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Abstract— Learning with deep neural networks forms the
state-of-the-art in many tasks such as image classification,
image detection, speech recognition, text analysis. We here set
out to gain understanding in learning in an ‘end-to-end’ manner
for an autonomous vehicle, which refers to directly learning the
decision which will result from the perception of the scene. For
example, we consider learning a binary ‘stop’/‘go‘ decision, with
respect to pedestrians, given the input image. In this work we
propose to use additional information, referred to as ‘proxy
supervision’, for improved learning and study its effects on the
overall performance. We show that the proxy labels significantly
improve the robustness of learning, while achieving as good, or
better, accuracy than in the original task of binary classification.

I. INTRODUCTION

Understanding complex urban scenes and producing intel-
ligent behavior of autonomous or semi-autonomous vehicles
is still an extremely challenging problem [4], [14], [12], [18],
[10], [9], [8], [3]

Pedestrian detection, for example, has been a topic of
research for more than 20 years [17], [7], [5], [6], [2].
Whereas accurate detection of all persons in the scene is
very important, we here explore an alternative approach in
which we wish to predict a direct end-to-end decision, of
whether the vehicle needs to ‘stop’ (slow down) or ‘go’
(drive), given the currently observed situation ahead. That
is, we train an end-to-end convolutional network detecting
whether driving in the scene, seen in an image taken by the
frontal camera mounted on the car, is safe or dangerous with
respect to people in the scene. For simplicity, we here explore
stop and go decisions with respect to pedestrians and cyclists
(Figure 1).

Learning end-to-end is appealing as it avoids losses at
intermediate steps, i.e. if we were to train several consecutive
classifiers instead (e.g. train a pedestrian detector, followed
by pose estimator, followed by a gaze detector in order to
determine the pedestrian’s intended behavior). However, it
comes with its challenges, as in a direct end-to-end learning
a very complex decision is in fact being learned. We propose
to enact a ‘proxy supervision’ by additional labels which
may be strongly or weakly related to the task at hand.
We mainly focus on the effect of the additional proxy
supervision, forcing the network to learn to detect pedestrian
and cyclist bounding boxes, on the overall performance of
the network. Figure 2 shows a schematic of our approach
which uses proxy supervision. The proxy labels, which may
come from manual labeling or other sources, are used as
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‘Go’ instance

Fig. 1. End-to-end learning of a ‘stop’ or ‘go’ decision with respect to
pedestrians or cyclists, given the input scene. This paper explores if directly
learning the decision of ‘stop’ or ‘go’ is feasible and whether auxiliary proxy
labels as supervision are beneficial to learning. Note that a ‘stop’ decision
is a very conservative one.

additional supervision during learning. As we show later in
the paper, the proxy labels do not need to be present for all
examples and have utility even as a very weak supervision.
We also explore supervision to a seemingly non-related task,
e.g. using bounding boxes for cars, for the purposes of
making a stop/go decision with respect to persons. We also
see that such supervision is beneficial, although of naturally
less pronounced impact, which we attribute to their relations
in scene understanding. Overall we find that using proxy
supervision is very helpful for end-to-end learning and for
stabilizing the learning process.

II. PREVIOUS WORK

Understanding pedestrian behavior in urban environments
is of high importance for autonomous driving systems [14],
[2], [20].

Learning with auxiliary tasks has been embodied as
training to additional losses, as was done in the Inception
Network [19]. Recent work has showed that training to
predict depth is beneficial [13] in the context of learning
navigation with Reinforcement Learning. Our work is most
aligned to these approaches.

Recent work in learning from visual inputs have gravitated
towards more end-to-end systems, i.e. instead of separating
the tasks into subproblems and solving them as separate
learning tasks, to solve them as a holistic end-to-end prob-
lem. Such systems have shown initial promise [3], [16], [1].
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Fig. 2. Stop/go learning with proxy supervision. Top: direct learning
of stop/go decision with respect to pedestrians. Bottom: Proposed stop/go
learning with proxy labels. In this case proxy labels may come from manual
annotation of pedestrian bounding box. Proxy labels do not need to be
present for all examples.

