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ABSTRACT
HTTP video streaming is in wide use to deliver video over
the Internet. With HTTP adaptive steaming, a video play-
back dynamically selects a video stream from a pre-encoded
representation based on available bandwidth and viewport
(screen) size. The viewer’s video quality is therefore influ-
enced by the encoded bitrates. We minimize the average
delivered bitrate subject to a quality lower bound on a per-
chunk basis by modeling the probability that a player selects
a particular encoding. Through simulation and real-world
experiments, the proposed method saves 9.6% of bandwidth
while average delivered video quality comparing with state
of the art while keeping average delivered video quality.
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1. INTRODUCTION
To avoid buffering stalls while streaming videos over com-

munication networks with time-varying throughput, adap-
tive video streaming protocols based on Hypertext Transfer
Protocol (HTTP) have been widely deployed [11]. Among
them, the most popular ones are Dynamic Adaptive Stream-
ing over HTTP (DASH) [4] issued by Moving Picture Ex-
perts Group (MPEG) and the HTTP Live Streaming (HLS)
protocol [9] proposed by Apple Inc. As illustrated in Fig. 1,
with HTTP-based adaptive streaming, videos are encoded
into multiple representations at different bitrates and reso-
lutions. Each representation is then partitioned into short
video segments. At any moment, the video player dynami-

cally requests the streaming server to send a segment from
an appropriate representation: one where the bitrate of the
segment is lower than the available network bandwidth ca-
pacity and the resolution of the segment fits into the player’s
viewport.

From the perspective of streaming service providers, e.g.,
YouTube and Netflix, it is always desirable to deliver maxi-
mum video quality with minimum data bitrates. The encod-
ing bitrates and qualities of the representations, to a large
extent, determine the delivered video quality and the vol-
ume of data traffic. However, it is challenging to find out
the optimal encoding bitrates, because the adaptation be-
havior of the video player affects users’ viewing experience
and bandwidth cost as well. For example, increasing the
encoding bitrate of a representation may not lead to better
delivered quality, because that may cause players to switch
to other representations with lower bitrates and result in
worse video quality presented to viewers. Similarly, decreas-
ing the encoding bitrate of a representation may not reduce
the traffic cost, because the players are more likely to se-
lect other representations with higher quality, which incurs
increased traffic cost.

Rate-quality optimization has been extensively studied in
the realm of video compression [7, 8, 15]. These technolo-
gies optimize the bit allocation within a single video stream
to minimize the encoding bitrate at a given encoding qual-
ity. For encoding a single bitstream, the performance of a
video codec can be fully characterized by its rate-quality
curve. If the rate-quality curve of one codec dominates the
rate-quality curve of another codec, the former codec can
compress a video at a given quality with a lower bitrate,
and thus has better performance. In this paper, we investi-
gate the rate-quality optimization problem for HTTP-based
adaptive streaming where players dynamically switch among
multiple encoded representations. In this scenario, the av-
erage streaming bitrate and delivered quality depend on the
encoding bits allocated for all representations.

A method proposed in [3] configures encoding bitrates
solely based on the rate-quality curves of representations.
The impact of bandwidth and viewport size distributions on
the average bitrate and delivered video quality was not con-
sidered and is thus sub-optimal for adaptive video streaming.



Figure 1: Adaptive video streaming over HTTP.

The optimal selection of DASH representations is also inves-
tigated in [5], [6], and [13]. The problem is formulated as
an integer programming that attempts to maximize users’
satisfaction given content delivery network (CDN) capac-
ity constraints, content type, and end-user characteristics.
Rainer et al. proposed an optimization approach for rate
adaptation on video streaming when the set of representa-
tions are given [10]. The idea is to solve a general optimiza-
tion problem that maximizes delivery quality given down-
load capacity constraint and yield quality upper bound for
each streaming session. Then the quality upper bound is
folded into another optimization problem that selects which
representation to stream. The selected representation min-
imizes the bandwidth cost while delivering quality close to
the upper bound.

