
The Unreasonable Effectiveness of Structured Random
Orthogonal Embeddings

Krzysztof Choromanski ∗

Google Brain Robotics
kchoro@google.com

Mark Rowland ∗

University of Cambridge
mr504@cam.ac.uk

Adrian Weller
University of Cambridge and Alan Turing Institute

aw665@cam.ac.uk

September 25, 2017

Abstract

We examine a class of embeddings based on structured random matrices with orthogonal rows which
can be applied in many machine learning applications including dimensionality reduction and kernel
approximation. For both the Johnson-Lindenstrauss transform and the angular kernel, we show that we can
select matrices yielding guaranteed improved performance in accuracy and/or speed compared to earlier
methods. We introduce matrices with complex entries which give significant further accuracy improvement.
We provide geometric and Markov chain-based perspectives to help understand the benefits, and empirical
results which suggest that the approach is helpful in a wider range of applications.

1 Introduction

Embedding methods play a central role in many machine learning applications by projecting feature vectors
into a new space (often nonlinearly), allowing the original task to be solved more efficiently. The new space
might have more or fewer dimensions depending on the goal. Applications include the Johnson-Lindenstrauss
Transform for dimensionality reduction (JLT, Johnson and Lindenstrauss, 1984) and kernel methods with
random feature maps [Rahimi and Recht, 2007]. The embedding can be costly hence many fast methods have
been developed, see §1.1 for background and related work.

We present a general class of random embeddings based on particular structured random matrices with
orthogonal rows, which we call random ortho-matrices (ROMs); see §2. We show that ROMs may be used for
the applications above, in each case demonstrating improvements over previous methods in statistical accuracy
(measured by mean squared error, MSE), in computational efficiency (while providing similar accuracy), or
both. We highlight the following contributions:

• In §3: The Orthogonal Johnson-Lindenstrauss Transform (OJLT) for dimensionality reduction. We prove
this has strictly smaller MSE than the previous unstructured JLT mechanisms. Further, OJLT is as fast as
∗equal contribution
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the fastest previous JLT variants (which are structured).

• In §4: Estimators for the angular kernel [Sidorov et al., 2014] which guarantee better MSE. The angular
kernel is important for many applications, including natural language processing [Sidorov et al., 2014],
image analysis [Jégou et al., 2011], speaker representations [Schmidt et al., 2014] and tf-idf data sets
[Sundaram et al., 2013].

• In §5: Two perspectives on the effectiveness of ROMs to help build intuitive understanding.

In §6 we provide empirical results which support our analysis, and show that ROMs are effective for a still
broader set of applications. Full details and proofs of all results are in the Appendix.

1.1 Background and related work

Our ROMs can have two forms (see §2 for details): (i) a Gort is a random Gaussian matrix conditioned on
rows being orthogonal; or (ii) an SD-product matrix is formed by multiplying some number k of SD blocks,
each of which is highly structured, typically leading to fast computation of products. Here S is a particular
structured matrix, and D is a random diagonal matrix; see §2 for full details. Our SD block generalizes
an HD block, where H is a Hadamard matrix, which received previous attention. Earlier approaches to
embeddings have explored using various structured matrices, including particular versions of one or other of
our two forms, though in different contexts.

For dimensionality reduction, Ailon and Chazelle [2006] used a single HD block as a way to spread out the
mass of a vector over all dimensions before applying a sparse Gaussian matrix. Choromanski and Sindhwani
[2016] also used just one HD block as part of a larger structure. Bojarski et al. [2017] discussed using
k = 3 HD blocks for locality-sensitive hashing methods but gave no concrete results for their application to
dimensionality reduction or kernel approximation. All these works, and other earlier approaches [Hinrichs and
Vybíral, 2011, Vybíral, 2011, Zhang and Cheng, 2013, Le et al., 2013, Choromanska et al., 2016], provided
computational benefits by using structured matrices with less randomness than unstructured iid Gaussian
matrices, but none demonstrated accuracy gains.

Yu et al. [2016] were the first to show that Gort-type matrices can yield improved accuracy, but their theoretical
result applies only asymptotically for many dimensions, only for the Gaussian kernel and for just one specific
orthogonal transformation, which is one instance of the larger class we consider. Their theoretical result does
not yield computational benefits. Yu et al. [2016] did explore using a number k of HD blocks empirically,
observing good computational and statistical performance for k = 3, but without any theoretical accuracy
guarantees. It was left as an open question why matrices formed by a small number of HD blocks can
outperform non-discrete transforms.

In contrast, we are able to prove that ROMs yield improved MSE in several settings and for many of them for
any number of dimensions. In addition, SD-product matrices can deliver computational speed benefits. We
provide initial analysis to understand why k = 3 can outperform the state-of-the-art, why odd k yields better
results than even k, and why higher values of k deliver decreasing additional benefits (see §3 and §5).

2 The family of Random Ortho-Matrices (ROMs)

Random ortho-matrices (ROMs) are taken from two main classes of distributions defined below that require
the rows of sampled matrices to be orthogonal. A central theme of the paper is that this orthogonal structure
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can yield improved statistical performance. We shall use bold uppercase (e.g. M) to denote matrices and bold
lowercase (e.g. x) for vectors.

Gaussian orthogonal matrices. Let G be a random matrix taking values in Rm×n with iidN (0, 1) elements,
which we refer to as an unstructured Gaussian matrix. The first distribution for generating ROMs we consider
produces orthogonal variants Gort of G and may be viewed as the regular conditional probability measure
associated with G conditioned on the event that all rows of the matrix are orthogonal. Realizations of Gort

can be generated by, for example, performing a Gram-Schmidt process on the rows of G to obtain a set of
orthonormal rows, and then randomly independently scaling each row so that marginally it has the distribution
of a Gaussian vector. The orthogonality of the rows of this matrix has been observed to yield improved
statistical properties for randomized algorithms built from the matrix in a variety of applications.

SD-product matrices. Our second class of distributions is motivated by the desire to obtain similar statistical
benefits of orthogonality to Gort, whilst gaining computational efficiency by employing more structured
matrices. We call this second class SD-product matrices. These take the more structured form

∏k
i=1 SDi,

where S = {si,j} ∈ Rn×n has orthogonal rows, |si,j | = 1√
n
∀i, j ∈ {1, . . . , n}; and the (Di)

k
i=1 are

independent diagonal matrices described below. By
∏k
i=1 SDi, we mean the matrix product (SDk) . . . (SD1).

This class includes as particular cases several recently introduced random matrices (e.g. Andoni et al., 2015,
Yu et al., 2016), where good empirical performance was observed. We go further to establish strong theoretical
guarantees, see §3 and §4.

A prominent example of an S matrix is the normalized Hadamard matrix H, defined recursively by H1 = (1),

and then for i > 1, Hi = 1√
2

(
Hi−1 Hi−1
Hi−1 −Hi−1

)
. Importantly, matrix-vector products with H are computable

in O(n log n) time via the fast Walsh-Hadamard transform, yielding large computational savings. In addition,
H matrices enable a significant space advantage: since the fast Walsh-Hadamard transform can be computed
without explicitly storing H, only O(n) space is required to store the diagonal elements of (Di)

k
i=1. Note that

these Hn matrices are defined only for n a power of 2, but if needed, one can always adjust data by padding
with 0s to enable the use of ‘the next larger’ H, doubling the number of dimensions in the worst case.

Matrices H are representatives of a much larger family in S which also attains computational savings. These
are L2-normalized versions of Kronecker-product matrices of the form A1⊗ ...⊗Al ∈ Rn×n for l ∈ N, where
⊗ stands for a Kronecker product and blocks Ai ∈ Rd×d have entries of the same magnitude and pairwise
orthogonal rows each. For these matrices, matrix-vector products are computable in O(n(2d− 1) logd(n))
time Z. et al. [2015].

S includes also the Walsh matrices W = {wi,j} ∈ Rn×n, where wi,j = 1√
n

(−1)iN−1j0+...+i0jN−1 and
iN−1...i0, jN−1...j0 are binary representations of i and j respectively.

For diagonal (Di)
k
i=1, we mainly consider Rademacher entries leading to the following matrices.

Definition 2.1. The S-Rademacher random matrix with k ∈ N blocks is below, where (D
(R)
i )ki=1 are diagonal

with iid Rademacher random variables [i.e. Unif({±1})] on the diagonals:

M
(k)
SR =

k∏
i=1

SD
(R)
i . (1)

Having established the two classes of ROMs, we next apply them to dimensionality reduction.

3



3 The Orthogonal Johnson-Lindenstrauss Transform (OJLT)

Let X ⊂ Rn be a dataset of n-dimensional real vectors. The goal of dimensionality reduction via random
projections is to transform linearly each x ∈ X by a random mapping x

F7→ x′, where: F : Rn → Rm
for m < n, such that for any x,y ∈ X the following holds: (x′)>y′ ≈ x>y. If we furthermore have
E[(x′)>y′] = x>y then the dot-product estimator is unbiased. In particular, this dimensionality reduction
mechanism should in expectation preserve information about vectors’ norms, i.e. we should have: E[‖x′‖22] =
‖x‖22 for any x ∈ X .

The standard JLT mechanism uses the randomized linear map F = 1√
m
G, where G ∈ Rm×n is as in §2,

requiring mn multiplications to evaluate. Several fast variants (FJLTs) have been proposed by replacing G
with random structured matrices, such as sparse or circulant Gaussian matrices Ailon and Chazelle [2006],
Hinrichs and Vybíral [2011], Vybíral [2011], Zhang and Cheng [2013]. The fastest of these variants has
O(n log n) time complexity, but at a cost of higher MSE for dot-products.

Our Orthogonal Johnson-Lindenstrauss Transform (OJLT) is obtained by replacing the unstructured random
matrix G with a sub-sampled ROM from §2: either Gort, or a sub-sampled version M

(k),sub
SR of the S-

Rademacher ROM, given by sub-sampling rows from the left-most S matrix in the product. We sub-sample
since m < n. We typically assume uniform sub-sampling without replacement. The resulting dot-product
estimators for vectors x,y ∈ X are given by:

K̂base
m (x,y) =

1

m
(Gx)>(Gy) [unstructured iid baseline, previous state-of-the-art accuracy],

K̂ort
m (x,y) =

1

m
(Gortx)>(Gorty), K̂(k)

m (x,y) =
1

m

(
M

(k),sub
SR x

)> (
M

(k),sub
SR y

)
. (2)

We contribute the following closed-form expressions, which quantify precisely the MSEs for these three
estimators. See the Appendix for detailed proofs of these results and all others in this paper.
Lemma 3.1. The MSE of the unstructured JLT dot-product estimator K̂base

m of x,y ∈ Rn usingm-dimensional
random feature maps is unbiased, with MSE(K̂base

m (x,y)) = 1
m ((x>y)2 + ‖x‖22‖y‖22).

Theorem 3.2. The estimator K̂ort
m is unbiased and satisfies

MSE(K̂ort
m (x,y))=

n(m− 1)

4m
‖x‖2‖y‖2

∫ π
2

0

fn(φ) cos2(φ)Q(φ)dφ+ MSE(K̂base
m (x,y)) (3)

where fn stands for the density function of the random variable that measures the angle between an n-
dimensional mean-zero Gaussian vector with identity covariance matrix and a fixed (arbitrary) 2-dimensional
linear subspace and Q(φ) = cos2(θ) n

n−1 (sin2(φ)+1)−2 cos2(θ)− n
n−1 (sin2(φ)+1)( 1

1+sin(φ) −
1
2 ), where

θ stands for an angle between x and y.
Theorem 3.3 (Key result). The OJLT estimator K̂(k)

m (x,y) with k blocks, using m-dimensional random
feature maps and uniform sub-sampling policy without replacement, is unbiased with

MSE(K̂(k)
m (x,y))=

1

m

(
n−m
n− 1

)(
((x>y)2 + ‖x‖2‖y‖2) + (4)

k−1∑
r=1

(−1)r2r

nr
(2(x>y)2 + ‖x‖2‖y‖2) +

(−1)k2k

nk−1

n∑
i=1

x2i y
2
i

)
.

