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Abstract. This paper analyzes whether advertisers would be better off using data that

would enable them to target users more accurately if the only way they could use this data

is by sharing the data with all advertisers. I present a wide range of theoretical results that

illustrate general circumstances under which an advertiser can be assured that sharing data

will make the advertiser better off. I then empirically analyze how sharing data would affect

Google’s top 1000 advertisers on mobile apps, and find that over 98% of these advertisers

would always be better off sharing data, regardless of how the data affects competitors’ bids.
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1. Introduction

In some online advertising systems, such as those for Universal App Campaigns at Google,

the only way an advertiser would be able to make use of its targeting data in bidding in an

auction is by sharing its data with the auctioneer. In these auctions, advertisers are unable

to submit separate bids that depend on data that only they have access to, and must instead

share the data with the online ad system so that the ad system can optimize the advertiser’s

bidding on its behalf.

An effect of this is that when an advertiser shares its data with the online ad system,

the online ad system will then be able to use this data to help other advertisers bid more

accurately in auctions as well. Since sharing data will then enable an advertiser’s competitors

to bid more accurately, an advertiser might wonder whether the advertiser would be better

off sharing its data with the online ad system. Will an advertiser be better off sharing its
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data with an online ad system when one considers that this could also enable the advertiser’s

competitors to bid more accurately?

This paper presents both theoretical and empirical analysis that suggests that this will

be the case. I begin by theoretically analyzing the circumstances under which an advertiser

will be better off sharing data if there is exactly one advertising opportunity available in

each auction. When there is only one advertising opportunity available, I find that there are

several circumstances under which there is a theoretical guarantee that an advertiser will be

better off if the advertiser shares its data. An advertiser is guaranteed to be better off sharing

its data if (i) the advertiser was initially losing the auction, (ii) the advertiser’s strongest

competitor was initially bidding significantly more than the next-strongest competitor, or

(iii) the competing advertisers would adjust their bids in the same way as a result of the

advertiser sharing its data. Furthermore, in cases where an advertiser was winning an auction

and facing a strong competitor, sharing data will frequently enable this advertiser to identify

advertising opportunities that it would be better off not winning.

I then consider a setting in which there are multiple positions for advertising opportunities

available in each auction. As in the case in which only a single advertising opportunity is

available, I find that if an advertiser was initially losing the auction, then sharing data

can only be beneficial for the advertiser. I further find that if sharing data would induce

advertisers who are initially ranked higher than the advertiser who shares its data to change

their bids, that this can also only help the advertiser who shares its data. Finally, if sharing

data would induce the lower-ranked advertisers to adjust their bids by a common multiplier

or the highest losing advertiser is initially bidding quite a bit more than the next-highest

losing advertiser, then sharing data can again only help the advertiser who shares its data.

Given the wide range of circumstances under which an advertiser will be better off sharing

its data, stringent conditions must be met in order for sharing data to make an advertiser

worse off. In particular, in order for sharing data to make an advertiser worse off in a

particular auction, it is typically necessary that (i) the advertiser would have its ad shown

in the absence of sharing its data, (ii) the lower-ranked advertisers were initially bidding
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considerably less than the advertiser who shared its data, (iii) the top losing advertisers

were initially making similar bids to one another, and (iv) the losing advertisers would

adjust their bids in a relatively uncorrelated manner as a result of being given this data. In

the rare cases that these conditions are all simultaneously met, it is theoretically possible

that sharing data might make an advertiser worse off, but otherwise sharing data should

make an advertiser better off.

I then analyze whether the conditions that need to be satisfied in order for an advertiser

to be better off sharing its data with an online ad system seem to be met empirically. I

analyze data from Google auctions on both mobile apps (which display one ad at a time)

and Play Search (which sometimes display multiple ads along with organic results). In both

of these cases, I analyze how each of the top 1000 advertisers’ payoffs would be affected if

the advertiser used its data as a strategic input to its campaign when the data could (i)

help the advertiser bid more accurately, (ii) help competing advertisers bid more accurately

on dimensions in which their values are correlated, and (iii) help competing advertisers bid

more accurately on dimensions in which their values are independent of one another.

In particular, for each of the top 1000 app advertisers, I analyze how sharing data would

affect advertisers’ payoffs under hundreds of combinations of ways that the possibilities (i)-

(iii) might affect advertisers’ bids. My analysis of each of these possibilities suggests that the

vast majority of app advertisers would be better off making use of this data. In particular,

I find that over 98% of the top 1000 advertisers on mobile apps would always see improved

performance by using their data as strategic inputs into their campaigns regardless of how

the data affected other advertisers’ bids. On top of this, roughly 65% of the top 1000

advertisers on Play Search would always be better off using this data, and roughly 90% of

these advertisers would never suffer a payoff loss greater than 0.1%, while still typically seeing

improved performance as a result of sharing data. The combination of these theoretical and

empirical results indicates that sharing data is likely to make an advertiser better off, even

if this data can be also used to help the advertiser’s competitors bid more accurately.
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1.1. Related Work. While there has been a wide range of work related to the question of

how targeting data affects the market for online advertising, little of this work has addressed

the question of whether an advertiser would be better off using targeting data in an auction

if the only way that advertiser can use the data is by sharing the data with all advertisers.

