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Abstract

We present an in-depth examination of the effec-
tiveness of radial basis function kernel (beyond
Gaussian) estimators based on orthogonal random
feature maps. We show that orthogonal estimators
outperform state-of-the-art mechanisms that use
iid sampling under weak conditions for tails of the
associated Fourier distributions. We prove that
for the case of many dimensions, the superiority
of the orthogonal transform over iid methods can
be accurately measured by a property we define
called the charm of the kernel, and that orthogonal
random features provide optimal kernel estima-
tors. Furthermore, we provide the first theoreti-
cal results which explain why orthogonal random
features outperform unstructured on downstream
tasks such as kernel ridge regression by showing
that orthogonal random features provide kernel
algorithms with better spectral properties than the
previous state-of-the-art. Our results enable prac-
titioners more generally to estimate the benefits
from applying orthogonal transforms.

1 INTRODUCTION

Kernel methods are a central tool in machine learning, with
many applications including classification (SVMs, Cortes
and Vapnik, 1995), regression (kernel ridge regression),
Gaussian processes (Rasmussen and Williams, 2005), prin-
cipal component analysis, novelty detection, bioinformatics
(graph kernels), predictive state representation and reinforce-
ment learning (Ormoneit and Sen, 2002). An important
drawback is poor scalability with the size of the dataset.
One approach to address this problem is the popular ran-
dom feature map method (Rahimi and Recht, 2007), where
values of kernels are approximated by dot products of the
corresponding random feature maps (RFMs), since compact
RFMs lead to much more scalable models.

Preliminary work. Under review by AISTATS 2018. Do not dis-
tribute.

RFMs can be constructed more efficiently by using struc-
tured matrices, but typically at the cost of lower accuracy
(Ailon and Chazelle, 2006; Hinrichs and Vybíral, 2011;
Vybíral, 2011; Zhang and Cheng, 2013; Choromanski and
Sindhwani, 2016; Choromanska et al., 2016; Bojarski et al.,
2017). Surprisingly, recent results suggest that in certain set-
tings, structured approaches based on orthogonal matrices
outperform iid methods in terms of accuracy (Yu et al., 2016;
Choromanski et al., 2017). These techniques also often lead
to faster routines for the RFM computation if they can be
discretized (Choromanski et al., 2017), yielding triple win
improvements in accuracy, speed and space complexity.

These triple win methods have been used so far only in
very special scenarios such as Gaussian kernel approxima-
tion in the regime of high data dimensionality (Yu et al.,
2016), dimensionality reduction with modified Johnson-
Lindenstrauss transform, angular kernel approximation
(Choromanski et al., 2017) and cross-polytope LSH (Andoni
et al., 2015). Little is known about their theoretical guaran-
tees. The question of how broadly they may be applied is
an important open problem in theory and in practice.

Until recently no theoretical results showing that with num-
ber of random features m � N , where N stands for data
size, one can obtain accurate approximation of the exact ker-
nel method for such tasks as kernel ridge regression or SVM
were known. Most of the theoretical results (including all
mentioned above) considered pointwise kernel approxima-
tion – the question whether these results translate (if at all)
to quantities such as small empirical risk for kernel ridge
regression in the setting m � N was open. One of the
first results here was proposed by Avron et al. (2017), but
this considered unstructured random features. In this paper,
we prove that orthogonal random features for RBF kernels
provide strictly better bounds. Further, we show that this
is a consequence of a more general observation that kernel
algorithms based on orthogonal random features are char-
acterized by better spectral properties than the unstructured
ones. We achieve this by combining our novel pointwise
guarantees with recent work by Avron et al. (2017).

For a practitioner considering an RFM for her particular
kernel application, key questions include: How to evaluate
the gains provided by the structured approach (including
time for orthogonalization if required)? How do gains de-
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pend on the region of interest and the choice of the kernel
(the high dimensionality setting is typically more impor-
tant)? Whether pointwise gains coming from the orthogonal
random features imply downstream applications gains?

We answer these questions for the prominent class of radial
basis function kernels (RBFs), presenting the first general
approach to the open problem. Our results include the ear-
lier result of Yu et al. (2016) as a special case. An RBF
K : Rn×Rn → R is defined by K(x,y) = φK(‖x−y‖),
for some positive-definite (PD) function φK : R≥0 → R.
RBFs include the Gaussian and Matérn kernel, and play an
important role in machine learning, leading to well estab-
lished architectures such as RBF networks. There are deep
connections between RBFs and function approximation, reg-
ularization theory, density estimation and interpolation in
the presence of noise.

We highlight the following contributions:

• In §3: Asymptotic results for fixed ‖x − y‖ and large
dimensionality n, and also for fixed n and small ‖x−y‖.
In the latter case, we show the superiority of orthogonal
random feature maps for a large class of RBFs defined
by bounded fourth moments of the corresponding Fourier
distributions. In the former case, we express the benefit
of orthogonality in terms of the charm function of the
RBF at a given point x− y (see §3 for details).