Proof (Sketch). For k = 1, the random projection matrix is given by sub-sampling rows from SD1, and the
computation can be carried out directly. For k ≥ 1, the proof proceeds by induction. The random projection
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matrix in the general case is given by sub-sampling rows of the matrix SDk · · ·SD1. By writing the MSE
as an expectation and using the law of conditional expectations conditioning on the value of the first k − 1
random matrices Dk−1, . . . ,D1, the statement of the theorem for 1 SD block and for k − 1 SD blocks can
be neatly combined to yield the result.

To our knowledge, it has not previously been possible to provide theoretical guarantees that SD-product
matrices outperform iid matrices. Combining Lemma 3.1 with Theorem 3.3 yields the following important
result.
Corollary 3.4 (Theoretical guarantee of improved performance). Estimators K̂(k)

m (subsampling without
replacement) yield guaranteed lower MSE than K̂base

m .

It is not yet clear when K̂ort
m is better or worse than K̂(k)

m , we explore this empirically in §6. Theorem 3.3 shows
that there are diminishing MSE benefits to using a large number k of SD blocks. Interestingly, odd k is better
than even: it is easy to observe that MSE(K̂

(2k−1)
m (x,y)) < MSE(K̂

(2k)
m (x,y)) > MSE(K̂

(2k+1)
m (x,y)).

These observations, and those in §5, help to understand why empirically k = 3 was previously observed to
work well [Yu et al., 2016].

If we take S to be a normalized Hadamard matrix H, then even though we are using sub-sampling, and
hence the full computational benefits of the Walsh-Hadamard transform are not available, still K̂(k)

m achieves
improved MSE compared to the base method with less computational effort, as follows.
Lemma 3.5. There exists an algorithm (see Appendix for details) which computes an embedding for a given
datapoint x using K̂(k)

m with S set to H and uniform sub-sampling policy in expected time min{O((k −
1)n log(n) + nm− (m−1)m

2 , kn log(n)}.

Note that for m = ω(k log(n)) or if k = 1, the time complexity is smaller than the brute force Θ(nm).
The algorithm uses a simple observation that one can reuse calculations conducted for the upper half of the
Hadamard matrix while performing computations involving rows from its other half, instead of running these
calculations from scratch (details in the Appendix).

An alternative to sampling without replacement is deterministically to choose the first m rows. In our
experiments in §6, these two approaches yield the same empirical performance, though we expect that the
deterministic method could perform poorly on adversarially chosen data. The first m rows approach can be
realized in time O(n log(m) + (k − 1)n log(n)) per datapoint.

Theorem 3.3 is a key result in this paper, demonstrating that SD-product matrices yield both statistical and
computational improvements compared to the base iid procedure, which is widely used in practice. We next
show how to obtain further gains in accuracy.

3.1 Complex variants of the OJLT

We show that the MSE benefits of Theorem 3.3 may be markedly improved by using SD-product matrices
with complex entries M(k)

SH. Specifically, we consider the variant S-Hybrid random matrix below, where D(U)
k

is a diagonal matrix with iid Unif(S1) random variables on the diagonal, independent of (D
(R)
i )k−1i=1 , and S1

is the unit circle of C. We use the real part of the Hermitian product between projections as a dot-product
estimator; recalling the definitions of §2, we use:

M
(k)
SH = SD

(U)
k

k−1∏
i=1

SD
(R)
i , K̂H,(k)m (x,y) =

1

m
Re

[(
M

(k),sub
SH x

)> (
M

(k),sub
SH y

)]
. (5)
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Remarkably, this complex variant yields exactly half the MSE of the OJLT estimator.
Theorem 3.6. The estimator K̂H,(k)m (x,y), applying uniform sub-sampling without replacement, is unbiased
and satisfies: MSE(K̂

H,(k)
m (x,y)) = 1

2MSE(K̂
(k)
m (x,y)).

This large factor of 2 improvement could instead be obtained by doubling m for K̂(k)
m . However, this would

require doubling the number of parameters for the transform, whereas the S-Hybrid estimator requires
additional storage only for the complex parameters in the matrix D

(U)
k . Strikingly, it is straightforward to

extend the proof of Theorem 3.6 (see Appendix) to show that rather than taking the complex random variables
in M

(k),sub
SH to be Unif(S1), it is possible to take them to be Unif({1,−1, i,−i}) and still obtain exactly the

same benefit in MSE.
Theorem 3.7. For the estimator K̂H,(k)m defined in Equation (5): replacing the random matrix D(U)

k (which has
iid Unif(S1) elements on the diagonal) with instead a random diagonal matrix having iid Unif({1,−1, i,−i})
elements on the diagonal, does not affect the MSE of the estimator.

It is natural to wonder if using an SD-product matrix with more complex random variables (for all SD blocks)
would improve performance still further. However, interestingly, this appears not to be the case; details are
provided in the Appendix §8.7.

3.2 Sub-sampling with replacement

Our results above focus on SD-product matrices where rows have been sub-sampled without replacement.
Sometimes (e.g. for parallelization) it can be convenient instead to sub-sample with replacement. As might be
expected, this leads to worse MSE, which we can quantify precisely.
Theorem 3.8. For each of the estimators K̂(k)

m and K̂H,(k)m , if uniform sub-sampling with (rather than without)
replacement is used then the MSE is worsened by a multiplicative constant of n−1

n−m .

4 Kernel methods with ROMs

ROMs can also be used to construct high-quality random feature maps for non-linear kernel approximation.
We analyze here the angular kernel, an important example of a Pointwise Nonlinear Gaussian kernel (PNG).
Random feature maps for PNGs can be computed by first applying random linear projections based on
unstructured Gaussian matrices G, and then pointwise some function f : R→ R which depends on the PNG.
Definition 4.1. For a given function f , the Pointwise Nonlinear Gaussian kernel (PNG) Kf is defined by
Kf (x,y) = E

[
f(gTx)f(gTy)

]
, where g is a Gaussian vector with i.i.d N (0, 1) entries.

Many prominent examples of kernels [Williams, 1998, Cho and Saul, 2009] are PNGs. Wiener’s tauberian
theorem shows that all stationary kernels may be approximated arbitrarily well by sums of PNGs [Samo and
Roberts, 2015]. In future work we hope to explore whether ROMs can be used to achieve statistical benefit in
estimation tasks associated with a wide range of PNGs; here we focus one kernel in particular.

The nonlinear mapping f(x) = sgn(x) corresponds to the PNG which is the angular kernel Kang defined by
Kang(x,y) = 1− 2θx,y

π , where θx,y is the angle between x and y.

Estimators of the PNGs we consider are of the form:

K̂m(x,y) =
1

m
f(Mx)>f(My), (6)
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where M ∈ Rm×n is a random matrix, and given v ∈ Rm, f(v) means (f(v1), ..., f(vm))T . Such estimation
procedures are heavily used in practice [Rahimi and Recht, 2007], as they allow fast approximate linear
methods to be used Joachims [2006]. If M = G, the unstructured Gaussian matrix, then we obtain the
standard random feature estimator. Instead, we shall use matrices from the ROMs family.

When constructing random feature maps for kernels, very often m > n. In this case, our structured mechanism
can be applied by concatenating some number of independent structured blocks. Our theoretical guarantees
will be given just for one block, but can easily be extended to a larger number of blocks since different blocks
are independent.

The standard random feature approximation K̂ang,base
m for approximating the angular kernel is defined by

taking M to be G in Equation (6), and satisfies the following.
Lemma 4.2. The estimator K̂ang,base

m is unbiased and MSE(K̂ang,base
m (x,y)) =

4θx,y(π−θx,y)
mπ2 .

Our main result regarding angular kernels states that if we instead take M = Gort in Equation (6), then we
obtain an estimator K̂ang,ort

m with strictly smaller MSE, as follows.
Theorem 4.3. Estimator K̂ang,ort

m is unbiased and satisfies:

MSE(K̂ang,ort
m (x,y)) < MSE(K̂ang,base

m (x,y)).

We also derive a formula for the MSE of an estimator K̂ang,M
m of the angular kernel which replaces G with an

arbitrary random matrix M and uses m random feature maps. The formula is helpful to see how the quality
of the estimator depends on the probabilities that the projections of the rows of M are contained in some
particular convex regions of the 2-dimensional space Lx,y spanned by datapoints x and y. For an illustration
of the geometric definitions introduced in this Section, see Figure 1. The formula depends on probabilities
involving events Ai = {sgn((ri)Tx) 6= sgn((ri)Ty)}, where ri stands for the ith row of the structured
matrix. Notice that Ai = {riproj ∈ Cx,y}, where riproj stands for the projection of ri into Lx,y and Cx,y is the
union of two cones in Lx,y, each of angle θx,y.
Theorem 4.4. Estimator K̂ang,M

m satisfies the following, where: δi,j = P[Ai ∩ Aj ]− P[Ai]P[Aj ]:

MSE(K̂ang,M
m (x,y)) =

1

m2

[
m−

m∑
i=1

(1− 2P[Ai])2
]

+
4

m2

 m∑
i=1

(P[Ai]− θx,y
π

)2 +
∑
i 6=j

δi,j

 .
Note that probabilities P[Ai] and δi,j depend on the choice of M. It is easy to prove that for unstructured G

and Gort we have: P[Ai] =
θx,y
π . Further, from the independence of the rows of G, δi,j = 0 for i 6= j. For

unstructured G we obtain Lemma 4.2. Interestingly, we see that to prove Theorem 4.3, it suffices to show
δi,j < 0, which is the approach we take (see Appendix). If we replace G with M

(k)
SR, then the expression

ε = P[Ai] − θx,y
π does not depend on i. Hence, the angular kernel estimator based on Hadamard matrices

gives smaller MSE estimator if and only if
∑
i 6=j δi,j +mε2 < 0. It is not yet clear if this holds in general.

5 Understanding the effectiveness of orthogonality

Here we build intuitive understanding for the effectiveness of ROMs. We examine geometrically the angular
kernel (see §4), then discuss a connection to random walks over orthogonal matrices.
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Figure 1: Left part: Left: g1 is orthogonal to Lx,y. Middle: g1 ∈ Lx,y. Right: g1 is close to orthogonal to Lx,y. Right
part: Visualization of the Cayley graph explored by the Hadamard-Rademacher process in two dimensions. Nodes are
colored red, yellow, light blue, dark blue, for Cayley distances of 0, 1, 2, 3 from the identity matrix respectively. See text
in §5.

Angular kernel. As noted above for the Gort-mechanism, smaller MSE than that for unstructured G is
implied by the inequality P[Ai ∩ Aj ] < P[Ai]P[Aj ], which is equivalent to: P[Aj |Ai] < P[Aj ]. Now it
becomes clear why orthogonality is crucial. Without loss of generality take: i = 1, j = 2, and let g1 and g2

be the first two rows of Gort.

Consider first the extreme case (middle of left part of Figure 1), where all vectors are 2-dimensional. Recall
definitions from just after Theorem 4.3. If g1 is in Cx,y then it is much less probable for g2 also to belong to
Cx,y. In particular, if θ < π

2 then the probability is zero. That implies the inequality. On the other hand, if g1

is perpendicular to Lx,y then conditioning on Ai does not have any effect on the probability that g2 belongs to
Cx,y (left subfigure of Figure 1). In practice, with high probability the angle φ between g1 and Lx,y is close to
π
2 , but is not exactly π

2 . That again implies that conditioned on the projection g1
p of g1 into Lx,y to be in Cx,y,

the more probable directions of g2
p are perpendicular to g1

p (see: ellipsoid-like shape in the right subfigure
of Figure 1 which is the projection of the sphere taken from the (n− 1)-dimensional space orthogonal to g1

into Lx,y). This makes it less probable for g2
p to be also in Cx,y. The effect is subtle since φ ≈ π

2 , but this is
what provides superiority of the orthogonal transformations over state-of-the-art ones in the angular kernel
approximation setting.