Perhaps the most closely related work to this paper is Bhawalkar et al. (2014). Bhawalkar et

al. (2014) primarily address the question of how the value of targeting data to an advertiser in

a decision-theoretic framework depends on various quantities such as the advertiser’s utility

difference between different realizations of the targeting data, the accuracy of the data, the

distribution of competing bids, and the advertiser’s budget. This paper also includes some

results on the value of data when multiple advertisers are given access to the data, which I

build on in this paper.

Other papers analyze how targeting data affects advertiser welfare in less closely related

settings. Bergemann and Bonatti (2011) find in a model with many advertising markets and

advertisers that an increase in targeting ability results in an increase in the social value of

advertising, while decreasing prices for advertising, thereby making advertisers better off.

De Cornière and De Nijs (2016) analyze how allowing advertisers to target affects advertiser

welfare when this targeting may ultimately affect downstream price competition. And Levin

and Milgrom (2010) offer anecdotal evidence that advertiser welfare is likely to be enhanced

by improved targeting.

Ghosh et al. (2015) address a question for publishers that is related to the question this

paper addresses for advertisers. In particular, Ghosh et al. (2015) wonder whether publishers

would have an incentive to share information about the websites a user has visited when

sharing this information may enable advertisers to better target this user on other publishers

and thereby possibly hurt the publisher who shares the data. The authors find that when

advertisers are homogeneous, then publishers either all benefit or all suffer from sharing

information, but when advertisers are heterogeneous, this cookie-matching can help some

publishers at the expense of the others.
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Other papers on targeting data focus on how improved targeting data affects revenue.

Abraham et al. (2016) study the effect of ex ante information asymmetries on revenue.

Board (2009), Fu et al. (2012), Hummel and McAfee (2016), Milgrom and Weber (1982),

and Palfrey (1983) offer results that shed light on the question of how enhanced informa-

tion disclosure or improved targeting would affect a seller’s revenue. And Bergemann and

Välimäki (2006), Bergemann and Wambach (2015), Emek et al. (2012), Eső and Szentes

(2007), Ganuza (2004), Ganuza and Penalva (2010), Ghosh et al. (2007) address questions

related to revenue optimization strategies in the context of information disclosure.

While this literature addresses a wide range of questions related to targeting and infor-

mation disclosure, this work largely fails to address the question of whether an advertiser

would be better off using targeting data if the only way that advertiser could use the data

was by sharing the data with other advertisers. This paper fills this gap in the literature.

2. The Model

I consider a setting in which there is a set of n advertisers who are competing in an auction.

Each advertiser i has some initial estimated value for a click, which I denote by vi, and I

assume without loss of generality that v1 ≥ v2 ≥ . . . ≥ vn.

If an advertiser shares its data, then each advertiser i will learn that its true value for the

advertising opportunity is ṽi = mivi, where mi is a non-negative multiplier that is a random

draw from some distribution with mean 1. Throughout I also allow for the possibility that

the values of mi may be correlated for the different advertisers.

I consider two possible auction formats in which the advertisers might compete. I first

consider a standard second-price auction, in which there is one advertising opportunity avail-

able for sale, and the bidder who submits the highest bid wins the advertising opportunity

and pays a cost-per-click equal to the second-highest bid.

The second possibility I consider is a position auction in which there are s positions for

advertising opportunities available for sale. In such an auction, the advertiser who submits

the jth-highest bid is placed in position j and obtains a total of xj clicks, where xj is
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decreasing in j for all j ≤ s, and xj = 0 for all j > s. Prices are then set using the Vickrey-

Clarke-Groves (VCG) mechanism, so an advertiser who is placed in position k will pay a

total cost of
∑s

j=k(xj − xj+1)bj+1 for its xk clicks, where bj+1 denotes the j +1th-highest bid

in the auction.1 This translates into a cost-per-click of 1
xk

∑s
j=k(xj − xj+1)bj+1.

Regardless of whether there are multiple positions, if an advertiser with a value v per click

obtains a total of x clicks and pays a cost-per-click of c, then this advertiser obtains a payoff

of x(v − c). The mechanisms described have the property that each advertiser will have an

incentive to make a bid in the auction that equals the advertiser’s expected value per click.

I seek to compare the advertiser’s profit from advertising when the advertiser does not share

its data with the advertiser’s profit when the advertiser shares its data.

3. Auctions with One Position

I first consider auctions for a single advertising opportunity. Under such auctions, there

are two basic situations where sharing data might affect an advertiser. The first situation

is a setting in which the advertiser would have lost the auction in the absence of sharing

its data. And the second situation is a setting in which the advertiser would have won the

auction in the absence of sharing its data. I consider both of the settings in turn.

3.1. Losing Advertisers. First note that if an advertiser would have lost the auction if the

advertiser did not share its data, then sharing data can only make the advertiser better off.

The advertiser will not obtain any net profit if the advertiser does not share its data, but if

the advertiser shares its data, there is a chance that the advertiser will reveal information

that enables the advertiser to win the auction and achieve a positive profit. Thus sharing

data can only make the advertiser better off in this case.

3.2. Winning Advertisers. The more interesting case is the case where the advertiser

would have won the auction in the absence of sharing its data, as it is theoretically possible

1Edeleman et al. (2007) and Varian (2007) have shown that under a generalized second-price (GSP) auction,
there is an equilibrium which results in the same auction outcomes that would result under the dominant
strategy equilibrium of the VCG mechanism. Thus the results I derive for VCG immediately extend to a
GSP auction.