We are not aware of another work that examines end-to-
end system behavior with respect to behavior of pedestri-
ans/cyclists in urban environments.

III. LEARNING WITH PROXY SUPERVISION
In end-to-end scenarios the main goal is to obtain direct

decisions given the input information from an image or
image stream. For the case of this study, we use as an input
an image obtained from an onboard camera from the KITTI
dataset [11]. The output is a stop/go decision, with respect to
pedestrians/cyclists which takes a couple of variations. More
specifically, we explore the case where the decision is made
based on an automatic, or direct, criterion, and when it is
judged by a human annotator.

We here apply a deep convolutional neural network [15]
for learning and classification, due to the major success of
such algorithms in many tasks, including object recognition
and detection.

A. Joint learning with proxy labels

We explore, how end-to-end learning is affected by intro-
ducing side objectives, which we call proxy supervision. Fig-
ure 2 demonstrates the idea. The main feedforward network
will learn to predict stop/go decisions per given visual input.
In addition, a proxy label can be applied during learning as a
side objective, e.g., to force the network to additionally learn
to predict pedestrian and cyclist bounding boxes. Clearly,
such an objective is correlated with the final decision to stop
to yield to pedestrians, or drive because no pedestrians in
dangerous positions are present.

B. Problem Formulation

More formally, as an input we use 192× 192 3-channel
images, denoted as xi representing the situation in front of

Fig. 3. Model architecture for learning with proxy labels. It is a feedforward
convolutional network in which the proxy supervision is applied after a split
by the end of the network. Thus all prior layers are shared. In the graph,
‘C’ refers to a convolutional layer, ‘P’ is a 2x2 pooling layer, whereas ‘FC’
refers to a fully-connected one.

TABLE I
MODEL ARCHITECTURE. PROXY SUPERVISION IS APPLIED AFTER C6.

Name Convolutions Filters Stride
C1 5x5 64 2
C2 3x3 128 2
C3 3x3 128 1
C4 3x3 256 1
C5 3x3 256 1
C6 5x5 16 1
C7 3x3 128 1
C8 3x3 256 1
C9 3x3 256 1
FC1 - (FC) 256 -
FC2 - (FC) 1 -

the car. In addition to xi we are provided with proxy labels
pi in form of 192× 192 single channel images containing
the bounding boxes of pedestrians and cyclists present in
xi. Finally, we use a binary label li identifying the scene as
either safe or dangerous.

The cost that is being optimized is as follows:

L(θ) = ∑
i
(Lproxy(xi, pi,θ)+αLbinary(xi, li,θ)) (1)

where Lproxy and Lbinary are the cross entropy losses for
the variables corresponding to the proxy labels and the
binary labels respectively. θ represents the parameters of the
network and will be omitted in the following text.

Lproxy(xi, pi) =−
1
N
(∑

j,k
p j,k

i log(s( f j,k
p (xi)))+ (2)

(1− p j,k
i )log(1− s( f j,k

p (xi)))) (3)

Lbinary(xi, li) =−
1
N
(lilog(s( fl(xi)))+ (4)

(1− li)log(1− s( fl(xi)))) (5)

where s(x) = 1/(1+ e−x) is the sigmoid function, and fp, fl
are the feature predictions from the network that correspond
to predicting the proxy labels and the binary labels, re-
spectively. N is the number of examples, the index i spans
examples, whereas j,k span pixels for each example (in order
to apply proxy supervision which spans the full image). α is
a coefficient that balances the two costs and we used a fixed
value of 105 in all our experiments.

We use a feedforward convolutional neural network (Fig-
ure 3) for training. It consists of several convolutional layers,



Fig. 4. Definition of the direct criterion. For each input patch (left) and
provided person bounding boxes (middle), the criterion determines if any
person bounding box overlaps with the central ‘danger’ zone (marked as
red in the right image).

followed by a fully-connected ones (Table I). Dropout is
applied after the first fully connected layer. Pooling and
normalization layers are applied (denoted as P1, P2 in
Figure 3). An alternative architecture with a skip connection
is explored later in the paper.