• In §4: We show optimality of the random orthogonal
feature method for large classes of RBFs under weak
conditions regarding the geometry of the applied random
feature map mechanism.

• In §5: We provide guarantees that orthogonal random
features for RBFs outperform unstructured ones on such
downstream tasks as kernel ridge regression.

• In §6: We explore empirically the benefits from orthog-
onal features for pointwise kernel approximation, Gram
matrix approximation and GP regression.

2 RANDOM FOURIER FEATURES

Since an RBF kernel K is shift-invariant, by Bochner’s
theorem (Rahimi and Recht, 2007) there exists a finite Borel
measure µK ∈M(Rn) such that

K(x,y) = Re

(∫
Rn

exp(i〈w,x− y〉)µK(dw)

)
. (1)

For simplicity, we assume µK(Rn) = 1; the extension
to general non-negative finite measures is straightforward.
Bochner’s theorem leads to the Monte Carlo scheme for
approximating values of RBFs and to the random feature
map mechanism, where rows of the random matrix are taken
independently at random from distribution µK .

Using the identity given by Bochner’s theorem (Equation 1),
a standard Monte Carlo approximation yields the pointwise
kernel estimator

K̂ iid
m,n(x,y) =

m∑
i=1

cos(〈wi,x− y〉)
m

= 〈Φm,n(x),Φm,n(y)〉 ,

(2)

where Φm,n : Rn → R2m is a random feature embedding,
given by

Φm,n(x) =

(
1√
m

cos(〈wi,x〉),
1√
m

sin(〈wi,x〉)
)m
i=1

.

(3)

for all x ∈ Rn, (wi)
m
i=1

iid∼ µK . Here m stands for the total
number of random features used. Thus, a kernel algorithm
applying a non-linear kernel K on a dataset (xi)

N
i=1 can be

approximated by using the linear (inner product) kernel with
the randomly embedded dataset (Φ(xi))

N
i=1. The special lin-

ear structure of the approximation can be exploited to yield
fast training algorithms (Joachims, 2006). There has been
much recent work in understanding the errors incurred by
random feature approximations (Sutherland and Schneider,
2015), and in speeding up the computation of the random
embeddings (Le et al., 2013).

2.1 Geometrically Structured Random Fourier
Features

We start by identifying some basic properties of the proba-
bilistic measures µ associated with an RBF. The following
lemma demonstrates that a random vector w drawn from
the corresponding Fourier measure µ ∈ M(Rn) may be
decomposed as w = Rv̂, where v̂ ∼ Unif(Sn−1), and
R ≥ 0 is the norm of the random vector w.

Lemma 2.1. If K is an RBF, then its Fourier transform
µ ∈ M(Rn) is isotropic, i.e.: µ(A) = µ(M−1A) for all
A ∈ B(Rn), and all M ∈ On, the orthogonal group on Rn.

With this decomposition of the distribution of the fre-
quency vectors in hand, we can now consider introduc-
ing geometric couplings into the joint distribution over
(wi)

m
i=1 = (Riv̂i)

m
i=1. In particular, we shall consider cou-

plings of the direction vectors (v̂i)
m
i=1 so that marginally

each direction vector v̂i is distributed uniformly over the
sphere Sn−1, but the direction vectors are no longer inde-
pendent. There are many ways in which such a coupling
can be constructed; for example, direction vectors could
be drawn iteratively, with the distribution of a direction
vector given by a parametric distribution (such as a von-
Mises-Fisher distribution), with parameters depending on
previously drawn directions.

One case of particular interest is when direction vectors
are conditioned to be orthogonal, which was recently
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introduced by Yu et al. (2016) in the case of the Gaussian
kernel, defined in greater generality below.

Definition 2.2 (Orthogonal Random Features). Let K :
Rn × Rn → R be an RBF kernel, with associated Fourier
measure µK ∈ M(Rn). The orthogonal random feature
map Φ : Rn → R2m of dimension 2m = 2kn (for some
integer k ∈ N) associated with K is given by

Φort
m,n(x)=

(
1√
m

cos(〈wl
i,x〉),

1√
m

sin(〈wl
i,x〉)

)l=k,i=n
l=1,i=1

,

where the blocks of frequency vectors (wl
1:n)kl=1 are inde-

pendent, and for each frequency vector block, the frequency
vectors wl

1, . . . ,w
l
n are marginally distributed according

to µK , and are jointly almost-surely orthogonal. We denote
the corresponding kernel estimator as follows:

K̂ort
m,n(x,y) =

k∑
l=1

n∑
i=1

cos(〈wl
i,x− y〉)
m

=

〈Φort
m,n(x),Φort

m,n(y)〉 .