6



that sharing data will make an advertiser who would have won the auction without sharing

its data worse off. Nonetheless, even in this setting, there are numerous important ways that

sharing data could make the advertiser better off.

First note that sharing data could enable the advertiser to identify some advertising op-

portunities that it is currently winning that are not valuable to the advertiser, and avoid

winning these auctions. This could happen, for instance, in the special case where m1 < 1

and mj = 1 for all j > 1, in which case the advertiser with the highest initial estimate

of its value learns that the advertising opportunity is not as valuable to this advertiser as

the advertiser previously thought, while the other advertisers’ estimates of their values are

unaffected by the data. In this case, sharing data could enable the advertiser to spend

less money on advertising opportunities that are not inherently valuable to the advertiser,

thereby making the advertiser better off.

But even if sharing data does not help the winning advertiser bid more accurately, this

advertiser might still benefit from sharing its data. It turns out that even if the data is only

useful for helping competitors bid more accurately that this could in turn make the winning

advertiser better off. To understand why this is the case, I first consider what would happen

if the winning advertiser only faces one competing bidder in the auction.

3.2.1. One Competitor. When the winning advertiser only faces one competitor, there are

two possibilities that might occur when the winning advertiser shares its data. The first

possibility is that sharing data will never change which advertiser wins the auction. If this is

the case, then sharing data will have no net effect on auction outcomes because the price the

winning advertiser will pay will remain the same in expectation. Regardless of whether the

winning advertiser shares its data, the competing advertiser has an incentive to make a bid

equal to its expected value for an advertising opportunity given the information that it has.

This average value of advertising opportunities does not change as a result of sharing data,

so the average competing bid, and thus the average price that the winning advertiser pays,

will be unaffected by sharing data. Thus sharing data will have no net effect on auction

outcomes in this case.
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The second possibility is that sharing data will sometimes change which advertiser wins

the auction because it will sometimes induce the competing advertiser to raise its bid above

the original winning advertiser’s bid. In this case, sharing data will make the advertiser

strictly better off. The reason for this is that the competitor will continue to make the

same average bid as a result of the data sharing, so if the competitor raises its bid above

the original winner’s bid in some auctions, it must also lower its bid in other auctions. The

benefits to the original winner from this bid lowering will always be at least as large as any

losses resulting from bid raising, so sharing data will be beneficial. This is illustrated in the

following example:

Example 1. Suppose v1 = 1 and v2 = 0.8, so that initially advertiser 1 is making a profit of

1− 0.8 = 0.2 in each auction. Now suppose that after sharing its data with advertiser 2 that

advertiser 2 learns that ṽ2 = 1.1 with probability 1
2
and ṽ2 = 0.5 with probability 1

2
. Then

advertiser 1’s expected profit from an auction changes to 1
2
(1 − 0.5) = 0.25 > 0.2, meaning

advertiser 1 becomes better off as a result of sharing its data.

The insight from this example is more general than this. The key insight is that once

a competitor raises its bid above the original winner’s bid, then further bid raising has no

adverse effect on the original winner because the original winner is now losing the auction.

However, the original winner always benefits from additional bid lowering because this re-

duces the price the winner must pay in the auction. This is illustrated in the following

theorem, taken from Bhawalkar et al. (2014):

Theorem 1. [Bhawalkar et al. (2014)] When there are two advertisers, each advertiser

prefers to share any targeting data it has with the other advertiser.

Theorem 1 thus provides a theoretical guarantee that sharing data will make an advertiser

better off if the advertiser only has one competitor.

3.2.2. Multiple Competitors. The theoretical guarantee in Theorem 1 does not fully extend

to a setting where an advertiser faces multiple competitors. Instead it is now theoretically
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possible to construct contrived examples under which the original winner of the auction

might become worse off as a result of sharing its data:

Example 2. Suppose there are n = 3 bidders, v1 = 1, and v2 = v3 = 0.5. Also suppose

that after sharing its data with the competing bidders, advertisers j ∈ {2, 3} learn that

ṽj = 0.55 with probability 1
2
and ṽj = 0.45 with probability 1

2
, where the values of ṽ2 and ṽ3

are independent of one another. Then advertiser 1 will obtain a greater profit by not sharing

its data than by sharing data.

Proof. Since ṽj assumes the value 0.55 with probability 1
2
and ṽj = 0.45 with probability 1

2

for each j ∈ {2, 3} and the values of ṽ2 and ṽ3 are independent of one another, then with

probability 3
4
, at least one of the values of ṽj will equal 0.55, and with probability 1

4
, both of

these values will equal 0.45. Thus if the advertiser shares its data, then with probability 3
4
,

the highest competing bid will be 0.55, and with probability 1
4
, the highest competing bid

will be 0.45, meaning the expected value of the second-highest bid will be 0.525. However, if

the advertiser does not share its data, then the highest competing bid will be 0.5. Thus if the

advertiser shares its data, then the advertiser will have to pay a higher price in expectation,

so sharing its data will make the advertiser worse off. □

Example 2 illustrates that it is theoretically possible that sharing data will make an

advertiser worse off if the advertiser faces multiple competitors. However, the construction

of the above example relies on several assumptions that are all critical in order to obtain

this result and may be unlikely to hold in practice.

