AES-VCM, AN AES-GCM CONSTRUCTION USING AN
INTEGER-BASED UNIVERSAL HASH FUNCTION.

ED KNAPP

ABSTRACT. We give a framework for construction and composition of univer-
sal hash functions. Using this framework, we propose to swap out AES-GCM’s
Fy128-based universal hash function for one based on VMAC, which uses in-
teger arithmatic. For architectures having AES acceleration but where either
F,128 acceleration is absent or exists on the same execution unit as AES ac-
celeration, an integer-based variant of AES-GCM may offer a performance
advantage, while offering identical security.

1. INTRODUCTION

Construction of MACs based on universal hash functions was first proposed by
Wegman and Carter [13]. Bernstein [1] provides a nice summary of the history
universal-hash-based MACs.

We give some hash function definitions and notation.

Definition 1. Let {hy},cx be a collection of functions hy: A — B, where A, B,
K are arbitrary. If

Pr[hy(m) = hx(m/)|rer <e,
for allm, m’ € A, then we say that the collection {hy} is € almost universal (e-AU).
When the collection {hy} is understood, we may simply say hy, is e-AU.

Definition 2. Consider the group (G,+). Let {ht},cx be a collection of functions
hr: A — G, where A, K are arbitrary. If
Pr[hk(m) — hk(m/) = 5}1@6[(S g,

for all 6 € G and distinct m, m’ € A, then we say that the collection {hy} is
¢ almost delta universal (e-AAU) with respect to +. When G and the collection
{hr} are understood, we may simply say hy is e-AAU.

Definition 3. Let {hy},cx be a collection of functions hy: A — B, where A, B,
K are arbitrary. If

Pr[hk(a) = b}kEK < g,
for alla € A, b € B, then we say that the collection {hy} is e-distributed. When
the collection {hy} is understood, we may simply say hy, is e-distributed.

From here on, F is understood to be a field, G is understood to be a group, and
Zy, is the integers modulo n. For a set S and non-negative integers a < b, define

Sle-bl = LbJ s

Informally, we give a result regarding the use of a universal hash function to
construct a secure MAC.

2 ED KNAPP

Lemma 1. [11, Theorem 1] Let h be e-AAU. We can construct a “secure” counter-
based mac as MAC(c, m) = hg, (m) + AES, (c).

Construction of authenticated encryption schemes based on universal hash func-
tions include AES-GCM [10] and a VMAC-based scheme [9]. Herein, we describe a
MAC using a VHASH-like universal hash function. Also, we describe a cipher based
on this universal hash function and modeled after AES-GCM, called AES-VCM.

2. UNIVERSAL HASH FUNCTION PRIMATIVES

We discuss several constructions for universal hash functions which can be com-
posed to build hash functions suitable for MAC constructions.

Winnograd intoduced a method for computing inner products using fewer mul-
tiplications [14]. This technique was adapted to universal hash functions by Halevi
and Krawczyk [5], attibuting the result to unpublished work by Wegman and Carter.
We present the result in only two coordinates and later give a generic way to gen-
eralize universal hash functions to larger domains.

Lemma 2 (Pseudo dot product hash). [2, Theorem 4.2] Let n be a positive integer.
For k € 72, define hy,: Z2 — Z,> as

hi(m) = (m1 + k) - (m2 + k2),
where addition is in Z,, and multiplication is lifted to Z,2. Then hy is n~'-AAU.
Next, we prove that, additionally, the pseudo dot product is e-distributed.
Lemma 3. Let n be a positive integer. For k € 72, define hy: 72 — Z,> as
hi(m) = (m1 + k1) - (m2 + k2),

where addition is in Z, and multiplication is lifted to Z,2. Then hy is n~' dis-
tributed.