Markov chain perspective. We focus on Hadamard-Rademacher random matrices HDk...HD1, a special
case of the SD-product matrices described in Section 2. Our aim is to provide intuition for how the choice of
k affects the quality of the random matrix, following our earlier observations just after Corollary 3.4, which
indicated that for SD-product matrices, odd values of k yield greater benefits than even values, and that
there are diminishing benefits from higher values of k. We proceed by casting the random matrices into the
framework of Markov chains.
Definition 5.1. The Hadamard-Rademacher process in n dimensions is the Markov chain (Xk)∞k=0 taking
values in the orthogonal group O(n), with X0 = I almost surely, and Xk = HDkXk−1 almost surely,
where H is the normalized Hadamard matrix in n dimensions, and (Dk)∞k=1 are iid diagonal matrices with
independent Rademacher random variables on their diagonals.

Constructing an estimator based on Hadamard-Rademacher matrices is equivalent to simulating several time
steps from the Hadamard-Rademacher process. The quality of estimators based on Hadamard-Rademacher
random matrices comes from a quick mixing property of the corresponding Markov chain. The following
demonstrates attractive properties of the chain in low dimensions.
Proposition 5.2. The Hadamard-Rademacher process in two dimensions: explores a state-space of 16
orthogonal matrices, is ergodic with respect to the uniform distribution on this set, has period 2, the diameter
of the Cayley graph of its state space is 3, and the chain is fully mixed after 3 time steps.

This proposition, and the Cayley graph corresponding to the Markov chain’s state space (Figure 1 right),
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(a) g50c - pointwise evaluation
MSE for inner product estimation

(b) random - angular kernel (c) random - angular kernel with
true angle π/4

(d) g50c - inner product estima-
tion MSE for variants of 3-block
SD-product matrices.

(e) LETTER - dot-product (f) USPS - dot-product (g) LETTER - angular kernel (h) USPS - angular kernel

Figure 2: Top row: MSE curves for pointwise approximation of inner product and angular kernels on the g50c dataset,
and randomly chosen vectors. Bottom row: Gram matrix approximation error for a variety of data sets, projection ranks,
transforms, and kernels. Note that the error scaling is dependent on the application.

illustrate the fast mixing properties of the Hadamard-Rademacher process in low dimensions; this agrees with
the observations in §3 that there are diminishing returns associated with using a large number k of HD blocks
in an estimator. The observation in Proposition 5.2 that the Markov chain has period 2 indicates that we should
expect different behavior for estimators based on odd and even numbers of blocks of HD matrices, which is
reflected in the analytic expressions for MSE derived in Theorems 3.3 and 3.6 for the dimensionality reduction
setup.

6 Experiments

We present comparisons of estimators introduced in §3 and §4, illustrating our theoretical results, and further
demonstrating the empirical success of ROM-based estimators at the level of Gram matrix approximation.
We compare estimators based on: unstructured Gaussian matrices G, matrices Gort, S-Rademacher and
S-Hybrid matrices with k = 3 and different sub-sampling strategies. Results for k > 3 do not show additional
statistical gains empirically. Additional experimental results, including a comparison of estimators using
different numbers of SD blocks, are in the Appendix §10. Throughout, we use the normalized Hadamard
matrix H for the structured matrix S.

6.1 Pointwise kernel approximation

Complementing the theoretical results of §3 and §4, we provide several salient comparisons of the various
methods introduced - see Figure 2 top. Plots presented here (and in the Appendix) compare MSE for dot-
product and angular and kernel. They show that estimators based on Gort, S-Hybrid and S-Rademacher
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matrices without replacement, or using the first m rows, beat the state-of-the-art unstructured G approach
on accuracy for all our different datasets in the JLT setup. Interestingly, the latter two approaches give also
smaller MSE than Gort-estimators. For angular kernel estimation, where sampling is not relevant, we see that
Gort and S-Rademacher approaches again outperform the ones based on matrices G.

6.2 Gram matrix approximation

Moving beyond the theoretical guarantees established in §3 and §4, we show empirically that the superiority
of estimators based on ROMs is maintained at the level of Gram matrix approximation. We compute Gram
matrix approximations (with respect to both standard dot-product, and angular kernel) for a variety of datasets.
We use the normalized Frobenius norm error ‖K− K̂‖2/‖K‖2 as our metric (as used by [Choromanski and
Sindhwani, 2016]), and plot the mean error based on 1,000 repetitions of each random transform - see Figure
2 bottom. The Gram matrices are computed on a randomly selected subset of 550 data points from each
dataset. As can be seen, the S-Hybrid estimators using the “no-replacement” or “first m rows” sub-sampling
strategies outperform even the orthogonal Gaussian ones in the dot-product case. For the angular case, the
Gort-approach and S-Rademacher approach are practically indistinguishable.

7 Conclusion

We defined the family of random ortho-matrices (ROMs). This contains the SD-product matrices, which
include a number of recently proposed structured random matrices. We showed theoretically and empirically
that ROMs have strong statistical and computational properties (in several cases outperforming previous
state-of-the-art) for algorithms performing dimensionality reduction and random feature approximations of
kernels. We highlight Corollary 3.4, which provides a theoretical guarantee that SD-product matrices yield
better accuracy than iid matrices in an important dimensionality reduction application (we believe the first
result of this kind). Intriguingly, for dimensionality reduction, using just one complex structured matrix yields
random features of much better quality. We provided perspectives to help understand the benefits of ROMs,
and to help explain the behavior of SD-product matrices for various numbers of blocks. Our empirical findings
suggest that our theoretical results might be further strengthened, particularly in the kernel setting.
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APPENDIX:
The Unreasonable Effectiveness of Random Orthogonal Embeddings

We present here details and proofs of all the theoretical results presented in the main body of the paper. We
also provide further experimental results in §10.

We highlight proofs of several key results that may be of particular interest to the reader:

• The proof of Theorem 3.3; see §8.3.

• The proof of Theorem 3.6; see §8.5.

• The proof of Theorem 4.3; see §9.2.

In the Appendix we will use interchangeably two notations for the dot product between vectors x and y,
namely: x>y and 〈x,y〉.

8 Proofs of results in §3

8.1 Proof of Lemma 3.1

Proof. Denote Xi = (gi)>x · (gi)>y, where gi stands for the ith row of the unstructured Gaussian matrix
G ∈ Rm×n. Note that we have:

K̂base
m (x,y) =

1

m

m∑
i=1

Xi. (7)

Denote gi = (gi1, ..., g
i
n)>. Notice that from the independence of gijs and the fact that: E[gij ] = 0, E[(gij)

2] = 1,
we get: E[Xi] =

∑n
i=1 xiyi = x>y, thus the estimator is unbiased. Since the estimator is unbiased, we have:

MSE(K̂base
m (x,y)) = V ar(K̂base

m (x,y)). Thus we get:

MSE(K̂base
m (x,y)) =

1

m2

∑
i,j

(E[XiXj ]− E[Xi]E[Xj ]). (8)

From the independence of different Xis, we get:

MSE(K̂base
m (x,y)) =

1

m2

∑
i

(E[X2
i ]− (E[Xi])

2). (9)

Now notice that different Xis have the same distribution, thus we get:

MSE(K̂base
m (x,y)) =

1

m
(E[X2

1 ]− (E[X1])2). (10)

From the unbiasedness of the estimator, we have: E[X1] = x>y. Therefore we obtain:

MSE(K̂base
m (x,y)) =

1

m
(E[X2

1 ]− (x>y)2). (11)
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Now notice that

E[X2
1 ] = E[

∑
i1,j1,i2,j2

gi1gj1gi2gj2xi1yj1xi2yj2 ] =
∑

i1,j1,i2,j2

xi1yj1xi2yj2E[gi1gj1gi2gj2 ], (12)

where (g1, ..., gn) stands for the first row of G. In the expression above the only nonzero terms corresponds
to quadruples (i1, j1, i2, j2), where no index appears odd number of times. Therefore, from the inclusion-
exclusion principle and the fact that E[g2i ] = 1 and E[g4i ] = 3, we obtain

E[X2
1 ] =

∑
i1=j1,i2=j2

xi1yj1xi2yj2E[gi1gj1gi2gj2 ] +
∑

i1=i2,j1=j2

xi1yj1xi2yj2E[gi1gj1gi2gj2 ] (13)

+
∑

i1=j2,i2=j1

xi1yj1xi2yj2E[gi1gj1gi2gj2 ]−
∑

i1=j1=i2=j2

xi1yj1xi2yj2E[gi1gj1gi2gj2 ] (14)

= ((x>y)2 −
n∑
i=1

x2i y
2
i + 3

n∑
i=1

x2i y
2
i ) + ((‖x‖2‖y‖2)2 −

n∑
i=1

x2i y
2
i + 3

n∑
i=1

x2i y
2
i ) (15)

+ ((x>y)2 −
n∑
i=1

x2i y
2
i + 3

n∑
i=1

x2i y
2
i )− 3 · 2

n∑
i=1

x2i y
2
i (16)

= (‖x‖2‖y‖2)2 + 2(x>y)2. (17)

Therefore we obtain

MSE(K̂base
m (x,y)) =

1

m
((‖x‖2‖y‖2)2 + 2(x>y)2 − (x>y)2) =

1

m
(‖x‖22‖y‖22 + (x>y)2), (18)

which completes the proof.

8.2 Proof of Theorem 3.2

Proof. Fix two different rows of Gort and denote them as Z1 and Z2. We will use the following notation:

• φ ∈ [0, π2 ] - an angle between Z1 and the x− y plane,

• ψ ∈ [0, 2π] - angle between the projection of Z1 into x− y plane (the x-axis of the plane) and vector x,

• θ ∈ [0, π] - an angle between x and y

The unbiasedness of the Gaussian orthogonal estimator comes from the fact that every row of the Gaussian
orthogonal matrix is sampled from multivariate Gaussian distribution with entries taken independently at
random from N (0, 1).

Note that:
Cov(Xi, Xj) = E[XiXj ]− E[Xi]E[Xj ], (19)

where: Xi = (r>i x)(r>i y), Xj = (r>j x)(r>j y) and ri, rj stand for the ith and jth row of the Gaussian
orthogonal matrix respectively. From the fact that Gaussian orthogonal estimator is unbiased, we get:

E[Xi] = x>y. (20)

13



Let us now compute E[XiXj ]. Taking Z1 = ri, Z2 = rj and applying the density function of directions of
the projection of Z2 into the x− y plane conditioned on Z1, we get:

E[XiXj ] = E[(r>i x)(r>i y)(r>j x)(r>j y)]

= n · n

n− 1

∫ π
2

0

f(φ) cos2(φ)(sin2(φ) + 1)dφ

∫ 2π

0

·dψ
2π

cos(ψ) cos(ψ + θ)‖x‖2‖y‖2

·
∫ 2π

0

g(t) cos(t− ψ) cos(t− θ − ψ)‖x‖2‖y‖2dt,

(21)

where: f(·) stands for the density function of the angle between Z1 and the x − y plane, and g(t) =
sin(φ)
2π

1
cos2(t)+sin2(φ) sin2(t)

is a density function of the direction of the projection of vector Z2 into x−y plane
conditioned on φ and ψ. Notice that due to the isotropic property of the Gaussian vectors, we know that the
density function of ψ is 1

2π .

After simplification we get

E[XiXj ] = ‖x‖22‖y‖22
n2

n− 1

∫ π
2

0

f(φ) cos2(φ)(sin2(φ) + 1)dφ

∫ 2π

0

·dψ
2π

cos(ψ) cos(ψ + θ)

· sin(φ)

2π

∫ 2π

0

cos(t− ψ) cos(t− θ − ψ)

cos2(t) + sin2(φ) sin2(t)
dt

(22)

Note that we have

E[Xi]E[Xj ] = 2n‖x‖22‖y‖22
∫ π

2

0

f(φ) cos2(φ)dφ

∫ 2π

0

dψ

2π
cos(ψ) cos(ψ + θ)

·
∫ 2π

0

dψ

2π
cos(ψ) cos(ψ + θ)

(23)

Therefore we obtain

E[XiXj ]− E[Xi]E[Xj ]

= ‖x‖22‖y‖22
n2

n− 1

∫ π
2

0

f(φ) cos2(φ)(sin2(φ) + 1)dφ

∫ 2π

0

·dψ
2π

cos(ψ) cos(ψ + θ)

· sin(φ)

2π

∫ 2π

0

cos(t− ψ) cos(t− θ − ψ)

cos2(t) + sin2(φ) sin2(t)
dt

−2n‖x‖22‖y‖22
∫ π

2

0

f(φ) cos2(φ)dφ

∫ 2π

0

dψ

2π
cos(ψ) cos(ψ + θ)

·
∫ 2π

0

dψ

2π
cos(ψ) cos(ψ + θ)

(24)

Let us denote F (φ, ψ, θ) =
∫ 2π

0
cos(t−ψ)cos(t−θ−ψ)
cos2(t)+sin2(φ) sin2(t)

dt.

