	kmaxL > π(2e−1/3)2/ηD.

Figure 1.  The grid with b = 5 bins in D = 2 dimensions for a single particle. Each 
bin has side length h = L/b, where L is the side length of the entire grid. The centroid 
of each bin is the dot at its centre. A particle in the bin corresponding to the larger dot 
would be represented by |x〉 = |x1,1〉|x1,2〉 = |011〉|010〉, indicating that x1 is in the bin 
third from the left and second from the bottom, taking the bottom-left bin as (0, 0).

I D Kivlichan et alJ. Phys. A: Math. Theor. 50 (2017) 305301
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Then for any square integrable wave function φ : S �→ C, we can simulate evolution for time 

t > 0 with the simulation error 
∣∣∣∫S φ

∗(x)e−iHtψ(x) dηDx −
∫

S φ
∗(x)e−iH̃t ψ(y(x))∫

S |ψ(y(x))|2 dηDx dηDx
∣∣∣ � ε 

by choosing

h �
2ε

3ηD (kmax + V ′
maxt)

(
kmaxL
π

)−ηD/2

,

and using the (2a + 1)–order divided difference formula in definition 1 where

a ∈ O
(
ηD log(kmaxL) + log

(
η2D2tkmax(kmax + V ′

maxt)
mε2

))
.

The modified Coulomb potential satisfies V ′
max � η2q2√3

9∆2 . With this potential,

h �
2ε

3ηD
(

kmax +
η2q2t

√
3

9∆2

)
(

kmaxL
π

)−ηD/2

.� (3)

Since the simulation scales as O(h−2), the fact that h ∈ O�((kmaxL)−ηD/2) suggests that, 
without further assumptions on the initial state and the Hamiltonian, the complexity of the 
simulation given by theorem 4 may be exponential in ηD. We further show in section 7 that 
this scaling is tight in that there are valid quantum states that saturate it. This indicates that 
there are important caveats that need to be considered before one is able to conclude, for 
example, that a position space simulation will be faster than a second-quantized simulation. 
However, it is important to note that such problems also implicitly exist with second-quanti
zed simulations, or in other schemes such as configuration interaction, but are typically 
dealt with using intelligent choices of basis functions. Our work suggests that such optim
izations may be necessary to make quantum simulations of certain continuous-variable sys-
tems practical.

One slightly stronger assumption to consider is a stricter bound on the derivatives of the 
wave function. In theorem 4, we assumed only a maximum momentum. Corollary 5 deter-
mines the value of h necessary when we assume that |ψ(r)(x)| ∈ O(kr

max/(
√

2r + 1LηD/2))). 
This assumption means that the wave function can never become strongly localized: it must 
at all times take a constant value over a large fraction of S. While this assumed scaling of 
the derivative of the wave function of kr

max may seem pessimistic at first glance, it is in fact 
saturated for plane waves. Furthermore, physical arguments based on the exponential scal-
ing of the density of states given from Kato’s theorem suggest that such scaling may also 
occur in low energy states of dilute electron gases. Regardless, we expect such scalings to 
be common and show below that this does not lead to the exponential scaling predicted by 
theorem 4.

Corollary 5 (Discretization with bounded derivatives).  Assume in addition to As-
sumptions 1–3 of theorem 4 that, at all times, |ψ(r)(x)| � βkr

max/(
√

2r + 1LηD/2) for any 
non-negative integer r where β ∈ Θ(1) and hkmax < e1/3. Then for any square integrable 
wave function φ : S �→ C, we can simulate evolution for time t > 0 with the simulation error 
at most ε by choosing

h ∈ O
(

ε

ηD (kmax + V ′
maxt)

)
,

I D Kivlichan et alJ. Phys. A: Math. Theor. 50 (2017) 305301
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and

a ∈ O
(
log

(
η2D2tkmax(kmax + V ′

maxt)
mε2

))
.

Thus even if the derivatives of the wave function are guaranteed to be modest then our 
bounds show that the cost of performing the simulation such that the error, as defined via 
the inner product in theorem 4, can be made arbitrarily small using a polynomial number of 
queries to the potential operator using low-order difference formulas. If we apply this method 
to simulate chemistry then the number of calls to an oracle that computes the pairwise poten-
tial (assuming D, kmax and ∆ are fixed) scales as Õ(η7t3/ε2). This scaling is worse than the 
Õ(η5t log(1/ε)) scaling that has been demonstrated for methods using a basis in first (assum-
ing the number of orbitals is proportional to η) or second quantization [24, 25], which may 
cause one to question whether these methods actually have advantages for chemistry over 
existing methods.

When drawing conclusions in comparing these results, it is important to consider what 
error metric is being used. To this end, theorems 3 and 4 and corollary 5 use very different 
measures of the error (as seen in figure 2). The first strictly examines the error between the 
simulated system within the basis and the exact evolution that we would see within that basis. 
The latter two interpret the state within the quantum computer as a coarse-grained state in 
the infinite-dimensional simulation, and measure the error to be the maximum difference in 
any inner product that could be measured in the higher-dimensional space. This means that 
the Õ(η7t3/ε2) scaling should not be directly compared to the Õ(η5t log(1/ε)) scaling seen in 
existing algorithms because the latter does not explicitly consider the error incurred by repre-
senting the problem in a discrete basis.

Also, it is important to stress that theorem 4 and corollary 5 bound a different sort of error 
than that usually considered in the quantum simulation literature. In our setting, we assume a 
fixed spatial grid and allow the user to prepare an arbitrary initial state (modulo the promises 
made above about that state) and then discuss how badly the error can scale. Most simulations 
deviate from this approach because the user typically picks a basis that is tailored to not only 
the state but also the observable that they want to measure. Typical measurements include, for 
example, estimation of bond lengths or eigenvalues of the Hamiltonian. Unlike the wavefunc-
tion overlaps considered in our theorems, such quantities are not necessarily very sensitive to 
the number of hypercubes in the mesh. This means that while these scalings are daunting, they 
need not imply that such simulations will not be practical. Rather, they suggest that the costs 
of such simulations will depend strongly on the nature of the information that one wishes to 
extract and on the promises made about the behavior of the system.

3.  Hamiltonian simulation

To exploit the Taylor series simulation techniques, we must be able to approximate the 
Hamiltonian H by a linear combination of easily-applied unitary operators, that is, as

H ≈
∑
χ

dχVχ,� (4)

where each Vχ is unitary, and dχ > 0. Later, we will bound the error in this approximation. As 
in definition 2, we will work with the Hamiltonian represented in position space

H = T + V ,� (5)

I D Kivlichan et alJ. Phys. A: Math. Theor. 50 (2017) 305301
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where T = −
∑

i
∇2

i
2mi

 is the kinetic energy operator and V = V(x) is the potential energy oper-

ator, with ∇2
i =

∑
n

∂2

∂xi,n2 . Our goal, then, is to decompose this Hamiltonian as in equation (4), 

into a linear combination of easily-applied unitary operators that approximates the original 
Hamiltonian. One way of doing this is by decomposing it into a linear combination of 1-sparse 
unitary operators (unitary operators with only a single nonzero entry in each row or column); 
however, the unitary operators need not be 1-sparse in general.

Because the potential energy operator V = V(x) is diagonal in the position basis, we can 
decompose it into a sum of diagonal unitary operators which can be efficiently applied to 
arbitrary precision. The single-particle Laplacians ∇2

i  in the kinetic energy operator are more 
difficult: we will consider a decomposition of the kinetic energy operator, approximated using 
finite difference formulas, into a linear combination of unitary adder circuits. By decompos-
ing the kinetic and potential energy operators into a linear combination of unitary operators to 
sufficient precision, we can decompose the Hamiltonian into unitary operators to any desired 
precision. The following section details how we decompose the potential and kinetic energy 
operators into a linear combination of unitary operators.

Once we have decomposed the Hamiltonian into a linear combination of unitary operators 
which can be easily applied, as in equation (4), we employ the BCCKS truncated Taylor series 
method for simulating Hamiltonian dynamics [20]. We wish to simulate evolution under the 
Hamiltonian H for time t > 0, that is, to approximately apply the operator

U(t) = exp(−iHt)� (6)

with error less than ε > 0. We divide the evolution time t into r segments of length t/r , and so 
require error less than ε/r  for each segment.

The key result of [20] is that time evolution in each segment can be approximated to within 
error ε/r  by a truncated Taylor series, as

Figure 2.  An illustration showing the three different dynamical systems considered in 
this paper. The lines represent the errors incurred by the two approximations necessary 
for discretely simulating continuous dynamics, and are labeled by the theorems that 
bound them. The overall error simulation error can be found through the use of the 
triangle inequality as illustrated in the figure. Most previous results only discuss errors 
between the simulation and the discretized dynamics, which we bound in theorem 3.

