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ABSTRACT

Label propagation is a powerful and flexible semi-supervised learn-
ing technique on graphs. Neural networks, on the other hand, have
proven track records in many supervised learning tasks. In this
work, we propose a training framework with a graph-regularised
objective, namely Neural Graph Machines, that can combine the
power of neural networks and label propagation. This work gener-
alises previous literature on graph-augmented training of neural
networks, enabling it to be applied to multiple neural architectures
(Feed-forward NNs, CNNs and LSTM RNNs) and a wide range of
graphs. The new objective allows the neural networks to harness
both labeled and unlabeled data by: (a) allowing the network to
train using labeled data as in the supervised setting, (b) biasing the
network to learn similar hidden representations for neighboring
nodes on a graph, in the same vein as label propagation. Such ar-
chitectures with the proposed objective can be trained efficiently
using stochastic gradient descent and scaled to large graphs, with
a runtime that is linear in the number of edges. The proposed joint
training approach convincingly outperforms many existing meth-
ods on a wide range of tasks (multi-label classification on social
graphs, news categorization, document classification and semantic
intent classification), with multiple forms of graph inputs (including
graphs with and without node-level features) and using different
types of neural networks.
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1 INTRODUCTION

Semi-supervised learning is a powerful machine learning paradigm
that can improve the prediction performance compared to tech-
niques that use only labeled data, by leveraging a large amount
of unlabeled data. The need of semi-supervised learning arises in
many problems in computer vision, natural language processing or
social networks, in which getting labeled datapoints is expensive
or unlabeled data is abundant and readily available.

There exist a plethora of semi-supervised learning methods. The
simplest one uses bootstrapping techniques to generate pseudo-
labels for unlabeled data generated from a system trained on labeled
data. However, this suffers from label error feedbacks [13]. In a
similar vein, autoencoder based methods often need to rely on a
two-stage approach: train an autoencoder using unlabeled data to
generate an embedding mapping, and use the learnt embeddings for
prediction. In practice, this procedure is often costly and inaccurate.
Another example is transductive SVMs [8], which is too computa-
tionally expensive to be used for large datasets. Methods that are
based on generative models and amortized variational inference
[10] can work well for images and videos, but it is not immedi-
ately clear on how to extend such techniques to handle sparse and
multi-modal inputs or graphs over the inputs.

In contrast to the methods above, graph-based techniques such as
label propagation [4, 23] often provide a versatile, scalable, and yet
effective solution to a wide range of problems. These methods con-
struct a smooth graph over the unlabeled and labeled data. Graphs
are also often a natural way to describe the relationships between
nodes, such as similarities between embeddings, phrases or images,
or connections between entities on the web or relations in a social
network. Edges in the graph connect semantically similar nodes
or datapoints, and if present, edge weights reflect how strong such
similarities are. By providing a set of labeled nodes, such techniques
iteratively refine the node labels by aggregating information from
neighbours and propagate these labels to the nodes’ neighbours. In
practice, these methods often converge quickly and can be scaled
to large datasets with a large label space [15]. We build upon the
principle behind label propagation for our method.

Another key motivation of our work is the recent advances in
neural networks and their performance on a wide variety of su-
pervised learning tasks such as image and speech recognition or
sequence-to-sequence learning [7, 12, 17]. Such results are how-
ever conditioned on training very large networks on large datasets,
which may need millions of labeled training input-output pairs.
This begs the question: can we harness previous state-of-the-art
semi-supervised learning techniques, to jointly train neural net-
works using limited labeled data and unlabeled data to improve its
performance?
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Contributions: We propose a discriminative training objective for
neural networks with graph augmentation, that can be trained with
stochastic gradient descent and efficiently scaled to large graphs.
The new objective has a regularization term for generic neural
network architectures that enforces similarity between nodes in
the graphs, which is inspired by the objective function of label
propagation. In particular, we show that:

o Graph-augmented neural network training can work for a
wide range of neural networks, such as feed-forward, convo-
lutional and recurrent networks. Additionally, this technique
can be used in both inductive and transductive settings. It
also helps learning in low-sample regime (small number of
labeled nodes), which cannot be handled by vanilla neural
network training.

o The framework can handle multiple forms of graphs, either
naturally given or constructed based on embeddings and
knowledge bases.

e As a by-product, our proposed framework provides a simple
technique to finding smaller and faster neural networks that
offer competitive performance with larger and slower non
graph-augmented alternatives (see section 4.2).