Proof. Fix (m1,mz) € Z2 and § € Z,2. Note that since addition by m; modulo n
is a permutation, we have

PI‘ [(m1 + kl)(mg + kg) = 5] = Pr[k1k2 = 5]
Since ki, ke € Z,, the product ki1ky € Z,2 can be taken to be over the integers,

a unique factorization domain. For each ki, there exists at most one ko such that
k1ke = 6 and so Pr[kike = 6] < n~1.]

Next, we present a polynomial-based universal hash function, where the message
is encoded as coefficients in the polynomial. The result was independently proposed
by den Boer [4]; Johansson, Kabatianskii, and Smeets [6]; and Taylor [12].
Lemma 4 (Polynomial hash). [12, Theorem 1] Let N be a positive integer. For
k €F, define hy: FN — T as

N
hi(m) = Zkl -m;.
i=1

Then {hy} is a e-AAU, where e = N - |F| 7L
We state a well-known composition lemma.

Lemma 5 (Composition). Let f: A — B be £1-AU and g: B — C be e3-AAU.
Then go f is (g1 +€2)-AAU.

Proof. Fix my, mgo € A, and § € C. Then

Prlg(f(m1)) — g(f(m2)) = 6] = Pr[g(f(m1)) — g(f(m2)) =3 | f(m1) = f(m2)]
-Pr{f(m1) = f(m2)]
+ Prg(f(m1)) — g(f(m2)) =0 | f(m1) # f(m2)]
[f(1) # f(mo)]
+ (e2) - Pr[f(m1) # f(m2)]
)=¢c1+¢e2

)() (e2)(1
O

The VMAC paper [3] gives a result allowing us to truncate the outputs of certain
universal hash functions.

Lemma 6 (Round). Let a, b, and n be positive integers such that 2 < n < 2b.
Let f: A — Z,, be e-AAU and define g: A — Zoe: m — (f(m) mod 2%). Then g
is 207%-AAU.

Proof. This follows from Corollary 5 of the second VMAC paper [3].]

It follows trivially that a e-AAU function is a e-AU function. The next lemma
shows that we can create a e-AU function from a e-AAU function while extending
the domain.

Lemma 7. Let fr: A — G be e-AAU. Define g,: A X G — G by gg(a,b) =
fr(a) +b. Then g is e-AU.

Proof. Let (a,b), (a/,b') € A x G be distinct. If a = o/, then b # b’ and so for every
key k, we have that gi(a,b) = fi(a) +b # fr(a) + b = gi(a’,b") and so
Prlgr(a,b) = gr(a',b')] =0 < e.
If a # @, then set § = — b and so

Pr(g(a,b) = gi(a’,0)] = Pr[fi(a) — fu(a') = 0] <e.
O

Given universal hash functions hq, he, we can construct functions h(mq,ms) =
hi(my) + ha(ms), as well as h(m) = (hi(m), ha(m)). These constructions respec-
tively expand the input length and decrease the collision proabability. We can
compose the techniques, achieving both goals. The next lemma shows that we can
compose the techniques while reusing some of the hash functions, reducing key
lengths.

Lemma 8 (Stacked functions). Let n and s be positive integers. Let fr,: M — G be
e-AAU, where k € K. For k' € K5™ =1 define hyr: M™ — G* by hyy(m) = S - 1,,,
where S = [fk/ﬂ (m;)]i; is the s by n matriz and 1,, is the n-dimensional all-ones
vector. Then hy is e5-AAU.

Proof. Let m, m’ € M™ be distinct and let § € G*. Let £ be the least integer such
that my # mj. Let A; be the statement “[hy(m)]; — [hx(m)]; = §;”. Then

i=1

i=1 j=i+1

Pr[hy(m) — hx(m') = 6] = Pr

4 ED KNAPP

Next, we restrict each probability space in the product to a single coordinate of k €

K**t=1 the (i+£—1)-th coordinate. We define B;(k}, ..., kz+e o ke kin1)
to be the statement “k; = k7 forall j=1,...,s+n—1,j#i+{—1". Then