IV. END-TO-END DECISION CRITERIA

Since the KITTI dataset does not contain stop/go labeling
of images we provide an independent criteria for these labels.
We explore two different stop/go criteria with respect to
pedestrians and bicyclists. The first one is called a direct
criterion since the criterion is generated automatically as
a (nonlinear) function of the persons that are available
in the input image (Section IV-A). The ground truth for
pedestrians/cyclists are obtained from the KITTI benchmark.
We sampled patches from KITTI images and labeled them
automatically by this criterion. The second criterion (Sec-
tion IV-B), concerns the full scene and is based on human
judgment, as to whether a person is in dangerous position or
not, in order to determine a stop/go decision.

A. Direct criterion

The direct criterion is derived as a nonlinear function of
the proxy labels. It is intended for experimental purposes,
as it is known that the proxy labels and the final decision
are related by a nonlinear function. In particular, the crite-
rion (see Figure 4) determines if any person bounding box
overlaps with the central ‘danger’ zone (marked as red in the
right image). Thus persons who are outside the danger zone,
are either not directly in front of the car (e.g. to the side) or
are too far (at the top of the box). This criterion is created
so that it is a complex function of the provided bounding
boxes (which will be used as proxy labels). Thus, we can
test whether the networks can learn this function, with or
without proxy labels.

Figure 5 visualizes example input images and their corre-
sponding proxy labels. Note that since the criterion is built
with respect to persons it is a ‘go’ decision for the bottom
image, but would have been a ‘stop’ decision if it were with
respect to cars.

B. Human decision based criterion

1) Manual labeling tool: To collect data with human
judgment of whether a situation is safe for pedestrians,
we created a manual labeling tool which allows a labeler

Fig. 5. Examples of a stop (top) and go (bottom) instances and the
corresponding proxy labels (right). The proxy label contains the full
bounding box over pedestrians and bicyclists as a binary mask.

to provide stop/go decisions and mark the pedestrians or
cyclists in danger. Figure 6 visualizes the input and output
from the human labeling tool. The input image contains all
pedestrian and cyclist bounding boxes in the scene (shown
in blue in the top of Figure 6). The labeler marks the ones
that can be potentially in danger (green bounding boxes at
the bottom), while taking into consideration the direction of
their movement, whether they are on the sidewalk, intending
to cross, etc.

2) Data with human decision criterion: The decision,
as mentioned above, is taken by a human and takes into
consideration the potential intentions of the persons in the
scene. This criterion is more complex than the direct one.
Furthermore, while the proxy labels for this case are expected
to be correlated with the final decision, the overall decision
is not a direct function of all marked pedestrian boxes.

V. EXPERIMENTAL RESULTS

Here we present results of our experiments. First we
introduce the dataset and then present results with the two
criteria for proxy supervision: the direct criterion which
is obtained automatically and the human labeled, which is
obtained by subjective judgement of a human labeller.

In the experiments, we show the effect of additional side
objective to the performance of the stop/go classification,
when the side objective is to learn pedestrian and cyclist
bounding boxes. Next, we explore the effect of learning car
bounding boxes as the side objective. We further experiment
with pre-training the neural network. Following are experi-
ments where the network learns safe/dangerous classification
based on labeling provided by a person and experiments with
a skip-connection architecture.

A. Dataset

We use the KITTI dataset [11] containing 7481 1224×370
colored images taken by a frontal camera mounted on a car.
This data set provides bounding boxes of cars, pedestrians,
cyclists etc., present in the scene. The KITTI dataset contains
complex urban scenes with variety of scenarios in which



Fig. 6. Stop/go manual labelling tool. Example image with provided bounding boxes. A labeler decides whether some of the persons (in the top row)
intend to cross the path of the vehicle (assuming the vehicle is driving along the road, or straight otherwise). In that case the image is labeled as stop
instance. All persons who are in dangerous positions, e.g. the ones in or close to the street, are labeled as green (the bottom row). Best viewed in color.

pedestrians may be crossing the street, leaving a parked car,
or simply walking on the sidewalk without interference to
the vehicle.