(4)

Henceforth we take k = 1. The analysis for a number of
blocks k > 1 is completely analogous. In Figure 1, we
recall several commonly-used RBFs and their correspond-
ing Fourier densities, which will be used throughout the
remainder of the paper.

Name Positive-definite function

Gaussian σ2 exp

(
− 1

2λ2
z2

)
Matérn σ2 21−ν

Γ(ν)

(√
2νz
)ν
Kν

(√
2νz
)

Name Fourier density
Gaussian σ2

(2πλ2)n/2
exp

(
− 1

2λ2 ‖w‖22
)

Matérn Γ(ν+n/2)
Γ(ν)(2νπ)n/2

(
1 + 1

2ν ‖w‖
2
)−ν−p/2

Figure 1: Common RBF kernels, their corresponding posi-
tive definite functions, and their Fourier transforms.

3 ORTHOGONAL RANDOM FEATURES
FOR GENERAL RBFS AND THE
CHARM FUNCTION

In this section, we establish asymptotically the benefits of
the orthogonal random feature map mechanism for a large
class of RBFsK(x,y). Let z = x−y. We focus mainly on
two regimes: (i) fixed dimensionality n and small ‖z‖; and
(ii) fixed ‖z‖ and large n. We introduce the charm function
defined in Equation (5), and explain its role in assessing the
accuracy of models based on random feature maps for large
n. In particular, we show that for classes of RBFs defined
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Figure 2: Plots of the charm function ΨK for n = 2
and different RBFs K. On the left: Gaussian kernel, in
the middle: kernel defined by the PD function φ(‖z‖) =(
1 + ‖z‖2

)−1/2
, on the right: kernel defined by the PD

function φ(‖z‖) =
(
1 + ‖z‖2

)−1
. “Warmer” regions indi-

cate larger gains from applying structured approach. Posi-
tive values of ΨK imply asymptotic superiority of the struc-
tured orthogonal estimator.

by positive definite functions φ that are not parametrized
by data dimensionality, charm is always nonnegative. This
observation leads to the conclusion that when in this setting,
for n large enough, the orthogonal estimator outperforms
the iid estimator K̂ iid

m,n across the entire domain provided
that the tails of the corresponding Fourier distributions are
not too heavy.

Charm. We shall show that charm plays a crucial role
in understanding the behavior of orthogonal transforms for
the large dimensionality regime. The charm function ΨK

of an RBF K(x,y) = φK(‖x− y‖) is a function Rn → R
defined at point z = x− y as follows:

ΨK(z) = ‖z‖2 d
2φ2
K

dx2

∣∣∣∣
x=‖z‖

− ‖z‖dφ
2
K

dx

∣∣∣∣
x=‖z‖

. (5)

We shall see that in the large dimensionality regime, the su-
periority of orthogonal transforms follows from the positive
sign of the charm function across the entire domain. This in
turn is a consequence of the intricate connection between
classes of positive definite RBFs not parametrized by data
dimensionality and completely monotone functions. The
benefits from using orthogonal transforms in comparison
to state-of-the-art can be quantitatively measured by the
value of the charm of the kernel at point z = x − y for
large data dimensionality. Large charm values (see Figure
2) indicate regions where the mean-squared error defined as:
MSE(x,y) = E[(K̂(x,y)−K(x,y))2], of the orthogonal
estimator is significantly smaller than for an iid estimator
and thus the geometry of the charm function across the do-
main gives strong guidance on the accuracy benefits of the
structured approach.

3.1 The Landscape for Fixed n and Small ‖x− y‖

Our main result of this section compares the mean squared
error (MSE) of the iid random feature estimator based on
independent sampling to the MSE of the estimator applying
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random orthogonal feature maps for small enough ‖x− y‖.

Theorem 3.1. Let K : Rn × Rn → R be an RBF and let
µK ∈M(Rn) be its associated Fourier measure. Suppose
that EµK

[
‖w‖4

]
<∞. Then for sufficiently small ‖x−y‖,

we have

MSE(K̂ iid
m,n(x,y)) > MSE(K̂ort

m,n(x,y)).

The assumptions of the theorem above are satisfied for many
classes of RBFs such as Gaussian, Matérn with smoothness
parameter ν > 2, and Poisson-Bessel kernels. In the Ap-
pendix we present additional results that give an explicit
lower bound on the gap between the MSEs, given additional
assumptions on the tail of µ.

3.2 The Landscape for Fixed ‖x− y‖ and Large n

Having established asymptotic results for small ‖x − y‖,
we now explore the asymptotic behaviour of orthogonal
features for large dimensionality n. We state our main
result below, which first requires a preliminary definition.

Definition 3.2. Let Mµn(k, n) be the k-th moment of the
random variable X = ‖w‖2, for w ∼ µn, where µn ∈
M(Rn). We say that a sequence of measures {µn} is con-
centrated if P[|‖w‖22 −Mµn(2, n)| ≥ Mµn(2, n)g(n)] ≤

1
h(n) for some g(n) = on(1) and h(n) = ωn(1).