First, it is necessary that the two highest competing advertisers would both make similar

bids to one another if the advertiser did not share its data. If the third-highest bid is initially

much lower than the second-highest bid, then the third-highest bidder is unlikely to move

up to the top two as a result of sharing its data, and the situation is not much different

from what would happen if the winning advertiser only faces one competitor. Since we

know the winning advertiser is better off sharing its data if the winning advertiser only faces

one competitor, it follows that this advertiser will also be better off sharing its data if the
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third-highest bid is initially much lower than the second-highest bid. Formally, we have the

following result (this theorem and all subsequent theorems are proven in the appendix):

Theorem 2. Suppose the values of mj are drawn from distributions such that ṽ2 ≥ ṽj for all

j > 2 with probability 1. Then advertiser 1 will obtain at least as large a payoff by sharing

its data than by not sharing its data.

In addition to the above, it is also necessary for the two highest competing advertisers to

adjust their bids differently from one another. If instead of this, any time one competing

advertiser adjusted its bid by a factor of m the other competing advertiser also adjusted its

bid by a factor of m, then the outcome of the auction will be the same for the original winner

as it would have been if there were only one competing advertiser in the auction. This in

turn implies that the winning advertiser would be better off sharing its data if the competing

advertisers’ bid adjustments were highly correlated with one another. In particular, we have

the following result:

Corollary 1. Suppose the values of mj are drawn from a distribution such that the values of

mj for j ≥ 2 are all equal with probability 1. Then advertiser 1 will obtain at least as large

a payoff by sharing its data than by not sharing its data.

These results thus indicate that there are far more circumstances under which sharing

data will be beneficial to an advertiser than there are ways that this can make the advertiser

worse off. Sharing data will help the advertiser in auctions the advertiser would have lost in

the absence of sharing its data, it will help the advertiser avoid winning auctions that the

advertiser would have won otherwise but are not valuable to the advertiser, it will make the

advertiser better off when the advertiser only faces one strong competitor, and it will make

the advertiser better off when the advertisers’ competitors would adjust their bids in similar

ways as a result of being given access to the data.

Furthermore, in cases where the highest competing advertiser is only bidding slightly less

than the original winner, it is very likely that sharing data will enable the advertiser who

was originally winning the auction to selectively win only the advertising opportunities that
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are most valuable to this advertiser, and thereby make this advertiser better off. Combining

all these insights suggests that sharing data will typically only make an advertiser worse off

if (i) the advertiser would have won the auction in the absence of sharing data, (ii) all of

the competing advertisers are initially bidding considerably less than the winning advertiser,

(iii) the top two competing advertisers are making similar bids, and (iv) the competing

advertisers would adjust their bids in a manner uncorrelated with one another as a result

of being given this data. Thus stringent conditions are typically needed in order for sharing

data to make an advertiser worse off.

4. Position Auctions

I now extend my analysis in the previous section to auctions for multiple positions. As in

the case where there is one position in Section 3.1, if an advertiser would not have its ad shown

if the advertiser did not share its data, then sharing data can only make the advertiser better

off. If the advertiser does not share its data, then the advertiser will necessarily obtain zero

profit from advertising. However, if the advertiser does share its data, then it is possible that

the advertiser may be able to profitably win an advertising opportunity that the advertiser

would not have won in the absence of sharing its data. Thus I focus on the case in which an

advertiser would have had its ad shown in the absence of sharing data in this section.

Even if the advertiser would have its ad shown if the advertiser did not share its data, it

is still possible that sharing data could make the advertiser better off. As in the case with

one position, there is the possibility that sharing data would enable the advertiser to bid

more accurately, which could in turn increase the advertiser’s payoff by either enabling the

advertiser to increase the number of clicks that it purchases when its value is higher than

expected or enabling the advertiser to decrease the number of clicks it purchases when its

value is lower than expected. This corresponds to the case in which mi ̸= 1 for the advertiser

i that shares its data but mj = 1 for all j ̸= i.

On top of this, sharing data can benefit an advertiser even if the data can only be used

to help competitors bid more accurately. Suppose, for instance, the data is primarily used
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to help the higher-ranked advertisers bid more accurately. In particular, suppose that if

advertiser i shares its data, then each advertiser j > i learns that mj = 1 and thus does

not adjust its bid as a result of advertiser i sharing data. In this case, sharing data is again

beneficial for advertiser i:

Theorem 3. Suppose sharing data does not affect the bids of the lower-ranked advertisers in

the sense that if advertiser i shares its data, then each advertiser j > i learns that mj = 1.

Then sharing data will make advertiser i at least as well off.

The intuition for Theorem 3 is that if as a result of sharing data, the higher-ranked

advertisers adjust their bids in such a manner that these advertisers would continue to

be ranked higher than advertiser i, then sharing data does not affect advertiser i’s payoff.

However, if one or more of these advertisers lowers its bid below advertiser i’s bid, then

advertiser i will be able to move up a position and obtain a greater payoff from advertising.

Thus sharing data can only be beneficial in this case.

Sharing data can also benefit an advertiser if the data is primarily used to help the lower-

ranked advertisers bid more accurately. In particular, suppose that the only way that sharing

data affects bids is by inducing the advertisers j > i to adjust their bids by some common

multiplier m. In this setting I am able to prove the following result:

Theorem 4. Suppose that if advertiser i shares its data, then each advertiser j > i will

adjust its bid by some common multiplier m that is a random draw from some distribution

with mean 1. Then sharing data will make advertiser i at least as well off.