We have

F (φ, ψ, θ) =

∫ 2π

0

(sin(ψ) sin(t) + cos(ψ) cos(t))(sin(ψ + θ) sin(t) + cos(ψ + θ) cos(t))

1− (1− sin2(φ)) sin2(t)
dt. (25)
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Now we use the substitution: sin(t) = tan(t)
sec(t) , cos(t) = 1

sec(t) and the fact that sec2(t) = 1 + tan2(t) and get

F (φ, ψ, θ) =

∫ 2π

0

sec2(t)
sin(ψ) sin(ψ + θ) tan2(t) + (sin(ψ) cos(ψ + θ) + cos(ψ) sin(ψ + θ)) tan(t)

(tan2(t) + 1)(sin2(φ) tan2(t) + 1)
dt

+

∫ 2π

0

sec2(t) cos(ψ) cos(ψ + θ)

(tan2(t) + 1)(sin2(φ) tan2(t) + 1)
dt.

(26)

Now we use the substitution: u = tan(t). Note that we have: dudt = sec2(t). Thus we get

F (φ, ψ, θ) = 4

∫ ∞
0

sin(ψ) sin(ψ + θ)u2 + cos(ψ) cos(ψ + θ)

(u2 + 1)(sin2(φ)u2 + 1)
du (27)

= 4

∫ ∞
0

(
A

u2 + 1
+

B

sin2(φ)u2 + 1

)
du, (28)

where: A = cos(2ψ+θ)
1−sin2(φ)

and B = cos(ψ) cos(ψ + θ)− cos(2ψ+θ)
1−sin2(φ)

.

Note
∫∞
0

A
u2+1du = A arctan(u)|∞0 = Aπ

2 and
∫∞
0

B
sin2(φ)u2+1

du = 1
sin(φ) arctan(u sin(φ))|∞0 = Bπ

2 sin(φ) .

Furthermore, we have:∫ 2π

0

cos(ψ) cos(ψ + θ)dψ =

∫ 2π

0

1

2
(cos(θ) + cos(2ψ + θ))dψ

= π cos(θ) +
1

4
sin(2ψ + θ)|2π0 = π cos(θ).

(29)

From the very last formula, we obtain

E[XiXj ]− E[Xi]E[Xj ]

=
1

4π2
‖x‖22‖y‖22

n2

n− 1

∫ π
2

0

f(φ) cos2(φ)(sin2(φ) + 1)dφ

∫ 2π

0

dψ cos(ψ) cos(ψ + θ) sin(φ)

·
∫ 2π

0

cos(t− ψ) cos(t− θ − ψ)

cos2(t) + sin2(φ) sin2(t)
dt

− 1

4π2
π2 cos2(θ)n‖x‖22‖y‖22

∫ π
2

0

f(φ) cos2(φ)dφ

(30)

Let us define

Λ(φ) =

∫ 2π

0

cos(ψ) cos(ψ + θ) sin(φ)F (φ, ψ, θ)dψ. (31)
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Therefore we get:

Λ(φ) = 4 sin(φ)

∫ 2π

0

cos(ψ) cos(ψ + θ)(
π

2
A+

πB

2 sin(φ)
)dψ

= 2π sin(φ)

∫ 2π

0

cos(2ψ + θ) cos(ψ) cos(ψ + θ)

1− sin2(φ)
dψ + 2π

∫ 2π

0

cos2(ψ) cos2(ψ + θ)dψ

−2π

∫ 2π

0

cos(2ψ + θ) cos(ψ) cos(ψ + θ)

1− sin2(ψ)
dψ

= 2π

∫ 2π

0

cos2(ψ) cos2(ψ + θ)dψ − 2π

1 + sin(φ)

∫ 2π

0

cos(2ψ + θ) cos(ψ) cos(ψ + θ)dψ.

(32)

Now notice that ∫ 2π

0

cos2(ψ) cos2(ψ + θ)dψ =

∫ 2π

0

(sin(ψ))′ cos(ψ) cos2(ψ + θ)dψ

= sin(ψ) cos(ψ) cos2(ψ + θ)|2π0 −
∫ 2π

0

sin(ψ)(cos(ψ) cos2(ψ + θ))′dψ

=

∫ 2π

0

sin2(ψ) cos2(ψ + θ)dψ + 2

∫ 2π

0

sin(ψ) cos(ψ) cos(ψ + θ) sin(ψ + θ)dψ.

(33)

Thus we get

2

∫ 2π

0

cos2(ψ) cos2(ψ + θ)dψ =∫ 2π

0

cos2(ψ + θ)dψ + 2

∫ 2π

0

sin(ψ) cos(ψ) cos(ψ + θ) sin(ψ + θ)dψ. (34)

Therefore we have ∫ 2π

0

cos2(ψ) cos2(ψ + θ)dψ =
π

2
+

1

4

∫ 2π

0

sin(2ψ) sin(2ψ + 2θ)dψ

=
π

2
+

1

8

∫ 2π

0

(cos(2θ)− cos(4ψ + 2θ))dψ =
π

2
+
π

4
cos(2θ) =

π

2
+
π

4
(2 cos2(θ)− 1).

(35)

Therefore we obtain

Λ(φ) =
π2

2
(2 cos2(θ)− 1) + 2π · π

2
− 2π

1 + sin(φ)

∫ 2π

0

cos(ψ) cos(ψ + θ) cos(2ψ + θ)dψ. (36)

Thus it remains to calculate:
∫ 2π

0
cos(ψ) cos(ψ + θ) cos(2ψ + θ)dψ. We have∫ 2π

0

cos(ψ) cos(ψ + θ) cos(2ψ + θ)dψ =

∫ 2π

0

1

2
(cos(θ) + cos(2ψ + θ)) cos(2ψ + θ)dψ

=
1

2
cos(θ)

∫ 2π

0

cos(2ψ + θ)dψ +
1

2

∫ 2π

0

cos2(2ψ + θ)dψ =
π

2
.

(37)
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Putting this into the formula for Λ(φ), we get:

Λ(φ) =
π2

2
(1− 2

1 + sin(φ)
) + π2 cos2(θ). (38)

Thus we get:

E[XiXj ]− E[Xi]E[Xj ]

=
1

4
‖x‖22‖y‖22

n2

n− 1

∫ π
2

0

f(φ) cos2(φ)(sin2(φ) + 1)(
1

2
− 1

1 + sin(φ)
+ cos2(θ))dφ

−2

4
cos2(θ)n‖x‖22‖y‖22

∫ π
2

0

f(φ) cos2(φ)dφ

=
1

4
‖x‖22‖y‖22 cos2(θ)(

n2

n− 1

∫ π
2

0

f(φ) cos2(φ)(sin2(φ) + 1)dφ− 2n

∫ π
2

0

f(φ) cos2(φ)dφ)

−1

4
‖x‖22‖y‖22

n2

n− 1

∫ π
2

0

f(φ) cos2(φ)(sin2(φ) + 1)(
1

1 + sin(φ)
− 1

2
)dφ

=
n

4
‖x‖2‖y‖2

∫ π
2

0

f(φ) cos2(φ)[cos2(θ)
n

n− 1
(sin2(φ) + 1)

−2 cos2(θ)− n

n− 1
(sin2(φ) + 1)(

1

1 + sin(φ)
− 1

2
)]dφ

(39)

Denote Q(φ) = cos2(θ) n
n−1 (sin2(φ) + 1)− 2 cos2(θ)− n

n−1 (sin2(φ) + 1)( 1
1+sin(φ) −

1
2 ).

Thus we have:

E[XiXj ]− E[Xi]E[Xj ] =
n

4
‖x‖2‖y‖2

∫ π
2

0

f(φ) cos2(φ)Q(φ)dφ. (40)

Now we sum over m(m− 1) covariance terms and take into account normalization factor 1√
m

. That gives us

extra multiplicative term m(m−1)
m2 = m−1

m . Thus we can complete the proof.

8.3 Proof of Theorem 3.3

We obtain Theorem 3.3 through a sequence of smaller propositions. Broadly, the strategy is first to show that
the estimators of Theorem 3.3 are unbiased (Proposition 8.1). An expression for the mean squared error of the
estimator K̂(1)

m with one matrix block is then derived (Proposition 8.2). Finally, a straightforward recursive
formula for the mean squared error of the general estimator is derived (Proposition 8.3), and the result of the
theorem then follows.
Proposition 8.1. The estimator K̂(k)

m (x,y) is unbiased, for all k, n ∈ N, m ≤ n, and x,y ∈ Rn.

Proof. Notice first that since rows of S = {si,j} are orthogonal and are L2-normalized, the matrix S is an
isometry. Thus each block SDi is also an isometry. Therefore it suffices to prove the claim for k = 1.
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Then, denoting by J = (J1, . . . , Jm) the indices of the randomly selected rows of SD1, note that the estimator
K̂

(1)
m (x,y) may be expressed in the form

K̂(1)
m (x,y) =

1

m

m∑
i=1

(√
n(SD1)Jix×

√
n(SD1)Jiy

)
,

where (SD1)i is the ith row of SD1. Since each of the rows of SD1 has the same marginal distribution, it
suffices to demonstrate that E[yTD1S

>
1 S1D1x] = x>y

n , where S1 is the first row of S. Now note

E[y>DS>1 S1Dx]=
1

n
E

[
n∑
i=1

yidi ×
n∑
i=1

xidi

]
=

1

n
E

[
n∑
i=1

xiyid
2
i

]
+ E

∑
i 6=j

xiyjdidj

=
x>y

n
,

where di = Dii are iid Rademacher random variables, for i = 1, . . . , n.

With Proposition 8.1 in place, the mean square error for the estimator K̂(1)
m using one matrix block can be

derived.
Proposition 8.2. The MSE of the single SD(R)-block m-feature estimator K̂(1)

m (x,y) for 〈x,y〉 using the
without replacement row sub-sampling strategy is

MSE(K̂(1)
m (x,y)) =

1

m

(
n−m
n− 1

)(
‖x‖2‖y‖2 + 〈x,y〉2 − 2

n∑
i=1

x2i y
2
i

)
.

Proof. First note that since K̂(1)
m (x,y) is unbiased, the mean squared error is simply the variance of this

estimator. Secondly, denoting the indices of the m randomly selected rows by J = (J1, . . . , Jm), by
conditioning on J we obtain the following:

Var
(
K̂(1)
m (x,y)

)
=

n2

m2

(
E

[
Var

(
m∑
p=1

(SDx)Jp(SDy)Jp

∣∣∣∣∣J
)]

+ Var

(
E

[
m∑
p=1

(SDx)Jp(SDy)Jp

∣∣∣∣∣J
]))

.

Now note that the conditional expectation in the second term is constant as a function of J , since conditional
on whichever rows are sampled, the resulting estimator is unbiased. Taking the variance of this constant
therefore causes the second term to vanish. Now consider the conditional variance that appears in the first
term:

Var

(
m∑
p=1

(SDx)Jp(SDy)Jp

∣∣∣∣∣J
)

=

m∑
p=1

m∑
p′=1

Cov
(

(SDx)Jm(SDy)Jp , (SDx)Jp′ (SDy)Jp′
∣∣J)

=

m∑
p,p′=1

n∑
i,j,k,l=1

sJpisJpjsJp′ksJp′ lxiyjxkylCov (didj , dkdl) ,

where we write D = Diag(d1, . . . , dn). Now note that Cov (didj , dkdl) is non-zero iff i, j are distinct, and
{i, j} = {k, l}, in which case the covariance is 1. We therefore obtain:

Var

(
m∑
p=1

(SDx)Jp(SDy)Jp

∣∣∣∣∣J
)

=
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m∑
p,p′=1

n∑
i 6=j

(
sJpisJpjsJp′ isJp′ jx

2
i y

2
j + sJpisJpjsJp′ jsJp′ ixiyjxjyi

)
.

