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ABSTRACT

Lattice generation is an essential feature of the decoder for many
speech recognition applications. In this paper, we first review lat-
tice generation methods for WEST-based decoding and describe in
a uniform formalism two established approaches for state-of-the-art
speech recognition systems: the phone pair and the N-best histories
approaches. We then present a novel optimization method, pruned
determinization followed by minimization, that produces a determin-
istic minimal lattice that retains all paths within specified weight and
lattice size thresholds. Experimentally, we show that before opti-
mization, the phone-pair and the N-best histories approaches each
have conditions where they perform better when evaluated on video
transcription and mixed voice search and dictation tasks. However,
once this lattice optimization procedure is applied, the phone pair
approach has the lowest oracle WER for a given lattice density by a
significant margin. We further show that the pruned determinization
presented here is efficient to use during decoding unlike classical
weighted determinization from which it is derived. Finally, we con-
sider on-the-fly lattice rescoring in which the lattice generation and
combination with the secondary LM are done in one step. We com-
pare the phone pair and N-best histories approaches for this scenario
and find the former superior in our experiments.

Index Terms: decoder, lattice, WFST

1. INTRODUCTION

The speech recognition decoder computes the most likely word se-
quence for a given (audio) input signal. For many applications it
is required to generate more than just the best scoring hypothesis.
For example, to offer alternative results to the user, to rerank the hy-
potheses using a model that cannot be applied during decoding [1], to
narrow the search space for multi-pass decoding, or for downstream
applications that take competing hypotheses as input (e.g. confidence
score estimation, acoustic model sequence training).

Sentence alternatives can be generated as an /N-best list. That
is, a list of the N most likely sentence hypotheses. The straight-
forward method to generate an N-best list is to separate the search
hypotheses by their distinct predecessor word sequences [2, 3, 4].

An efficient way to construct as well as compactly encode multi-
ple sentence alternatives is a word lattice (or word graph). The word
lattice is conveniently represented as weighted finite-state transducer
(WFEST). Each path through this FST is a (weighted) sentence alter-
native. An N-best list can be generated efficiently as the N best
paths in the lattice [5]. The lattice can be generated on various levels
of detail, depending on the downstream application. Here, we focus
on word lattices: acyclic weighted automata with word labels.

Various lattice generation methods have been developed and de-
scribed in the literature. Lattice generation with lexical prefix tree
decoding is simple and effective but has constraints on the search
space structure [6, 7, 8]. The lattice generation method using N -best
histories described in [9, 10] works for arbitrary search networks and
somewhat resembles the N-best list approach. In [11], the lattice is

generated on the context-dependent phone level and then converted
to a word lattice, we refer to this method as the phone pair approach.
The method described in [12] is based on an HMM state level lattice
which is converted to a word lattice using determinization over a spe-
cial semiring. A lattice generation method for small grammars was
presented in [13]. A comparison of lattice construction using a prefix
tree-based decoder and the phone pair approach for a WFST-based
decoder is shown in [14]. We look at the /V-best histories and the
phone pair approaches in more detail in the next section, presented
in a uniform formalism.

In a two-pass decoding architecture, the lattice is generated first
and then rescored with another language model (LM). This second-
pass model cannot be integrated in the search network, because it is
too complex, too costly to apply or dynamic and hence not available
during search network construction. One example of models often
applied via lattice rescoring are long-span neural network LMs [15,
16].

In the two-pass scenario, it is in principle possible to apply clas-
sical optimizations such as weighted determinization and minimiza-
tion to improve the lattice density prior to rescoring [17, 18]. How-
ever it has often been observed anecdotally that weighted determiza-
tion can blow up on speech lattices; we will quantify that in a later
section. To deal with this issue, we adapt the determinization al-
gorithm to admit an integrated pruning that retains all paths within
specified weight and lattice size thresholds. This can produce more
compact lattices for a given oracle lattice WER and thus facilitat-
ing any subsequent rescoring steps. We describe this algorithm in
Section 3.