I D Kivlichan et alJ. Phys. A: Math. Theor. 50 (2017) 305301
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U(t/r) = exp(−iHt/r) ≈
K∑

k=0

1
k!
(−iHt/r)k,� (7)

where, provided that we choose ‖H‖t, we can take [20]

K ∈ O
(

log(r/ε)
log log(r/ε)

)
.� (8)

Expanding equation (7) using the form of the Hamiltonian in equation (4), we find that

U(t/r) ≈
K∑

k=0

∑
χ1,...,χk

(−it/r)k

k!
dχ1 . . . dχk Vχ1 . . .Vχk .� (9)

The sum for each χi  is over all the terms in the decomposition of the Hamiltonian in equa-

tion (4). We collect the real coefficients in the sum into one variable, cα = (t/r)k/k!
∏k

k′=1 dχk′, 
and the products of the unitary operators into a unitary operator Wα = (−i)k ∏k

k′=1 Vχk′, where 
the multi-index α is

α = (k,χ1,χ1, . . . ,χk).� (10)

We can then rewrite our approximation for U(t/r) as

U(t/r) ≈
∑
α

cαWα = W(t/r).� (11)

Since each Vχ can be easily applied, so too can each Wα, which are products of at most K 
operators Vχ. In section 6, we will give the circuit for an operator select(W) such that for any 
state |ψ〉 and for any ancilla state |α〉,

select(W)|α〉|ψ〉 = |α〉Wα|ψ〉.� (12)

Given a circuit for applying the operators Wα, we can apply the approximate unitary for a 
single segment W(t/r) using oblivious amplitude amplification [20].

First, we use a unitary B which we define by its action on the ancilla zero state:

B|0〉 = 1√
c

∑
α

√
cα|α〉,� (13)

where c =
∑

α cα is the normalization constant 
√

c squared. Following this, we apply 
select(W), and finally apply B†. Let us group these three operators into a new operator A, 
whose action on |0〉|ψ〉 is

A|0〉|ψ〉 = 1
c
|0〉W(t/r)|ψ〉+

√
1 − 1

c2 |φ〉,� (14)

where |φ〉 is some state with the ancilla orthogonal to |0〉.
The desired state W(t/r)|ψ〉 can be ‘extracted’ from this superposition using oblivious 

amplitude amplification [19, 20]. When we allow for the fact that W(t/r) may be slightly 
nonunitary, there are two conditions which must be satisfied in order to bound the error in 
oblivious amplitude amplification to O(ε/r) [19]: first, we must have that |c − 2| ∈ O(ε/r), 
and second, we must have that

‖U(t/r)− W(t/r)‖ ∈ O(ε/r),� (15)
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where here and in the remainder of the paper we take ‖ · ‖ to be the induced 2-norm or spectral 
norm. The first condition can be satisfied by an appropriate choice of r, and the second is satis-

fied by our earlier choice K ∈ O
(

log(r/ε)
log log(r/ε)

)
.

In oblivious amplitude amplification, by alternating the application of A and A† with the 
operator R = 1 − 2P0 which reflects across the ancilla zero state (where P0 is the projection 
operator onto the zero ancilla state), we construct the operator

G = −ARA†RA,� (16)

which, given that |c − 2| ∈ O(ε/r) and ‖U(t/r)− W(t/r)‖ ∈ O(ε/r), satisfies

‖P0G|0〉|ψ〉 − |0〉U(t/r)|ψ〉‖ ∈ O(ε/r).� (17)

Thus, we can approximate evolution under the Hamiltonian H for time t/r  with accuracy 
O(ε/r) by initializing the ancilla for each segment in the zero state, applying P0G, and dis-
carding the ancilla. By repeating this process r times, we can approximate evolution under the 
Hamiltonian for time t with accuracy O(ε).

4.  Approximating the Hamiltonian

In this section, we present the approximation of the continuous Hamiltonian H which we 
will decompose into a sum of unitary operators. We apply one approximation to the potential 
energy operator and two to the kinetic energy operator. To the potential energy operator V, we 
impose a cutoff on the potential energy between two particles. For the kinetic energy operator 
we assume a maximum momentum kmax, and also approximate the kinetic energy operator 
T by a sum of high-order finite difference formulas for each particle and dimension. These 
approximations hold for both finite- and infinite-dimensional Hilbert spaces. We focus only on 
the discretized finite-dimensional case because we must ultimately discretize to determine the 
cost of a circuit that approximates evolution under the discretized Hamiltonian H̃  in section 5.

Throughout, we employ a discrete position-basis encoding of the η-particle wave function 
ψ(y(x)). The position of each particle is encoded in D registers specifying the D components 
of that particle’s position in a uniformly spaced grid of side length L. Each spatial direction is 
discretized into b bins of side length h = L/b. We represent the stored position of particle i in 
the nth dimension by |xi,n〉, and use |x〉 to represent the combined register storing the positions 
of all η particles. Each of the coordinate registers |xi,n〉 is composed of �log b� qubits indexing 
which of the b bins the particle is in. As such |x〉 is composed of ηD�log b� qubits.

4.1. The potential energy operator

We first discuss the approximation to the potential energy operator V = V(x). This approx
imation affects V(x) directly, and its discretized counterpart Ṽ(x) = V(y(x)) through defini-
tion 2. We wish to decompose the potential energy operator into a sum of unitary operators 
approximating V. Because the potential energy operator is diagonal in the position basis, this 
decomposition is relatively straightforward. One simple way of approximating it as a sum 
of unitary operators is by writing it as a sum of signature matrices, that is, diagonal matrices 
whose elements are +1 or −1. This requires a number of signature matrices equal to the maxi-
mum possible norm of the potential energy operator.

At this stage, the potential energy operator is unbounded, so we would need infinitely 
many signature matrices in the sum. To prevent infinities, we replace potentials of the form 
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‖xi − xj‖−k  with 1/(
√
‖xi − xj‖2 +∆2)k , with ∆ > 0. For example, rather than the usual 

Coulomb potential 
∑

i<j
qiqj

‖xi−xj‖, where xi and qi are the D-dimensional position and charge of 
the ith particle, respectively, we instead use

VCoulomb =
∑
i<j

qiqj√
‖xi − xj‖2 +∆2

.� (18)

Let q = maxi |qi|. The modified Coulomb potential energy operator is bounded by

‖VCoulomb(x)‖∞ �
η(η − 1)q2

2∆
.� (19)

In general, we will denote the maximum value of the potential by Vmax. This means that we 
can approximate any bounded potential energy operator by a sum of Vmax signature matri-
ces. The modified Coulomb potential energy operator, for example, can be approximated by 

a sum of 
⌈
η(η−1)q2

2∆

⌉
 signature matrices. However, the error in this approximation is constant 

(specifically, it is at most 1) and cannot be better controlled. We will address this issue when 
we discuss simulation in section 5.

4.2. The kinetic energy operator

In the previous section, we considered the problem of applying a cutoff to the potential energy 
operator to ensure that its norm is bounded. The kinetic energy operator has a similar problem 
in that its norm is not finite. Additionally, while the potential energy operator is diagonal in 
the position basis, the kinetic energy operator is not. This further complicates the problem of 
decomposing the kinetic energy operator into a linear combination of easily-applied unitary 
operators.

We address these issues with two simplifications. First, we approximate the kinetic energy 
operator using arbitrary high-order central difference formulas for the second derivative 
[39]. Second, we work only with wave functions with a maximum momentum kmax such 
that ψ(k) = 0 if ‖k‖∞ � kmax. These two simplifications are linked, and, after determining a 
bound on the sum of the norms of the finite difference coefficients in lemma 6, we will use that 
bound together with the momentum cutoff to bound the error incurred by the finite difference 
approximation in theorem 7.

We numerically approximate the Laplacian using a (2a + 1)-point central difference 
formula for the second derivative of the ith particle’s position in each dimension n. The 
(2a + 1)-point central difference formula for a single such coordinate is [39]

∂2
inψ(x) = h−2

a∑
j=−a

d2a+1,jψ(x + jhêi,n) + O2a+1,� (20)

where êi,n is the unit vector along the (i, n) component of x, (xi,n + jhêi,n) is evaluated modulo 
the grid length L, and

d2a+1,j�=0 =
2(−1)a+j+1(a!)2

(a + j)!(a − j)!j2
.� (21)

The j = 0 coefficient is the opposite of the sum of the others, d2a+1,j=0 = −
∑a

j=−a,j�=0 d2a+1,j .
Surprisingly, the sum of the norms of the finite difference coefficients d2a+1,j�=0 is bounded 

by a constant. We prove this fact below, and then use it to bound the error term O2a+1.
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Lemma 6.  The sum of the norms of the coefficients d2a+1,j�=0 in the (2a + 1)-point central 
finite difference formula is bounded above by 23π

2 for a ∈ Z+.