B. Direct Criterion

In all our experiments, we use 5 randomly generated
crossvalidation sets with images randomly chosen from the
KITTI dataset. We use 4:1 ratio of training to validation
images with approximately 4:1 ratio of safe to dangerous
labels. Additionally, the easily computable direct criterion
allows us to generate richer training and validation data from
the crossvalidation sets. We use random crops and rescaling
to generate about 1500000 training and 350000 validation
colored 192×192 images in every crossvalidation set.

We first examine if training with proxy supervision is
useful and test if portion of proxy labels are helpful. In
the Figure 7 we provide the average top1 error of stop/go
classification with standard deviation obtained on the cross-
validation sets as we reduce the percentage of images which
have the proxy label available. When using no proxy labels
in this experiments, it was very difficult to force the network
to overcome the local optimum, where it simply classified
everything as the majority go instance. When using the proxy
labels, however, the robustness of the learning increased

significantly. We were able to move from the local optimum
without any additional hyperparameter tuning even when
using only 10% of the proxy labels. Furthermore, when
increasing the amount of proxy labels available during train-
ing, the average error consistently decreases. As mentioned,
without proxy labels, we achieved a very high error (∼22%
which corresponds to one class overwhelming the other).

In Figure 8 we test the performance in the case in
which 100% of proxy labels are used and only a portion
of stop/go labels are included. More specifically, we report
the average top1 error of stop/go classification with standard
deviation obtained on the crossvalidation sets, but this time
we reduce the percentage of images which have the stop/go
label available. Here we further confirm the increase in the
robustness of learning, since when we apply all the proxy
labels the network is capable of overcoming the learning
issues even when using only 10% of the stop/go labels.
Clearly, with only 10% of the stop/go labels, and all proxy
labels the error is 2x higher than when training the other way
around, since the direct supervision is the most useful.

We further examine if pretraining by the same proxy labels
would have effect. To that end we first train a network
to predict the proxy masks (with the same architecture up
until C6) which has to output the given pedestrian boxes.
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Fig. 7. Average error and standard deviation of the binary classification
obtained by 5 fold crossvalidation using the direct criterion when only given
amount of data is labeled by proxy label (with 100% stop/go labels).

In Table II we show the average top1 error achieved after
we pre-train the network prior to training. In the first row,
we report the best average error achieved when using all
the proxy labels followed by the result achieved by using
no proxy labels at all. As we can see from the results the
pretraining is very helpful (which is observed in other works
and experiments). However, the proxy labels still improve
the overall performance of the network while making the
learning more robust.

We then wanted to understand if learning with seemingly
non-related labels as proxy supervision is beneficial. In Table
III we report the results of an experiment where we use
the car bounding boxes as proxy supervision and compare
to proxy supervision by the person bounding boxes. Note
that car bounding boxes are unrelated to the stop/go decision
problem with regards to persons, although it is related to the
overall perception of the scene. From our experiments we
clearly see that using car proxy labels is more useful than
none at all. This is even in the case of pretraining, when the
pretraining is done on bounding boxes with persons. And
naturally, using person labels as proxy supervision is more
beneficial than the car ones.

Overall, we find that using proxy supervision is beneficial,
even in the presence of more adequate pre-training. We
note that the error rate on the final stop/go decision is still
relatively large (slightly below 3%), since the criterion is
imperfect and may produce contradictory labels, e.g. if a
person’s bounding box is 1 pixel more in the dangerous zone,
it will be labeled as a stop, otherwise a go decision.

C. Human Labeled Data

In this subsection we use the stop/go labels provided by
human labelling, as described in Section IV-B. This dataset
is more challenging as the manual decision is subjective and
involves complex scene situations. Since a labeler evaluates
the entire image, we use the full image as input to the
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Fig. 8. Average error and standard deviation of the binary classification
obtained by 5 fold crossvalidation using the direct criterion when only given
amount of data is labeled by the stop/go label (with 100% proxy labels).