The two-pass approach has the advantages that the number of
hypotheses to be evaluated by the second-pass model is only a small
fraction of the search space of the first pass, is easily applied to com-
plex second-pass LMs, and allows the lattices to be globally opti-
mized prior to rescoring. A drawback is, though, that the supposedly
higher quality second-pass model cannot be used for the pruning de-
cisions during decoding. That may result in search errors which can-
not be recovered in the rescoring pass if the hypotheses were pruned
from the lattice, too. On-the-fly rescoring approaches aim at incor-
porating a second model as early as possible to avoid search errors
without the cost of including it in the search network [19, 20]. In
Section 4 we review how the two presented lattice generation meth-
ods can be adapted for on-the-fly lattice rescoring.

In Section 5 we compare the quality of the two lattice generation
methods with and without the proposed lattice optimizations. We
further compare how classicial and pruned weighted determinization
behave on lattice input. Finally, we compare the two lattice genera-
tion methods in the on-the-fly lattice rescoring setting. We conclude
with Section 6 with a discussion of these results.

2. LATTICE GENERATION

The decoder computes the most likely word sequence w = wy ... wns
for the observed speech signal, represented as sequence of acoustic



feature vectors X = x1 ... x7:

x = W(x) = argmax {p(w) - p(x|w)} ¢))

Here, we use a WFST representation of the search network which en-
codes the LM, the lexicon and the phone context-dependency [18].
We denote this search network transducer as R = (X, A, Qr, Ar,
ir, Fr), which has context-dependent phone models X as input la-
bels, words A as output labels, a set of states Qr, a set of arcs
Ar CQr XX x A XR X Qr, initial state ig € Qr, and a set
of final states Fr C Qgr. For an arc a € AR, we denote its prede-
cessor, input, output, weight and next state as pla] € Qr, i[a] € %,
ola] € A, wla] € R, n[a] € Qr respectively.

The optimization problem in Eq. 1 is solved by applying a dy-
namic programming algorithm, which generates and evaluates par-
tial hypotheses in a strictly left-to-right time-synchronous fashion.
We use the quantity D(¢,q) which is the score of the best partial
path m € A% in R that starts at the initial state iz and ends at state
q € Qr for time frame t € {0,1,...,T}:

Nwlr) —logpGe1. i)} @

where i[7] is the input label sequence of 7, p[n] its predecessor state,
n[n] the next state, and w(r] is the path weight (for numerical stabil-
ity, probabilities are stored as negative log probability weights in the
search network). This can be rewritten as a recursive optimization
over predecessor arcs a € Ar:

D(t,q) = min miny(t',t,a) 3)

anfal=q t'<t

D(t,q) = min

mip[r]=ig An[r]=

(¢’ t,a) = D(t', pla]) + wla] —logp(=[t', e]li[a])  (4)
The outer minimization is over all arcs a ending in state q. The
inner minimization finds the optimal start time ' of a. The LM is
incorporated in the form of the arc weight w[a], the acoustic model
contribution is the likelihood p(z[t’, ]|i[a]) for the alignment of i[a]
between ¢’ and t. For epsilon transitions in R, i.e. i[a] = €, we
assume ¢’ = ¢ and p(-le) = 1.

The innermost loop is typically the optimization within an HMM
or the alignment between “blank” and triphone models in a CTC
neural-network acoustic model [21].

If paths merge in the search network (due to the limited context
size of the models), further extensions of the hypothesis at that state
are independent of which of the path hypotheses scored better. In
order to retrace the best path at the end, we record which of the
joining partial path hypotheses was best. For that, we save the local
decisions, i.e., the best a and ¢’ in Equation 3:

agp(t,q) = argmin miny(t', ¢, a) 3)
a:nla]=q t/<t
75(t,a) = argminy(t', t, a) (6)
t/<t

Then these hypotheses can be represented inan FST (3, A, @B, AB,
(0,ir), F3) as follows:

Qs ={(0,ir)} U{(t,q) : D(t,q) < 6(1)}

Ap = {((t',p[a}), ilal, ola], w, (t, q)) ca=ag(t, q)}

V(t,q) € Qp, t' = T5(t,a), w = D(t,q) — D(¢', p[a])

Fp={(T,q) €Qp:q€ Fr}
If 6(t) = oo, the search for the best path is unpruned. In most
cases it is necessary to limit the number of evaluated hypotheses by
applying beam search with 6(¢) = min, D(¢, ¢') + . This keeps at
each time frame only state hypotheses within a certain range relative

to the currently best hypothesis. This lattice construction produces a
tree rooted at (0, ir).