Note that the above is a very weak concentration condition
regarding second moments, where no exponentially small
upper bounds are needed. Now the charm function (5) plays
a crucial role. Our key technical result, from which we will
deduce several practical corrollaries, is as follows.

Theorem 3.3. Consider a fixed positive definite radial basis
function φ, a family of RBF kernelsK, whereK on Rn×Rn
for each n ∈ N is defined as K(x,y) = φ(‖x − y‖) for
all x,y ∈ Rn, and an associated concentrated sequence
of Fourier measures {µn}n∈N. Assume also that there exist
constant C > 0 and ξ : N → R such that Mµn(2k, 2n) ≤
(n − 1)(n + 1) · ... · (n + 2k − 3)ξ(k) and |ξ(k)|

k! ≤ Ck

for k large enough. Then the following holds for ‖z‖ =
‖x− y‖ < 1

4
√
C

:

MSE(K̂ iid
m,n(x,y))−MSE(K̂ort

m,n(x,y)) =

m− 1

m

(
1

8n
ΨK(z) + o(n−1)

)
,

(6)

where ΨK is defined as in Equation (5) andm is the number
of random features used. A tight upper bound on the o(n−1)
term and a strengthened version of the above theorem is
given in the Appendix.

Theorem 3.3 leads to many important corollaries, as we
show below. In particular, we highlight that the charm

function ΨK associated with the kernel K is central in
determining the relative performance of orthogonal random
features and iid features in high dimensions, due to its place
in Equation (6). As special cases, Theorem 3.3 implies all
earlier theoretical results for orthogonal random features for
a Gaussian kernel (Yu et al., 2016).

Corollary 3.4. If K is a Gaussian kernel then for any fixed
‖z‖ > 0 and n large enough the orthogonal random feature
map outperforms the iid random feature map in MSE. This
is implied by the fact that for this kernel, Mµ(2k, 2n) =

2k (n+k−1)!
(n−1)! and thus one can take: ξ(k) = 2k+1 in the

theorem above. Note that from Stirling’s formula we get:
k! = kk+ 1

2 e−k(1 + ok(1)). Thus the assumptions of The-
orem 3.3 are satisfied for any fixed C > 0. It remains to
observe that the charm function is positive for the Gaus-
sian kernel K, since: ΨK(z) = 4‖z‖4e−‖z‖2 (see Figure
2) and that the sequence of Fourier measures associated
with the class of Gaussian kernels is concentrated (standard
contentration result).

The fact that charm is nonnegative across the entire domain
for the family of Gaussian kernels is not a coincidence. In
fact the following is true.

Theorem 3.5 (Positive charm). Let φ : R → R be such
that for every n ∈ N, Kn : Rn × Rn → R defined by
Kn(x,y) = φ(‖x− y‖) is a positive definite kernel. Then
for each such Kn, the charm function ΨKn is non-negative
everywhere.

The result above (details in the Appendix) uses the fact that
there exists a subtle connection between positive definite
functions φ considered above and completely monotone
functions.

Definition 3.6. A function σ : [0,+∞] → R which is
in C[0,∞] ∩ C∞(0,∞) and which satisfies (−1)r d

rσ
dxr ≥

0 ∀r ∈ N≥0, is called completely monotone on [0,∞].

The connection is given by the following theorem.

Theorem 3.7 (Schoenberg, 1938). A function σ is com-
pletely monotone on [0,+∞] iff the function φ : Rn×Rn →
R defined for x,y ∈ Rn as φ(x,y) = σ(‖x− y‖2) is posi-
tive definite for all n ∈ N.

Combining Theorem 3.3 with Theorem 3.5, we obtain the
following key result.

Theorem 3.8 (Superiority of the orthogonal transform). Un-
der the assumptions of Theorem 3.3, for any fixed z ∈ R>0,
for sufficiently large n, for any x,y ∈ Rn such that
‖x− y‖ = z,

MSE(K̂ iid
m,n(x,y)) > MSE(K̂ort

m,n(x,y)). (7)
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(a) Gaussian kernel (b) Matérn-5/2 kernel

Figure 3: Difference between iid MSE and orthogonal MSE,
charm function ΨK , and kernel K for Gaussian and Matérn-
5/2 kernels for a range of dimensionalities.

3.3 Non-asymptotic Results

Complementing the theoretical asymptotic results presented
above, we provide additional analysis of the behavior of
orthogonal random features in non-asymptotic regimes.
The analysis centers on Proposition 3.9, which expresses
the difference in MSE between iid and orthogonal random
features in terms of univariate integrals, which although
generally intractable, can be accurately and efficiently
evaluated by deterministic numerical integration.