Proof.  The sum of the norms of the coefficients is
a∑

j=−a,j�=0

|d2a+1,j| =
a∑

j=−a,j�=0

2(a!)2

(a + j)!(a − j)!j2

<

∞∑
j=−∞,j�=0

2
j2

=
2π2

3
,

where in the second step we used the fact that (a + j)!(a − j)! � (a!)2 for | j| � a when a � 1, 
and extended the sum over j up to infinity.� □ 

Theorem 7.  Let ψ(x) ∈ C2a+1 on x ∈ R for a ∈ Z+. Then the error in the (2a + 1)-point 
centered difference formula for the second derivative of ψ(x) evaluated on a uniform mesh 
with spacing h is at most

|O2a+1| �
π3/2

9
e2a[1−ln 2]h2a−1 max

x

∣∣∣ψ(2a+1)(x)
∣∣∣ .� (22)

Proof.  Using the expression for the error in corollary 2.2 of [39] and the triangle inequality 
we have that

|O2a+1| �
h2a−1

(2a + 1)!
max

x

∣∣∣ψ(2a+1)(x)
∣∣∣

a∑
j=−a,j�=0

|d2a+1,j|| j|2a+1

�
h2a−1a2a+1

(2a + 1)!
max

x

∣∣∣ψ(2a+1)(x)
∣∣∣

a∑
j=−a,j�=0

|d2a+1,j|

<
2π2h2a−1a2a+1

3(2a + 1)!
max

x

∣∣∣ψ(2a+1)(x)
∣∣∣ ,

�

(23)

where we used lemma 6 in the final step. Using Stirling’s approximation and the fact that 
a ∈ Z+ and hence a � 1 we have that

a2a+1

(2a + 1)!
�

√
ae2a[1−ln 2]

2(2a + 1)
√
π

�
e2a[1−ln 2]

6
√
π

,� (24)

and then we find by substituting the result into equation (23) that

|O2a+1| �
π3/2

9
e2a[1−ln 2]h2a−1 max

x

∣∣∣ψ(2a+1)(x)
∣∣∣ .� (25)

We approximate the kinetic energy operator T = −
∑

i,n
1

2mi
∂2

i,n using this finite dif-

ference formula. By choosing a sufficiently large, we can do this to arbitrary precision 
assuming ψ(x) is smooth and that its derivatives, ∂ p

x ψ(x), grow at most exponentially in 
magnitude with p.
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5.  Applying the Hamiltonian

We approximate the discretized Hamiltonian H̃  by a linear combination of easily-applied uni-
tary operators as in equation (4). To approximate H̃  to arbitrary precision while keeping the 
operators Vχ simple (i.e. only signature matrices and adders), we will in fact approximate the 
scaled Hamiltonian MH̃  by a linear combination of unitary operators, i.e.

MH̃ ≈
∑
χ

dχVχ,� (26)

where M > 0 determines the precision to which the sum, divided by M, approximates H̃ . Then, 
rather than simulating evolution under the Hamiltonian H̃  for time t, we instead simulate evo
lution of ψ(y(x)) under the scaled Hamiltonian MH̃  for time t/M. In section 3, we discussed 
how to simulate evolution when the Hamiltonian is a linear combination of unitary opera-
tors using two operators: select(W) (equation (12)), which maps |α〉|ψ〉 �→ |α〉Wα|ψ〉, where ∑

α cαWα approximates U(t/r), and B (equation (13)), which maps |0〉 �→ 1√
c

∑
α

√
cα|α〉, 

where c =
∑

α cα is the normalization constant 
√

c squared [20].
As in [20], we construct select(W) using K copies of an operator select(V) which chooses 

a single unitary operator Vχ from the sum equation (26) and applies it to the position register 
|x〉. In this section, we construct the operator select(V) so that it determines Vχ using an index 
register |χ〉. Its action is

select(V)|χ〉|x〉 = |χ〉Vχ|x〉.� (27)

Let us explain equation  (27) in greater detail. We wish to approximately apply 
MH̃ = M(T̃ + Ṽ) to |x〉. However, MH̃  is not in general unitary, so we approximate MH̃  by a 
linear combination of unitary operators Vχ to some precision, and then use products of that lin-
ear combination to simulate evolution under MH̃ . This means that for simulation we must work 
with a superposition of the different states χ of the index register, weighted by the factors dχ.

We show below that MH̃  can be approximated to arbitrary precision δ > 0 by a linear 
combination of unitary operators—specifically, adder circuits and signature matrices—with 
|{χ}| = 2ηDa + �Vmax/δ� terms for a general potential bounded by Vmax. For the modified 

Coulomb potential this can be done with 2ηDa +
⌈
η(η−1)q2

2∆δ

⌉
 terms.

Lemma 8.  Let V be some position-dependent potential energy operator bounded by 
‖V(x)‖∞ � Vmax, where Vmax � 0. Let δ > 0, and let H̃  be the Hamiltonian in definition 
2, with the discretized potential energy operator Ṽ(x) = V(y(x)). We can approximate H̃  to 
accuracy δ by a linear combination of 2ηDa addition circuits and M � Vmax/δ signature 
matrices, that is,

∥∥∥∥∥H̃ − 1
M

∑
χ

dχVχ

∥∥∥∥∥ � δ,

where dχ > 0 and each Vχ is either a unitary adder or a signature matrix.

Proof.  T̃  is purely off-diagonal, and Ṽ  is purely diagonal. Furthermore, T̃  is a sum of the fi-
nite difference operators Si,n of definition 1. From the central difference formula equation (20),

MT̃ = Mh−2
∑

i,n

j=a∑
j=−a,j�=0

d2a+1,j

2mi
Aj,� (28)
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where Aj represents unitary addition by j, Aj|xi,n〉 = Aj|(xi,n + j)modb〉. Because Ṽ  is purely 
diagonal, we can approximate MṼ  to precision Vmax by

MṼ ≈ Vmax

M∑
j=1

Sj,� (29)

where each Sj is a signature matrix (a diagonal matrix whose elements are all ±1). With these 
decompositions, the Hamiltonian MH̃  is explicitly a linear combination of addition circuits 
and signature matrices.

Let dχ and Vχ be defined as in equations (28) and (29): for 0 � χ < 2ηDa, dχ = Mh−2 d2a+1,j

2mi
 

and Vχ = Aj, and for 2ηDa � χ < 2ηDa + M , dχ = Vmax and Vχ = Sj (We do not specify 
exactly the mapping between χ and (i, n, j).). We consider the error in the diagonal of H̃ , and 
then the error in the off-diagonal. The diagonal of MH̃  is MṼ ; it is approximated by the sum ∑

χ�2ηDa dχVχ. The off-diagonal matrix elements of MH̃  are MT̃  and are given exactly by 
the sum 

∑
χ<2ηDa dχVχ, so the error in the off-diagonal is zero. Thus, the error in approximat-

ing MH̃  is only the error in approximating MṼ . As in equation (29), the error in approximat-
ing MṼ  is at most Vmax, so the error in approximating Ṽ , and hence H̃ , is at most Vmax/M. 
Choosing M � Vmax/δ then ensures that

∥∥∥∥∥H̃ − 1
M

∑
χ

dχVχ

∥∥∥∥∥
max

� δ.� (30)

Finally our result follows from the fact that the max-norm and the spectral norm are equal for 
diagonal operators.� □ 

The modified Coulomb potential energy operator of equation  (18) has 

‖VCoulomb‖∞ � Vmax = η(η−1)q2

2∆ , which implies that its discretized counterpart Ṽ  also sat-

isfies ‖Ṽ‖∞ � η(η−1)q2

2∆ . Hence M =
⌈
η(η−1)q2

2∆δ

⌉
� �Vmax/δ� is sufficient by lemma 8, and 

we can approximate H̃  with the potential Ṽ(x) = VCoulomb(y(x)) to precision δ by a linear 

combination of 2ηDa +
⌈
η(η−1)q2

2∆δ

⌉
 terms. The index register |χ〉 must determine which of the 

2ηDa + M  unitary operators to apply, so it must have at least �log(2ηDa + M)� qubits.

6.  Complexity of evolving under the Hamiltonian

We now analyze the complexity of evolving under the discretized Hamiltonian using the 
BCCKS technique for Hamiltonian simulation [20], reviewed in section 3. We break the total 
simulation time t into r segments each of length t/r . Then, we approximate the time evolution 
operator U(t) = exp(−iH̃t) by a Taylor series truncated to order K, which results in an error 

of O
(

(‖H̃‖t/r)K+1

(K+1)!

)
. By choosing r � ‖H̃‖t, the numerator of the leading error term is less than 

or equal to 1; we can thus choose K ∈ O (log(r/ε)/ log log(r/ε)) to bound the Taylor series 
simulation error to O(ε) [20].

The final two missing pieces from the simulation are the operators B and select(W) from 
section 3. We wish to simulate time evolution under H̃  for time t/r  (equivalently, under MH̃  
for time t/rM), which we can do approximately as in equation (9),
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U(t/r) ≈ W(t/r) =
K∑

k=0

∑
χ1,...,χk

(−it/rM)k

k!
dχ1 . . . dχk Vχ1 . . .Vχk ,

using U(t) = exp
(
− iH̃t

)
= exp

(
−iMH̃(t/M)

)
. In equation (10) of section 3, we defined a 

multi-index α encompassing k and χ1 through χk, through which we simplified this expres-
sion to

W(t/r) =
∑
α

cαWα,

where cα = (t/rM)k/k!
∏k

k′=1 dχk′ includes all the real coefficients, and Wα = (−i)k ∏k
k′=1 Vχk 

includes all the unitary operators. Recall from equation  (12) that select(W) gives Wα, and 
from equation  (13) that B handles the appropriate coefficients and the sum over the index 
register |χ〉, that is, cα. The implementation of B is discussed in [19], and is of less interest 
because of our cost model. Let us describe how to implement select(W) in detail.