The reason Theorem 4 holds is that if sharing data never induces any of the lower-ranked

advertisers to raise their bids above advertiser i’s original bid, then advertiser i will obtain

the same expected payoff as before because the fact that these advertisers are adjusting

their bids by a common component with mean 1 means that advertiser i’s expected price

for these clicks will not be affected. However, if sharing data sometimes induces the lower-

ranked advertisers to raise their bids above advertiser i’s original bid, then advertiser i will

necessarily benefit as a result of sharing data. The reason for this is that if an advertiser
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j > i raises its bid above advertiser i’s bid in some auctions, then advertiser j will also lower

its bid by a correspondingly large amount in other auctions. However, while additional bid

raising above advertiser i’s bid has no effect on advertiser i’s payoff, additional bid lowering

always reduces advertiser i’s costs and thus benefits advertiser i. Because of this, the net

effect of the lower-ranked advertisers’ bid changes can only benefit advertiser i in the setting

considered in Theorem 4.

It is also worth noting that the setting in Theorem 4 is not the only setting under which

sharing data can benefit an advertiser, even if the lower-ranked advertisers would change

their bids in response. Even if the lower-ranked advertisers adjust their bids differently from

one another, we sometimes have a guarantee that the advertiser will benefit from sharing

data if there is a sufficiently small amount of competition in the auction. In particular, I

prove the following result:

Theorem 5. Suppose xj − xj+1 is increasing in j for all j ≤ s and there are n = s + 1

bidders in the auction. Then sharing data will make advertiser i at least as well off.

To understand why Theorem 5 holds, note that we can think of the total cost a bidder in

position i must pay as the sum of the costs for the incremental clicks the bidder must pay for

each of the positions j ≤ i, where the incremental clicks a bidder achieves for moving up to

position j from position j+1 is equal to xj−xj+1, and the price for each of these incremental

clicks is set by the j + 1th-highest bid. If a competing advertiser adjusts its bid as a result

of sharing data, then this advertiser will sometimes raise bids and sometimes lower bids. In

cases where the advertiser raises its bid, the advertiser will make the incremental clicks in a

higher position more expensive, but if the advertiser lowers its bid enough to move down a

position, the advertiser will make the incremental clicks in a lower position cheaper. Since

the condition that xj − xj+1 is increasing in j implies that there are more incremental clicks

in the lower positions, the cost reductions from the cases in which this bidder lowers its bid

will be at least as large as any losses resulting from the case in which the bidder raises its

bid.
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An important application of the setting in Theorem 5 is the case in which there are no

more than s = 2 positions available for sale, as is typically the case in advertising auctions on

Google Play Search. In that case, the technical condition that xj −xj+1 is increasing in j for

all j ≤ s is equivalent to x2 − x3 > x1 − x2, which holds if and only if 2x2 > x1 ⇔ x2 >
x1

2
.

Thus if an advertiser could achieve at least half as many clicks in second position as the

advertiser can achieve in top position, Theorem 5 would guarantee that an advertiser would

always be better off sharing its data if there are exactly s = 3 bidders. Since an advertiser will

typically be able to achieve at least half as many clicks in second position as the advertiser

could obtain in top position, Theorem 5 indicates that we can expect an advertiser to be

better off sharing its data in any auctions on Play Search with no more than three bidders.

The previous results indicate that there are a wide range of circumstances under which

there is a theoretical guarantee that sharing data will make an advertiser better off. However,

if these conditions are not satisfied, it is at least theoretically possible that sharing data will

make an advertiser worse off. I illustrate this in the following example:

Example 3. Suppose there are n = 4 bidders, s = 2 positions, v1 = 4, v2 = 2, v3 = v4 = 1,

and if advertiser 2 shares its data, then neither advertisers 1 or 2 will adjust their bids, but

each of the advertisers 3 and 4 will adjust their bids independently of one another by bidding

1.1 in a random half of the auctions and 0.9 in the remaining auctions. Then advertiser 2

will obtain a greater profit by not sharing its data than by sharing its data.

Proof. If each of the advertisers 3 and 4 adjusts its bids independently of one another in

the manner described above, then with probability 3
4
, the third-highest bid in the auction

will be 1.1, and with probability 1
4
, the third-highest bid in the auction will be 0.9, meaning

the expected value of the third-highest bid will be 1.05. However, if the advertiser does not

share its data, then the third-highest bid will be 1. Thus if the advertiser shares its data,

then the advertiser will have to pay a higher price in expectation, so sharing its data will

make the advertiser worse off. □
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While Example 3 illustrates that an advertiser need not be better off sharing its data,

this example relies on a fairly peculiar construction. In order for this example to work, it is

necessary that the advertiser who shares its data is facing two losing advertisers who are both

initially bidding about the same amount, the advertisers both adjust their bids differently

from one another, and neither the advertiser nor the higher-ranked advertisers would adjust

their bids in a manner that leads to re-ranking as a result of sharing data. If any of these

conditions is not met, then sharing data would typically make the advertiser better off.

To see why these conditions are typically needed, note that if advertiser 4 were initially

bidding significantly less than advertiser 3, then regardless of how the lower-ranked adver-

tisers adjusted their bids as a result of sharing data, it is very likely that advertiser 4 would

continue to be ranked outside the top three advertisers. Thus the effect that sharing data

would have on the advertisers’ payoffs in this case would not be much different than the

effect of sharing data when there are only three advertisers in the auction, where we know

from Theorem 5 that sharing data would typically be beneficial. In particular, we have the

following result:

Theorem 6. Suppose the values of mj are drawn from distributions such that ṽs+1 ≥ ṽj for

all j > s+ 1 with probability 1. Also suppose that xj − xj+1 is increasing in j for all j ≤ s.