Substituting this expression for the conditional variance into the decomposition of the MSE of the estimator,
we obtain the result of the theorem:

Var
(
K̂(1)
m (x,y)

)
=
n2

m2
E

 m∑
p,p′=1

n∑
i 6=j

(
sJpisJpjsJp′ isJp′ jx

2
i y

2
j + sJpisJpjsJp′ jsJp′ ixiyjxjyi

)
=
n2

m2

m∑
p,p′=1

n∑
i 6=j

(
x2i y

2
j + xixjyiyj

)
E
[
sJpisJpjsJp′ isJp′ j

]
.

We now consider the law on the index variables J = (J1, . . . , Jm) induced by the sub-sampling strategy
without replacement to evaluate the expectation in this last term. If p = p′, the integrand of the expectation is
deterministically 1/n2. If p 6= p′, then we obtain:

E
[
sJpisJpjsJp′ isJp′ j

]
=E

[
sJpisJpjE

[
sJp′ isJp′ j

∣∣Jp]]
=E
[
sJpisJpj

[(
1

n

(
n/2− 1

n− 1

)
− 1

n

(
n/2

n− 1

))
1{sJpisJpj=1/n}+(

1

n

(
n/2

n− 1

)
− 1

n

(
n/2− 1

n− 1

))
1{sJpisJpj=−1/n}

]]
=

1

n(n− 1)
E
[
sJpisJpj

(
1{sJpisJpj=−1/n} − 1{sJpisJpj=1/n}

)]
=

1

n2(n− 1)
,

where we have used the fact that the products sJpisJpj and sJp′ isJp′ j take values in {±1/n}, and because
distinct rows of S are orthogonal, the marginal probability of each of the two values is 1/2. A simple
adjustment, using almost-sure distinctness of Jp and Jp′ , yields the conditional probabilities needed to evaluate
the conditional expectation that appears in the calculation above.

Substituting the values of these expectations back into the expression for the variance of K̂(1)
m (x,y) then

yields

Var(K̂(1)
m (x,y)) =

n2

m2

n∑
i6=j

(
x2i y

2
j + xixjyiyj

)(
m× 1

n2
−m(m− 1)× 1

n2(n− 1)

)

=
1

m

(
1− m− 1

n− 1

) n∑
i 6=j

(
x2i y

2
j + xixjyiyj

)

=
1

m

(
1− m− 1

n− 1

) n∑
i,j=1

(x2i y
2
j + xixjyiyj)− 2

n∑
i=1

x2i y
2
i


=

1

m

(
n−m
n− 1

)(
〈x,y〉2 + ‖x‖2‖y‖2 − 2

n∑
i=1

x2i y
2
i

)
,

as required.
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We now turn our attention to the following recursive expression for the mean squared error of a general
estimator.
Proposition 8.3. Let k ≥ 2. We have the following recursion for the MSE of K(k)

m (x, y):

MSE(K̂(k)
m (x,y)) = E

[
MSE

(
K̂(k−1)
m (SD1x,SD1y)|D1

)]
.

Proof. The result follows from a straightforward application of the law of total variance, conditioning on the
matrix D1. Observe that

MSE(K̂(k)
m (x,y)) = Var(K̂(k)

m (x,y))

= E
[
Var

(
K̂(k)
m (x,y)

∣∣∣D1

)]
+ Var

(
E
[
K̂(k)
m (x,y)

∣∣∣D1

])
= E

[
Var

(
K̂(k−1)
m (SD1x,SD1y)

∣∣∣D1

)]
+ Var

(
E
[
K̂(k−1)
m (SD1x,SD1y)

∣∣∣D1

])
.

But examining the conditional expectation in the second term, we observe

E
[
K̂(k−1)
m (SD1x,SD1y)

∣∣∣D1

]
= 〈SD1x,SD1y〉 almost surely ,

by unbiasedness of the estimator, and since SD1 is orthogonal almost surely, this is equal to the (constant)
inner product 〈x,y〉 almost surely. This conditional expectation therefore has 0 variance, and so the second
term in the expression for the MSE above vanishes, which results in the statement of the proposition.

With these intermediate propositions established, we are now in a position to prove Theorem 3.3. In order to
use the recursive result of Proposition 8.3, we require the following lemma.
Lemma 8.4. For all x, y,∈ Rn, we have

E

[
n∑
i=1

(SDx)2i (SDy)2i

]
=

1

n

(
‖x‖2‖y‖2 + 2〈x,y〉2 − 2

n∑
i=1

x2i y
2
i

)
.

Proof. The result follows by direct calculation. Note that

E

[
n∑
i=1

(SDx)
2
i (SDy)

2
i

]
= nE

( n∑
a=1

s1adaxa

)2(∑
a=1

s1adaya

)2


= n

n∑
i,j,k,l=1

s1is1js1ks1lxixjykylE [didjdkdl] ,

where the first inequality follows since the n summands indexed by i in the initial expectation are identically
distributed. Now note that the expectation E [didjdkdl] is non-zero iff i = j = k = l, or i = j 6= k = l, or
i = k 6= j = l, or i = l 6= k = l; in all such cases, the expectation takes the value 1. Substituting this into the
above expression and collecting terms, we obtain

E

[
n∑
i=1

(SDx)
2
i (SDy)

2
i

]
=

1

n

 n∑
i=1

x2i y
2
i +

∑
i 6=j

x2i y
2
i + 2

∑
i6=j

xixjyiyj


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=
1

n

 n∑
i,j=1

x2i y
2
j + 2

n∑
i,j=1

xixjyiyj − 2

n∑
i=1

x2i y
2
i

 ,

from which the statement of the lemma follows immediately.

Proof of Theorem 3.3. Recall that we aim to establish the following general expression for k ≥ 1:

MSE(K̂(k)
m (x,y))=

1

m

(
n−m
n−1

)(
((x>y)2+‖x‖2‖y‖2)+

k−1∑
r=1

(−1)r2r

nr
(2(x>y)2+‖x‖2‖y‖2)+

(−1)k2k

nk−1

n∑
i=1

x2i y
2
i

)
.

We proceed by induction. The case k = 1 is verified by Proposition 8.2. For the inductive step, suppose the
result holds for some k ∈ N. Then observe by Proposition 8.3 and the induction hypothesis, we have

MSE(K̂(k+1)
m (x,y)) = E

[
MSE

(
K̂(k−1)
m (SD1x,SD1y)|D1

)]
=

1

m

(
n−m
n− 1

)(
((x>y)2 + ‖x‖2‖y‖2) +

k−1∑
r=1

(−1)r2r

nr
(2(x>y)2 + ‖x‖2‖y‖2)

+
(−1)k2k

nk−1

n∑
i=1

E
[
(SD1x)2i (SD1y)2i

])
,

where we have used that SD1 is almost surely orthogonal, and therefore ‖SD1x‖2 = ‖x‖2 almost surely,
‖SD1y‖2 = ‖y‖2 almost surely, and 〈SD1x,SD1y〉 = 〈x,y〉 almost surely. Applying Lemma 8.4 to the
remaining expectation and collecting terms yields the required expression for MSE(K̂

(k+1)
m (x,y)), and the

proof is complete.

8.4 Proof of Lemma 3.5

Proof. Consider the last block H that is sub-sampled. Notice that if rows r1 and r2 of H of indices i and
n
2 + i are chosen then from the recursive definition of H we conclude that (r2)>x = (r11)>x− (r12)>x, where
r11, r

1
2 stand for the first and second half of r1 respectively. Thus computations of (r1)>x can be reused to

compute both (r1)>x and (r2)>x in time n+O(1) instead of 2n. If we denote by r the expected number of
pairs of rows (i, n2 + i) that are chosen by the random sampling mechanism, then we see that by applying the
trick above for all the r pairs, we obtain time complexity O((k − 1)n log(n) + n(m− 2r) + nr + r), where:
O((k− 1)n log(n)) is the time required to compute first (k− 1) HD blocks (with the use of Walsh-Hadamard
Transform), O(n(m − 2r)) stands for time complexity of the brute force computations for these rows that
were not coupled in the last block and O(nr + r) comes from the above trick applied to all r aforementioned
pairs of rows. Thus, to obtain the first term in the min-expression on time complexity from the statement of
the lemma, it remains to show that

E[r] =
(m− 1)m

2(n− 1)
. (41)

But this is straightforward. Note that the number of the m-subsets of the set of all n rows that contain some
fixed rows of indices i1, i2 (i1 6= i2) is

(
n−2
m−2

)
. Thus for any fixed pair of rows of indices i and n

2 + i the
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probability that these two rows will be selected is exactly psucc =
(n−2
m−2)
(nm)

= (m−1)m
(n−1)n . Equation 41 comes from

the fact that clearly: E[r] = n
2 psucc. Thus we obtain the first term in the min-expression from the statement of

the lemma. The other one comes from the fact that one can always do all the computations by calculating k
times Walsh-Hadamard transformation. That completes the proof.

8.5 Proof of Theorem 3.6

The proof of Theorem 3.6 follows a very similar structure to that of Theorem 3.3; we proceed by induction,
and may use the results of Proposition 8.3 to set up a recursion. We first show unbiasedness of the estimator
(Proposition 8.5), and then treat the base case of the inductive argument (Proposition 8.6). We prove slightly
more general statements than needed for Theorem 3.6, as this will allow us to explore the fully complex case
in §8.7.
Proposition 8.5. The estimator KH,(k)m (x,y) is unbiased for all k, n ∈ N, m ≤ n, and x,y ∈ Cn with
〈x,y〉 ∈ R; in particular, for all x,y ∈ R.

Proof. Following a similar argument to the proof of Proposition 8.1, note that it is sufficient to prove the claim
for k = 1, since each SD block is unitary, and hence preserves the Hermitian product 〈x,y〉.

Next, note that the estimator can be written as a sum of identically distributed terms:

K̂H,(1)m (x,y) =
n

m

m∑
i=1

Re
(
(SD1x)Ji × (SD1y)Ji

)
.

The terms are identically distributed since the index variables Ji are marginally identically distributed, and the
rows of SD1 are marginally identically distributed (the elements of a row are iid Unif(S1)/

√
n). Now note

E
[
Re
(
(SD1x)Ji × (SD1y)Ji

)]
=

1

n
E

[
n∑
i=1

yidi ×
n∑
i=1

xidi

]

=
1

n
E

[
n∑
i=1

xiyididi

]
+ E

∑
i 6=j

xiyjdidj

 =
1

n
〈x,y〉 ,

where di = Dii
iid∼ Unif(S1) for i = 1, . . . , n. This immediately yields E

[
K̂
H,(1)
m (x,y)

]
= 〈x,y〉, as

required.

We now derive the base case for our inductive proof, again proving a slightly more general statement then
necessary for Theorem 3.6.
Proposition 8.6. Let x,y ∈ Cn such that 〈x,y〉 ∈ R. The MSE of the single complex SD-block m-feature
estimator KH,(1)m (x,y) for 〈x,y〉 is

MSE(K̂H,(1)m (x,y)) =
1

2m

(
n−m
n− 1

)(
〈x,x〉〈y,y〉+ 〈x,y〉2 −

n∑
r=1

|xr|2|yr|2 −
n∑
r=1

Re(x2ry
2
r)

)
.
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Proof. The proof is very similar to that of Proposition 8.2. By the unbiasedness result of Proposition 8.5, the
mean squared error of the estimator is simply the variance. We begin by conditioning on the random index
vector J selected by the sub-sampling procedure.

K̂H,(1)m (x,y)) =
1

M
Re
(
〈
√
n(SD1x)J,

√
n(SDy)J〉

)
,

where again J is a set of uniform iid indices from 1, . . . , n, and the bar over D represents complex conjugation.
Since the estimator is again unbiased, its MSE is equal to its variance. First conditioning on the index set J, as
for Proposition 8.6, we obtain

Var
(
K̂H,(1)m (x, y)

)
=
n2

m2

(
E

[
Var

(
Re

(
m∑
p=1

(SD1x)Jp(SD1y)Jp

)∣∣∣∣∣J
)]

+Var

(
E

[
Re

(
m∑
p=1

(SD1x)Jp(SD1y)Jp

)∣∣∣∣∣J
]))

.