Pr Al /S\ Aj = Z Pr Az/\Bl(k*) /S\ Aj

j=it1 k* €K stn—2 j=it1

= Z Pr | A; | Bi(k*) A /8\ Aj | Pr | Bi(k¥) /S\ A;

k*CKs+n—2 j=i+1 j=it+1
We can rearrange the statement A; as

n

Aj : (;j = [hk(m)]j Z fkj+f 1 mt fk]+t—1(mf‘,))

t=1
= Z (fk.i+t—l(mt) - fkj+t—1(m;5)) ’
t={

which shows that A; depends only on k,, for all j+/¢—1 <r < j+n — 1. Notice
that if 4 < j, theni+¢—1 < j+£—1 and A; does not depend on k;;¢—1. Therefore,
for each k* € Kstn=2

Pr | A; /\A =Pr[4; | B;(k")].

Jj=t1+1
Next, notice that for each ¢, there exists ¢} independent of k;;,_; such that

[hk(m)}l - [hk(m/)]l —0; = sz+£—1(m5) - fki+£—1(m2) - 5:

and therefore, for a fixed k*, the statement A; is equivalent to the statement
“fropeor (Me) = fripe, (my) = 877, which gives us

Pr [Al ‘ Bl(k*)] =Pr [fki+ef1(mé) - fki+z—1(m2) = 51* | Bz(k*)] <e.
Putting this all together, we have
Pr[hk(m) — hk(m’) = 5]

S

:ﬁPr Az /\ Aj
i=1

Jj=i+1
:f[> Pr|Ai| Bi(k") A /\ A;| Pr | Bi(k¥) /\ A;
i=1k*cKstn—2 j=i+1 j=i+1
=T Y. Prldi|Bi(E)IPr |Bi(k") | N 4
i=1 k*c K s+n—2 j=i+1
i=1 krcKs+tn-2 j=i+1
2857

which proves the lemma. (I

5

The next lemma shows that if we start with an f; that is also e-distributed, then
we can extend the domain of the result, making is easier to construct variable-length
universal hash functions.

Lemma 9. Let n and s be positive integers. Let fr: M — G be e-AAU and e-
distributed, where k € K. For k' € K**"~1 define hyr: MM — G* by hy(m) =
Sy - 1; for m € M, where Sy = [fkgﬂ._l(mj)]i,j is the s by £ matriz and 1, is the
{-dimension all-ones vector. Then hy is e5-AAU.

Proof. Let m € M%, m’ € M" be distinct, where a, b are integers in [1,...,n]. Let
0 € G. By symmetry, take a < b. If there exists an index ¢ such that m, # mj,
then the proof follows exactly as in Lemma 8 and we’re done.

Assume that a < b and my =m/, ..., mg = m/,. Set £ =a+ 1. Let A; be the
statement “[hy(m’)]; = ¢;” and B; be as in Lemma 8. Observe that

Pr[hi(m) — hi.(m') = §]

=Pr /S\AZ :f[Pr Ai /S\ A]
i=1 i=1 i j=i+1
:f[> PrlA;i|Bi(k*) A /\ Aj| Pr | Bi(k*) /\ Aj
i=1k*cKstn—2 Jj=i+1 j=i+1

Again, we can follow the proof in Lemma 8 by observing that A; is independent
of kiyj—1 for all j < £ and that there exists 0] independent of k; 4,1 such that A;
is equivalent to “[fy,,,_, (my)]; = 6;”, which gives us, for each k*, that

i

Pr|A; | Bi(k*) A N\ Aj| =Pr[A; | Bi(k")] <e.

j=i+1
Finally,
Pr[hy(m) — hi.(m') = 6]
=1 > ©Pr|aA|Bi)A N\ 4 |Pr|Bi(k")| N\ A4
i=1 e Ks+n—2 j=i+1 j=i+1
<[Is Y. pr|Bx)| A\ 4
i=1 kreKstn—2 j=it1
<e,
proving the Lemma. ([

3. HIGHER-ORDER UNIVERSAL HASH FUNCTIONS

In this section, we compose our functions from Section 2 to construct a universal
hash function capable of taking more-arbitrary inputs and mapping to a hash-
output-sized range. Defining a function similar to {0,1}" — Zyi2s seems like a nice
goal. For our cipher construction, we would like to be able to hash two independent
bytestrings, the AAD and the ciphertext. To this end, our goal for this section will
be a function of the form {0,1}" x {0,1}" — Zg2s.