In this paper, we aim to minimize the bandwidth cost
by optimizing the encoding bitrates for a given set of rep-
resentations. We consider the large-scale video streaming
systems such as YouTube or Netflix where CDN bandwidth
cost dominates the computational cost of encoding. In this
scenario, we can spend computational resources to obtain
rate-quality curves at all resolutions on a per video chunk ba-
sis. It enables us to take into account the unique rate-quality
characteristics of each video chunk for encoding bitrate op-
timization. In addition, we collected real-world playback
traces from our video streaming platform and obtained the
empirical distributions of estimated client bandwidth and
viewport sizes. These empirical distributions enable us to
establish a model for the adaptation behavior of players,
which is critical to the optimization of encoding bitrates.
The optimization step is on a per-chunk basis, i.e. each video
chunk can have different representation bitrates instead of a
fixed bitrate set per video content type in contrast with the
method proposed in [13].

We first describe a simple model for the adaptation behav-
ior in players in Section 2. In addition to the rate-quality
characteristics of the encoded videos at per chunk basis,
the model also incorporates the real-world statistics of net-
work bandwidth and the viewport size of players. Using
this model, we are able to establish the mapping from the
encoding bitrates of encoded representations to the average
streaming bitrate and the video quality delivered to view-
ers. Then, we propose a simple optimization framework to
identify the optimal encoding bitrates that minimize the av-
erage streaming bitrate, subject to a given lower bound on
delivered quality.

We simulated the performance of the proposed method.
The results are presented in Section 3. The average stream-
ing bitrate can be reduced by 9.45% to 12.07%. We then im-
plemented the proposed method in our transcoding system.
The experimental results show that the average video traf-
fic is reduced by 9.6% to 14.37% without degrading users’
Quality-of-Experience. Please see Section 4 for more de-
tailed results.

2. ENCODING BITRATE OPTIMIZATION
METHOD

In this section, we first establish a theorem that character-
izes the achievable performance for HTTP-adaptive stream-
ing. Then, we introduce a mathematical model for charac-
terizing the adaptation behavior of video players and formu-
late the encoding bitrate configurations as an optimization
problem. Finally, we describe the overall system implemen-
tation.

2.1 Rate Quality Region
Let I ⊂ N be the index set of the encoded representations

of an input video. Let V = {144, 240, · · · , 2160} denote
the set of supported viewport heights on players. The i’th
representation is obtained by encoding the input video at
bitrate ri ∈ R and resolution vi ∈ V. We assume the rep-
resentations can be ordered by their encoding bitrates and
viewport heights in ascending order, i.e., ∀i < j in I, we
have ri ≤ rj and vi ≤ vj . Note that the equality in vi ≤ vj
allows multiple prepresentations per resolution.

Let qi be the encoding quality of the i’th representation.
The encoding quality can be measured with any video qual-
ity metric such as PSNR or SSIM [14]. Since different rep-
resentations may have different resolutions, to make their
encoding quality comparable, qi is obtained by first upscal-
ing the representation to the resolution of the input video
and then calculating the PSNR or SSIM against the input
video.

For a given input video and an output resolution v ∈ V,
the encoding quality q at arbitrary encoding bitrate r can
be modeled by its rate-quality characteristic function qv(r),
i.e.,

qi = qvi(ri), ∀i ∈ I. (1)

The function qv(·) depends on the nature of the video con-
tent and the compression algorithm adopted by the codec.



Figure 2: Typical rate-quality curves of a video en-
coded at different resolutions. The achievable rate-
quality region is shown by the shaded area.

In Fig. 2, we illustrate the typical rate-quality functions of
a video corresponding to different encoding resolutions. For
each representation, the rate-quality operating point (ri, qi)
will always fall on the rate-quality curve qvi(·).

Assuming the viewers spent ti seconds watching represen-
tation i, the fraction of time viewers spent on representation
i is thus

λi = ti/
∑
j∈I

tj . (2)

The average streaming bitrate over time is given by

R(r) =
1∑

j∈I tj

∑
i∈I

tiri =
∑
i∈I

λiri = λᵀr, (3)

where r = (ri : i ∈ I) and λ = (λi : i ∈ I). Similarly, the
average quality delivered to users is given by

Q(r) = λᵀq, (4)

where q = (qi : i ∈ I) = (qvi(ri) : i ∈ I) is the vector of
encoding qualities. Because of

∑
i λi = 1 and λi ≥ 0 ∀i ∈ I,

the average bitrate-quality point (R(r),Q(r)) falls in the
convex hull spanned by the encoding rate-quality points
{(ri, qi) : i ∈ I}, which is illustrated in Fig. 2. In other
words, any rate-quality point outside the convex hull can-
not be achieved by an adaptive streaming system. This is
summarized in Theorem 1.