We experimentally show that the proposed training framework
outperforms state-of-the-art or perform favourably on a variety of
prediction tasks and datasets, involving text features and/or graph
inputs and on many different neural network architectures (see
section 4).

The paper is organized as follows: we first review some back-
ground and literature, and relate them to our approach in section 2;
we then detail the training objective and its properties in section 3;
and finally we validate our approach on a range of experiments in
section 4.

2 BACKGROUND AND RELATED WORKS

In this section, we will lay out the groundwork for our proposed
training objective in section 3.

2.1 Neural network learning

Neural networks are a class of non-linear mapping from inputs to
outputs and comprised of multiple layers that can potentially learn
useful representations for predicting the outputs. We will view vari-
ous models such as feed-forward neural networks, recurrent neural
networks and convolutional networks under the same umbrella.
Given a set of N training input-output pairs {xn, yn }nNzl,
ral networks are often trained by performing maximum likelihood
learning, that is, tuning their parameters so that the networks’
outputs are close to the ground truth under some criterion,

O (0) = D (g (xn). yn), (1)

n

such neu-

where gy (-) denotes the overall mapping, parameterized by 6, and
c(-) denotes a loss function such as I-2 for regression or cross en-
tropy for classification. The cost function ¢ and the mapping g are
typically differentiable w.r.t 8, which facilitates optimisation via
gradient descent. Importantly, this can be scaled to a large num-
ber of training instances by employing stochastic training using
minibatches of data. However, it is not clear how unlabeled data, if
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available, can be treated using this objective, or if extra information
about the training set, such as relational structures can be used.

2.2 Graph-based semi-supervised learning

In this section, we provide a concise introduction to graph-based
semi-supervised learning using label propagation and its training
objective. Suppose we are given a graph G = (V, E, W) where V is
the set of nodes, E the set of edges and W the edge weight matrix.
Let V;, Vi, be the labeled and unlabeled nodes in the graph. The
goal is to predict a soft assignment of labels for each node in the
graph, Y, given the training label distribution for the seed nodes, Y.
Mathematically, label propagation performs minimization of the
following convex objective function, for L labels,

CLP(?) =M Z ||?v - Yv”z

veV]

+ p2 Z Wu,v |?v - 1}uui
veV,ueN(v)
v Y |[fo -l (2

veV

subject to Zle Y,; = 1, where N (v) is the neighbour node set
of the node v, and U is the prior distribution over all labels, wy,
is the edge weight between nodes u and v, and p1, p2, and p3
are hyperparameters that balance the contribution of individual
terms in the objective. The terms in the objective function above
encourage that: (a) the label distribution of seed nodes should be
close to the ground truth, (b) the label distribution of neighbouring
nodes should be similar, and, (c) if relevant, the label distribution
should stay close to our prior belief. This objective function can
be solved efficiently using iterative methods such as the Jacobi
procedure. That is, in each step, each node aggregates the label
distributions from its neighbours and adjusts its own distribution,
which is then repeated until convergence. In practice, the iterative
updates can be done in parallel or in a distributed fashion which
then allows large graphs with a large number of nodes and labels
to be trained efficiently. [4] and [15] provide good surveys on the
topic for interested readers.

There are many variants of label propagation that could be
viewed as optimising modified versions of eq. (2), and in essence
balancing the smoothness constraint and the fitting constraint [22].
For example, manifold regularization [3] replaces the label distri-
bution ¥ by a Reproducing Kernel Hilbert Space mapping from
input features. Similarly, [18] also employs such mapping but uses
a feed-forward neural network instead. Both methods can be clas-
sified as inductive learning algorithms; whereas the original label
propagation algorithm is transductive [19].