6 ED KNAPP

We start by applying lemmas 2 and 3 with n = 254 to obtain a 27%4-AAU and
2-64_distributed function,

(1) Z%m — 22128.

Using Lemma 8 with n = 8, s = 2, and Equation (1) as fi, we obtain a 27128-AAU
function

(2) (Z%M)S — (Z2128)2.

Using Lemma 9 with n = 8, s = 2, and Equation (1) as f, we obtain a 27 128-AAU
function

(3) (Z360)% = (Zyras)?.

Applying Lemma 6 to equations (2), (3) with a = 126 and b = 128, we obtain
2124_AAU functions

(4) (Z5s)® — (Zm :

(5) (Z56) = (Zg120)*.

We extend the domain of Equation (5) using Lemma 7, yielding a 2'24-AU function
(6) (Z301)) x (Zgzo)? = (Zgnao)?.

Let fs4, f5, and fs denote equations (4), (5), and (6) respectively. Let m €
(Z25,)* have ¢ coordinates (each in ZQM) Set ¢/ = [£/8] — 1, define m) =
(Mmsit1,...,Mgits) € (2264) fori=1, , 0/, and define m = (mgp41,...my) €
(Z24,)78¢ C (Z25,)V8. We define Z2124 functions NH and NH’ as
(
(

) NH: (Z3a) = Z355% moes (fa(mh), ... fa(mi), f(m),

8 NH': (Z)! x Zine = Bt (m,a) o (falmt), .., fa(m}), folim,).
Equations (7) and (8) give us functions capable of encoding unbounded (but

not arbitrary) bitstrings. To handle arbitrary (pairs of) bitstrings, we encode the

length(s) into ZZ2.6. Let mq, my € {0,1}". Let ¢ be the bitlength of m; modulo

128 and /5 be the bitlength of msy. Let mq, mo be mq, mo zero-padded to a bitlength
that is a multiple of 128. We construct

) (0,1} x {0,1}" — Z21[£é/1281+2[£2/128].
)) 2 .
(m17m2) = <f7(m1)7 fS(ﬁLQa‘el : 264 + EQ,El : 264 + 62)>7
which is a 2124-AU.
Equation (9) takes as input two arbitrary bitstrings but produces an output
whose length is a fraction of the input. The next step is to produce a fixed-
length output. We instantiate Lemma 4 with p = 227 — 1 and N = 232 + 1.

We invoke Lemma 8 with the resulting function, n = 2, an s = 1 to produce a
(232 4+ 1)p~1-AAU function

N N
(10) ZN x 2N - 7,

We desire to build a function with a variable-length domain out of Equation (10).
We define the following injection

(11) ZONN Szl (ma, . ome) = (0,.0.,0,1,my, . ma).

7

Put more simply, we postpend 1 € Z,,, followed by zero-padding, and reverse the
order of the result. Composing the injection from Equation (11) with Equation (10),
we obtain a function

(12) ZON ez 7,

Note that substituting a positive integer N’ < N for N in the previous construc-

tion gives an identical construction to restricting the domain ZI[,O’N_H to Z][HO’N/_H
in Equation (12). This implies that we can obtain a stronger hash function, a
N'p~1-AAU function, if we restrict the domain of the N = 232 instantitation.

Let f9 denote Equation (9) and f12 denote Equation (12). Given a message
(m1,mz) € {0,1}" x {0,1}", let 1y, ..., Mg be such that

fg(ml,mg) = <T7L1, - ,Thgt> c ngzs.