Theorem 1. For an adaptive video streaming service, the
achievable region of average streaming bitrate R and average
quality Q is given by the convex hull

S(r) = {(R,Q) : R = λᵀr, Q = λᵀq,

1ᵀλ = 1, λi ≥ 0, ∀i ∈ I}. (5)

This theorem reveals some of the rationale of the encoding
configurations proposed in [3]. This configuration selects the
encoding points {(ri, qi) : i ∈ I} from the upper boundary of
the convex hull spanned by the rate quality curves. It pushes
the achievable region S(r) to the low bitrate and high quality
area in the rate-quality space. The corresponding average
bitrate tends to be reduced and the average delivered quality
tends to be improved. However, the exact position of point(
R(r),Q(r)

)
depends on λ, i.e., the adaptation behavior of

players, which is not considered in [3]. In the next section,
we propose a model to characterize the adaptation behavior
of players.

2.2 Player Model
We model the player-estimated bandwidth and viewport

size at players as two stationary random processes {Rt : t ∈
R+} and {Vt : t ∈ R+}, respectively. We assume a player
selects the streamed representations according to two rules:

1. The player always requests a representation whose res-
olution is lower than or equals to player viewport size
Vt. This is to save bandwidth by not streaming un-
necessary pixels to viewers.

2. Among the representations satisfying the first rule, the
player always selects the highest representation whose
bitrate is lower than its estimated bandwidth Rt. This
is to ensure that the bandwidth is fully utilized while
the streamed representation can be smoothly played
without stalls.

These two rules are widely followed by video players in
practice. At any moment t, a player requests representation
i in the following two cases. If the viewport size Vt equals the
resolution of representation i, the player requests represen-
tation i when the bandwidth Rt is greater than the encoding
bitrate ri. If the viewport size Vt is larger than the resolu-
tion of representation i, the player requests representation
i if Rt is greater than the bitrate of representation i but is
less than that of higher representations. The probability for
a player to select representation i is thus

pi(r) = P [Vt = vi,Rt > ri]

+ P [Vt > vi, ri+1 ≥ Rt > ri] . (6)

The two terms on the right hand side of (6) correspond to
the probability of the two cases above. We estimated the sta-
tistical distributions of bandwidth and viewport sizes from
playback statistics and found that the bandwidth distribu-
tion does not vary significantly with the viewport size v.
This is because streaming bandwidth is mainly determined
by network conditions when a video is played, which are not
related to the viewport size of devices. Therefore, we may
assume that viewport size Vt and bandwidth Rt are two in-
dependent processes. The viewing probability pi(r) in (6)
can thus be rewritten as

pi(r) = P[Vt = vi]P [Rt > ri]

+ P [Vt > vi]P [ri+1 ≥ Rt > ri] . (7)

Assuming Rt and Vt are ergodic random processes, we
have

pi(r) = lim∑
i ti→∞

ti∑
i ti

= λi (8)

where λi is defined in equation (2) as the fraction of time
that players stream representation i. Substituting (8) into
(3) and (4), we have

R(r) =
∑
i∈I

ripi(r), (9)

Q(r) =
∑
i∈I

qipi(r). (10)

Substituting (7) into (9) and (10), we obtain the explicit
expression for average bitrate and delivered quality in (11)
and (12).



R(r) =
∑
i∈I

[
ri

(
P
[
Vt = vi

]
P
[
Rt > ri

]
+ P

[
Vt > vi

]
P
[
ri+1 ≥ Rt > ri

])]
, (11)

and

Q(r) =
∑
i∈I

[
qvi(ri)

(
P
[
Vt = vi

]
P
[
Rt > ri

]
+ P

[
Vt > vi

]
P
[
ri+1 ≥ Rt > ri

])]
. (12)

These expressions can then be used to estimate the corre-
sponding average bitrate and average delivered quality for a
given encoding bitrate configuration r.