The operator select(W) is K controlled applications of select(V) and K controlled phase 
gates. The operators Vχi are those obtained by applying select(V) to the index state |χi〉. We 
can obtain a product of up to K of these operators by using K copies of the index registers 
|χ〉, and applying select(V) to each of them. But how do we account for the fact that we do 
not always want a product of exactly K operators −iVχi? This is done using a register |k〉 of 
K qubits, which encodes the value k in unary. We apply select(V) to the index register |χi〉, 
controlled on the ith qubit of |k〉. We can apply the phase gates directly to the qubits of |k〉; 
these gates need not be controlled. The unary register |k〉, as well as the K index registers 
|χ1〉 . . . |χK〉, are initialized in some superposition state by B.

As in section 3 and [20], the action of the operator A = (B† ⊗ 1)select(W)(B ⊗ 1) on the 
ancilla and state registers is given by

A|0〉|ψ〉 = 1
c
|0〉W(t/r)|ψ〉+

√
1 − 1

c2 |φ〉,� (31)

where |φ〉 is some state with the ancilla orthogonal to |0〉. Provided that c ≈ 2, we can perform 
oblivious amplitude amplification: with P0 the projection operator onto the zero ancilla state 
and R = 1− 2P0 , the oblivious amplitude amplification operator G = −ARA†RA satisfies

‖P0G|0〉|ψ〉 − |0〉U(t/r)|ψ〉‖ ∈ O(ε/r).� (32)

We repeat this process r times to approximate the action of U(t) on |ψ〉 to precision O(ε). We 
now show that this process can expediently simulate quantum dynamics in real space and 
thereby prove theorem 3.

Proof of theorem 3.  Rather than simulating H̃  acting on ψ(y(x)) for time t, we  
instead simulate  the approximation of MH̃  from lemma 8 for time t/M, where 
M � �Vmax/δ�. The error in approximating H̃  is δ, so we must choose δ ∈ O(ε/t) so that ∥∥∥e−iH̃t − e−i(t/M)

∑
χ dχVχ

∥∥∥ � O(ε). The Hamiltonian is simulated by applying P0G (equa-

tion (32)) r times. This simulates evolution under MH̃ ≈
∑

χ dχVχ for time t/M to precision 
O(ε); by the triangle inequality, the total precision is also O(ε).

Each application of P0G uses A three times and each application of A uses select(W) once. 
select(W) applies a product of up to K unitary operators Vχ and uses select(V) K times, where

K ∈ O
(

log(r/ε)
log log(r/ε)

)
,� (33)
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from equation (4) of [20]. Therefore the cost of applying P0G is K times the query complexity 
of implementing select(V).

At first glance select(V) would seem to require 2ηDa + M  queries because the Hamil-
tonian can be decomposed into 2ηDa + M  unitary matrices; in fact, it can be implemented 
using Θ(1) queries. To see this, let us first begin with implementing V(x). We see from the 
arguments of [20] that such a term can be simulated using a single query to an oracle that 
gives V(x) and a polynomial amount of additional control logic to make the M unitary terms 
(known as signature matrices) sum to the correct value. The less obvious fact is that the 2ηDa 
unitary adders can also be simulated using similar intuition. This can be seen by noting that 
using appropriate control logic, it is possible to swap the register that a given adder acts on to 
a common location so only one addition needs to be performed.

To see this, consider the register that stores the index for the state |χ〉 = |i, n, j〉 where n is 
the index for the dimension, i is the index for the particle, and j ∈ [−a, . . . , a] \ 0. Consider a 
computational basis state that encodes the positions of each particle and the unitary adder that 
needs to be performed of the form

|χ〉|x1,1〉 . . . |xi,n〉 . . . |xη,D〉.� (34)

Then using the data in |χ〉 a series of swap operations can be performed such that

|χ〉|x1,1〉 . . . |xi,n〉 . . . |xη,D〉 �→ |χ〉|xi,n〉 . . . |x1,1〉 . . . |xη,D〉.� (35)

The addition of j to this register can then be performed by applying,

|χ〉|xi,n〉 . . . |x1,1〉 . . . |xη,D〉 �→ |i, n〉Add (|j〉|xi,n〉) . . . |x1,1〉 . . . |xη,D〉.� (36)

The desired result then follows from inverting the swap gates. Since quantum mechanics is 
linear, any unitary that performs such swaps for an arbitrary value of χ that is stored in the 
ancilla register will also have the correct action on a superposition state. Thus it is possible 
to perform the addition using a single query to an adder circuit, given that such a network of 
controlled swaps can be implemented.

Such a series of swaps can be shown constructively to exist by using a strategy similar to 
binary search. The steps are as follows. For k ∈ [1, �log η�]: controlled on the kth qubit of i, 
swap |xi′〉 with |xi′−2�log η�−k〉 for i′ ∈ [2�log η�−k + 1, 2�log η�−k+1]. Figure 3 gives an example 
of this procedure for i = 6 with η = 8. After each stage, the desired |xi〉 register is in position 
i mod 2�log η�−k. Thus, after all �log η� iterations |xi〉 occupies the first particle position i′ = 1. 
We repeat the same process for the coordinate n, so that |xin〉 is first in the |x〉 register, and apply 
the unitary adder to it, adding by j. Finally, we run the sequence of controlled swap gates in 
reverse to return all the registers in |x〉 to their original positions. The controlled swaps require 
O(ηD log(L/h)) gates but only depth O(log(ηD)).

So select(V) requires Θ(1) queries to the potential energy oracle and Θ(1) unitary adders. 

Each application of P0G requires, from equation (33), 3K ∈ O
(

log(r/ε)
log log(r/ε)

)
 uses of select(V), 

and as such Θ(K) unitary adders and calls to the potential energy oracle. The query complex-
ity within our model then scales as [20]

Θ(Kr) ⊆ O
(

r log(r/ε)
log log(r/ε)

)
.� (37)
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The results in [20] require that r � ‖H̃‖t = ‖H̃‖t. The condition of oblivious amplitude  
amplification that c =

∑
α cα ≈ 2 gives a stricter requirement, that r =

∑
χ |dχ|t/ ln 2. If r is 

not an integer, we can take the ceiling of this as r, and the final segment will have c < 2, which 
can be compensated for using an ancilla qubit [20]. In order to guarantee that we have enough 
segments to satisfy these requirements we choose

r =

⌈∑
χ

|dχ|t/M ln 2

⌉

�


h−2

∑
i,n

j=a∑
j=−a,j�=0

|d2a+1,j|
2mi

+ Vmax


 t/ ln 2 + 1,

�

(38)

where we used equations (28) and (29). This upper bound on r then allows us to determine an 
upper bound on how many adder circuits or how many queries to an oracle for the potential 
energy are required for simulation.

We then see from lemma 6 and equation (38) that the number of times that P0G is applied, 
r, obeys

r �

(
π2ηD
3mh2 + Vmax

)
t/ ln 2 + 1.� (39)

Figure 3.  The controlled swap procedure used in the proof of theorem 3 for i = 6 with 
η = 8. i = 6 is stored in a register as 101. Since the first bit of i is 1, |xi′〉 is swapped with 
|xi′−4〉 for i′ ∈ [5, 8] (solid arrows). The second stage (dashed arrows) is not performed 
since the second bit of i is 0. Finally, since the third bit of i is 1, x5 and x6 are swapped 
to leave x6 in the first position. Though the gate count scales linearly in ηD, the circuit 
depth is only logarithmic in it.
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Finally using equation (39) we have that the total number of queries made to V and T scales as

Θ(Kr) ⊆ O

((
ηD
mh2 + Vmax

)
t

[
log

(
ηDt
mh2ε

+ Vmaxt
ε

)

log
(
log

(
ηDt
mh2ε

+ Vmaxt
ε

))
])

,� (40)

as claimed.� □ 

This shows that if a modest value of h can be tolerated then the continuous-variable simula-
tion that we discuss above will require a number of resources that scales slightly superlinearly 
with the number of particles.

A possible criticism of the above cost analysis is that the potential energy oracle considered 
requires a number of operations that scales polynomially with the number of particles were we 
to implement it using elementary operations for pairwise Hamiltonians such as the Coulomb 
Hamiltonian. One way to deal with this is to use oracles that have complexity that is constant in the 
size of the simulation, such as an oracle for each of the pairwise interactions. We show in the corol-
lary below that switching to such a pairwise oracle and optimizing the simulation against it leads 
to a query complexity that is the same as that in theorem 3 (potentially up to logarithmic factors).

Corollary 9.  Let Vij be the potential energy operator for the two-particle interaction be-
tween particles i and j. With H̃  be as in theorem 3 with V =

∑
i<j Vij, we can simulate e−iH̃t|ψ〉 

for time t > 0 within error ε > 0 with

Õ
((

ηD
mh2 + Vmax

)
t log (1/ε)

)

unitary adders and queries to an oracle for the two-particle potential energy Vij.