TABLE II
AVERAGE ERROR AND STANDARD DEVIATION OF THE BINARY

CLASSIFICATION OBTAINED BY 5 FOLD CROSSVALIDATION, WHEN

PRETRAINING WITH KITTI BOUNDING BOXES.

Percent Proxy label No Pretraining Pretraining
100% 2.986 ± 0.159% 2.826 ± 0.189%
0% 22.0% 3.625 ± 0.215%

prediction. These experiments therefore use only the 7481
images available in the KITTI benchmark, again partitioned
to 5 crossvalidation sets as described above. The ratio of
safe/dangerous classes provided in the human made labels
is approximately 5:1. The only preprocessing used was the
transformation of the original 1224× 370 colored image to
192× 192 colored image by shrinking it and thus reducing
the quality somewhat.

In Table IV we present the average error and standard
deviation when learning the stop/go labels provided by a
human labeler with no pretraining (first row) and with
pretraining done in the same way as in the case of the direct
criterion (second row). The error, as before, is averaged over
the crossvalidated runs. The overall average error increased,
since the data set is more challenging and is of smaller size.
We again observed significant increase in the robustness of
the learning when using proxy labels, both when pretraining
and when used as an additional supervision.

D. Exploring skip connections

Here we try to reduce the error on the human labeled data
by exploring additional network architectures. This is moti-
vated by the fact that the baseline network (Figure 3) applies
the logic for stop/go classification after the C6 convolution
layer which is forced by the proxy cost to detect the bounding
boxes of the pedestrians. We here present results for the skip
architecture (Figure 9) which is conceptually similar to our
main architecture, but has a skip connection. The skip link



TABLE III
PEDESTRIAN PROXY LABELS VS CAR PROXY LABELS USED AS SUPERVISION(EXPERIMENTS DONE WITH PRETRAINING).

Learning scenario pedestrian proxy labels car proxy labels no proxy labels
Classification error 2.826 ± 0.189% 3.222 ± 0.250% 3.625 ± 0.215%

TABLE IV
AVERAGE ERROR ON HUMAN LABELED DATA (WITH AND WITHOUT

PROXY SUPERVISION).

Proxy label 100% 0%
pedestrian 5.601 ± 0.667 % 6.520 ± 0.422 %
pedestrian, pretr. 5.492 ± 0.569 % 6.374 ± 0.383 %

Fig. 9. The skip-connection architecture.

essentially forwards the information from the earlier layers
to the part of the network handling the stop/go classification.

Comparison between the baseline and the architecture is
presented in Table V. The skip architecture provides promis-
ing results, as it almost halves the average error achieved by
the baseline feedforward architecture.

TABLE V
SKIP-CONNECTION NETWORK. COMPARISON OF ARCHITECTURES’
PERFORMANCE. PEDESTRIAN PROXY LABELS, WITH PRETRAINING.

HUMAN LABELED DATA.

Architecture \ Proxy label 100% 0%
Feedforward arch. 5.492 ± 0.569 % 6.374 ± 0.383 %
Skip arch. 2.885 ± 0.297 % 3.199 ± 0.327 %

VI. CONCLUSIONS AND FUTURE WORK

We present an approach for end-to-end learning based on
additional, proxy supervision. We have found that the proxy
labels are beneficial during the training process and can
achieve better accuracy, even when pre-training is used. We
also find that the proposed use of proxy-based learning helps
in training stability. Proxy supervision which aims to detect
other components of the scene, e.g. cars, are also helpful to
a seemingly not related task for pedestrians. More advanced
architectures, such as in our case the skip architecture may
decrease the differences in accuracy.

This is a first attempt at improving an end-to-end learning
scenario, and there are many future directions. Much more
complex decisions need to be made in urban environments,
since many more agents are present in the road, vehicles,
traffic signs, etc. Other aspects of proxy supervision can be
considered. Learning to make decisions in time is valuable to
improve the performance, e.g. to estimate walking direction.

Learning more complex decisions, rather than a binary one,
is another future direction.
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