
A Taste of Android Oreo (v8.0) Device Manufacturer
Keun Soo Yim, Iliyan Malchev, and Dave Burke

Android Platform Engineering, Google, Inc.
{yim,malchev,daveburke}@google.com

ABSTRACT
In 2017, over two billion Android devices developed by more than a
thousand device manufacturers (DMs) around the world are actively
in use. Historically, silicon vendors (SVs), DMs, and telecom carriers
extended the Android Open Source Project (AOSP) platform source
code and used the customized code in final production devices. Fork-
ing, on the other hand, makes it hard to accept upstream patches
(e.g., security fixes). In order to reduce such software update costs,
starting from Android v8.0, the new Vendor Test Suite (VTS) splits
hardware-independent framework and hardware-dependent ven-
dor implementation by using versioned, stable APIs (namely, vendor
interface). Android v8.0 thus opens the possibility of a fast upgrade
of the Android framework as long as the underlying vendor imple-
mentation passes VTS. This tutorial teaches how to develop, test,
and certify a compatible Android vendor interface implementation
running below the framework. We use an Android Virtual Device
(AVD) emulating an Android smartphone device to implement a
user-space device driver which uses formalized interfaces and RPCs,
develop VTS tests for that component, execute the extended tests,
and certify the extended vendor implementation.

1 GOAL
Android v8.0 (Oreo) has a modular operating system (OS) software
architecture (namely, Treble[1]). It splits Android platform into
hardware-independent framework and hardware-dependent vendor
implementation layers by using a set of versioned, stable APIs which
form the Vendor Interface. This new OS architecture helps entities
in the Android device ecosystem respect separate ownerships of
various software components in the Android platform and thus can
deserialize Android device manufacturing chains. For example, it
allows silicon vendors and device manufacturers to develop their
portion of software in isolation and then integrate them as long
as both layers are compatible with the targeted vendor interface
APIs, which are tested and certified by our new Vendor Test Suite
(VTS)[2]. This tutorial will give hands-on experience on extending a
vendor interface implementation, developing VTS tests for that, and
running various kinds of VTS tests against anAndroid virtual device
(AVD) instance for training, rapid prototyping, continuous testing
at early software development phase, vendor interface compatibility
evaluation, and device fidelity assessment.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SOSP’17, October 2017, Shanghai, China
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

2 ORGANIZATION
(i) Android Vendor Interface and Android v8.0 on a Virtual
Phone. (a) Concept: to understand Android Treble architecture
specifically focusing on its HIDL (HAL1 Interface Definition Lan-
guage) and HwBinder (i.e., analogous to existing Android IDL
(AIDL) and Binder), common kernel interface, and vendor NDK
(i.e., analogous to existing NDK (Native Development Kit)). (b)
Codelab: based on a virtual smartphone emulator and locally built
Android v8.0 platform images for that emulator2, to create an AVD
instance and interact with that using a graphical user interface and
an adb shell terminal. (c) Discussion: to analyze the key benefits of
Treble architecture and compare Treble with techniques used in
other existing OSes (e.g., component-based design for C++).

(ii) Device Implementation and Tuning. (a) Concept: to learn
HIDL HAL coding guidelines by analyzing existing HIDL HAL de-
signs and implementations. (b) Codelab: to modify an HIDL HAL
and rebuild the AVD image in order to restart the AVD instance
using that new image and interact with the modified HIDL HAL
where a HAL modification task includes associated SELinux policy
changes and performance profiling (using systrace). (c) Discus-
sion: to evaluate the performance and power overheads of HIDLized
HALs (vs. previous shared library HALs) on devices with multiple
processor cores, visualize the priority inversion and inheritance is-
sues when an HAL client uses Linux FIFO or RR scheduling priority,
and analyze the death notification mechanism designed to handle
when a HIDL server crashes and its fault tolerance implications.

(iii) Test Development and Execution. (a) Concept: to under-
stand Android VTS, CTS (Compatibility Test Suite), and the asso-
ciated licensing processes; and to learn various other automated
testing, performance profiling, and fuzzing techniques designed
for Android OS. (b) Codelab: to implement a VTS structural test,
a profiling test, and a fuzz test for an HAL, build a VTS package,
and run a VTS test plan against the AVD instance in order to get a
test report. (c) Discussion: to compare test-driven development prac-
tices between systems development and application development,
to understand various approaches to coordinate developers who
develop and extend VTS tests, to discuss how VTS can statistically
guarantee the forward compatibility of a set of tested vendor inter-
face APIs, and to brainstorm what methodologies are available for
us to develop and assess VTS tests which provide such statistical
guarantee.

REFERENCES
[1] AOSP. 2017. Treble. https://source.android.com/devices/architecture/treble. (21

August 2017).
[2] AOSP. 2017. VTS. https://source.android.com/devices/tech/vts/. (21 August

2017).

1Hardware Abstraction Layer where a HAL module is conceptually similar to a user-
space device driver which typically wraps the respective kernel space driver module.
2Audience prerequisites: https://sites.google.com/site/keunsooyim/open-lecture/
sosp2017tutorial

https://doi.org/10.475/123_4
https://source.android.com/devices/architecture/treble
https://source.android.com/devices/tech/vts/
https://sites.google.com/site/keunsooyim/open-lecture/sosp2017tutorial
https://sites.google.com/site/keunsooyim/open-lecture/sosp2017tutorial

	Abstract
	1 Goal
	2 Organization
	References