These aforementioned methods are closest to our proposed ap-
proach; however, there are key differences. Our work generalizes
previously proposed frameworks for graph-augmented training of
neural networks (e.g., [18]) and extends it to new settings, for ex-
ample, when there is only graph input and no features are available.
Unlike the previous works, we show that the graph augmented
training method can work with multiple neural network architec-
tures (Feed-forward NNs, CNNs, RNNs) and on multiple prediction
tasks and datasets using natural as well as constructed graphs. The
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experiment results (see section 4) clearly validate the effectiveness
of this method in all these different settings, in both inductive and
transductive learning paradigms. Besides the methodology, our
study also presents an important contribution towards assessing
the effectiveness of graph combined neural networks as a generic
training mechanism for different architectures and problems, which
was not well studied in previous work.

More recently, graph embedding techniques have been used to
create node embedding that encode local structures of the graph
and the provided node labels [14, 19]. These techniques target
learning better node representations to be used for other tasks
such as node classification. In this work, we aim to directly learn
better predictive models from the graph. We compare our method
to these two-stage (embedding + classifier) techniques in several
experiments in section 4

Our work is also different and orthogonal to recent works on us-
ing neural networks on graphs, for example: [5, 11] employ spectral
graph convolution to create a neural-network like classifier. How-
ever, these approaches requires many approximations to arrive at a
practical implementation. Here, we advocate a training objective
that uses graphs to augment neural network learning, and works
with many forms of graphs and with any type of neural network.

3 NEURAL GRAPH MACHINES

In this section, we devise a discriminative training objective for
neural networks, that is inspired bnormy the label propagation
objective and uses both labeled and unlabeled data, and can be
trained by stochastic gradient descent.

First, we take a close look at the two objective functions discussed
in section 2. The label propagation objective (eq. (2)) ensures the
predicted label distributions of neighbouring nodes to be similar,
while those of labeled nodes to be close to the ground truth. For
example: if a cat image and a dog image are strongly connected
in a graph, and if the cat node is labeled as animal, the predicted
probability of the dog node being animalis also high. In contrast, the
neural network training objective (eq. (1)) only takes into account
the labeled instances, and ensure correct predictions on the training
set. As a consequence, a neural network trained on the cat image
alone will not make an accurate prediction on the dog image.

Such shortcoming of neural network training can be rectified by
biasing the network using prior knowledge about the relationship
between instances in the dataset. In particular, for the domains we
are interested in, training instances (either labeled or unlabeled)
that are connected in a graph, for example, dog and cat in the
above example, should have similar predictions. This can be done
by encouraging neighboring data points to have a similar hidden
representation learnt by a neural network, resulting in a modified
objective function for training neural network architectures using
both labeled and unlabeled datapoints. We call architectures trained
using this objective Neural Graph Machines (NGM), and schemat-
ically illustrate the concept in figure 1. The proposed objective
function is a weighted sum of the neural network cost and the label
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propagation cost as follows,

Cnom(0) = o Z

(w,v)€&LL

+ ag Z

(u,v)eSLU

+ a3 Z

(u, v) eSuyu

wyuod(hg(xy), hg(xy))
Wuod(hg (xu), ho(xv))

wyod(hg(xu), he(xo)

Vi
+ ) (g (xn). yn). 3)
n=1

where &;1, &Ly, and Eyy are sets of labeled-labeled, labeled-
unlabeled and unlabeled-unlabeled edges correspondingly, A(-) rep-
resents the hidden representations of the inputs produced by the
neural network, and d(-) is a distance metric, and {a1, az, a3} are
hyperparameters. Note that we have separated the terms based on
the edge types, as these can affect the training differently.

Our framework is general so that one can plug in either the
hidden representations at any intermediate layer or the estimated
soft label vector at the final layer. However, similar to any neural
network regularisation scheme, it is not obvious what strategy
works best in general. For example, forcing bottom layers (closer
to the inputs) to be similar would have a stronger regularisation
effect, and vice versa. In practice, we choose an /-1 or [-2 distance
metric for d(-), and h(x) to be the last hidden layer of the neural
network, or a cross-entropy cost for the predicted label vector.