2.3 Encoding Bitrate Optimization
We propose minimizing the average bitrate, subject to a

given lower bound on average delivered quality, by solving
the following optimization problem

minimize
r

R(r)

subject to Q(r) ≥ Q0,
(13)

where R(r) and Q(r) are given by equation (11) and (12).
The value Q0 is a desired lower bound for delivered quality.

Here, we target minimizing average bitrate given a con-
straint on quality. In 2015, video traffic accounted for 70% of
IP network traffic and 55% of mobile network traffic[2]. Re-
ducing bandwidth costs is critical for the success of stream-
ing services.

To solve the optimization problem in (13), gradient-based
optimization algorithms such as method of moving asymp-
totes (MMA) [12] can be employed. It is worth noting that
the optimization problem (13) is non-convex because the bi-
trate cumulative distribution function P[Rt ≤ x] is not a con-
vex function of x in general. Thus, there is no guarantee that
the local optimal solution generated by gradient-based opti-
mization algorithms could achieve a global optimum. How-
ever, in practice, we found that the local optimal solutions
still provided a significant reduction in average bitrate.

2.4 System Implementation
The proposed method is integrated in our video process-

ing pipeline that processes and re-encodes ingested videos.
An ingested video is first divided into 5-second nonover-
lapped chunks. Then we obtain the rate-quality models of
each video chunk at all resolutions. For example, we encode
a 1080p video chunk into 6 different resolutions including
144p, 240p, 360p, 480p, 720p, and 1080p. For each reso-
lution, we constructed the rate-quality model by sampling
rate-quality points from qvi(r). Specifically, we encoded a
video multiple times using the libx264 codec. Each time
we applied a different Constant Rate Factor (CRF) sampled
from 5 to 55 with a step size of 5 so as to cover a wide range
of encoding qualities. Then we scaled up each encoded ver-
sion to 1080p with bicubic scaling filter and calculated the
corresponding PSNR against the original video. The rate-
quality model qvi(r) was approximated using the piece-wise
linear function connecting the sampled rate-quality points.

On our video streaming platform, the video players recorded
the estimated bandwidth in every few seconds during each
playback session. The estimated bandwidth, along with the
viewport size is then stored to our backend databases. We
collected 1,000,000 such real-world playback traces to ob-
tain the empirical distribution of viewport and estimated
bandwidth, i.e., P[Vt] and P[Rt].

The optimizer described in Sec. 2.3 takes into account the
rate-quality curves, the empirical distributions of viewport
and estimated downlink bandwith, and the default delivered
quality Q0 based on the default settings. It then runs the
MMA solver in the NLopt library [1] to obtain the optimized
bitrates. Finally, the video chunks will be encoded into the
representations using the optimized bitrates, and muxed into
DASH or HLS formats for streaming.

In the next section, we evaluate the gain of the optimized
encoding bitrate configurations via numerical simulations.

3. NUMERICAL SIMULATIONS
A set of 1000 1080p videos, the content of which covers

a wide-range of spatio-temporal complexities, is randomly
selected to run the simulation. The lengths of the selected
videos ranged from 1 minute to 20 minutes. Every videos
are processed as described in Sec. 2.4.

We first evaluated the performance of the proposed method
against a baseline encoding parameter configuration where
a fixed CRF of 23 is applied to all representations. Here, we
chose a CRF of 23 because it is the default CRF in ffmpeg.
We denote by r0i the baseline encoding bitrate for represen-
tation i and let r0 =

(
r0i : i ∈ I

)
. We set Q0 = Q(r0) as the

lower bound for delivered quality. Then we employed the
MMA solver in the NLopt library [1] to find the optimal en-
coding bitrates r∗ and the corresponding average streaming
bitrate R(r∗) in (13).

On the 1000 test videos, we found that the proposed algo-
rithm can reduce the average streaming bitrate by 12.07%.
We plot the encoding configurations of an example video in
Fig. 3. It can be seen that the optimized encoding bitrates
are smaller than the encoding bitrates with fixed CRFs.
This leads to reduction in encoding bitrate and degradation
in encoding quality for all representations. Interestingly, be-
cause the delivered quality depends on the viewing proba-
bility distribution, the delivered quality of the optimized en-
coding configuration is kept the same as that of the baseline
configuration. In Fig. 4, we plot the viewing probability of
each representation as predicted by our player model in (6).
It is seen that the optimized encoding configuration tend to
cause the player to spend more time streaming higher rep-
resentations, thereby compensating for the loss in delivered
quality due to reduced encoding bitrates.