Proof.  The intuition behind our approach is to use the result in theorem 3 for truncated 
Taylor-series simulation of the particle system, but to multiply the cost of the simulation by 
the cost of implementing the query using the pairwise oracles. Since there are η2 such terms 
one would expect that the complexity should be η2 times that quoted in theorem 3. However, 
we can optimize the algorithm for the pairwise oracle to perform the simulation by using a 
swap network similar to that exploited for the kinetic energy to reduce the cost.

We replace the potential energy operator Ṽ  by a sum of two-particle potential energies, so 
that the Hamiltonian we simulate is

H̃ = h−2
∑

i,n

j=a∑
j=−a,j�=0

d2a+1,j

2mi
Aj +

∑
i�=j

Ṽij.

In theorem 3, we showed how to implement the 2ηDa terms in the kinetic energy operator using 
a single adder circuit, and V using a single query to the total potential energy. That is, for a two-
particle potential, we evaluate 

∑
i�=j Vij by a single query to V. Thus, in order to show our claim 

that we can perform a single segment of evolution under H̃ using a constant number of unitary 
adders and queries to an oracle for the two-particle potential energy Vij, we must show that the 
potential Vij can be evaluated with a constant number of queries to the pairwise potential.

In general, the pairwise potential energy is a function of the properties of the particles i and 
j as well as their positions. The action of the pairwise oracle Vp is

Vp (|ij〉|0〉|xa〉|xb〉) := |ij〉|Vij(xa, xb)〉|xa〉|xb〉,
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where xa and xb are the positions of particles a and b.
The implementation of a segment in the truncated Taylor series simulation requires that 

we implement the Hamiltonian as a linear combination of unitaries. We showed in theorem 
3 that the kinetic energy part of the linear combination can be implemented using a constant 
number of adder circuits. Therefore, in order to show that the pairwise Hamiltonian can also 
be implemented using a constant number of queries in this model we need to show that the 
two-particle potential terms in the linear combination can be enacted using a constant number 
of queries to Vp.

We show that the potential terms can be performed using a single query to Vp using a swap 
network reminiscent of that used for the kinetic energy terms in theorem 3. Let us assume that 
we want to implement the χth term in the decomposition, Hχ = Vij. Then we can write the 
state of the control register and the simulator subspace as

|χ〉|0〉|x1〉 . . . |xi〉 . . . |xj〉 . . . |xη〉.� (41)

We use the data in the control register |χ〉 to perform a series of controlled-swap operations 
such that

|χ〉|0〉|x1〉 . . . |xi〉|xj〉|xη〉 �→ |χ〉|0〉|xi〉|xj〉 . . . |x1〉 . . . |xη〉.� (42)

This process uses poly(η) controlled swaps and no queries. We then query the pairwise oracle 
Vp to prepare the state

|χ〉|0〉|xi〉|xj〉 . . . |x1〉 . . . |xη〉 �→ |χ〉|Vij(xi, xj)〉|xi〉|xj〉 . . . |x1〉 . . . |xη〉.

Then, using the signature matrix trick, we can implement these terms as a sum of unitary op-
erations within arbitrarily small error after appropriately cleaning the ancilla qubits. Because 
this circuit works uniformly for all pairwise interactions, the entire segment can be imple-
mented using only one application of the above routine for simulating the potential terms and 
the routine for simulating the kinetic terms from theorem 3. As argued, the routine requires 
only a constant number of queries, and therefore each segment requires only a constant num-
ber of queries to the adder circuit and Vp. The corollary then follows from the bounds on the 
number of segments in theorem 3.� □ 

This is significant because the best methods known for performing such simulations not 
only require the Born–Oppenheimer approximation, but also require Õ(η5) operations (assum-
ing η is proportional to the number of spin-orbitals) [24, 25]. Thus, depending on the value of 
h needed, this approach can potentially have major advantages in simulation time.

The value of h needed for such a simulation is difficult to address as it depends sensitively on 
the input state being simulated. In the next section, we provide estimates of the scaling of this 
parameter that show that the above intuition may not hold without strong assumptions about 
the states being simulated. Specifically, we find that that the value of h needed to guarantee that 
the simulation error is within ε can shrink exponentially with ηD in some pathological cases.

7.  Errors in Hamiltonian model

In our discussion thus far, we have introduced several approximations and simplifications of 
the Hamiltonian so as to make the simulation problem well-defined and also tractable. In this 
section, we bound the errors incurred by these choices. At the heart of these approximations 
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is the discretization of the system coordinates into b hypercubes of side length h along each 
spatial direction from definition 2.

We begin by bounding the errors in the kinetic and potential energy operators, starting off 
with an upper bound on derivatives of the wave function assuming a maximum momentum 
kmax in lemma 10. We apply this upper bound to determine the maximum error in the finite 
difference approximation for the kinetic energy operator in theorem 11. Following that, in 
lemma 12, we upper bound the error in the potential energy operator due to discretization (the 
difference between V(x) and Ṽ(x) = V(y(x)) of definition 2).

We shift our focus from errors in the operators to simulation errors beginning in lemma 13, 
where we give the error in evolving under H̃  rather than H. In lemma 14 we bound the error in 
evolving the discretized wave function rather than the wave function itself. We give the total 
simulation error in corollary 15, and in lemma 16 give the difference between simulating the 
wave function ψ(x) and the discretized wave function ψ(y(x)) due to normalization. Finally, 
in theorem 4 we determine the values of a and h needed to bound the total simulation error to 
arbitrary ε > 0 in the worst case, before discussing for which states the worst case holds, and 
then determining the requirements on a and h under more optimistic assumptions about the 
scaling of the derivatives of the wave function in corollary 5.

We begin by introducing a lemma which we use to bound the errors in the kinetic and 
potential energy operators, assuming a maximum momentum:

Lemma 10.  Let ψ(k) : RN �→ C and ψ(x) : RN �→ C be conjugate momentum and posi-
tion representations of the same wave function in N dimensions and assume that ψ(k) = 0 if 
‖k‖∞ > kmax. Then for any position component xi, and any non-negative integer r,

|∂r
xi
ψ(x)| � kr

max√
2r + 1

(
kmax

π

)N/2

.

Proof. 

∂r
xi
ψ(x) = ir〈x|pr

i |ψ〉

= ir
∫ ∞

−∞
· · ·

∫ ∞

−∞
〈x|pr

i |k〉〈k|ψ〉 dNk.
�

(43)

Using the momentum cutoff and the fact that 〈x|k〉 = eix·k

(2π)N/2 in N dimensions, we then have

∂r
xi
ψ(x) =

ir

(2π)N/2

∫ kmax

−kmax

· · ·
∫ kmax

−kmax

kr
i e

ik·x〈k|ψ〉 dNk.� (44)

Here ki refers to the ith component of the k-vector. We then use the Cauchy–Schwarz inequal-
ity to separate the terms in the integrand to find

|∂r
xi
ψ(x)| � 1

(2π)N/2

√∫ kmax

−kmax

· · ·
∫ kmax

−kmax

k2r
i dNk

∫ kmax

−kmax

· · ·
∫ kmax

−kmax

|ψ(k)|2 dNk

=
1

(2π)N/2

√∫ kmax

−kmax

· · ·
∫ kmax

−kmax

k2r
i dNk

=
kr
max√

2r + 1

(
kmax

π

)N/2

.
�

(45)

�
□ 
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Recall that m = mini mi is the minimum mass of any particle in the system. Lemma 10 
leads to the following useful bounds:

|ψ(x)| �
(

kmax

π

)ηD/2

� (46)

|∂xi,nψ(x)| �
kmax√

3

(
kmax

π

)ηD/2

� (47)

|Tψ(x)| � ηDk2
max

2m
√

5

(
kmax

π

)ηD/2

� (48)

|T∂xi,nψ(x)| �
ηDk3

max

2m
√

7

(
kmax

π

)ηD/2

� (49)

We now bound the error in the finite difference approximation for the kinetic energy opera-
tor using lemma 10.

Theorem 11.  Let ψ(k) : RηD �→ C and ψ(x) : RηD �→ C be conjugate momentum and po-
sition representations of an η-particle wave function in D spatial dimensions satisfying the 

assumptions of lemma 10, and let T =
∑

i,n Ti,n and T̃ =
∑

i,n Si,n, where Ti,n = p2
i,n/2mi. Then

|(T − T̃)ψ(x)| � π3/2e2a[1−ln 2]

18m
√

4a + 3
ηDk2a+1

max

(
kmax

π

)ηD/2

h2a−1,

where m = mini mi.

Proof.  Recall from theorem 7 that, for a single coordinate, the error |O2a+1| in the 
(2a + 1)-point central difference approximation of the second derivative is upper-bounded by

π3/2

9
e2a[1−ln 2]h2a−1 max

x

∣∣ψ(2a+1)(x)
∣∣,

where h is the grid spacing. By lemma 10, maxx
∣∣ψ(2a+1)(x)

∣∣ � k2a+1
max√
4a+3

( kmax

π

)
ηD/2. Thus for 

any coordinate (i, n),

|(Ti,n − Si,n)ψ(x)| �
π3/2

18m
e2a[1−ln 2]h2a−1 k2a+1

max√
4a + 3

(
kmax

π

)ηD/2

.� (50)

The result follows by summing over all η particles and D dimensions.� □ 

Theorem 11 does not require that ψ(x) be discretized as in definition 2: the second deriva-
tive of any wave function with maximum momentum kmax can be calculated in this way. We 
have finished addressing the error in the kinetic energy operator and move now to the error in 
the potential energy operator.