Define m}, m3 € Z!, dividing up the even and odd 7n; terms as follows

mi = (my,Ms3,...,Mar_1)
mi = (Mg, My, ..., May)
and define
(13) {0,1}" x {0,1}" = Zp: (m1,m2) = fi2(m7, m}).

For messages my, mo with bitlengths bounded by /1, ¢5 respecitvely, set ¢* =
2-[€1/1024] 4+ 2 - [£5/1024]. By Lemma 5, the function in Equation (13) is e-AAU
where (27124 + (¢* +1) - p~1). We can bound ¢* by (1 + ¢3)27% + 2 and p~! by
27126 giving us e < (0 + £)27 135 427123,

4. COMPARISON WITH OTHER VHASH FUNCTIONS

We compare simplified versions of four VHASH-like functions, the two functions
defined in the VMAC papers [3, 8], the actual VMAC implementation [7], and
our new function. In the following comparisons, we ignore the need for hashing
variable-length messages, since it follows the technique outlined with Section 3.

Let p = 227 — 1 and ¢ = 264 — 28 — 1. The VMAC functions are composed
principally of an NH hash, (Z2s,)® — Z2,., followed by a polynomial hash Zy. The
result of the NH step is rounded down to 126 bits so that it maps into Z,.

The first VMAC paper [8] describes a hash function with 128-bit tags that has
the following structure:

(Zaos) BN X (Zyras)2)N P8 (Zyre)?) 7,2 23 7,

The second VMAC paper [3] recommends two instantiations of 64-bit VHASH
with distinct keys. The main difference for the 64-bit version is that an additional
step is need to map Z, into a 64-bit result. Two injections, Z, — Zges_g32 — Zg,
and a pseudo dot product over Z, are used to obtain a 64-bit result. The 64-bit
VHASH has the following structure:

N Poly1271
— p

Poly1271 Tiny NH
N g 2 we

((Zg64) 6)N DB (Z100)N BB (7,106) Zpy 28 (Zigos_os2) Z,

The VMAC implementation [7] follows the second structure, except the two
64-bit VHASH instantiations have related keys.

The authors mention the need for larger keys, comparing the first and second
version:

8 ED KNAPP

“On the negative side, defining VMAC-128 as two iterations of
VMAC-64 introduces an additional 32-bytes of key, a separate poly-
nomial computation and a third hashing stage, all of which are
slowing influences.”

The authors mention a version in their first paper which they claim does not require
much more internal key.

“If an application needs collision probabilities less than those of
VHASH, then VHASH could be applied to given messages twice,
using a different key each time. Alternatively, Figure 3 gives a hash
function VHASH-128 based on the same principles as VHASH, but
producing 128-bit outputs without the need for significantly more
internal key than VHASH.”

It is unclear from their description if they mean to describe what is contained in the
code, however they give no proof in any case. The implementation of the 128-bit
version uses 48 bytes of additional key compared to the 64-bit version.

The lemmas we give in Section 2 can be composed to prove the security of the
VMAC implementation [7] and both versions of VMAC |3, 8].

5. AES-VCM

5.1. Key generation. Our cipher follows the same general construction as AES-
GCM, a universal hash function combined with AES-CTR.

An AES-VCM key is generated from an AES key. The internal AES-VCM key
is composed of the (expanded) AES key and the hash function keys. Portions
of the space of AES-CTR are reserved for the internal KDF, used for generat-
ing the keys of the universal hash function. We view the counter as a four-tuple
of little-endian 32-bit integers. The NH keys are generated using the counters
(0,0,0,0), (0,0,0,1), ..., (0,0,0,8). The AES outputs of these counters are treated
as pairs of 64-bit little-endian integers. The polynomial keys are generated as the
AES outputs of the counter values (0,0, 1,0), (0,0,1,1), treated as 128-bit little-
endian integers, the high-order 3 bits of every 32-bit block are zeroed.