Again, the second term vanishes as the conditional expectation is constant as a function of J, by unitarity of
SD. Turning attention to the conditional variance expression in the first term, we note

Var

(
Re

(
m∑
p=1

(SD1x)Jp(SD1y)Jp

)∣∣∣∣∣J
)

=

m∑
p,p′=1

n∑
i,j,k,l=1

sJpisJpjsJp′ksJp′ lCov
(
Re(dixidjyj),Re(dkxkdlyl)

)
.

Now note that the covariance term is non-zero iff i, j are distinct, and {i, j} = {k, l}. We therefore obtain

Var

(
Re

(
m∑
p=1

(SDx)Jp(SDy)Jp

)∣∣∣∣∣J
)

=

m∑
p,p′=1

n∑
i 6=j

sJpisJpjsJp′ isJp′ j
(
Cov

(
Re(dixidjyj),Re(dixidjyj)

)
+Cov

(
Re(dixidjyj),Re(djxjdiyi)

))
First consider the term Cov

(
Re(dixidjyj),Re(dixidjyj)

)
. The random variable dixidjyj is distributed

uniformly on the circle in the complex plane centered at the origin with radius |xiyj |. Therefore the variance
of its real part is

Cov
(
Re(dixidjyj),Re(dixidjyj)

)
=

1

2
|xiyj |2 =

1

2
xixiyjyj .

For the second covariance term, we perform an explicit calculation. Let Z = eiθ = didj . Then we have

Cov
(
Re(dixidjyj),Re(djxjdiyi)

)
= Cov

(
Re(Zxiyj),Re(Zxjyi)

)
= Cov (cos(θ)Re(xiyj)− sin(θ)Im(xiyj), cos(θ)Re(xjyi) + sin(θ)Im(xjyi))

=
1

2
(Re(xiyj)Re(xjyi)− Im(xiyj)Im(xjyi)) ,

with the final equality following since the angle θ is uniformly distributed on [0, 2π], and standard trigonometric
integral identities. We recognize the bracketed terms in the final line as the real part of the product xixjyiyj .
Substituting these into the expression for the conditional variance obtained above, we have

Var

(
Re

(
m∑
p=1

(SDx)Jp(SDy)Jp

)∣∣∣∣∣J
)

=

m∑
p,p′=1

n∑
i 6=j

sJpisJpjsJp′ isJp′ j
1

2

(
xixiyjyj + Re(xixjyiyj)

)
.
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Now taking the expectation over the index variables J, we note that as in the proof of Proposition 8.2, the
expectation of the term sJpisJpjsJp′ isJp′ j is 1/n2 when p = p′, and 1/(n2(n− 1)) otherwise. Therefore we
obtain

Var
(
K̂H,(1)m (x,y)

)
=

n2

m2

(m
n2

+
m(m− 1)

n2(n− 1)

)
1

2

n∑
i 6=j

(
xixiyjyj + Re(xixjyiyj)

)
=

1

2m

(
n−m
n− 1

) n∑
i 6=j

(
xixiyjyj + Re(xixjyiyj)

)
=

1

2m

(
n−m
n− 1

) n∑
i,j=1

(
xixiyjyj + Re(xixjyiyj)

)
−

n∑
i=1

(xixiyiyi + Re(xixiyiyi))


=

1

2m

(
n−m
n− 1

)(
〈x,x〉〈y,y〉+ 〈x,y〉2 −

n∑
i=1

(xixiyiyi + Re(xixiyiyi))

)
,

where in the final equality we have used the assumption that 〈x,y〉 ∈ R.

We are now in a position to prove Theorem 3.6 by induction, using Proposition 8.6 as a base case, and
Proposition 8.3 for the inductive step.

Proof of Theorem 3.6. Recall that we aim to establish the following general expression for k ≥ 1:

MSE(K̂H,(k)m (x,y)) =
1

2m

(
n−m
n− 1

)(
((x>y)2 + ‖x‖2‖y‖2)+

k−1∑
r=1

(−1)r2r

nr
(2(x>y)2 + ‖x‖2‖y‖2) +

(−1)k2k

nk−1

n∑
i=1

x2i y
2
i

)
.

We proceed by induction. The case k = 1 is verified by Proposition 8.6, and by noting that in the expression
obtained in Proposition 8.6, we have

n∑
i=1

xixiyiyi = Re(xixiyiyi) =

n∑
i=1

x2i y
2
i .

For the inductive step, suppose the result holds for some k ∈ N. Then observe by Proposition 8.3 and the
induction hypothesis, we have, for x,y ∈ Rn:

MSE(K̂H,(k+1)
m (x,y)) = E

[
MSE

(
K̂(k−1)
m (SD1x,SD1y)|D1

)]
=

1

2m

(
n−m
n− 1

)(
((x>y)2 + ‖x‖2‖y‖2) +

k−1∑
r=1

(−1)r2r

nr
(2(x>y)2 + ‖x‖2‖y‖2)

+
(−1)k2k

nk−1

n∑
i=1

E
[
(SD1x)2i (SD1y)2i

])
,

where we have used that SD1 is almost surely orthogonal, and therefore ‖SD1x‖2 = ‖x‖2 almost surely,
‖SD1y‖2 = ‖y‖2 almost surely, and 〈SD1x,SD1y〉 = 〈x,y〉 almost surely. Applying Lemma 8.4 to the
remaining expectation and collecting terms yields the required expression for MSE(K̂

H,(k+1)
m (x,y)), and the

proof is complete.
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8.6 Proof of Corollary 3.7

The proof follows simply by following the inductive strategy of the proof of Theorem 3.6, replacing the base
case in Proposition 8.6 with the following.
Proposition 8.7. Let x,y ∈ Rn. The MSE of the single hybrid SD-block m-feature estimator KH,(1)m (x,y)
using a diagonal matrix with entries Unif({1,−1, i,−i}), rather than Unif(S1) for 〈x,y〉 is

MSE(K̂H,(1)m (x,y)) =
1

2m

(
〈x,x〉〈y,y〉+ 〈x,y〉2 − 2

n∑
r=1

x2ry
2
r

)
.

Proof. The proof of this proposition proceeds exactly as for Proposition 8.6; by following the same chain of
reasoning, conditioning on the index set J of the sub-sampled rows, we arrive at

Var

(
Re

(
m∑
p=1

(SD1x)Jp(SD1y)Jp

)∣∣∣∣∣J
)

=

m∑
p,p′=1

n∑
i,j,k,l=1

sJpisJpjsJp′ksJp′ lCov
(
Re(dixidjyj),Re(dkxkdlyl)

)
.

Since we are dealing strictly with the case x,y ∈ Rn, we may simplify this further to obtain

Var

(
Re

(
m∑
p=1

(SD1x)Jp(SD1y)Jp

)∣∣∣∣∣J
)

=

m∑
p,p′=1

n∑
i,j,k,l=1

sJpisJpjsJp′ksJp′ lxixkyiylCov
(
Re(didj),Re(dkdl)

)
.

By calculating directly with the di, dj , dk, dl ∼ Unif({1,−1, i,−i}), we obtain

Var

(
Re

(
m∑
p=1

(SD1x)Jp(SD1y)Jp

)∣∣∣∣∣J
)

=

1

2

m∑
p,p′=1

n∑
i 6=j

sJpisJpjsJp′ksJp′ l(x
2
i y

2
j + xixjyiyj) ,

exactly as in Proposition 8.6; following the rest of the argument of Proposition 8.6 yields the result.

The proof of the corollary now follows by applying the steps of the proof of Theorem 3.6.

8.7 Exploring Dimensionality Reduction with Fully-complex Random Matrices

In this section, we briefly explore the possibility of using SD-product matrices in which all the random
diagonal matrices are complex-valued. Following on from the ROMs introduced in Definition 2.1, we define
the S-Uniform random matrix with k ∈ N blocks to be given by

M
(k)
SU =

k∏
i=1

SD
(U)
i ,
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where (D
(U)
i )ki=1 are iid diagonal matrices with iid Unif(S1) random variables on the diagonals, and S1 is the

unit circle of C.

As alluded to in §3, we will see that introducing this increased number of complex parameters does not lead to
significant increases in statistical performance relative to the estimator K̂H,(k)m for dimensionality reduction.

We consider the estimator K̂U,(k)m below, based on the sub-sampled SD-product matrix M
(k),sub
SU :

K̂U,(k)m (x,y) =
1

m
Re

[(
M

(k),sub
SU x

)> (
M

(k),sub
SU y

)]
,

and show that it does not yield a significant improvement over the estimator K̂H,(k)m of Theorem 3.6:
Theorem 8.8. For x,y ∈ Rn, the estimator K̂U,(k)m (x,y), applying random sub-sampling strategy without
replacement is unbiased and satisfies:

MSE(K̂U,(k)m (x,y))=

1

2m

(
n−m
n− 1

)((
(x>y)2+‖x‖2‖y‖2

)
+

k−1∑
r=1

(−1)r

nr
(3(x>y)2 + ‖x‖2‖y‖2) +

(−1)k2

nk−1

n∑
i=1

x2i y
2
i

)
.

The structure of the proof of Theorem 8.8 is broadly the same as that of Theorem 3.3. We begin by remarking
that the proof that the estimator is unbiased is exactly the same as that of Proposition 8.5. We then note that in
the case of k = 1 block, the estimators K̂H,(1)m and K̂U,(1)m , coincide so Proposition 8.6 establishes the MSE
of the estimator K̂U,(k)m in the base case k = 1. We then obtain a recursion formula for the MSE (Proposition
8.9), and finally prove the theorem by induction.
Proposition 8.9. Let k ≥ 2, n ∈ N, m ≤ n, and x,y ∈ Cn such that 〈x,y〉 ∈ R; in particular, this includes
x,y ∈ Rn. Then we have the following recursion for the MSE of K̂U,(k)M (x,y):

MSE(K̂U,(k)m (x,y)) = E
[
MSE(K̂U,(k−1)m (SD1x,SD1y)

∣∣D1)
]

Proof. The proof is exactly analogous to that of Proposition 8.3, and is therefore omitted.

Before we complete the proof by induction, we will need the following auxiliary result, to deal with the
expectations that arise during the recursion due to the terms in the MSE expression of Proposition 8.6.
Lemma 8.10. Under the assumptions of Theorem 8.8, we have the following expectations:

E
[
|(SDx)r|2|(SDy)r|2

]
=

1

n2

(
〈x,x〉〈y,y〉+ 〈x,y〉2 −

n∑
i=1

|xi|2|yi|2
)

E
[
Re((SDx)2r(SDy)2r)

]
=

1

n2

(
2〈x,y〉2 −

n∑
i=1

Re(x2i y
2
i )

)

Proof. For the first claim, we note that

E
[
|(SDx)r|2|(SDy)r|2

]
=

n∑
i,j,k,l

srisrjsrksrlxixjykylE
[
didjdkdl

]
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=
1

n2

∑
i 6=j

xixiyjyj +
∑
i 6=j

xixjyjyi +

n∑
i=1

xixiyiyi


=

1

n2

 n∑
i,j=1

xixiyjyj +

n∑
i,j=1

xixjyjyi −
n∑
i=1

xixiyiyi


=

1

n2

(
〈x,x〉〈y,y〉+ 〈x,y〉2 −

n∑
i=1

|xi|2|yi|2
)
,

as required, where in the final equality we have use the assumption that 〈x,y〉 ∈ R. For the second claim, we
observe that

E
[
Re((SDx)2r(SDy)2r

]
=Re

 n∑
i,j,k,l

srisrjsrksrlxixjykylE
[
didjdkdl

]
=Re

 1

n2

2
∑
i 6=j

xixjyiyj +

n∑
i=1

xixiyiyi


=

1

n2

(
2〈x,y〉2 −

n∑
i=1

Re
(
x2i y

2
i

))
,

where again we have used the assumption that 〈x,y〉 ∈ R.