The general idea for lattice generation is to keep track of more
than just the best predecessor hypothesis. That is, in addition to the
best predecessor (ar(t, q), TB(t, q)), we store all or a subset of the
hypotheses associated with the incoming arcs of a state (¢, ).

In general, the optimal time frame of a word boundary depends
on the whole utterance. Keeping hypotheses separate in both their
predecessor and successor results not in a lattice, but in an N-best
list. Therefore, in order to construct a compact lattice with distinct
word sequence alternatives, certain approximations have to be made.
Ideal is a full lattice, which contains all hypotheses that were not
pruned during the search [11].

We can assume that the start time of a word end hypothesis of a
word depends only on the word and its (n — 1) predecessor words.
For n = 2, this is known as the “word pair approximation” [4, 7].
The history conditioned lexical prefix tree search strategy requires
only slight modifications to efficiently generate full lattices [8], be-
cause all search hypotheses have a distinct word context and hy-
potheses merge only at word ends.

2.1. Phone Pair Approach

If the decoder uses a minimized search network, paths can merge
within words. Furthermore, the use of the compact WFST represen-
tation of n-gram LMs results in a loss of unique predecessor words
for all hypotheses. Therefore, the word pair assumptions described
in the previous section do not hold.

In [11], the word-level assumptions are replaced by the assump-
tions that the boundary between two context-dependent phones does
not depend on the preceding phone sequence and that each context-
dependent phone model in the search network has a unique prede-
cessor phone. The latter condition is only approximately met for
tied triphone models and determinized search networks.

The lattice construction works by creating an arc in the lattice
for each hypothesis entering a new state in the search network. We
save those arcs in:

ap(t,q) = {a tnfa] =g, Itlgliltl’y(t/,t,a) < oo} @

These hypotheses can then be represented in an FST (2, A, @B, Ap,
(0, iR), FB) with:
Ap = {((¢',pla]),i[a], ola],w, (t,q)) : a € ap(t,q)}
Y(t.q) € Qp, t' = 7p(t,a), w =7(t',t,a) — D(t',pla])

The generated lattice is on the level of the search network input, i.e.
context-dependent phone models. Subsequent projection of the lat-
tice FST to output labels followed by application of the weighted
epsilon removal algorithm [18] converts the lattice into a word lat-
tice.

In fact, the projection is not required if building the lattice as
an acceptor with word labels (ignoring the search network’s input
labels). Many of the epsilon arcs can be removed already during the
construction. Epsilon arcs are only required for lattice states with
two or more incoming arcs which don’t have an output (word) label.
In linear parts of the search networks (tree shaped), the lattice arcs
can be extended by updating time and weights of the existing arc
instead of adding a successor arc. The final epsilon removal is still
required but less expensive due to the smaller lattice.

2.2. N-best Histories Approach

The lattice construction method described in [9, 10] is also suited for
arbitrary search networks. Each search hypothesis is associated with
a (limited size) list of word-level “tokens”. Each token corresponds
to a distinct word sequence. The method thereby keeps track of the



N-best distinct word sequences arriving at a state. Each token con-
sists of a pointer to the previous lattice state, the current path score
and a hash value of the word sequence on the path.

The token lists are propagated while expanding the search hy-
potheses through the search network. For search network arcs with
a word (output) label, new lattice arcs are generated for all tokens
in the list. The arcs connect the respective predecessor states from
the token with a new state corresponding to the search network state
(and current time frame). The token list is resized to one element
and the word sequence hash updated with the new word. Thereby,
only the best token’s word history is used afterwards. When two
paths merge and the corresponding hypotheses are recombined, the
two associated token lists are merged. Out of the up to 2N unique
(w.r.t. history) tokens, the NV best tokens are kept.