5.2. Authenticated encryption. A unique IV is required for each authenticated
encryption. In the case of a 96-bit counter, an internal AES counter is formed
using a little-endian 32-bit integer ‘1’ for the low bits (recall ‘0’ is reserved for the
internal KDF) and the 96-bit IV for the high bits. IVs that are not 96-bits are
handled similarly to AES-GCM, generated using an identically modified version of
the underlying universal hash function. The low 32 bits of the internal AES counter
is little-endian incremented modulo 232 to obtain a new counter for each AES block.

Let A be associated data with bitlength n and P be plaintext data with bitlength
m. Let m’ be the least integer such that m < 128m/. Define 128-bit blocks P; so
that P = (P1,..., Py) with P, zero-padded to 128-bits, if needed. Let Z; be
the counter produced by the IV and let Zs, ..., Z,,»11 be next m’ counter values.
Define C; = P, & AESK(Z;) fori =1, ..., m' and set C = (C1,...,Cpy)]m, where
‘I, denotes truncation to m bits. We hash the value (A, C) to obtain T and set
T* =T+ AESk(Zy11), computed modulo 2128, The resulting ciphertext is C
and tag is T™*.

This construction is very similar to AES-GCM, differing only in endianness, the
distribution of the counter space, and the underlying hash function.

(1]
2]

(10]

(11]
(12]
(13]

(14]

REFERENCES

Daniel J Bernstein. Polynomial evaluation and message authentication. 2007. http://cr.yp.
to/papers.html.

John Black, Shai Halevi, Hugo Krawczyk, Ted Krovetz, and Phillip Rogaway. Umac: Fast
and secure message authentication. In Advances in CryptologyCRYPTO099, pages 216-233.
Springer, 1999.

Wei Dai and Ted Krovetz. VHASH security. JACR Cryptology ePrint Archive. https://
eprint.iacr.org/2007/338/.

Bert den Boer. A simple and key-economical unconditional authentication scheme. Journal
of Computer Security, 2(1):65-71, 1993.

Shai Halevi and Hugo Krawczyk. MMH: Software message authentication in the Gbit/second
rates. In Fast Software Encryption, pages 172—189. Springer, 1997.

Thomas Johansson, Gregory Kabatianskii, and Ben Smeets. On the relation between a-codes
and codes correcting independent errors. In Advances in CryptologyFUROCRYPT93, pages
1-11. Springer, 1994.

Ted Krovetz. Fast cryptography. http://www.fastcrypto.org/vmac/.

Ted Krovetz. Message authentication on 64-bit architectures. In Selected Areas in Cryptog-
raphy, pages 327-341. Springer, 2007.

Ted Krovetz. Patent-free authenticated-encryption as fast as OCB. In Innovative Algorithms
and Techniques in Automation, Industrial Electronics and Telecommunications, pages 459—
461. Springer, 2007.

David McGrew and John Viega. The Galois/counter mode of operation (GCM). Sub-
mission to NIST, 2004. http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/gcm/
gcm-spec.pdf.

Victor Shoup. On fast and provably secure message authentication based on universal hashing.
In Advances in CryptologyCRYPTO96, pages 313-328. Springer, 1996.

Richard Taylor. An integrity check value algorithm for stream ciphers. In Advances in Cryp-
tologyCrypto93, pages 40-48. Springer, 1994.

Mark N Wegman and J Lawrence Carter. New hash functions and their use in authentication
and set equality. Journal of computer and system sciences, 22(3):265-279, 1981.

Shmuel Winograd. A new algorithm for inner product. Computers, IEEE Transactions on,
100(7):693-694, 1968.

GOOGLE LLC. 1600 AMPHITHEATRE PARKWAY MOUNTAIN VIEW, CA 94043 USA
E-mail address, Ed Knapp: edknapp@google.com