Proposition 3.9. For an RBF kernel K on Rn with Fourier
measure µK and x,y ∈ Rn, writing z = x− y, we have:

MSE(K̂ iid
m,n(x,y))−MSE(K̂ort

m,n(x,y)) =

m− 1

m
ER1,R2

[
Jn

2−1(
√
R2

1 +R2
2‖z‖)Γ(n/2)

(
√
R2

1 +R2
2‖z‖/2)

n
2−1

]
−

m− 1

m
ER1

[
Jn

2−1(R1‖z‖)Γ(n/2)

(R1‖z‖/2)
n
2−1

]2

,

(8)

whereR1, R2 are independent scalar random variables with
the distribution of the norm of a vector drawn from µK , and
Jα is the Bessel function of the first kind of degree α.

Firstly, In Figure 3, we plot the difference in MSE between
iid random features and orthogonal random features for a
range of kernels, noting that orthogonal features provide
superior MSE across a wide range of values of ‖z‖. In
the same plots, we show the value of the kernel K and
of the charm function ΨK , noting that the charm function
describes the benefits of orthogonal features accurately, even
in the case of low dimensions. In all plots in this section, we
write ∆MSE for MSE(K̂ iid

m (x,y)) − MSE(K̂ort
m (x,y)),

so that ∆MSE > 0 corresponds to superior performance of
orthogonal features over iid features.

Secondly, we illustrate the broad applicability of Theorem
3.1 by plotting the relative performance of orthogonal and
iid features for the Matérn-5/2 kernel around the origin, see
Figure 4.

Finally, we consider an RBF K(x,y) = φ(‖x− y‖) which

Figure 4: Difference in MSE
for orthogonal and iid ran-
dom features for the Matérn-
5/2 kernel over R64, which
satisfies the moment condi-
tion of Theorem 3.1.

Figure 5: Difference in MSE
for orthogonal and iid fea-
tures for the sinc kernel,
which does not correspond
to a completely monotone
positive definite function.

does not correspond to a completely monotone function. Let
n = 3, and consider the Fourier measure µ that puts unit
mass uniformly on the sphere S2 ⊆ R3. As this is a finite
isotropic measure on R3, there exists a corresponding RBF
kernelK, which by performing an inverse Fourier transform
can be shown to be

K(x,y) = sin(‖x− y‖)/‖x− y‖ .

We term this the sinc kernel. Since the kernel takes on
negative values for certain inputs, it does not correspond to
a completely monotone function. Given the particular form
of the Fourier measure, we may compute the difference in
MSEs as given in Proposition 3.9 exactly, which yields

MSE(K̂ iid
m,n(x,y))−MSE(K̂ort

m,n(x,y)) =

2

3

(
sin(
√

2‖z‖)√
2‖z‖

− sin2(‖z‖)
‖z‖2

)
.

(9)

We plot this function in Figure 5, noting there are large
regions where orthogonal features are outperformed by iid
features. Thus it may not be possible to relax the require-
ment in Theorem 3.8 that the pd function φK corresponds
to a completely monotone function, as in Theorem 3.7.

4 OPTIMALITY OF THE RANDOM
ORTHOGONAL FEATURE MAP
MECHANISM

In this section, we consider unbiased estimators of RBFs
introduced in Subsection 2.1. We show that for a significant
family of random feature based estimators which we call
smooth, asymptotically for large n, the orthogonal estimator
is optimal in the sense of minimizing mean squared error.
We will now identify a particular estimator E with a
collection of probabilistic distributions on m-length
n-dimensional tuples (each for different dimensionality n
and number of random features m), each defining a set of
sampled vectors wn

1 , ...,w
n
m.
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Definition 4.1 (smooth estimators). A random feature
based estimator E is smooth if for a fixed m,n lengths
of directions of sampled vectors are chosen independently
and furthermore, there exists a function q : N → R such
that q(x)

x→∞−−−−→ 0 and for sampled vectors wn
1 , ...,w

n
m the

following is true:

E[| cos(θni,j)|3] ≤ q(n) · E[| cos(θni,j)|2],

where θni,j is an angle between wn
i and wn

j and i 6= j.

Note that many useful estimators are smooth, including
state-of-the-art estimators based on independent sampling,
and also structured orthogonal estimators (note that for
structured orthogonal estimators we have: θi,j = 0 with
probability 1). Further, it is not hard to see that other estima-
tors which can be obtained from general von Mises–Fisher
distributions (Navarro et al., 2017) are also smooth. Von
Mises-Fisher distributions generalize uniform distributions
on the sphere with concentration parameters which are not
too large – for example, the first sampled direction might
define the mean direction then other directions could be sam-
pled from a von Mises–Fisher distribution with the mean
direction determined by the first sample.

We are ready to present our main result of this section,
which shows that orthogonal random features are asymp-
totically optimal for the family of smooth estimators from
Definition 4.1.