Lemma 12.  Let ψ(x) : RηD �→ C and Ṽ : RηD �→ R satisfy the assumptions of lemma 10 
such that Ṽ(x) = V(y(x)), where ‖∇V(x)‖∞ � V ′

max. Then

|(V − Ṽ)ψ(x)| � hηD
2

(
kmax

π

)ηD/2

V ′
max.
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In particular, for the modified Coulomb potential energy operator,

∣∣(VCoulomb − ṼCoulomb)ψ(x)
∣∣ � hηD

2
η2q2

√
3

9∆2

(
kmax

π

)ηD/2

.� (51)

Proof.  V and Ṽ  differ in that Ṽ  is evaluated at a centroid of a hypercube whereas V is evalu-
ated at the ‘true’ coordinates. The distance from the corner of a hypercube to its center is at 
most h

√
ηD/2, so because ‖ · ‖ �

√
ηD‖ · ‖∞ for vectors of dimension ηD,

|(V − Ṽ)ψ(x)| = |(V(x)− V(y(x)))ψ(x)| � hηD
2

∣∣∣max
i

∂xi V(x)
∣∣∣
(

kmax

π

)ηD/2

,

� (52)

where we used the bound on |ψ(x)| of equation (46). The result follows from the assumption 
that ‖∇V(x)‖∞ � V ′

max.

For the modified Coulomb potential energy operator VCoulomb =
∑

i<j
qiqj√

‖xi−xj‖2+∆2
 it is 

easy to verify that

|∂xi VCoulomb(x)| =

∣∣∣∣∣∣
∂xi

∑
k �=j

qkqj√
‖xk − xj‖2 +∆2

∣∣∣∣∣∣
�

η2q2

2
max

∣∣∣∣∣∂xi

1√
‖xk − xj‖2 +∆2

∣∣∣∣∣ �
η2q2

√
3

9∆2 ,

� (53)

from which the second result follows.� □ 

At this point, we have bounds on the error in the approximations of the kinetic and potential 
energy operators. We apply these to determine the error in simulating H̃  rather than H. After 
that, we determine the maximum error in time-evolving the discretized wave function ψ(y(x)) 
rather than ψ(x), and then combine the two results.

Lemma 13.  If the assumptions of theorem 11 are met for the wave functions e−iHsψ and 
e−iH̃sψ for all s ∈ [0, t] where ψ : RηD �→ C, and |∇V(x)|∞ � V ′

max, then for any square in-
tegrable φ : RηD �→ C and Q ⊆ S
∣∣∣∣
∫

Q
φ∗

(
e−iHt − e−iH̃t

)
ψ dηDx

∣∣∣∣ � t
(
π3/2e2a[1−ln 2]
√

4a + 3
ηDk2a+1

max h2a−1

18m

+
hηD

2
V ′
max

)(
kmax

π

)ηD/2
√∫

Q
dxηD

∫

Q
|φ|2 dxηD

Proof.  From the Cauchy–Schwarz inequality
∣∣∣∣
∫

Q
φ∗

(
e−iHt − e−iH̃t

)
ψ(x) dηDx

∣∣∣∣ � max
x

∣∣∣
(

e−iHt − e−iH̃t
)
ψ(x)

∣∣∣
√∫

Q
dxηD

∫

Q
‖φ‖2 dxηD.

� (54)

Repeating the standard argument from Box 4.1 of Nielsen and Chuang [40] and using the fact 
that for the input state ψ, |Hψ(x, t)| is bounded, we have that
∣∣∣
(

e−iHt − e−iH̃t
)
ψ(x)

∣∣∣ = lim
r→∞

∣∣∣
((

e−iHt/r
)r

−
(

e−iH̃t/r
)r)

ψ(x)
∣∣∣ � max

x,ψ

∣∣(H − H̃)ψ(x)
∣∣ t.

� (55)
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Here the maximization over ψ is meant to be a maximization over all ψ that satisfy the as-
sumptions of theorem 11.

We then apply theorem 11 to find that

max
x

|(T − T̃)ψ(x)| � π3/2e2a[1−ln 2]
√

4a + 3
ηDk2a+1

max h2a−1

18m

(
kmax

π

)ηD/2

.� (56)

Similarly we have from lemma 12 that

max
x

|(V − Ṽ)ψ(x)| � hηD
2

(
kmax

π

)ηD/2

V ′
max.� (57)

The claim of the lemma then follows by combining these three parts together.� □ 

Lemma 14.  If the assumptions of theorem 11 are met for the wave function e−iH̃sψ for all 
s ∈ [0, t] where ψ : RηD �→ C then for any square integrable φ : RηD �→ C, v ∈ RηD  such that 
‖v‖ � h

√
ηD/2 and Q ⊆ S

∣∣∣∣
∫

Q
φ∗(x)(e−iH̃tψ(x)− e−iH̃tψ(x + v)) dxηD

∣∣∣∣ �
kmaxηDh

2
√

3

(
kmax

π

)ηD/2
√∫

Q
dxηD

∫

Q
|eiHtφ|2 dxηD.

Proof.  Under our assumptions we have that
∣∣∣∣
∫

Q
φ∗(x)(e−iH̃tψ(x)− e−iH̃tψ(x + v)) dxηD

∣∣∣∣ =
∣∣∣∣
∫

Q
φ∗(x)e−iH̃t(ψ(x)− ψ(x + v)) dxηD

∣∣∣∣ .

� (58)

Since ψ(x) is differentiable, we have from the fact that for vectors of dimension ηD, 
‖ · ‖ �

√
ηD‖ · ‖∞ that

|ψ(x)− ψ(x + v)| � ‖v‖max
x

‖∇ψ(x)‖ �
ηDh

2
max

x
|∂xi,nψ(x)|.� (59)

Equation (47) then implies that

|ψ(x)− ψ(x + v)| � kmaxηDh
2
√

3

(
kmax

π

)ηD/2

.� (60)

The remainder follows from the Cauchy–Schwarz inequality.� □ 

Recall from definition 2 that y : x �→ minu∈{yj} ‖x − u‖, so ‖x − y(x)‖ � h
√
ηD/2. Lemma 

14 is thus slightly more general than just bounding the error in time-evolving ψ(y(x)) rather 
than ψ(x), but it suffices for our purposes. We next combine the previous two lemmas to bound 
the error in evolving the discretized wave function ψ(y(x)) under the discretized Hamiltonian 
H̃  rather than evolving the true ψ under H.

Corollary 15.  If the assumptions of theorem 11 are met for the wave 
functions e−iHsψ  and e−iH̃sψ for all s ∈ [0, t] where ψ : RηD �→ C, and 
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‖∇V(x)‖∞ � V ′
max, then for any square integrable wave function φ : S �→ C we have that 

|
∫

S φ
∗(x)e−iHtψ(x) dηDx −

∫
S φ

∗(x)e−iH̃tψ(y(x)) dηDx| is bounded above by
[

kmaxηDh
2
√

3
+ t

(
π3/2e2a[1−ln 2]
√

4a + 3
ηDk2a+1

max h2a−1

18m
+

hηD
2

V ′
max

)](
kmaxL
π

)ηD/2

.

Proof.  By the triangle inequality,
∣∣∣∣
∫

S
φ∗(x)e−iHtψ(x) dηDx −

∫

S
φ∗(x)e−iH̃tψ(y(x)) dηDx

∣∣∣∣

�

∣∣∣∣
∫

S
φ∗(x)e−iHtψ(x) dηDx −

∫

S
φ∗(x)e−iH̃tψ(x) dηDx

∣∣∣∣

+

∣∣∣∣
∫

S
φ∗(x)e−iH̃tψ(x) dηDx −

∫

S
φ∗(x)e−iH̃tψ(y(x)) dηDx

∣∣∣∣ .

�

(61)

Lemmas 13 and 14 can be used to bound these terms. First note that because we assume that φ 
is a wave function that has support only on S, it follows from the definition of T̃  that T̃φ does 
also. Therefore it follows from Taylor’s theorem and the fact that Ṽ  is diagonal that e−iH̃tφ has 
support only on S. Since φ has norm 1 this implies that

√∫

S
dxηD

∫

S
|eiH̃tφ|2 dxηD = LηD/2,� (62)

and similarly
√∫

S
dxηD

∫

S
|φ|2 dxηD = LηD/2.� (63)

The result then follows by substituting these results as well as those of lemmas 13 and 14 into 
equation (61).� □ 

A final issue is that, while ψ(x) is normalized, ψ(y(x)) in general will not be. Initializing 
the quantum computer renormalizes ψ(y(x)), so the wave function simulated by the quantum 

computer is in fact ψ(y(x))
/√∫

S |ψ(y(x))|2 dxηD. The following lemma bounds the contrib

ution of this final source of error.