We also compared the proposed solution with another
baseline configuration. In this baseline configuration, we
fixed the encoding CRFs of the 144p and 1080p representa-
tions to be 23. Then we selected the encoding bitrates for the
other representations such that the achievable rate-quality
region given in (5) was maximized. This is similar to the
method proposed in [3]. On the 1000 test videos, we found
the proposed solution could reduce the average streaming
bitrate by 9.45%. Fig. 5 illustrated the baseline and the op-
timized encoding configurations of an example video. It can
be seen that the optimized encoding bitrate is higher than
the baseline configurations in low resolution presentations,
including 240p, 360p, and 480p. For 720p and 1080p rep-
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Figure 3: The encoding bitrates when CRF is fixed
to 23 (©) and the corresponding encoding bitrates
optimized by the proposed method (4) for an ex-
ample video.

144p 240p 360p 480p 720p 1080p

Representation

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

V
ie

w
in

g
 P

ro
b

a
b

ili
ty

Optimized

CRF=23

Figure 4: The viewing probability distribution of
an example video estimated by the proposed player
model.
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Figure 5: The encoding parameter configurations
that maximized the achievable rate quality region
(©) and the corresponding encoding bitrates opti-
mized by the proposed method (4) for an example
video.

resentation, the optimized encoding bitrates are lower than
that of the baseline. As shown in Fig. 6, with the optimized
configuration, players would spent more time on the 1080p
representations, preserving delivered quality.

In the next section, we validate the effectiveness of our
encoding bitrate configration via experiments on our video
streaming platform.

4. EXPERIMENTAL RESULTS
We randomly selected 5,000 1080p videos for a real-world

experiment. The selected videos were 1 minute to 20 minutes
long. Two pairs of treatments were applied, each contain-
ing a baseline encoding bitrate configuration and the cor-
responding optimized configuration. As in our simulations,
the first pair of treatments used the default ffmpeg CRF of
23 as the baseline. In the second pair, the baseline config-
uration fixed the encoding CRF for 144p and 1080p at 23.
The bitrates of other representations were configured such
that the achievable rate quality region was maximized.

For each treatment, the bitrate configurations were ap-
plied on every 5-second chunks of the videos in order to
incorporate the variations in the spatial-temporal charac-
teristics of videos. The playback statistics, which included
total watch time and average video streaming bitrates, were
collected to evaluate performance. In the following, we will
first report the bitrate changes in each treatment pair, and
then summarize the overall playback statistics.

We define the relative change in encoding bitrate as r∗

r0
−1,

where r∗ and r0 are the encoded bitrates of the optimized
configuration and the corresponding baseline configuration,
respectively. Fig. 7(a) shows the boxplot of relative encoded
bitrate changes at different resolutions for the first pair of
treatments. It can be seen that the proposed method se-
lects lower encoding bitrates for almost all resolutions. This
is especially true for 240P, where the median of the rela-
tive change was -36.5%. Fig. 7(b) shows the relative encod-
ing bitrate changes against the baseline that maximizes the
achievable rate-quality region. In this case, the optimizer
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Figure 6: The viewing probability distribution of
an example video estimated by the proposed player
model.

increases the median bitrates of 240p, 360p, and 480p by
13.0%, 23.2% and 16.5%, respectively. The median bitrates
of 720p and 1080p are reduced by 10.8%, and 48.5%, respec-
tively.

From the collected statistics, the changes in bitrate af-
fected the distribution of watch time across resolutions. Fig. 8
compares watch time distributions at different resolutions.
Fig. 8(a) shows that, for the first pair of treatments, the
watch time of the optimized configuration generally shifts
towards higher resolutions. For the second pair of treat-
ments, watch time shifts are observed as well. As can be
seen in Fig. 8(b), the watch time of the 240p representation
is slightly reduced while that of the 1080p representations is
increased.