Proof of Theorem 8.8. The proof now proceeds by induction. We in fact prove the stronger result that for any
x,y ∈ Cn for which 〈x,y〉 ∈ R, we have

MSE(K̂U,(k)m (x,y))=
1

2m

(
n−m
n− 1

)((
〈x,y〉2+〈x,x〉〈y,y〉

)
+

k−1∑
r=1

(−1)r

nr
(3〈x,y〉2+〈x,x〉〈y,y〉)+

(−1)k

nk−1

(
n∑
i=1

(
|xi|2|yi|2 + Re

(
x2i y

2
i

))))
.

from which Theorem 8.8 clearly follows. Proposition 8.6 yields the base case k = 1 for this claim. For the
recursive step, suppose that the result holds for some number k ∈ N of blocks. Recalling the recursion of
Proposition 8.9, we then obtain

MSE(K̂U,(k+1)
m (x,y))=

1

2m

(
n−m
n− 1

)((
〈x,y〉2+〈x,x〉〈y,y〉

)
+

k−1∑
r=1

(−1)r

nr
(3〈x,y〉2+〈x,x〉〈y,y〉)+

(−1)k

nk−1

(
n∑
i=1

(
E
[
|SD1x|2i |SD1y|2i

]
+ E

[
Re
(
(SD1x)2i (SD1y)2i

)])))
,

where we have used the fact that SD1 is a unitary isometry almost surely, and thus preserves Hermitian
products. Applying Lemma 8.10 to the remaining expectations and collecting terms proves the inductive step,
which concludes the proof of the theorem.

8.8 Proof of Theorem 3.8

Proof. The proof of this result is reasonably straightforward with the proofs of Theorems 3.3 and 3.6 in hand;
we simply recognize where in these proofs the assumption of the sampling strategy without replacement was
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used. We deal first with Theorem 3.3, which deals with the MSE associated with K̂(k)
m (x,y). The only place in

which the assumption of the sub-sampling strategy without replacement is used is mid-way through the proof
of Proposition 8.2, which quantifies MSE(K̂

(1)
m (x,y)). Picking up the proof at the point the sub-sampling

strategy is used, we have

MSE(K̂(1)
m (x,y)) =

n2

m2

m∑
p,p′=1

n∑
i 6=j

(
x2i y

2
j + xixjyiyj

)
E
[
sJpisJpjsJp′ isJp′ j

]
.

Now instead using sub-sampling strategy with replacement, note that each pair of sub-sampled indices Jp and
Jp′ are independent. Recalling that the columns of S are orthogonal, we obtain for distinct p and p′ that

E
[
sJpisJpjsJp′ isJp′ j

]
= E

[
sJpisJpj

]
E
[
sJp′ isJp′ j

]
= 0 .

Again, for p = p′, we have E
[
sJpisJpjsJp′ isJp′ j

]
= 1/n2. Substituting the values of these expectations back

into the expression for the MSE of K̂(k)
m (x,y) then yields

MSE(K̂(1)
m (x,y)) =

n2

m2

n∑
i 6=j

(
x2i y

2
j + xixjyiyj

)(
m× 1

n2

)

=
1

m

(
1− m− 1

n− 1

) n∑
i 6=j

(
x2i y

2
j + xixjyiyj

)
=

1

m

(
〈x,y〉2 + ‖x‖2‖y‖2 − 2

n∑
i=1

x2i y
2
i

)
as required.

For the estimator K̂H,(k)m (x,y), the result also immediately follows with the above calculation, as the only
point in the proof of the MSE expressions for these estimators that is influenced by the sub-sampling strategy
is in the calculation of the quantities E

[
sJpisJpjsJp′ isJp′ j

]
; therefore, exactly the same multiplicative factor

is incurred for MSE as for K̂(k)
m (x,y).

9 Proofs of results in §4

9.1 Proof of Lemma 4.2

Proof. Follows immediately from the proof of Theorem 4.4 (see: the proof below).

9.2 Proof of Theorem 4.3

Recall that the angular kernel estimator based on Gort is given by

K̂ang,ort
m (x,y) =

1

m
sign(Gortx)>sign(Gorty)
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where the function sign acts on vectors element-wise. In what follows, we write Gi
ort for the ith row of Gort,

and Gi for the ith row of G.

Since each Gi
ort has the same marginal distribution as Rm in the unstructured Gaussian case covered by

Theorem 4.4, unbiasedness of K̂ang,ort(x, y) follows immediately from this result, and so we obtain:
Lemma 9.1. K̂ang,ort

m (x,y) is an unbiased estimator of Kang(x,y).

We now turn our attention to the variance of K̂ang,ort
m (x,y).

Theorem 9.2. The variance of the estimator K̂ang,ort
m (x, y) is strictly smaller than the variance of K̂ang, base

m (x,y)

Proof. Denote by θ the angle between x and y, and for notational ease, let Si = sign
(〈
Gi,x

〉)
sign

(〈
Gi,y

〉)
,

and Sort
i = sign

(〈
Gi

ort,x
〉)

sign
(〈
Gi

ort,y
〉)

. Now observe that as K̂ang,ort
m (x,y) is unbiased, we have

Var
(
K̂ang,ort
m (x,y)

)
= Var

(
1

m

m∑
i=1

Sort
i

)

=
1

m2

 m∑
i=1

Var
(
Sort
i

)
+

m∑
i6=i′

Cov
(
Sort
i , Sort

i′
) .

By a similar argument, we have

Var
(
K̂base
m (x,y)

)
=

1

m2

 m∑
i=1

Var (Si) +

m∑
i 6=i′

Cov (Si, Si′)

 . (42)

Note that the covariance terms in (42) evaluate to 0, by independence of Si and Si′ for i 6= i′ (which is
inherited from the independence of Gi and Gi′ ). Also observe that since Gi d= Gi

ort, we have

Var
(
Sort
i

)
= Var (Si) .

Therefore, demonstrating the theorem is equivalent to showing, for i 6= i′, that

Cov
(
Sort
i , Sort

i′
)
< 0 ,

which is itself equivalent to showing

E
[
Sort
i Sort

i′
]
< E

[
Sort
i

]
E
[
Sort
i′
]
. (43)

Note that the variables (Sort
i )mi=1 take values in {±1}. Denoting Ai = {Sort

i = −1} for i = 1, . . . ,m, we
can rewrite (43) as

P [Aci ∩ Aci′ ] + P [Ai ∩ Ai′ ]− P [Ai ∩ Aci′ ]− P [Aci ∩ Ai′ ] <
(
π − 2θ

π

)2

.

Note that the left-hand side is equal to

2(P [Aci ∩ Aci′ ] + P [Ai ∩ Ai′ ])− 1 .

Plugging in the bounds of Proposition 9.3, and using the fact that the pair of indicators (1Ai ,1Ai′ ) is identically
distributed for all pairs of distinct indices i, i′ ∈ {1, . . . ,m}, thus yields the result.
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Proposition 9.3. We then have the following inequalities:

P [A1 ∩ A2] <

(
θ

π

)2

and P [Ac1 ∩ Ac2] <

(
1− θ

π

)2

Before providing the proof of this proposition, we describe some coordinate choices we will make in order to
obtain the bounds in Proposition 9.3.

We pick an orthonormal basis for Rn so that the first two coordinates span the x-y plane, and further so that
(G1

ort)2, the coordinate of G1
ort in the second dimension, is 0. We extend this to an orthonormal basis of Rn

so that (G1
ort)3 ≥ 0, and (G1

ort)i = 0 for i ≥ 4. Thus, in this basis, we have coordinates

G1
ort = ((G1

ort)1, 0, (G
1
ort)3, 0, . . . , 0) ,

with (G1
ort)1 ∼ χ2 and (G1

ort)3 ∼ χN−2 (by elementary calculations with multivariate Gaussian distributions).
Note that the angle, φ, that G1

ort makes with the x-y plane is then φ = arctan((G1
ort)3/(G

1
ort)1). Having

fixed our coordinate system relative to the random variable G1
ort, the coordinates of x and y in this frame are

now themselves random variables; we introduce the angle ψ to describe the angle between x and the positive
first coordinate axis in this basis.

Now consider G2
ort. We are concerned with the direction of ((G2

ort)1, (G
2
ort)2) in the x-y plane. Conditional

on G1
ort, the direction of the full vector G2

ort is distributed uniformly on Sn−2(〈G1
ort〉⊥), the set of unit

vectors orthogonal to G1
ort. Because of our particular choice of coordinates, we can therefore write

G2
ort = (r sin(φ), (G2

ort)2, r cos(φ), (G2
ort)4, (G

2
ort)5, . . . , (G

2
ort)n) ,

where the (N − 1)-dimensional vector (r, (G2
ort)2, (G

2
ort)4, (G

2
ort)5, . . . , (G

2
ort)n) has an isotropic distribu-

tion.

So the direction of ((G2
ort)1, (G

2
ort)2) in the x-y plane follows an angular Gaussian distribution, with

covariance matrix (
sin2(φ) 0

0 1

)
.

With these geometrical considerations in place, we are ready to give the proof of Proposition 9.3.

Proof of Proposition 9.3. Dealing with the first inequality, we decompose the event as

A1 ∩ A2 ={
〈
G1

ort,x
〉
> 0,

〈
G1

ort,y
〉
< 0,

〈
G2

ort,x
〉
> 0,

〈
G2

ort,y
〉
< 0}

∪ {
〈
G1

ort,x
〉
> 0,

〈
G1

ort,y
〉
< 0,

〈
G2

ort,x
〉
< 0,

〈
G2

ort,y
〉
> 0}

∪ {
〈
G1

ort,x
〉
< 0,

〈
G1

ort,y
〉
> 0,

〈
G2

ort,x
〉
> 0,

〈
G2

ort,y
〉
< 0}

∪ {
〈
G1

ort,x
〉
< 0,

〈
G1

ort,y
〉
> 0,

〈
G2

ort,x
〉
< 0,

〈
G2

ort,y
〉
> 0} .

As the law of (G1
ort,G

2
ort) is the same as that of (G2

ort,G
1
ort) and that of (−G1

ort,G
2
ort), it follows that all

four events in the above expression have the same probability. The statement of the theorem is therefore
equivalent to demonstrating the following inequality:

P
[〈
G1

ort, x
〉
> 0,

〈
G1

ort,y
〉
< 0,

〈
G2

ort,x
〉
> 0,

〈
G2

ort,y
〉
< 0
]
<

(
θ

2π

)2

.
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We now proceed according to the coordinate choices described above. We first condition on the random angles
φ and ψ to obtain

P
[〈
G1

ort,x
〉
> 0,

〈
G1

ort,y
〉
< 0,

〈
G2

ort,x
〉
> 0,

〈
G2

ort,y
〉
< 0
]

=

∫ 2π

0

dψ

2π

∫ π/2

0

f(φ)dφ P
[〈
G1

ort,x
〉
> 0,

〈
G1

ort,y
〉
< 0,

〈
G2

ort,x
〉
> 0,

〈
G2

ort,y
〉
< 0|ψ, φ

]
=

∫ 2π

0

dψ

2π

∫ π/2

0

f(φ)dφ 1{0∈[ψ−π/2,ψ−π/2+θ]}P
[〈
G2

ort,x
〉
> 0,

〈
G2

ort,y
〉
< 0|ψ, φ

]
,

where f is the density of the random angle φ. The final equality above follows as G1
ort and G2

ort are
independent conditional on ψ and φ, and since the event {

〈
G1

ort,x
〉
> 0,

〈
G1

ort,y
〉
< 0} is exactly the event

{0 ∈ [ψ − π/2, ψ − π/2 + θ]}, by considering the geometry of the situation in the x-y plane. We can remove
the indicator function from the integrand by adjusting the limits of integration, obtaining

P
[〈
G1

ort,x
〉
> 0,

〈
G1

ort,y
〉
< 0,

〈
G2

ort,x
〉
> 0,

〈
G2

ort,y
〉
< 0
]

=

∫ π/2

π/2−θ

dψ

2π

∫ π/2

0

f(φ)dφ P
[〈
G2

ort,x
〉
> 0,

〈
G2

ort,y
〉
< 0|ψ, φ

]
.