3.1 Connections to previous methods

The graph-dependent « hyperparameters control the balance of
the contributions of different edge types. When {a; = 0}?:1, the
proposed objective ignores the similarity constraint and becomes a
supervised-only neural network objective as in eq. (1). When only
aj # 0, the training cost has an additional term for labeled nodes,
that acts as a regularizer. When gy (x) = hy(x) = §, where g is the
label distribution, the individual cost functions (c and d) are squared
I-2 norm, and the objective is trained using § directly instead of 0,
we arrive at the label propagation objective in eq. (2). Therefore,
the proposed objective could be thought of as a non-linear version
of the label propagation objective, and a graph-regularized version
of the neural network training objective.

3.2 Network inputs and graph construction

Similar to graph-based label propagation, the choice of the input
graphs is critical, to correctly bias the neural network’s prediction.
Depending on the type of the graphs and nodes in the graph, they
can be readily available to use such as social networks or protein
linking networks, or they can be constructed (a) using generic
graphs such as Knowledge Bases, that consists of relationship links
between entities, (b) using embeddings learnt by an unsupervised
learning technique, or, (c) using sparse feature representations for
each vertex. Additionally, the proposed training objective can be
easily modified for directed graphs.

We have discussed using node-level features as inputs to the
neural network. In the absence of such inputs, our training scheme
can still be deployed using input features derived from the graph
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Figure 1: A: An example of a graph and feature inputs. In this case, there are two labeled nodes (x;, x;) and one unlabeled
node (x;), and two edges. The feature vectors, one for each node, are used as neural network inputs. B, C and D: Illustration
of Neural Graph Machine for feed-forward, convolution and recurrent networks respectively: the training flow ensures the
neural net to make accurate node-level predictions and biases the hidden representations/embeddings of neighbouring nodes
to be similar. In this example, we force h; and h; to be similar as there is an edge connecting x; and x; nodes. E: Illustration of
how we can construct inputs to the neural network using the adjacency matrix. In this example, we have three nodes and two
edges. The feature vector created for each node (shown on the right) has 1’s at its index and indices of nodes that it’s adjacent to.

itself. We show in figure 1 and in experiments that the neighbour-
hood information such as rows in the adjacency matrix are simple
to construct, yet powerful inputs to the network. These features
can also be combined with existing features.

When the number of graph nodes is high, this construction can
have a high complexity and result in a large number of input fea-
tures. This can be avoided by several ways: (i) clustering the nodes
and using the cluster assignments and similarities, (ii) learning an
embedding function of nodes [14], or (iii) sampling the neighbour-
hood/context [19]. In practice, we observe that the input space can
be bounded by a constant, even for massive graphs, with efficient
scalable methods like unsupervised propagation (i.e., propagating
node identity labels across the graph and selecting ones with high-
est support as input features to neural graph machines).

3.3 Optimization

The proposed objective function in eq. (3) has several summations
over the labeled points and edges, and can be equivalently written
as follows,

Cnam(®) = Y [arwuod(hg(xu). ho(x0)) + cuo)

(u,v)€éLL

+ D lewuod(hg(xu) ho(x0)) + cul
(u,‘u) E(SLU

py

(u,v)euu

a’SWuvd(h@ (xu),he(xv), (4)

where
1 1 1
cuo = (g (xu), yu) + T=c(go(x0) o) cu = 7=c(go(Xu), Yu),
Jul o] Jul
|u| and |v| are the number of edges incident to vertices u and v, re-
spectively. The objective in its new form enables stochastic training
to be deployed by sampling edges. In particular, in each training
iteration, we use a minibatch of edges and obtain the stochastic
gradients of the objective. To further reduce noise and speedup
learning, we sample edges within a neighbourhood region, that is
to make sure some sampled edges have shared end nodes.

3.4 Complexity

The complexity of each epoch in training using eq. (4) is O(M)
where M = |&] is the number of edges in the graph. In the case
where there is a large number of unlabeled-unlabeled edges, they
potentially do not help learning and could be ignored, leading to
a lower complexity. One strategy to include them is self-training,
that is to grow seeds or labeled nodes as we train the networks.
We experimentally demonstrate this technique in section 4.4. Pre-
dictions at inference time can be made at the same cost as that of
vanilla neural networks.