Theorem 4.2. Consider a fixed positive definite radial basis
function φ, a family of RBF kernelsK, whereK on Rn×Rn
for each n ∈ N is defined as K(x,y) = φ(‖x − y‖) for
all x,y ∈ Rn, and an associated concentrated sequence of
Fourier measures {µn}n∈N. Denote by Eort an orthogonal
estimator and by Esmooth some smooth estimator. Denote
z = x − y. Then, under assumptions of Theorem 3.3, for
any fixed ‖z‖ and n large enough the following is true:

MSE(K̂ort
m,n(x,y)) ≤ MSE(K̂smooth

m,n (x,y)), (10)

where K̂ort
m,n is an instance of Eort for dimensionality n

and using m random features (as in Theorem 3.3) and fur-
thermore, K̂smooth

m,n stands for the analogous instance of
Esmooth.

5 SUPERIORITY OF ORTHOGONAL
RANDOM FEATURES FOR
DOWNSTREAM APPLICATIONS

One of the key applications of random feature maps is ker-
nel ridge regression (KRR), where they lead to a scalable
version of the algorithm. The KRR algorithm is a subject
of intense research since ridge regression is one of the most
fundamental machine learning methods that can be kernel-
ized (Avron et al., 2016; Zhang et al., 2015). For this section

we will borrow some notation from Avron et al. (2017). In
the first subsection we give an overview and in the next one,
present our new results.

5.1 Background: Ridge Regression with
Approximate Kernel Methods

We must first introduce a few definitions.

Definition 5.1. We say that a matrix A ∈ RN×N is a ∆-
spectral approximation of another matrix B ∈ RN×N for
∆ ∈ R+ if the following holds:

(1−∆)B � A � (1 + ∆)B, (11)

where X � Y stands for Y−X being positive semidefinite.

Definition 5.2. For a dataset X = {x1, ...,xN} and a
given kernel K, we define the kernel matrix K as

K = {K(xi,xj)}i,j∈{1,...,N}.

The random matrix obtained from K by replacing exact val-
ues of the kernel by the approximate values computed with
iid features is denoted as K̂iid, whereas the matrix where
values are replaced by the approximate values computed
with orthogonal features is K̂ort.

We show that for N ∈ N, an RBF kernel K (under assump-
tions of Theorem 3.3), an identity matrix IN ∈ RN×N and
λ > 0, matrix K̂ort + λNIN provides a strictly tighter
spectral approximation of K + λNIN than K̂iid + λNIN .
It was shown by Avron et al. (2017) that the tightness of
the spectral approximation of K + λNIN implies accu-
racy guarantees of random feature based kernel methods
on such downstream tasks as kernel ridge regression and
kernel k-means clustering; for the reader’s convenience we
explain this in more detail below on the example of ker-
nel ridge regression. Thus our results on the tightness of
spectral approximation of orthogonal versus iid features
will immediately imply the superiority of the orthogonal
features approach on these downstream tasks. The matrix
K̂ort + λNIN will be our central object of study in this
section.

We consider here the following model of data generation:

yi = f∗(xi) + νi , i = 1, . . . , N , (12)

where f∗ is the unknown groundtruth function to be learnt,
(yi)

N
i=1 are values assigned to data points (xi)

N
i=1 and

(νi)
N
i=1 are i.i.d noise terms distributed as mean-zero normal

variables with standard deviation σ. The empirical risk of
an estimator f of the groundtruth f∗ obtained with the use
of perturbed groundtruth values yi is defined as:

R(f) ≡ Eνi

 1

N

N∑
j=1

(f(xi)− f∗(xi))2

 , (13)
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where N is the number of data points. Denote by fKRR the
kernel ridge regression estimator based on the groundtruth
kernel matrix K and by f∗ ∈ Rn the vector whose jth entry
is f∗(xj). In (Alaoui and Mahoney, 2015; Bach, 2013) it
was proven that: R(fKRR) = λ2

N (f∗)>(K+λNIN )−2f∗+
σ2

N Tr(K2(K + λNIN )−2), where λ stands for the regular-
ization parameter, and K and IN are as above.

As Avron et al. (2017) notice, the risk bound R(fKRR)

is upper-bounded by R̂K(f∗), where R̂K(f∗) is given as:
R̂K(f∗) ≡ λ(f∗)>

N (K + λNIN )−1f∗ + σ2

N sλ(K),

for sλ(K) ≡ Tr((K + λNIN )−1K). The expression
R̂K(f∗) played a crucial role in the analysis of Avron et al.
(2017), leading to a compact formula on the upper bound
on the risk of the general estimator in terms of the quality
of the spectral approximation of K + λNIN :

Lemma 5.3. Consider KRR estimator f̂ based on the ma-
trix K̂ approximating groundtruth kernel matrix K. Assume
furthermore that K̂ +λNIN is a ∆-spectral approximation
of K + λNIN for some 0 ≤ ∆ < 1 and that ‖K‖2 ≥ 1.
Then the following is true:

R(f̂) ≤ 1

1−∆
R̂K(f∗) +

∆

1 + ∆

rank(K̂)

N
σ2. (14)

5.2 New Results: Kernal Ridge Regression with
Orthogonal Features

We are ready to present our results. For simplicity we will
give it for one random block (see: Section 2) however the
result can be straightforwardly generalized to any number
k of blocks. We show that orthogonal features lead to
tighter spectral approximation of K + λNIN for the class
of considered RBFs and n large enough. We will borrow
notation from the analysis above and Theorem 3.3.