We can relate the N-best histories approach to the previous one
by representing its hypotheses in an FST (X, A, Qu, Am, (0,ir,€),
F H) with:

On = Qg x AT

Fp={(t,q,h) : (t,q) € F}

Ag = {((t/,p[a],h/),i[a],o[a],w, (t,q,h)) = ap(t,q)}
V(t,q) € Qp, t' = 75(t,a), w =7(t',t,a) — D(t', pla)),
b {i}’ ifola] = €

h(t, q) oal
where iL(t, q) is the history h of the best predecessor state:
P(t,q) = {(t',p[a]7 h):a € ap(t,q),t = TB(t,a)}
ﬁ(t,q) = {’y(t',t,a) ta € ap(t,q)}

otherwise

argmin
h:(t',q’ ,h)EP(t,q)
The local N-best is applied by limiting the number of states (¢, g, h)
to the N-best distinct histories: V(¢,q) : [{(¢t,q,h) € Qu}| <
N. The word histories h € A* are approximated by a hash value
H(h) € Z,. Note that we don’t actually create all of these lattice
states and arcs explicitly, but only those arcs with non-epsilon output
labels. The “word internal” states are implemented as elements of
N-best sets per search state (¢, g). This results in dropping arcs for
recombined histories: out of arcs ((¢;,q;, h;), 15, € wj, (¢, q,h)),
j > 1 only the arc to the best predecessor is kept.

The frequent sort and unique operations on the token lists be-
come expensive for larger N. In practice, the token lists are often
limited to 5 elements.

In [22], a faster but less accurate variant of this method is men-
tioned. It avoids sorting and merging token lists, by adding epsilon
arcs to the lattice for merging paths. The epsilon arcs are removed
afterwards. This approach resembles the method described in the
previous section.

3. LATTICE OPTIMIZATION

To create compact lattices, we apply in sequence pruning, weighted
determinization, and minimization. The pruning removes low prob-
ability states and arcs from the lattice. The beam search during the
decoding prunes hypotheses based only on the partial path score up
to the current time (the forward score). To prune a lattice state or arc,
we use the score of the complete best path (forward and backward
scores) through that state or arc compared to the overall best path in
the lattice [23, 24]. We can also apply lattice pruning periodically
during decoding to keep the lattice under construction small.

The determinization removes redundant paths from the lattice.
A state in the lattice can have two outgoing arcs with the same word
label (the compact € approximation of backoff arcs in an n-gram

FST over the tropical semiring is a common source of lattice non-
determinism [25]). For most applications, we are only interested
in the arc on the better path. Therefore, we apply weighted de-
terminization over the tropical semiring [18]. Determinization has
worst-case exponential complexity and in practice a fraction of lat-
tices will be very slow to determinize and grow very large if un-
constrained (see Section 5). However, the weighted determiniza-
tion algorithm admits an efficient integrated pruning, presented be-
low, which effectively controls the computation. Note that although
the lattice is pruned prior to determinization, the determinization
changes the automaton’s topology and can result in new states and
arcs that are candidates for pruning based on their complete best path
scores through those states and arcs.

Once an acyclic, determinstic lattice is attained, weighted mini-
mization can be applied to produce the equivalent minimal (in states
and arcs) deterministic automaton in linear time [18]. Pruning,
weighted determinization (with pruning) and weighted minimiza-
tion are all available in the open-source OpenFst Library [26].

3.1. Pruned Weighted Determinization

Suppose we have a lattice represented as an acyclic non-deterministic
finite state automaton L = (X,Qr,Ar,ir,Fr) from which
we wish to produce a (possibly pruned) deterministic automaton
D = (3,Qp,Ap,ip, Fp). Our algorithm consists of three steps:
(1) finding the shortest distance from each state in @z, to the final
states, (2) applying on-the-fly weighted determinization of the au-
tomaton L while (3) searching for the states and arcs that are to kept
versus pruned in the result. This algorithm has many similarities in
its initial steps to the n-best (unique) strings algorithm on a weighted
automata [5].

3.1.1. Shortest-distances to final states

The first step consists of computing the shortest distance from each
state ¢ € @1, to the final states F (the backward score):

Brlql
The distances 31,[¢] can be directly computed in linear time by run-

ning a shortest-paths algorithm from the final states F' using the re-
versed automaton [27].