Lemma 16.  If the assumptions of lemma 10 hold then for any bounded Hermitian operator 
H, t � 0, and square integrable wave function φ : S �→ CηD such that 

∫
S |φ(x)|

2dxηD = 1, we 
have that

∣∣∣∣∣∣

∫

S
φ(x)∗e−iHtψ(y(x))dxηD −

∫

S

φ(x)∗e−iHtψ(y(x))√∫
S |ψ(y(x))|2dxηD

dxηD

∣∣∣∣∣∣
� δ,

for

h � 3

√
min(δ,

√
3/8)

ηD
1

kmax

(
kmaxL
π

)−ηD/2

.
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Proof.  The Cauchy–Schwarz inequality and the fact that φ(x) is normalized show that
∣∣∣∣∣∣

∫

S
φ(x)∗e−iHtψ(y(x))dxηD −

∫

S

φ(x)∗e−iHtψ(y(x))√∫
S |ψ(y(x))|2dxηD

dxηD

∣∣∣∣∣∣

�

∣∣∣∣
∫

S
φ(x)∗e−iHtψ(y(x))dxηD

∣∣∣∣

∣∣∣∣∣∣
1 − 1√∫

S |ψ(y(x))|2dxηD

∣∣∣∣∣∣
.

�

√∫

S
|ψ(y(x))|2dxηD

∫

S
|φ(x)|2dxηD

∣∣∣∣∣∣
1 − 1√∫

S |ψ(y(x))|2dxηD

∣∣∣∣∣∣

=

√∫

S
|ψ(y(x))|2dxηD

∣∣∣∣∣∣
1 − 1√∫

S |ψ(y(x))|2dxηD

∣∣∣∣∣∣
.

�

(64)

Next, by applying the midpoint rule on each of the ηD dimensions in the integral we have that
∣∣∣∣
∫

S
|ψ(y(x))|2dxηD −

∫

S
|ψ(x)|2dxηD

∣∣∣∣ =
∣∣∣∣
∫

S
|ψ(y(x))|2dxηD − 1

∣∣∣∣

�
ηDh2 max

∣∣∂2
xi,n
|ψ(x)|2

∣∣LηD

24
.

�
(65)

Using the fact that |ψ(x)|2 = ψ(x)ψ∗(x) we find that

max
∣∣∂2

xi,n
|ψ(x)|2

∣∣ � 2max |∂2
xi,n
ψ(x)|max |ψ(x)|+ 2max |∂xi,nψ(x)|2,� (66)

which from lemma 10 is upper bounded by
(

2√
5
+

2
3

)
k2
max

(
kmax

π

)ηD

=

(
6 + 2

√
5

3
√

5

)
k2
max

(
kmax

π

)ηD

.� (67)

Now substituting equations (67) into (65) yields
∣∣∣∣
∫

S
|ψ(y(x))|2dxηD − 1

∣∣∣∣ � h2

(
(6 + 2

√
5)ηD

72
√

5

)
k2
max

(
kmaxL
π

)ηD

.� (68)

Equation (68) is then at most δ̃ if

h �

√
72
√

5δ̃
(6 + 2

√
5)ηD

1
kmax

(
kmaxL
π

)−ηD/2

.� (69)

Thus under this assumption on h we have that
√∫

S
|ψ(y(x))|2dxηD

∣∣∣∣∣∣
1 − 1√∫

S |ψ(y(x))|2dxηD

∣∣∣∣∣∣
�

√
1 + δ̃

(
1√

1 − δ̃
− 1

)
.

�

(70)
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If we assume δ̃ � 1/2 then it is easy to verify that

√
1 + δ̃

(
1√

1 − δ̃
− 1

)
�

√
3
2
δ̃.� (71)

Thus if we wish the upper bound in the error given in equation (70) to be at most δ it suffices 

to take δ̃ =
√

2
3δ and similarly δ �

√
3
8  implies our assumption on δ̃. The result then fol-

lows from substituting this choice of δ̃ into equation (69), minimizing and using the fact that 
(72

√
10/3)/(6 + 2

√
5) ≈ 12.6 > 9.� □ 

Combining corollary 15 and lemma 16 allows us to prove theorem 4.

Proof of theorem 4. We use the triangle inequality to break the simulation error into two 
terms corresponding to the results of corollary 15 and lemma 16, respectively.
∣∣∣∣∣
∫

S
φ∗(x)e−iHtψ(x) dηDx −

∫

S
φ∗(x)e−iH̃tψ(y(x)) dηDx

/√∫

S
|ψ(y(x))|2 dxηD

∣∣∣∣∣

�

∣∣∣∣
∫

S
φ∗(x)e−iHtψ(x) dηDx −

∫

S
φ∗(x)e−iH̃tψ(y(x)) dηDx

∣∣∣∣

+

∣∣∣∣∣
∫

S
φ∗(x)e−iH̃tψ(y(x)) dηDx −

∫

S
φ∗(x)e−iH̃tψ(y(x)) dηDx

/√∫

S
|ψ(y(x))|2 dxηD

∣∣∣∣∣

�

[
kmaxηDh

2
√

3
+ t

(
π3/2e2a[1−ln 2]
√

4a + 3
ηDk2a+1

max h2a−1

18m
+

hηD
2

V ′
max

)](
kmaxL
π

)ηD/2

+ δ.

� (72)

In order to be able to use lemma 16 we must choose

h � 3

√
min(δ,

√
3/8)

ηD
1

kmax

(
kmaxL
π

)−ηD/2

.� (73)

Next we want to find a value of h such that
[

kmaxηDh
2
√

3
+

hηDt
2

V ′
max

](
kmaxL
π

)ηD/2

<

[
kmaxηDh

2
+

hηDt
2

V ′
max

](
kmaxL
π

)ηD/2

� δ.

� (74)

Thus we additionally require that

h �
2δ

ηD (kmax + V ′
maxt)

(
kmaxL
π

)−ηD/2

.� (75)

We would like to make a uniform choice of h in the theorem and to this end it is clear 

that 2δ � 3
√
min(δ,

√
3/8)  for δ � 1/2. Thus since ηD � 1 and V ′

maxt � 0 it follows 

that equation (75) implies equation (73) under our assumptions. We therefore take equa-

I D Kivlichan et alJ. Phys. A: Math. Theor. 50 (2017) 305301



27

tion (75) as h.

We then want to bound

π3/2e2a[1−ln 2]
√

4a + 3
ηDk2a+1

max h2a−1

18m
t
(

kmaxL
π

)ηD/2

<
π3/2e−2a/3

√
7

ηDk2a+1
max h2a−1

18m
t
(

kmaxL
π

)ηD/2

� δ,

� (76)
which holds if kmaxh < e1/3 and

a �
3
2

log
(

1
18
√

7
π3/2ηDtkmax

δmh

)
+ ηD log

( kmaxL
π

)
/2

1 − 3 ln(kmaxh)
.� (77)

Therefore, assuming the worst-case scenario for a where kmax ∈ O(1/h) we have from this 
choice of a and the value of h chosen in equation (75) that there exists a such that the overall 
error is at most δ and

a ∈ O
(
ηD log(kmaxL) + log

(
η2D2tkmax(kmax + V ′

maxt)
mδ2

))
.� (78)

The requirement that kmaxh < e1/3 is then implied by equation (75), δ � 1/2 and

kmaxL > π(2e−1/3)2/ηD.� (79)

Then given these choices we have from equations (72), (74) and (76) that
[

kmaxηDh
2
√

3
+ t

(
π3/2e2a[1−ln 2]
√

4a + 3
ηDk2a+1

max h2a−1

18m
+

hηD
2

V ′
max

)](
kmaxL
π

)ηD/2

+ δ � 3δ.

� (80)
Hence the claim of the theorem holds for δ = ε/3.� □ 

The requirement on a in theorem 4 is surprising: despite the fact that the derivatives of the 
wave function can scale exponentially with the number of particles η, as kηD

max, it is always 
possible to suppress this error with a linear in η and D, and in fact logarithmic in kmax and the 
inverse precision 1/ε.

However, the above work suggests that it is possible to get exponentially small upper bounds 
on the size of h needed for the simulation if we make worst-case assumptions about the sys-
tem and only impose a momentum cutoff. It may seem reasonable to expect that such results 
come only from the fact that we have used worst-case assumptions and triangle inequalities to 
propagate the error. However, in some cases this analysis is tight, as we show below.