Theorem 5.4. Subject to the conditions of Theorem 3.3,
consider RBFs (in particular Gaussian kernels). Let ∆̂ de-
note the smallest positive number such that K̂ + λNIN is a
∆-approximation of K+λNIN , where K̂ is an approximate
kernel matrix obtained by using certain random feature map
based kernel estimator. Then for any a > 0:

P[∆̂ > a] ≤ B

a2σ2
min

, (15)

where: B =
∑
i,j∈{1,...,N}MSE(K̂(xi,xj)) and σmin is

the smallest singular value of K + λNIN . In particular, if
if Bort refers to the value of B for the estimator K̂ort and
Biid to the one for the estimator K̂ iid then

Biid −Bort =
m− 1

m

( 1

8n
·∑

i,j∈{1,...,N}

[
ΨK(‖xi − xj‖+ o

(
1

n

)])
,

(16)

where n is the data dimensionality and m is the number of
random features used.

Note that for these RBFs, Biid > Bort for n large enough,
and thus orthogonal random features provide strictly better
bound than iid features. To understand better the order of the
magnitude of the upper bound on P[∆̂ > a] from Theorem
5.4, it suffices to notice that if a datasetX = {x1, ...,xN} is
taken from some bounded region then random feature based
estimators under consideration satisfy MSE(K̂(xi,xj)) =
O( 1

m ). For a constant a > 0 the upper bound is thus of
the order O( N2

mσ2
min

). For λN � 1 (which is the case for

all practical applications) we have: σ4
min = Ω(λ2N2), thus

the upper bound on P[∆̂ > a] is of the order of magnitude
O( 1

mλ2 ). Thus for λ� 1√
N

(a reasonable practical choice),
it suffices to take m� N random features to get an upper
bound of order o(1) as N →∞.

The above result immediately leads to the following
regarding risk bounds for kernel ridge regression.

Theorem 5.5. Under the assumptions of Theorem 5.4, the
following holds for the kernel ridge regression risk and any
c > 0 if m-dimensional random feature maps are used to
approximate a kernel: P[R(f̂) > c] ≤ B

a2cσ
2
min
, where ac is

given as: ac = 1− R̂K(f∗)

c−mσ22N

and the probability is taken in

respect to the random choices of features.

Note that in the above bound the only term that depends
on the choice of the random feature mechanism is B and
thus as before, we conclude that orthogonal random features
provide strictly stronger guarantees (this time in terms of
the empirical risk of the random feature based kernel ridge
regression estimator) than iid features. However, as we have
noted before, the applications of spectral results given in
Theorem 5.4 go beyond kernel ridge regression and can be
applied in other kernelized algorithms.

6 EXPERIMENTS

We complement the theoretical results for pointwise kernel
approximations in earlier sections with empirical studies of
the effectiveness and limits of orthogonal random features
in a variety of downstream applications. We also compare
against structured orthogonal random features (SORF, first
introduced only in the Gaussian case by Yu et al., 2016),
where instead of drawing the directions of feature marginally
from Unif(Sn−1), we use the rows of the random matrix
HD1HD2HD3. Here, H is the normalized Hadamard ma-
trix, and D1,D2,D3 are iid diagonal matrices with indepen-
dent Unif({±1}) entries on the diagonals. Such matrices
have recently been investigated as approximations to uni-
form orthogonal matrices, both empirically (Andoni et al.,
2015) and analytically (Choromanski et al., 2017). We ex-
amine various numbers m of random features, while n is
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(a) Gaussian, pointwise (b) Gaussian, Gram matrix

(c) Matérn-5/2, pointwise (d) Matérn-5/2, Gram matrix

(e) Laplace, pointwise (f) Laplace, Gram matrix

Figure 6: Pointwise kernel evaluation MSE (left column)
and normalized Frobenius norm error for Gram matrix ap-
proximation (right column) for the UCI “wine” dataset for
Gaussian (top), Matérn-5/2 (center) and Laplace (bottom)
kernels. Estimators are iid random features (blue), orthog-
onal random features (green) and approximate Hadamard-
Rademacher random features (red).

the dimensionality of the data. There is a one-time cost in
constructing orthogonal features, which is small in practice.