= min w(m]
m:p[w]=gAn[r]|EFL,

3.1.2. Weighted Determinization

Weighted determinization is a generalization of the classical subset
construction [28]. We give a brief description of it here; see [17]
for a fuller account. The states of D correspond to weighted subsets
{(go,w0); - -, (qn,wn)} with ¢; € Qr and w; a remainder weight.
The algorithm starts with the subset ip = {(iz,0)}. From each
weighted subset S, it will create an arc labeled with [ € 3 and
weight w leaving {(qo,wo), . - ., (gn,wn)} when at least one state
@i has an outgoing transition labeled with [/; w is given by:

(gi,wi) € S,a € A, pla] = g¢;,i[a] = I}
The destination state of that arc corresponds to the subset containing
the pairs (¢’,w’) with ¢ € {nla] : pla] = ¢, i[a] = I} and the
remainder weight w’ = min{w; + w[a] — w : nla] = ¢'}.

For simplicity of presentation, the result D will have only a sin-
gle final state fp to which final arcs labeled with a special final word
(e.g. </s>) will be directed. Alternately, we could introduce final
weights in our definition of a weighted automaton [17]. A state in
Q@p has a final arc if it corresponds to a weighted subset S contain-
ing a pair (q,w) where ¢ is a final state (¢ € F'r) and has final arc
weight min {w : (q,w) € S,q € FL}

w = min{w; + wla] :



The pruned version we introduce in this paper utilizes a feature
of the determinization algorithm: it admits a natural on-the-fly im-
plementation. The computation of the transitions leaving a subset
S only depends on the states and remainder weights of that subset
and on the input automaton, it is independent of the previous subsets
visited or constructed. That is we can limit the computation of the
result of determinization to just the part that is needed.

Our pruning step also needs the shortest-distance information,
Brlq], in L propagated to the determinized result. For this, we assign
to each state ¢’ of the result of determinization the quantity:

Bold] = min w; + 6z [gi]

where ¢’ corresponds to the subset {(qo,wo), - - - , (qn,wn) } [5].

3.1.3. Pruning Search

The pruning algorithm uses A™ search to visit that portion of D that
is within threshold [29]. We use both a weight threshold 6 and a
number of states threshold 7. The following is the pseudocode for
the algorithm.

SEARCH(D, 6, n)
forq € Qp do

1

2 aplq] < oo

3 S+« (ip,Bplip])

4 n+1

5 while S # 0 do

6 (g, ¢) + HEAD(S)

7 DEQUEUE(S)

8 fora € Ap A pla] = gdo

9 ¢« aplplal] + wlal + Ao [nla]
10 ifc’ > 0 + Bplip] then
11 DELETE(a)
12 elseif ap[n[a]] > ap[pla]] + wla] then
13 ap(nla]] < aplpla]] + wla]
14 if n[a] € S then
15 UPDATE(S, (nlq], ¢'))
16 elseif n < 7) then
17 ENQUEUE(S, (nlg], ¢'))
18 n+<n+1

The algorithm uses a priority queue .S on pairs (g, ¢) of a state
q € Qp and the complete best path weight ¢ (so far) through g;
the latter is used to order the queue (lines 15,17). The shortest dis-
tance from the inital state (forward score) is computed and stored in
ap (line 12-13) and combined with the provided 8p to compute the
complete best path weights through states and arcs (line 9). No state
s is enqueued whose complete best path weight exceeds the weight
threshold (line 12) or is above the state count (line 16). No arc from
a state within threshold is kept if its complete best path weight ex-
ceeds threshold (line 10). Since only states and arcs within threshold
are followed and D can be computed on-the-fly, the determinization
is limited to that portion. The result consists of the states and arcs
visited in the search (less any arcs that have been DELETE’d). The
algorithm terminates when all states within threshold have been pro-
cessed at most once (line 5) since no state is ever reinserted into the
queue [29].

4. ON-THE-FLY LATTICE RESCORING

The goal of on-the-fly rescoring is to apply an LM that is not in-
corporated in the search network during decoding. Thereby, search
errors can be avoided which would otherwise result in missing hy-
potheses in the lattice. These missing hypotheses cannot not be re-
covered in a downstream lattice rescoring pass.

In this section, we focus on on-the-fly lattice rescoring, which
applies the rescoring model during lattice generation [19]. That is,
we apply the rescoring model to the lattice as it is constructed during

decoding. The updated scores of the (partially) rescored lattice can
then be used for pruning during decoding (in [19], the authors don’t
state whether the rescored hypotheses are also used for the search
process). On-the-fly lattice rescoring has been applied successfully
for salient n-gram biasing [30], incorporating contextual models [31]
and for resource constrained on-device speech recognition [32].