4 EXPERIMENTS

In this section, we provide several experiments showing the efficacy
of the proposed training objective on a wide range of tasks, datasets
and network architectures. All the experiments are done using a
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TensorFlow implementation [1]. Models were trained using multi-
ple runs, each experiment was run for a fixed number of time steps
and batch size (details described in each section). The observed vari-
ance across runs wrt accuracy was small, around +0.1% Note that
we did not perform any cross-validation to select the regularisation
loss or which hidden layers to compare. As such, we expect even
better results than ones presented below if there is a more careful
selection in place.

4.1 Multi-label Classification of Nodes on
Graphs

We first demonstrate our approach using a multi-label classifica-
tion problem on nodes in a relationship graph. In particular, the
BlogCatalog dataset [2], a network of social relationships between
bloggers is considered. This graph has 10,312 nodes, 333,983 edges
and 39 labels per node, which represent the bloggers, their social
connections and the bloggers’ interests, respectively. Following
previous approaches in the literature [2, 6], we train and make
predictions using multiple one-vs-rest classifiers.

Since there are no provided features for each node, we use the
rows of the adjacency matrix as input features, as discussed in sec-
tion 3.2 in the main text. Feed-forward neural networks (FFNNs)
with one hidden layer of 50 units are employed to map the con-
structed inputs to the node labels. As we use the test set to construct
the graph and augment the training objective, the training in this
experiment is transductive. Critically, to combat the unbalanced
training set, we employ weighted sampling during training, i.e. mak-
ing sure each minibatch has both positive and negative examples.
In this experiment, we fix «; to be equal, and experiment with
a = 0.1 and use the /-2 metric to compute the distance d between
the hidden representations of the networks. In addition, we create
a range of train/test splits by varying the number of training points
being presented to the networks.

We compare our method (NGM-FFNN) against a two-stage ap-
proach that first uses node2vec [6] to generate node embeddings
and then uses a linear one-vs-rest classifier for classification. The
methods are evaluated using two metrics Macro F1 and Micro F1.
The average results for different train/test splits using our method
and the baseline are included in table 1. In addition, we compare
NGM-FFNN with a non-augmented FFNN in which a = 0, i.e. no
edge information is used during training. We observe that the graph-
augmented training scheme performs better (6% relative improve-
ment on Macro F1 when the training set size is 20% and 50% of the
dataset) or comparatively (when the training size is 80%) compared
to the vanilla neural networks trained with no edge information.
Both methods significantly outperform the approach that uses node
embeddings and linear classifiers. We observe the same improve-
ment over node2vec on the Micro F1 metric and NGM-FFNN is
comparable to vanilla FFNN (a = 0) but outperforms other methods
on the recall metric.

These results demonstrate that using the graph itself as direct
inputs to the neural network and letting the network figure out a
non-linear mapping directly from the raw graph is more effective

I These results are different compared to [6], since we treat the classifiers (one per label)
independently. Both methods shown here use the exact same setting and training/test
data splits.
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Table 1: Macro F1 results for BlogCatalog dataset averaged
over 10 random splits. The higher is better. Graph regular-
ized neural networks outperform node2vec embedding and
a linear classifer in all training size settings.

‘ |Train| / |Dataset| ‘ NGM-FENN  node2vec! ‘

20% 0.191 0.168
50% 0.242 0.174
80% 0.262 0.177

than the two-stage approach considered. More importantly, the
results also show that using the graph information improves the
performance in the limited data regime (for example: when training
set is only 20% or 50% of the dataset).

4.2 Text Classification using Character-level
CNNs

We evaluate the proposed objective function on a multi-class text
classification task using a character-level convolutional neural net-
work (CNN). We use the AG news dataset from [21], where the task
is to classify a news article into one of 4 categories. Each category
has 30,000 examples for training and 1,900 examples for testing. In
addition to the train and test sets, there are 111,469 examples that
are treated as unlabeled examples.

As there is no provided graph structure linking the articles, we
create such a graph based on the embeddings of the articles. We
restrict the graph construction to only the train set and the unla-
beled examples and keep the test set only for evaluation. We use the
Google News word2vec corpus to calculate the average embedding
for each news article and use the cosine similarity of document
embeddings as a similarity metric. Each node is restricted to have a
maximum of 5 neighbors.