Then sharing data will make each advertiser i at least as well off.

Theorem 6 thus indicates that it is typically necessary for the two losing advertisers to

both initially be bidding similarly to one another in order for sharing data to be harmful. If

advertiser s + 1 is bidding considerably more than advertiser s + 2, then ṽs+1 ≥ ṽj is very

likely to hold for all j > s + 1, and Theorem 6 implies that each advertiser will be at least

as well off if this advertiser shares its data.

It is also necessary that the losing advertisers adjust their bids differently from one another.

If these advertisers adjust their bids in a manner that is perfectly correlated with one another,

then we know from Theorem 4 that sharing data will necessarily make advertiser 2 better

off. Thus this condition is also necessary.
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Finally, it is also typically necessary that neither the advertiser who shares its data nor

any of the higher-ranked advertisers would adjust their bids in a manner that leads to re-

ranking. If the higher-ranked advertisers adjust their bids as a result of sharing data, then

we know from Theorem 3 that if this leads to re-ranking, then this will necessarily make

the advertiser who shares its data better off. And the advertiser can certainly only be made

better off if, as a result of being able to bid more accurately, the advertiser finds that it now

wants to bid in such a way that it is placed in a different position. Thus this last condition

is also typically needed.

In conclusion, in order for an advertiser to become worse off as a result of sharing data

in a particular auction, it is typically necessary for (i) the advertiser to have its ad shown

in the absence of sharing data, (ii) the top two losing bidders in the auction to initially

be bidding similarly to one another, (iii) the top losing bidders to adjust their bids in an

uncorrelated manner, and (iv) for the other bidders to either be bidding considerably less

or considerably more than the bidder who shares its data so that neither the advertiser who

shares its data nor the higher-ranked advertisers will want to adjust their bids in such a way

that the advertiser who shares its data will be re-ranked. Thus stringent conditions must be

satisfied in order for sharing data to make an advertiser worse off.

5. Empirical Analysis

To obtain a better sense of whether the types of conditions that would need to be satisfied

in order for sharing data to make an advertiser better off are met empirically, I conduct some

empirical analysis of Google’s ad auctions. In particular, I seek to measure how payoffs for the

top 1000 advertisers on mobile apps and Play Search would be affected if these advertisers

shared their data. These settings differ in that only one ad is displayed on mobile apps,

whereas two ads are frequently displayed on Play Search.

We know from Section 3.1 that if an advertiser in an auction for one advertising opportu-

nity did not win the auction, then this advertiser can only become better off if it shares its
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data. And we also know from Theorem 3 that when there are multiple positions, if higher-

ranked advertisers change their bids as a result of an advertiser sharing its data, then this can

only benefit the advertiser in question. Because of this, the case where it is least likely that

sharing data will be beneficial to an advertiser is the case in which there are no advertisers

that are higher-ranked, and the advertiser would have been placed in top position even if

the advertiser had not shared its data. Thus I focus on this case throughout my analysis.

In my analysis I consider three possible ways that sharing the data could affect an adver-

tiser. First I allow for the possibility that the data could be used to help the advertiser who

shared the data bid more accurately in the auction. This possibility can clearly only make

the advertiser better off.

The second possibility I consider is the possibility that the data would enable the compet-

ing advertisers to refine their bids by a common component that reflects the common value

of the user to the competing advertisers. This is also likely to be a common use of the data,

but the data is likely to be less useful for this purpose than it is for the purpose described

in the previous paragraph because the data will typically be more strongly correlated with

the outcomes that the advertiser cares about than it is with the outcomes that the other

advertisers care about.

The final use of the data that I consider is that the data could be used to help competing

advertisers refine their bids in a manner that is independent of how the other advertisers

refine their bids by identifying users that are valuable to one advertiser but not to the

other advertisers. While the data may be used in this way, this use of the data should be

less common than the use described in the previous paragraph because if a user is more

valuable to one competing advertiser, the user will also typically be more valuable to the

other competing advertisers.

To model these uses of the data, I assume that the winning advertiser’s value would be

modified by some multiplier mw that is a random draw from some cumulative distribution

function F (·) with expected value 1. I also assume that the competing advertisers’ values

will be modified by some common multiplier m that is a random draw from some cumulative
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distribution function G(·) with expected value 1. Finally, I assume that each competing

advertiser j will have its estimated value modified by some additional multiplier mj that is

an independent draw from a cumulative distribution function H(·) with expected value 1.

Thus if the winning advertiser shares its data, then each competing advertiser j will learn

that its true value for the advertising opportunity is ṽj = mmjvj, where vj denotes advertiser

j’s original estimate of its value.

To match empirical evidence on the distributions of advertisers’ bids (Lahaie and McAfee

2011; Ostrovksy and Schwarz 2016; Sun et al. 2014), I assume that F (·), G(·), and H(·)

are all lognormal distributions with mean 1, and I allow the standard deviations in the

lognormal distributions σF , σG, and σH to vary in my different simulations. I focus on

a setting in which σF ≥ σG ≥ σH since I expect the winning advertiser’s data to do at

least as much to affect the winning advertiser’s estimate of its value as it does to affect the

competitors’ estimates of their values, and I also expect the data to do at least as much to

affect the common component of competing advertisers’ estimates of their values as it does

to affect the idiosyncratic components of competing advertisers’ estimates of their values.