This is in contrast to incorporating a larger LM by building the
search network with a small LM and then combine it on demand
with a modified higher order LM during decoding [33, 34]. A similar
approach is the so-called on-the-fly hypothesis rescoring described
in [20]. In the WFST framework, the composition of the lexicon FST
and the LM FST can be performed on-the-fly during decoding [35,
36, 37, 38].

On-the-fly lattice rescoring is in principle the composition of the
lattice with the rescoring model FST. Each arc added to the lattice is
immediately rescored. The updated score is then used to update the
corresponding search hypothesis. The states in the rescored lattice
are tuples of a state in the regular lattice and a state in the rescoring
model.

We consider two different types of rescoring model: Full lan-
guage models that can be applied to any word sequence generated by
the decoder. A regular n-gram LM would be a full LM (the LM used
to build the search network is often a pruned version of the rescor-
ing model). The other type of rescoring models are partial language
models which cover only some n-grams for example n-gram biasing
models [30].

In the descriptions below, we assume the rescoring model to be
an acceptor G = (A, Qq, Aa,ic, Fg) which accepts any w €
A*. Partial models would need to be augmented with failure transi-
tions [30].

4.1. N-best Histories Approach

The N-best histories approach can be extended for on-the-fly
rescoring with full m-gram models by replacing the word se-
quence (hash) h with a LM history state g € Q. Thereby,
the lattice states are not conditioned on the full word sequence
anymore but on at most (n — 1) words. The corresponding FST
(2, A,Qn, A, (0,iR,iG), Far) can be defined as follows:

Qu =08 %X Qa

Fyv = {(t,q,h) : (t,q) € Fp, h € Qa}

Ans = {((¢'.plal, 1), ila), olal,w, (t,0. 1)) : a € ar(t,q), }

Y(t,q) € Qp, t' = 75(t,a), (R, 0la),wa, h) € Ac
w = f (’y(t/a t, a) - D(t/’p[a’])awG)

For epsilon arcs, we assume (h, €, 1,h) € Ag Vh € Qg. The num-
ber of unique histories h per state (¢, ¢) is limited to some fixed N
as above. Note that instead of reducing the history list to the best
element, here we keep N unique histories. The scores of the two
models are combined using a combination function f : R x R — R,
for example log-linear combination. We keep the LM and AM score
contributions of the hypothesis cost separate and combine only the
LM part, while keeping the AM part unmodified. For simplicity, in
the equations above, we ignored the fact that the LM scores might
be distributed along the path.

If the rescoring model is a partial model or a subset of the search
network LM, the history state would be equal for most of the to-
kens. That would result in a very small lattice; e.g. just the one-best
sequence if Q¢ = {ig} (or if none of the n-grams in a biasing

grammar was hypothesized). To avoid this, we use both the word
sequence hash and the history state to distinguish tokens.



4.2. Phone Pair Approach

The on-the-fly rescoring extension of the phone pair approach is
very similar to the N-best history approach described in the pre-
vious section. Each search hypothesis (¢, q) is associated with a
set of lattices states (t,q,h), h € Q¢. For efficiency, the size of
the sets is limited to the /N-best elements. We can use the same
FST as in the previous section to describe the construction. The
difference is subtle. As described in Section 2.2, the IN-best histo-
ries approach keeps only the best arc for recombined histories and
thereby drops predecessor states. In contrast, the rescored phone
pair approach actually adds the intermediate states and epsilon arcs
((tj,q5,hj), 5, € wj, (¢ q, h)) to all predecessor states (t;, q;, hj).
The rescoring can only split states and hence the un-rescored lattice
is the lower bound.