Consider the minimum-uncertainty state for D = 1,

ψ(x) = G(x) :=
exp(−x2/4∆x2)√√

2π∆x
.� (81)

A simple exercise in calculus and the fact that ∆x∆p = 1
2  shows that

max
x

|∂xψ(x)| =
(

8
πe2

)1/4

∆p3/2.� (82)

This result shows that if we take ∆p ∝ kmax then it would follow that |∂xψ(x)| ∈ Ω(k3/2
max) 

which coincides with the upper bound in equation (47). However, this is not directly compa-
rable because the Gaussian function used here does not have compact support in either posi-
tion or momentum.
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We can deal with this issue of a lack of compact support in a formal sense by considering 
a truncated (unnormalized) minimum-uncertainty state:

Ψ(k) =
exp(−k2/4∆p2)√√

2π∆p
Rect

(
k

2kmax

)
,� (83)

where Rect(x) is the rectangle function, Rect(x) = 1 if x ∈ (−1/2, 1/2), Rect(x) = 0 if 
x ∈ R \ [−1/2, 1/2] and Rect(x) = 1/2 if |x| = 1/2. This function clearly has compact sup-
port in momentum space and thus satisfies the assumptions above. We can rewrite this as

Ψ(k) = ψ(k) +
exp(−k2/4∆p2)√√

2π∆p

(
Rect

(
k

2kmax

)
− 1

)
,� (84)

By applying the Fourier transform and using standard bounds on the tail of a Gaussian distri-
bution we then see that

|∂xΨ(x)| = |∂xψ(x)|+ e−O(k2
max/∆p2).� (85)

Thus we can take kmax ∈ Θ(∆p) and make the approximation error that arises from truncat-
ing the support in momentum space exponentially small. Thus these states have derivative 

Ω(k3/2
max).

Now let us go beyond η = 1 to η > 1. Since ∆x ∝ 1/kmax for this minimum-uncertainty 
state it then follows that ∂xi (Ψ(x)⊗η) ∈ Ω(kmax(kmax)

η/2) from equation  (81) and equa-
tion (85). This means that the estimates of the derivatives used in the above results cannot 
be tightened without making assumptions about the quantum states in the system. This fur-
ther means that the exponential bounds cited above cannot be dramatically improved with-
out either imposing energy cutoffs in addition to momentum cutoffs, or making appropriate 
restrictions on the initial state.

It may seem surprising that such a simple state should be so difficult to simulate. The 
reason for this is that we discretize into a uniform grid without making any assumptions 
about the state beyond a momentum cutoff: in this regard, uniform discretization is the basis 
choice corresponding to near-minimal assumptions about the system. Uniformly discretizat-
ing means that multi-dimensional Gaussian states becomes difficult to distinguish from a δ 
function as they becomes narrower and narrower, where with more knowledge of the system, 
we might be able to better parametrize the state, or to construct a better basis in which to 
represent the state, and thereby more efficiently simulate the system. Even when, as in this 
work, discretization is the first step in approximating evolution, Gaussian-like states can be 
efficiently simulated without exponentially small grid spacing for some Hamiltonians [37]. 
More generally, there is the difficulty of not knowing which states might evolve into a high-
derivative state at some future time, which is why we must also require the momentum cutoff 
to hold throughout the evolution.

Corollary 5, which we prove below, relies on the stricter assumption that the derivatives of 
the wave function obey |ψ(r)(x)| � βkr

max/(
√

2r + 1LηD/2) for the full duration of the simula-

tion, rather than the worst-case bound |ψ(r)(x)| � kr
max√
2r+1

( kmax

π

)
N/2 from lemma 10 that was 

used in theorem 4.

Proof of corollary 5. The proof follows from the exact same steps used to prove theorem 
4. By taking |∂r

xψ(x)| ∈ O(kr
max/(

√
2r + 1LηD/2)) we can replicate all of the prior steps but 

substituting each (kmax/π)
ηD/2 with β/LηD/2. Thus each factor of (kmaxL/π)ηD/2 becomes 
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β after making this assumption. This causes the additional additive term of ηD log(kmaxL) to 
become zero in a as well. The claimed results then follow after making these substitutions. For 
added clarity, we recapitulate the key steps in this argument below.

If we repeat the steps required in the proof of corollary 15 and lemma 16 we see that
∣∣∣∣∣
∫

S
φ∗(x)e−iHtψ(x) dηDx −

∫

S
φ∗(x)e−iH̃tψ(y(x)) dηDx

/√∫

S
|ψ(y(x))|2 dxηD

∣∣∣∣∣

� β

[
kmaxηDh

2
√

3
+ t

(
π3/2e2a[1−ln 2]
√

4a + 3
ηDk2a+1

max h2a−1

18m
+

hηD
2

V ′
max

)]
+ δ,

�

(86)

if

h � 3

√
min(δ,

√
3/8)

β2ηD
1

kmax
.� (87)

Following the exact same reasoning as in the proof of theorem 4,
[

kmaxηDh
2
√

3
+

hηDt
2

V ′
max

]
�

δ

β
,� (88)

if

h �
2δ

βηD (kmax + V ′
maxt)

.� (89)

Finally again following the same reasoning that if kmaxh � e1/3 then

π3/2e2a[1−ln 2]
√

4a + 3
ηDk2a+1

max h2a−1

18m
t �

δ

β
,� (90)

for a value of a that scales at most as

a ∈ O
(
log

(
η2D2β2tkmax(kmax + V ′

maxt)
mδ2

))
.� (91)

Thus equation  (86) is bounded above by at most 3δ given these choices and we can take 
δ = ε/3 to make all the results hold. The result then follows by noting that the most restrictive 
scaling for h out of the three requirements we place on it is

h ∈ O
(

δ

βηD (kmax + V ′
maxt)

)
,� (92)

and using the fact that δ ∈ Θ(ε) and the assumption that β ∈ Θ(1) both here and in 
equation (91).� □ 

8.  Discussion

Conventional lore in quantum chemistry simulation has long postulated that 
continuous-variable simulations of chemicals affords far better scaling with the number of elec-
trons than second-quantized methods, at the price of requiring more qubits. Given the recent 
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improvements in simulation algorithms for both first- and second-quantized Hamiltonians it 
is important to address the efficiency of quantum simulations using similar optimizations for 
continuous-variable simulations. We investigate this question and find that through the use of 
high-order derivative formulas, it is possible under some circumstances to perform simula-
tions using a number of calls to unitary adders and the pairwise interaction oracle that scale as 
Õ(η2t log(1/ε)). This is better than the best rigorous bounds proven for basis-based first- and 
second-quantized schemes, which scale as Õ(η5t log(1/ε)) [24, 25] assuming the number of 
spin-orbitals is proportional to the number of particles.

When we consider the discretization error after only assuming a momentum cutoff in the 
problem, we quickly see that in worst-case scenarios it is possible for such simulations to 
require a number of operations that scales exponentially in ηD. We further show that the deriv-
ative scaling that leads to this worst-case behavior can appear for minimum-uncertainty states. 
This shows that although continuous-variable simulations offer great promise for quantum 
simulation, there are other caveats that must be met before they can be said to be efficient. 
This problem also exists, to some extent, in second-quantized methods where such problems 
are implicitly dealt with by assuming that a sufficiently large basis is chosen to represent the 
problem.

We also show that these issues do not arise for more typical states, that is, states that have 
support that is much broader than a minimum-uncertainty state. This demonstrates that the 
problems that can emerge when a highly localized state is provided as input do not neces-
sarily appear for typical states that would be reasonable for ground state approximation and 
further agrees with the results of decades of experience in classical simulation of position 
space Hamiltonians.

There are a number of interesting questions that emerge from this work. The first point is 
that many of the challenges that these methods face arise because of the use of a bad basis to 
represent the problem. It is entirely possible that these issues can typically be addressed on 
a case-by-case basis, by choosing clever representations for the Hamiltonian as is typical in 
modern computational chemistry. Investigating the role that more intelligent choices of basis 
have for such simulations is an important future direction for research.

One further issue that this work does not address is the complexity of initial state prep
aration. This problem is addressed in part in other work on quantum simulation in real space 
[41], and some common many-body states such as Slater determinants are known to be pre-
parable with cost polynomial in η and 1/ε [42]. However, the costs of preparing more general 
appropriately symmetrized initial states can be considerable for fermionic simulations. More 
work is needed to address such issues since the relative ease of state preparation for second-
quantized methods can also be a major selling point for such fermionic simulations.

Another issue that needs to be addressed is that despite the fact that continuous quantum 
simulations of chemistry using a cubic mesh are much more logical qubit-intensive than sec-
ond-quantized simulations, they need not require more physical qubits because the lion’s share 
of physical qubits are taken up by magic state distillation in simulations [31, 36]. Further work 
is needed to differentiate the resource requirements of these methods at a fault-tolerant level.

Looking forward, despite the challenges posed by adversarially-chosen initial states, our 
work reveals that under many circumstances highly efficient simulations are possible for 
quantum chemistry that have better scaling than existing approaches. This approach further 
does not require approximations such as the Born–Oppenheimer approximation to function, 
and thus can be straightforwardly applied in situations where such approximations are inap-
propriate. Along these lines, it is important to develop a diverse arsenal of methods to bring 
to bear against simulation problems and understand the strengths as well as the limitations 
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of each method. It is our firm belief that as new approaches such as ours develop, quantum 
simulation will be thought of less as an algorithm and more as its own field of science that is 
viewed on the same level as numerical analysis, computational physics or quantum chemistry.

Finally, we note that a new linear combination-based technique [21] allows the multiplica-
tive factors in the cost to be separated if the grid spacing h is fixed. This reduces the number 
of queries to the potential energy oracle to Õ(η2t + log(1/ε)). In general, however, the grid 
spacing may depend on ε, removing this improvement.
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