We construct the CNN in the same way as [21] and pick their
competitive “small CNN” as our baseline for a more reasonable
comparison to our set-up. Our approach employs the same network,
but with significantly smaller number of convolutional layers and
layer sizes, as shown in table 2.

Table 2: Settings of CNNs for the text classification exper-
iment, including the number of convolutional layers and
their sizes. The baseline model is the small CNN from [21]
and is significantly larger than our model.

‘ Setting ‘ Baseline | Our “tiny CNN”
# of conv. layers 6 3
Frame size in conv. layers 256 32
# of FC layers 3 3
Hidden units in FC layers 1024 256

The networks are trained with the same hyper-parameters as
reported in [21]. We observed that the model converged within 20
epochs (the model loss did not change much) and hence used this
as a stopping criterion for this task. Experiments also showed that
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running the network for longer also did not change the qualitative
performance. We use the cross entropy loss on the final outputs
of the network, that is d = cross_entropy(g(xy), g(xz)), to com-
pute the distance between nodes on an edge. In addition, we also
experiment with a data augmentation technique using an English
thesaurus, as done in [21].

We compare the “tiny CNN” trained using the proposed objec-
tive function with the baseline using the accuracy on the test set in
table 3. Our approach outperforms the baseline by provides a 1.8%
absolute and 2.1% relative improvement in accuracy, despite using
a much smaller network. In addition, our model with graph aug-
mentation trains much faster and produces results on par or better
than the performance of a significantly larger network, “large CNN"
[21], which has an accuracy of 87.18 without using a thesaurus, and
86.61 with the thesaurus.

Table 3: Results for news article categorization using
character-level CNNs. Our method gives better predictive ac-
curacy, despite using a much smaller CNN compared to the
“small CNN” baseline from [21]%.

‘ Network ‘ Accuracy %
Baseline* 84.35
Baseline with thesaurus augmentation? 85.20
Our “tiny” CNN 85.07
Our “tiny” CNN with NGM 86.90

4.3 Semantic Intent Classification using LSTM
RNNs

We compare the performance of our approach for training RNN
sequence models (LSTM) for a semantic intent classification task as
described in the recent work on SmartReply [9] for automatically
generating short email responses. One of the underlying tasks in
SmartReply is to discover and map short response messages to
semantic intent clusters.? We choose 20 intent classes and created
a dataset comprised of 5,483 samples (3,832 for training, 560 for
validation and 1,091 for testing). Each sample instance corresponds
to a short response message text paired with a semantic intent
category that was manually verified by human annotators. For
example, “That sounds awesome!” and “Sounds fabulous”belong to
the sounds good intent cluster.

We construct a sparse graph in a similar manner as the news
categorization task using word2vec embeddings over the message
text and computing similarity to generate a response message graph
with fixed node degree (k=10). We use [-2 for the distance metric
d(-) and choose a based on the development set.

We run the experiments for a fixed number of time steps and
pick the best results on the development set. A multilayer LSTM
architecture (2 layers, 100 dimensions) is used for the RNN sequence
model. The LSTM model and its NGM variant are also compared
against other baseline systems—Random baseline ranks the intent

ZFor details regarding SmartReply and how the semantic intent clusters are generated,
refer [9].
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categories randomly and Frequency baseline ranks them in order
of their frequency in the training corpus. To evaluate the intent
prediction quality of different approaches, for each test instance, we
compute the rank of the actual intent category rank; with respect
to the ranking produced by the method and use this to calculate
the Mean Reciprocal Rank: MRR = % Zﬁ\i 1 ﬁ We show in table
4 that LSTM RNNs with our proposed graph-augmented training
objective function outperform standard baselines by achieving a
better MRR.

Table 4: Results for Semantic Intent Classification using
graph-augmented LSTM RNNs and baselines. Higher MRR
is better.

‘ Model Mean Reciprocal Rank (MRR) ‘
Random 0.175
Frequency 0.258
LSTM 0.276
NGM-LSTM 0.284

4.4 Low-supervision Document Classification

Finally, we compare our method on a task with very limited supervision—

the PubMed document classification problem [16]. The task is to
classify each document into one of 3 classes, with each document
being described by a TF-IDF weighted word vector. The graph is
available as a citation network: two documents are connected to
each other if one cites the other. The graph has 19,717 nodes and
44,338 edges, with each class having 20 seed nodes and 1000 test
nodes. In our experiments we exclude the test nodes from the graph
entirely, training only on the labeled and unlabeled nodes.