In particular, for every tuple of values (σF , σG, σH) such that σF , σG, and σH are all

integral multiples of 0.05 satisfying 0 ≤ σH ≤ σG ≤ σF ≤ 0.5, I simulated the auction

outcomes that would arise if the values of mw, m, and mj in each auction were independent

and identically distributed draws from the lognormal distribution with mean 1 and standard

deviations σF , σG, and σH respectively. After simulating these auction outcomes, I then

calculated the difference between the profit the advertiser would obtain with and without

sharing data.

5.1. Mobile Apps. I begin by presenting the results for advertising opportunities on mobile

apps. Since the auctions on mobile apps are standard second-price auctions for a single

advertising opportunity, throughout I assume that each advertiser is making a bid that

equals the advertiser’s true value for an advertising opportunity. For each of the top 1000

app advertisers, I conducted numerical simulations to measure how this advertiser’s payoff
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would be affected in the subset of auctions in which the advertiser won the auction under

each of the tuples of values (σF , σG, σH) presented above.

For 974 of the top 1000 advertisers, I found that the advertiser experienced a statistically

significant payoff increase by sharing its data under each of the hundreds of tuples of values

(σF , σG, σH) considered. Moreover, 988 of the top 1000 advertisers either experienced a

statistically significant payoff increase or no statistically significant change in payoff under

each of the hundreds of tuples of values (σF , σG, σH) considered. Only four of the top

1000 advertisers ever experienced a loss in payoff greater than 0.2% under at least one of the

hundreds of tuples of values (σF , σG, σH) considered, and only one of the top 1000 advertisers

ever experienced a loss in payoff greater than 0.4% under at least one of the hundreds of

tuples of values (σF , σG, σH) considered.

Moreover, of the few advertisers who sometimes experienced a statistically significant

payoff loss as a result of sharing their data under at least one of the hundreds of tuples

of values (σF , σG, σH) considered, only two advertisers experienced a statistically significant

payoff decrease in at least 1% of the hundreds of tuples of values considered, and only one of

these advertisers experienced a statistically significant payoff decrease in at least 3% of the

hundreds of tuples of values considered. These results thus suggest that virtually all of the

top 1000 advertisers would be better off sharing their data for auctions on mobile apps.

5.2. Play Search. Next I present the results for Play Search. Play Search has a mix of

auctions in which only one advertisement is displayed as well as other auctions in which two

advertisements are displayed. The auctions with only one advertising opportunity are equiv-

alent to standard second-price auctions, so in these auctions I assume that each advertiser

is making a bid that equals the advertiser’s true value for an advertising opportunity.

The auctions with two positions are GSP auctions in which each bidder has a bidder-

specific reserve price. In these auctions, if each bidder i makes a bid of bi and has a bidder-

specific reserve price of ri, then bidders are ranked on the basis of the scores bi − ri, and

each bidder pays a cost-per-click equal to the minimum bid the bidder needed to make in

order to maintain its position. In particular, if bidder i is placed in position k, then this
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bidder will pay a cost-per-click equal to b(k+1) − r(k+1) + ri, where b(k+1) denotes the bid of

the advertiser in position k+1, and r(k+1) denotes this bidder’s bidder-specific reserve price.

In these auctions, equilibrium bidding behavior is governed by strategies analogous to

those in Edelman et al. (2007) and Varian (2007). In particular, if advertiser i does not

have one of the two largest values of vi − ri, where vi denotes advertiser i’s value per click,

then this advertiser will have an incentive to make a bid of bi = vi in equilibrium. And if

advertiser i does have one of the two largest values of vi− ri, then this advertiser will obtain

a payoff of x2(vi − (b3 − r3 + ri)) if the advertiser is placed in position two and a payoff of

x1(vi − (b2 − r2 + ri)) if the advertiser is placed in position one, where b2 and r2 denote the

bid and reserve price of the bidder k with the highest competing value of bk − rk.

Thus advertiser i prefers to be placed in position one rather than position two if and only

if x1(vi− (b2−r2+ri)) ≥ x2(vi− (b3−r3+ri)) ⇔ vi− (b2−r2+ri) ≥ x2

x1
(vi− (b3−r3+ri)) ⇔

b2− r2 ≤ (1− x2

x1
)(vi− ri)+

x2

x1
(b3− r3). This in turn implies that advertiser i has a dominant

strategy of making a bid bi that satisfies bi − ri = (1 − x2

x1
)(vi − ri) +

x2

x1
(b3 − r3) so that

advertiser i will be placed in position 1 if and only if b2− r2 ≤ (1− x2

x1
)(vi− ri)+

x2

x1
(b3− r3).

Thus if one of the top two advertisers i is making a bid bi, I assume that this advertiser’s

value vi is a solution to the equation bi − ri = (1− x2

x1
)(vi − ri) +

x2

x1
(b3 − r3), which in turn

holds if and only if x1(bi− ri) = (x1−x2)(vi− ri)+x2(b3− r3) ⇔ vi = ri+
x1(bi−ri)−x2(b3−r3)

x1−x2
.