We calculated the average streaming bitrate and observed
that the proposed method saves 14.37% in average bitrate
against the configuration using a fixed CRF of 23, and 9.65%
against the configurations that maximize the rate-quality
region.

The optimized encoding bitrate configurations is designed
to reduce average streaming bitrate without affecting the
quality of experience of viewers. Table. 1 and Table. 2 sum-
marize the total watch time and average delivered PSNR
of each configuration. Measured quality loses 0.20 dB in
PSNR against the configuration using a fixed CRF of 23,
and gains 0.05 dB against the configurations that maximize
the rate-quality region. For both treatment pairs, we con-
ducted two-sided log-transformed t-tests at 95% confidence
on watch time and average delivered PSNR with. There is
no significant changes in both metrics.

We also measured the representation switching rate, the
join latency that is the latency from the moment when a
playback request is sent to the moment when the video starts
to play and the mean time between rebufferings. As shown
in Table. 1, comparing with the configuration using a fixed
CRF of 23, our method reduces the rate switching rate and
initial delay significantly. This can improve the overall QoE
of users. The proposed method also increased the mean time
between rebuffering events but the improvement is statisti-
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Figure 7: Relative encoding bitrate changes per res-
olution under the two experimental settings: (a)
Fixed CRF = 23 as the baseline. (b) Maximizing
rate-quality region as the baseline.
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Figure 8: Watch time distribution at different reso-
lutions under the two experiment settings: (a) Fixed
CRF as the baseline. (b) Maximizing rate-quality
region as the baseline

cally insignificant. Comparing with the configurations that
maximize the rate-quality region, our method reduced the
rate switching rate slightly. Its impact on initial delay and
mean time between rebufferings is statistically insignificant.

5. CONCLUSIONS AND FUTURE WORK
We propose a mathematical model for the adaptation be-

havior of players in HTTP-based video streaming. In addi-
tion to the rate-quality characteristics of videos, the model
also incorporates the statistical distribution of available
bandwidth and viewport sizes of players. Based on the
model, we implemented a method to optimize the encoding
bitrates of the video representations. Both numerical simu-
lations and experimental results demonstrated that the pro-
posed method can save 9.6% on the average video streaming
bandwidth without degrading users’ quality of experience or
average video delivered quality.

The optimization method presented in this paper is based
on global bandwidth and viewport size distributions. How-
ever, a video might be popular in a certain geographic region
where the bandwidth/viewport distributions differ from the
global ones. As part of future work, we will investigate po-
tential gains of incorporating local bandwidth and viewport
distributions to our approach.
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Metrics CRF=23 Optimized Gain Statistical Significance
Watch Time 178,201 177,499 -0.39% insignificant
Average Quality 37.93 37.73 -0.53% insignificant
Normalized Average Bitrate 1 0.855 -14.37% significant
Normalized Adaptive Switch Rate 1 0.8699 -13.01% significant
Normalized Join Latency 1 0.9791 -2.09% significant
Normalized Mean Time Between Rebuffers 1 0.9904 0.96% insignificant

Table 1: Performance comparing with the baseline where CRF of 23 is applied to all representations. Watch
Time: total watch time in hours, Average quality: measured quality in scaled PSNR (dB). Normalized
Average Bitrate: measured average bitrate divided by the average bitrate of the baseline. Adaptive switch
rate: the number of representation switches per hour of video playbacks. Join latency: the latency from the
moment when a playback request is sent to the moment when the video starts to play. Mean time between
rebuffering: the average time between two playback rebuffering events.

Metrics CRF=23 Optimized Gain Statistical Significance
Watch Time 177,265 177,797 0.30% insignificant
Average Quality 37.49 37.54 0.13% insignificant
Normalized Average Bitrate 1 0.903 -9.65% significant
Normalized Adaptive Switch Rate 1 0.8699 -0.76% significant
Normalized Join Latency 1 0.9791 0.07% insignificant
Normalized Mean Time Between Rebuffers 1 0.9904 -0.74% insignificant

Table 2: Performance comparing with the baseline where bitrates are configured to maximize the rate quality
region. Watch Time: total watch time in hours. Average quality: measured quality in scaled PSNR (dB).
Normalized Average Bitrate: measured average bitrate divided by the average bitrate of the baseline.
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