5. EXPERIMENTAL RESULTS

We study three speech recognition systems here: voice search/dic-
tation, video transcription, and on-device dictation. The first system
is a state-of-the-art server-based recognizer for voice search and dic-
tation. The recognizer has a vocabulary of about 4 M words and uses
a 5-gram LM with 95 M n-grams. The video transcription system
has a vocabulary of 950 K words and uses a 5-gram LM with 50 M
n-grams. For both large vocabulary systems, we look at the lattices
generated by the decoder without any rescoring. We use a small vo-
cabulary system with 64 K words, which has been developed for on-
device recognition [32], for the analysis of on-the-fly rescoring. The
search network is built with an LM of just 70 K n-grams. The rescor-
ing LM is a 5-gram containing 1.2 M n-grams. All systems use Long
Short-Term Memory (LSTM) recurrent neural networks trained with
connectionist temporal classification (CTC) [39] as acoustic models.

For the voice search/dictation system, we use a test set of 20 K
utterances with a total of 170 K words. One third of the data are
voice search queries, the rest are dictation utterances. The on-device
dictation system is evaluated on 13 K utterances. Both test sets
consist of anonymized utterances that were randomly sampled from
Google traffic. To analyze the video transcription system, we use a
set of 296 manually transcribed YouTube videos (duration: ~25 h)
and another set of 2.8 M untranscribed YouTube videos split into
14.8 M segments (duration: ~209 K h).

The metrics we use here to assess the generated lattices are lat-
tice density and oracle word error rate (WER). Lattice density is
computed as the number of lattice arcs over the number of words
in the (reference) transcript. The oracle WER is the lowest WER of
all paths in the lattice. In our voice search/dictation system, text nor-
malization rules are applied to the recognized word sequence before
computing the edit distance to the reference transcript. These rules
cannot be applied to the lattice for technical reasons. Therefore, we
approximate the oracle WER by computing the lowest WER of the
(up to) 1,000 best unique paths in the lattice. The total number of
traversed paths is limited to 2,000. We also measure lattice redun-
dancy as number of lattice arcs over number of arcs in the minimized
lattice. The evaluation of the video transcription system does not re-
quire text normalization; the oracle WER can be computed on the
full lattice.

Figure 1 shows the results for the voice search/dictation task.
For the N-best histories lattice, the density saturates quickly with
increasing lattice pruning threshold, especially for small N. With
larger N, both lattice density and oracle WER increase, but the
oracle WER saturates at around 3.2%. Even with a large N =
100 (impractical because of increased runtime for sort unique oper-
ations), the oracle WER does not decrease, albeit the lattice density
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Fig. 1. Lattice quality of the voice search/dictation system using the
N-best histories approach and the phone pair approach, with and
without optimization. Results are shown for various lattice pruning
thresholds. The 1-best WER is 7.1%.
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Fig. 2. Lattice quality of the video transcription system, with and
without lattice optimization. The 1-best WER is 12.9%.

increases. The larger /N-best sets cannot compensate for pruning
predecessors during recombination (see Section 2.2). The quality of
the lattices generated with the phone pair approach can be increased
further — the oracle WER goes down to 2.8%.

Determinization decreases the size of the /N-best histories lat-
tices only slightly, but the lattices are more compact after minimiza-
tion. The average lattice redundancy is 1.4. The lattices generated
with the phone pair approach are not deterministic. Their average
redundancy is between 1.9 and 4.1 depending on pruning threshold.
Hence, both determinization and minimization result in significantly
more compact lattices here.

The recognition quality of the voice search/dictation system is
quite high and hence even sparse lattices already have a good ora-
cle WER. Therefore, we looked at a more challenging task — video
transcription. Here, we want to focus on the effect of optimization
using pruned determinization. The quality of lattices is shown in
Figure 2. The results obtained with pruned determinization versus
regular weighted determinization are essentially indistinguishable at
low densities and slightly more compact for wider pruning thresh-
olds on our evaluation sets. We use a weight threshold € in pruned
determinization that matches the threshold used during lattice gen-
eration.



Table 1. Change in lattice size by determinization. The size in-
crease ¢ is measured as number of arcs in the determinized lattice
over number of arcs in the original lattice. The table shows the num-
ber of lattices below or over a given §. Due to the small percentages,
the absolute number of lattices is shown for § > 10.

det. pruned det., § = 12
n=o0 | n=2-1Q|
0<1 90.73% | 99.70% 99.70%
0<2 99.85% | 100.00% 100.00%
6>10 376 13 0
6 > 100 88 0
6 > 1000 34

Table 2. Distribution of computation time for det. per input arc.