We train a feed-forward neural network (FFNN) with two hidden
layers with 250 and 100 neurons, using the /-2 distance metric on the
last hidden layer. The NGM-FFNN model is trained with a; = 0.2,
while the baseline FFNN is trained with ; = 0 (i.e., a supervised-
only model). We use self-training to train the model, starting with
just the 60 seed nodes (20 per class) as training data. The amount
of training data is iteratively increased by assigning labels to the
immediate neighbors of the labeled nodes and retraining the model.
For the self-trained NGM-FFNN model, this strategy results in
incrementally growing the neighborhood and thereby, LL and LU
edges in equation 4 objective.

We compare the final NGM-FFNN model against the FFNN base-
line and other techniques reported in [19] including the Planetoid
models [19], semi-supervised embedding [18], manifold regression
[3], transductive SVM [8], label propagation [24], graph embed-
dings [14] and a linear softmax model. Full results are included in
table 5. The results show that the NGM model (without any tuning)
outperforms many baselines including FFNN, semi-supervised em-
bedding, manifold regularization and Planetoid-G/Planetoid-T, and
compares favorably to Planetoid-I. Most importantly, this result
demonstrates the graph augmentation scheme can lead to better
regularised neural networks, especially in low sample regime (20
samples per class in this case). We believe that with tuning, NGM
accuracy can be improved even further.
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Table 5: Results for document classification on the PubMed
dataset using neural networks. The top results are taken
from [19]. The bottom two rows are ours, with the
NGM training outperforming all other baselines, except
Planetoid-I. Please see text for relevant references.

‘ Method ‘ Accuracy
Linear + Softmax 0.698
Semi-supervised embedding 0.711
Manifold regularization 0.707
Transductive SVM 0.622
Label propagation 0.630
Graph embedding 0.653
Planetoid-I 0.772
Planetoid-G 0.664
Planetoid-T 0.757
Feed-forward NN 0.709
NGM-FFNN 0.759

5 CONCLUSIONS

We have revisited graph-augmentation training of neural networks
and proposed Neural Graph Machines as a general framework for
doing so. Its objective function encourages the neural networks to
make accurate node-level predictions, as in vanilla neural network
training, as well as constrains the networks to learn similar hid-
den representations for nodes connected by an edge in the graph.
Importantly, the objective can be trained by stochastic gradient
descent and scaled to large graphs.

We validated the efficacy of the graph-augmented objective on
various tasks including bloggers’ interest, text category and se-
mantic intent classification problems, using a wide range of neural
network architectures (FFNNs, CNNs and LSTM RNNs). The experi-
mental results demonstrated that graph-augmented training almost
always helps to find better neural networks that outperforms other
techniques in predictive performance or even much smaller net-
works that are faster and easier to train. Additionally, the node-level
input features can be combined with graph features as inputs to
the neural networks. We showed that a neural network that simply
takes the adjacency matrix of a graph and produces node labels,
can perform better than a recently proposed two-stage approach
using sophisticated graph embeddings and a linear classifier. Our
framework also excels when the neural network is small, or when
there is limited supervision available. We note that though overall
complexity is linear in the number of edges in the graph, in practice
NGM is more robust compared to the standard training method
(without regularisation) and that it can converge to a better solu-
tion given a fixed time budget. We attribute this effect to the graph
structure used for optimization within each mini-batch rather than
individual training examples in baseline networks.

While our objective can be applied to multiple graphs which
come from different domains, we have not fully explored this as-
pect and leave this as future work. We expect the domain-specific
networks can interact with the graphs to determine the importance
of each domain/graph source in prediction. We also did not explore
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using graph regularisation for different hidden layers of the neural
networks; we expect this is key for the multi-graph transfer setting
[20]. Another possible future extension is to use our objective on
directed graphs, that is to control the direction of influence between
nodes during training.
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