6.1 Pointwise kernel and Gram matrix estimation

In this experiment, we study the estimation, via random
feature maps, of kernel Gram matrices. We use MSE as
an error measure for pointwise estimation, and normalized
Frobenius norm as a measure of error for Gram matrices
(so that the error incurred by estimating the Gram matrix
X with the matrix X̂ is ‖X − X̂‖F/‖X‖F). Kernel band-
widths are set via the median trick (Yu et al., 2016). We
estimate pointwise kernel values and Gram matrices on a
variety of full UCI regression datasets; see Figure 6 for ex-
amples. We plot the estimated mean Frobenius norm error,
and bootstrapped estimates of standard error of the mean
error estimates; in Figure 6, these error bars are extremely
small. Full results are given in the Appendix, and have sim-
ilar qualitative behaviour to that shown in Figure 6. Note
that the orthogonal and approximate-orthogonal approaches

are in general superior to iid random features, and that the
improvement in performance is most pronounced for ker-
nels with light-tailed Fourier distributions, as suggested by
the theoretical developments in Section 3.

6.2 Gaussian processes

We consider random feature approximations to Gaussian
processes (GPs) for regression, and report (i) KL diver-
gences between approximate predictive distributions ver-
sions obtained via random feature approximations against
the predictive distribution obtained by an exactly-trained GP,
and (ii) predictive RMSE on test sets. Experiments were
run on a variety of UCI regression datasets - full experi-
mental details are given in the Appendix. In Figures 7 and
8, results are shown for regression on the Boston housing
dataset (Lichman, 2013). We use Gaussian, Matérn-5/2, and
Laplace covariance kernels for the GP. Importantly, note that
the posterior mean of the Gaussian process exactly corre-
sponds to a kernel ridge regression estimator, so the RMSE
results also serve to illustrate the theory in Section 5.

Kernel Feature map m/n = 1 m/n = 2 m/n = 3 m/n = 4

Gaussian
IID 77.804 (0.0056) 23.435 (0.0042) 12.324 (0.0027) 8.4973 (0.003)
ORF 66.022 (0.0058) 20.042 (0.0039) 10.834 (0.003) 7.4992 (0.0029)
SORF 69.006 (0.0061) 21.686 (0.0045) 11.822 (0.0035) 7.836 (0.0026)

Matérn-5/2
IID 101.1 (0.0066) 36.052 (0.0055) 19.809 (0.0031) 13.43 (0.0027)
ORF 92.329 (0.0069) 31.919 (0.0048) 18.477 (0.0039) 12.405 (0.0029)
SORF 98.816 (0.0072) 32.471 (0.0039) 18.485 (0.0033) 12.793 (0.0031)

Laplace
IID 228.69 (0.0066) 125.56 (0.0055) 94.527 (0.0031) 79.343 (0.0027)
ORF 213.92 (0.0069) 118.23 (0.0048) 91.611 (0.0039) 76.185 (0.0029)
SORF 220.65 (0.0072) 120.63 (0.0039) 91.675 (0.0033) 76.619 (0.0031)

Figure 7: Approximate GP regression results on Boston
dataset. Reported numbers are average KL divergence from
true posterior, along with bootstrap estimates of standard
error (in parentheses).

Kernel Feature map m/n = 1 m/n = 2 m/n = 3 m/n = 4

Gaussian
IID 0.58 (0.0056) 0.464 (0.0042) 0.423 (0.0027) 0.406 (0.003)
ORF 0.559 (0.0058) 0.449 (0.0039) 0.419 (0.003) 0.399 (0.0029)
SORF 0.568 (0.0061) 0.466 (0.0045) 0.434 (0.0035) 0.413 (0.0026)

Matérn-5/2
IID 0.594 (0.0066) 0.49 (0.0055) 0.44 (0.0031) 0.425 (0.0027)
ORF 0.581 (0.0069) 0.477 (0.0048) 0.44 (0.0039) 0.423 (0.0029)
SORF 0.594 (0.0072) 0.48 (0.0039) 0.443 (0.0033) 0.422 (0.0031)

Laplace
IID 0.672 (0.011) 0.544 (0.0063) 0.511 (0.0041) 0.493 (0.0043)
ORF 0.674 (0.0096) 0.54 (0.006) 0.509 (0.0047) 0.479 (0.0041)
SORF 0.665 (0.0098) 0.559 (0.0063) 0.507 (0.0056) 0.489 (0.0044)

Figure 8: Approximate GP regression results on Boston
dataset. Reported numbers are average test RMSE, along
with bootstrap estimates of standard error (in parentheses).

7 CONCLUSION

We have explained the phenomenon of structured random
features based on geometric conditions for RBF kernels. We
showed the superiority of estimators based on orthogonal
random feature maps for a large class of RBFs, substantially
extending previously known results. Further, we showed in
the high dimensionality regime that superiority comes from
the shape of the introduced charm function associated with
a given RBF.
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