CPU time [us / arc]

percentile | det. | pruned det.
50 | 09 23

90 | 11.0 8.8

99 | 25.1 18.4

The main benefit of pruned determinization is seen when we ex-
amine larger data sets. To observe the rare but fatal phenomenon of
enormous size increase by determinization, we decoded the 14 M
segments of the unsupervised data set and compared the lattice size
before and after determinization. The results are shown in Table 1.
Regular weighted determinization works well in almost all cases.
However, in the instances where it doesn’t, the size increase is signif-
icant. In a production system, these outliers are not acceptable. On
the other hand, the pruned determinization based only on a weight
threshold 6 has only 13 out of 15 M lattices where the lattice size
increases significantly. With an additional threshold on the number
of states 7), those cases can be entirely avoided.

The input lattices blowing up with determinization are not nec-
essarily abnormally large. For example, in this test set we saw a
lattice with 400 states, 900 arcs that grew to 2.3 M states, 7.2 M arcs
after determinization, which took 16 s. In contrast, pruned deter-
minization processed the lattice in 24 ms and generated 1.2 K states,
1.3 K arcs.

Pruned determinization has an additional computational cost
compared to regular determinization. For many cases, the additional
computation results in higher CPU time. However, for “problem-
atic” lattices, the pruned determinization reduces CPU time. In our
experiments, computation time in the long tail was significantly
reduced, as shown in Table 2 (note that running time of weighted
determinization is not linear in the input size). Pruned determiniza-
tion did not add significantly to the overall system latency in the
experiments. The small increase in average CPU time achieves
lower variability and avoids latency spikes, which is beneficial for
production systems.

The results with on-the-fly rescoring are shown in Figure 3. For
comparison, without rescoring, the 1-best WER is 15.6%, the lowest
oracle WER is 5.5% and 5.1% for the N-best histories and phone
pair approaches respectively. Increasing the number of histories
from 5 to 10 increases the quality of the lattice generated by the
N-best histories approach significantly. Increasing N further to 20
results in smaller gains. The lattices generated with the phone pair
method have lower oracle WER for comparable density. The number
of history states used has an impact on the achievable lattice quality,
too. In this experiment, using more than 20 history states per search
hypothesis does not yield a significantly lower oracle WER. The dif-
ference in 1-best WER between on-the-fly rescored /N -best histories
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Fig. 3. Lattice quality of the on-device dictation system with on-the-
fly rescoring. The 1-best WER is 10.6% for N=5, 10.4% for N=20.

and phone pair lattices is less than 1% relative for this experiment.
In contrast to the results above, the on-the-fly rescored N-best histo-
ries lattice are significantly more compact after determinization. The
redundancy of the lattices is between 5.0 and 8.1.

6. DISCUSSION

The experimental results in the previous section show that prior to
optimization the phone pair approach generates lattices with a qual-
ity sometimes better and sometimes worse than the /N-best histories
approach depending on the task and parameter settings. However,
once (pruned) weighted determinization and minimization are ap-
plied, the former is superior.

The phone pair approach consists of essentially just writing
down the states and arcs that are visited during search. The
unique N-best histories approach, however, adds disambiguation
and N-best pruning features. Once determinization and minimiza-
tion are applied, any benefits of those features are likely lost to the
global optimizations and likely hurt compared to the phone pair
approach by dropped paths (at smaller V) and increased latency (at
larger N). We could not measure a significant increase in latency
due to pruned determinization and minimization.

In the on-the-fly lattice rescoring case, a secondary LM is ap-
plied prior to any global lattice optimizations. However, any earlier
optimization would likely not be particularly effective for this stage
since the bulk of the computation is in the simultaneous first-pass
decode. On the other hand, optimizations on lattice output of on-the-
fly rescoring (e.g. aimed at further rescoring or application-specific
use) benefit from weighted determinization and minimization as our
experiments show.

In conclusion, we believe the simple-to-implement phone-pair
lattice generation approach together with pruned weighted deter-
minization and minimization, available in the open-source OpenFst
Library, offer very efficient and high-quality lattice generation. Its
extension to on-the-fly rescoring offers added flexibility and poten-
tially reduced search errors.
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