We now turn our attention to the conditional probability

P
[〈
G2

ort,x
〉
> 0,

〈
G2

ort,y
〉
< 0|ψ, φ

]
.

The event {
〈
G2

ort,x
〉
> 0,

〈
G2

ort,y
〉
< 0} is equivalent to the angle t of the projection of G2

ort into the x-y
plane with the first coordinate axis lying in the interval [ψ − π/2, ψ − π/2 + θ]. Recalling the distribution of
the angle t from the geometric considerations described immediately before this proof, we obtain

P
[〈
G1

ort,x
〉
> 0,

〈
G1

ort,y
〉
< 0,

〈
G2

ort,x
〉
> 0,

〈
G2

ort,y
〉
< 0
]

=

∫ π/2

π/2−θ

dψ

2π

∫ π/2

0

f(φ)dφ

∫ ψ−π/2+θ

ψ−π/2
(2π sin(φ))−1(cos2(t)/ sin2(φ) + sin2(t))−1dt .

With θ ∈ [0, π/2], we note that the integral with respect to t can be evaluated analytically, leading us to

P
[〈
G1

ort,x
〉
> 0,

〈
G1

ort,y
〉
< 0,

〈
G2

ort,x
〉
> 0,

〈
G2

ort,y
〉
< 0
]

=

∫ π/2

π/2−θ

dψ

2π

∫ π/2

0

f(φ)dφ
1

2π
(arctan(tan(ψ − π/2 + θ) sin(φ))− arctan(tan(ψ − π/2) sin(φ)))

≤
∫ π/2

π/2−θ

dψ

2π

∫ π/2

0

f(φ)dφ
θ

2π

=

(
θ

2π

)2

.

To deal with θ ∈ [π/2, π], we note that if the angle θ between x and y is obtuse, then the angle between x and
−y is π−θ and therefore acute. Recalling from our definition thatAm = {sign

(〈
Gi

ort,x
〉)

sign
(〈
Gi

ort,y
〉)

=

−1}, if we denote the corresponding quantity for the pair of vecors x,−y by Ām = {sign
(〈
Gi

ort,x
〉)

sign
(〈
Gi

ort,−y
〉)

=
−1}, then we in fact have Ām = Acm. Therefore, applying the result to the pair of vectors x and −y (which
have acute angle π − θ between them) and using the inclusion-exclusion principle, we obtain:

P(A1 ∩ A2) = 1− P(Ac1)− P(Ac2) + P(Ac1 ∩ Ac2)
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< 1− P(Ac1)− P(Ac2) +

(
π − θ
π

)2

= 1− 2

(
π − θ
π

)
+

(
π − θ
π

)2

=

(
θ

π

)2

as required.

The second inequality of Proposition 9.3 follows from the inclusion-exclusion principle and the first inequality:

P [Ac1 ∩ Ac2] = 1− P [A1]− P [A2] + P [A1 ∩ A2]

< 1− P [A1]− P [A2] +

(
θ

π

)2

= (1− P [A1])(1− P [A2])

=

(
1− θ

π

)2

.

9.3 Proof of Theorem 4.4

Proof. We will consider the following setting. Given two vectors x,y ∈ Rn, each of them is transformed by
the nonlinear mapping: φM : z→ 1√

k
sgn(Mz), where M ∈ Rm×n is some linear transformation and sgn(v)

stands for a vector obtained from v by applying pointwise nonlinear mapping sgn : R→ R defined as follows:
sgn(x) = +1 if x > 0 and sgn(x) = −1 otherwise. The angular distance θ between x and y is estimated by:
θ̂M = π

2 (1− φM(x)>φM(y)). We will derive the formula for the MSE(θ̂M(x,y)). One can easily see that
the MSE of the considered in the statement of the theorem angular kernel on vectors x and y can be obtained
from this one by multiplying by 4

π2 .

Denote by ri the ith row of M. Notice first that for any two vectors x,y ∈ Rn with angular distance θ, the
event Ei = {sgn((ri)>x) 6= sgn((ri)>y)} is equivalent to the event {riproj ∈ R}, where riproj stands for the
projection of ri into the x − y plane and R is a union of two cones in the x-y plane obtained by rotating
vectors x and y by π

2 . Denote Ai = {riproj ∈ R} for i = 1, ..., k and δi,j = P[Ai ∩ Aj ]− P[Ai]P[Aj ].

For a warmup, let us start our analysis for the standard unstructured Gaussian estimator case. It is a well
known fact that this is an unbiased estimator of θ. Thus

MSE(θ̂G(x,y)) = V ar(
π

2
(1− φM(x)>φM(y))) =

π2

4
V ar(φM(x)>φM(y)))

=
π2

4

1

m2
V ar(

m∑
i=1

Xi),
(44)

where Xi = sgn((ri)>x)sgn((ri)>y).

Since the rows of G are independent, we get

V ar(

m∑
i=1

Xi) =

m∑
i=1

V ar(Xi) =

m∑
i=1

(E[X2
i ]− E[Xi]

2). (45)
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From the unbiasedness of the estimator, we have: E[Xi] = (−1) · θπ + 1 · (1− θ
π ). Thus we get:

MSE(θ̂G(x,y)) =
π2

4

1

m2

m∑
i=1

(1− (1− 2θ

π
)2) =

θ(π − θ)
m

. (46)

Multiplying by 4
π2 , we obtain the proof of Lemma 4.2.

Now let us switch to the general case. We first compute the variance of the general estimator E using matrices
M (note that in this setting we do not assume that the estimator is necessarily unbiased).

By the same analysis as before, we get:

V ar(E) = V ar(
π

2
(1− φ(x)>φ(y))) =

π2

4
V ar(φ(x)>φ(y))) =

π2

4

1

m2
V ar(

m∑
i=1

Xi), (47)

This time however different Xis are not uncorrelated. We get

V ar(

m∑
i=1

Xi) =

m∑
i=1

V ar(Xi) +
∑
i 6=j

Cov(Xi, Xj) =

m∑
i=1

E[X2
i ]−

m∑
i=1

E[Xi]
2 +

∑
i 6=j

E[XiXj ]−
∑
i 6=j

E[Xi]E[Xj ] =

m+
∑
i 6=j

E[XiXj ]−
∑
i,j

E[Xi]E[Xj ]

(48)

Now, notice that from our previous observations and the definition of Ai, we have

E[Xi] = −P[Ai] + P[Aic], (49)

where Aic stands for the complement of Ai.

By the similar analysis, we also get:

E[XiXj ] = P[Ai ∩ Aj ] + P[Aic ∩ Ajc]− P[Aic ∩ Aj ]− P[Ai ∩ Ajc] (50)

Thus we obtain

V ar(

m∑
i=1

Xi) = m+
∑
i 6=j

(P[Ai ∩ Aj ] + P[Aic ∩ Ajc]− P[Aic ∩ Aj ]− P[Ai ∩ Ajc]

−(P[Aic]− P[Ai])(P[Ajc]− P[Aj ]))

−
∑
i

(P[Aic]− P[Ai])2 = m−
∑
i

(1− 2P[Ai])2

+
∑
i6=j

(P[Ai ∩ Aj ] + P[Aic ∩ Ajc]− P[Aic ∩ Aj ]− P[Ai ∩ Ajc]+

P[Aic]P[Aj ] + P[Ai]P[Ajc]− P[Aic]P[Ajc]− P[Ai]P[Aj ])

= m−
∑
i

(1− 2P[Ai])2 +
∑
i 6=j

(δ1(i, j) + δ2(i, j) + δ3(i, j) + δ4(i, j)),

(51)

where
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• δ1(i, j) = P[Ai ∩ Aj ]− P[Ai]P[Aj ],

• δ2(i, j) = P[Aic ∩ Ajc]− P[Aic]P[Ajc],

• δ3(i, j) = P[Aic]P[Aj ]− P[Aic ∩ Aj ],

• δ4(i, j) = P[Ai]P[Ajc]− P[Ai ∩ Ajc].

Now note that

−δ4(i, j) = P[Ai]− P[Ai ∩ Aj ]− P[Ai]P[Ajc]
= P[Ai]− P[Ai](1− P[Aj ])− P[Ai ∩ Aj ]

= P[Ai]P[Aj ]− P[Ai ∩ Aj ] = −δ1(i, j)

(52)

Thus we have δ4(i, j) = δ1(i, j). Similarly, δ3(i, j) = δ1(i, j). Notice also that

−δ2(i, j) = (1− P[Ai])(1− P[Aj ])− (P[Aic]− P[Aic ∩ Aj ])
= 1− P[Ai]− P[Aj ] + P[Ai]P[Aj ]− 1 + P[Ai] + P[Aic ∩ Aj ]

= P[Ai]P[Aj ]− P[Ai ∩ Aj ] = −δ1(i, j),

(53)

therefore δ2(i, j) = δ1(i, j).

Thus, if we denote δi,j = δ1(i, j) = P[Ai ∩ Aj ]− P[Ai]P[Aj ], then we get

V ar(

m∑
i=1

Xi) = m−
∑
i

(1− 2P[Ai])2 + 4
∑
i 6=j

δi,j . (54)

Thus we obtain

V ar(E) =
π2

4m2
[m−

∑
i

(1− 2P[Ai])2 + 4
∑
i 6=j

δi,j ]. (55)

Note that V ar(E) = E[(E − E[E ])2]. We have:

MSE(θ̂M(x,y)) = E[(E − θ)2] = E[(E − E[E ])2] + E[(E − θ)2]− E[(E − E[E ])2]

= V ar(E) + E[(E − θ)2 − (E − E[E ])2]

= V ar(E) + (E[E ]− θ)2
(56)

Notice that E = π
2 (1− 1

m

∑m
i=1Xi). Thus we get:

MSE(θ̂M(x,y)) =
π2

4m2
[m−

∑
i

(1− 2P[Ai])2 + 4
∑
i 6=j

δi,j ] +
π2

m2

∑
i

(P(Ai)− θ

π
)2. (57)

Now it remains to multiply the expression above by 4
π2 and that completes the proof.
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Remark 9.4. Notice that if P(Ai) = θ
π (this is the case for the standard unstructured estimator as well as

for the considered by us estimator using orthogonalized version of Gaussian vectors) and if rows of matrix
M are independent then the general formula for MSE for the estimator of an angle reduces to (π−θ)θ

m . If the
first property is satisfied but the rows are not necessarily independent (as it is the case for the estimator using
orthogonalized version of Gaussian vectors) then whether the MSE is larger or smaller than for the standard
unstructured case is determined by the sign of the sum

∑
i 6=j δi,j . For the estimator using orthogonalized

version of Gaussian vectors we have already showed that for every i 6= j we have: δi,j > 0 thus we obtain
estimator with smaller MSE. If M is a product of blocks HD then we both have: an estimator with dependent
rows and with bias. In that case it is also easy to see that P(Ai) does not depend on the choice of i. Thus there
exists some ε such that ε = P(Ai)− θ

π . Thus the estimator based on the HD blocks gives smaller MSE iff:∑
i6=j

δi,j +mε2 < 0.

10 Further comparison of variants of OJLT based on SD-product ma-
trices

In this section we give details of further experiments complementing the theoretical results of the main paper.
In particular, we explore the various parameters associated with the SD-product matrices introduced in §2. In
all cases, as in the experiments of §6, we take the structured matrix S to be the normalized Hadamard matrix
H. All experiments presented in this section measure the MSE of the OJLT inner product estimator for two
randomly selected data points in the g50c data set. The MSE figures are estimated on the basis of 1, 000
repetitions. All results are displayed in Figure 3.

35



(a) Comparison of estimators based on S-Rademacher
matrices with a varying number of SD matrix blocks,
using the with replacement sub-sampling strategy.

(b) Comparison of estimators based on S-Rademacher
matrices with a varying number of SD matrix blocks,
using the sub-sampling strategy without replacement.

(c) Comparison of the use of M(3)
SR, M(3)

SH, and M
(3)
SU

(introduced in §8.7) for dimensionality reduction. All
use sub-sampling without replacement. The curves cor-
responding to the latter two random matrices are indis-
tinguishable.

Figure 3: Results of experiments comparing OJLTs for a variety of SD-matrices.
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