Under these assumptions about advertisers’ values, for each of the top 1000 advertisers, I

conducted numerical simulations to measure how this advertiser’s payoff would be affected

in the subset of auctions in which the advertiser was in top position under each of the tuples

of values (σF , σG, σH) presented above. The results were as follows:

For 367 of the top 1000 advertisers, I found that the advertiser experienced a statistically

significant payoff increase by sharing its data under each of the hundreds of tuples of values

(σF , σG, σH) considered. Moreover, 643 of the top 1000 advertisers either experienced a

statistically significant payoff increase or no statistically significant change in payoff under

each of the hundreds of tuples of values (σF , σG, σH) considered. Only 102 of the top 1000

advertisers ever experienced a loss in payoff greater than 0.1% under at least one of the
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hundreds of tuples of values (σF , σG, σH) considered, only 53 of the top 1000 advertisers ever

experienced a loss in payoff greater than 0.2% under at least one of the hundreds of tuples

of values (σF , σG, σH) considered, and only 21 of the top 1000 advertisers ever experienced

a loss in payoff greater than 0.4% under at least one of the hundreds of tuples of values

(σF , σG, σH) considered.

Moreover, of the minority of advertisers who sometimes experienced a statistically sig-

nificant payoff loss as a result of sharing their data under at least one of the hundreds of

tuples of values (σF , σG, σH) considered, the majority of these advertisers only experienced

a statistically significant payoff loss under a very small fraction of the hundreds of tuples of

values (σF , σG, σH) considered. For example, only 97 of the top 1000 advertisers experienced

a statistically significant payoff loss in at least 3% of the hundreds of tuples of values con-

sidered, and only 68 of the top 1000 advertisers experienced a statistically significant payoff

loss in at least 5% of the hundreds of tuples of values considered.

While these results are less favorable than the results on mobile apps, the results nonethe-

less indicate that vast majority of the top 1000 advertisers would be better off sharing their

data for auctions on Play Search. The differences in the results stem from the fact that there

tends to be a larger gap between the highest bid and the second-highest bid in the auctions

on Play Search than in auctions on mobile apps. Because of this, it is less likely that shar-

ing data will enable the winning advertiser to successfully identify advertising opportunities

that the advertiser did not want to win on Play Search than it is on mobile apps. Thus,

on average, sharing data is less beneficial to the the winning app advertisers on Play Search

than it is on mobile apps.

Finally, it is worth remembering that these results are for the subset of auctions in which

the advertiser in question initially had the highest bid in the auction. Since the auctions

in which an advertiser had the highest bid in the auction are the subset of auctions where

an advertiser is least likely to benefit from sharing its targeting data, it follows that the

fraction of advertisers that would benefit from sharing targeting data would likely be even

larger than what is suggested by this analysis.
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6. Conclusion

This paper has analyzed whether advertisers would be better off using data that would

enable them to target users more accurately if the only way they could use this data is

by sharing the data with all advertisers and thereby enabling their competitors to also bid

more accurately. I have presented both theoretical and empirical results that suggest that

advertisers would typically be better off using their data in this case, even if this requires

them to share their data and thereby enable their competitors to bid more accurately.

Theoretically I have shown that relatively stringent conditions will need to be met in

order for an advertiser to become worse off as a result of sharing its data. In particular, it is

typically necessary for (i) the competing advertisers to initially be bidding considerably less

than the advertiser who shares its data, (ii) the strongest competing advertisers to initially

be making similar bids to one another, and (iii) the competing advertisers to adjust their

bids in an uncorrelated manner in order for sharing data to make an advertiser worse off.

Under other circumstances, an advertiser will typically be better off sharing its data.

Empirically I have analyzed how sharing data would affect Google’s top 1000 advertisers

in auctions on mobile apps and Play Search when sharing data may (i) help the advertiser

bid more accurately, (ii) help the competing advertisers bid more accurately on dimensions

in which their values are correlated, and (iii) help the competing advertisers bid more ac-

curately on dimensions where their values are independent. After analyzing hundreds of

combinations of ways that the possibilities (i)-(iii) might affect advertisers’ values for ad-

vertising opportunities, I found that the vast majority of the top 1000 advertisers would be

better off sharing their data under each of these hundreds of possibilities. In particular, 98%

of the top 1000 advertisers on mobile apps would always be better off using data as strategic

inputs to their campaigns. Moreover, this held even though I restricted attention to auctions

in which the advertiser initially had the highest bid in the auction, the subset of auctions in

which the advertiser is least likely to benefit from sharing data.
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Appendix

Proof of Theorem 2: If the values of mj are drawn from distributions such that ṽ2 ≥ ṽj

for all j > 2 with probability 1, then the outcome of the auction will be the same as the

outcome that would arise if the bidders j > 2 did not participate in the auction: Advertiser

1 will only lose the auction if advertiser 2 bids more than advertiser 1, and if advertiser 1

wins the auction then this advertiser will pay a cost equal to advertiser 2’s bid.

But we know from Theorem 1 that if the bidders j > 2 do not participate in the auction,

then advertiser 1 prefers to share its data with its competitors. From this it follows that

advertiser 1 will obtain at least as large a payoff by sharing its data than by not sharing in

this setting. □

Proof of Corollary 1: If the values of mj are drawn from a distribution such that the

values of mj for j ≥ 2 are all equal with probability 1, then ṽ2 ≥ ṽj will hold for all j > 2

with probability 1 since v2 ≥ vj implies mv2 ≥ mvj for all m and thus ṽ2 ≥ ṽj whenever

m2 = mj = m. But since ṽ2 ≥ ṽj holds for all j > 2 with probability 1, it follows from

Theorem 2 that advertiser 1 will obtain at least as large a payoff by sharing its data than

by not sharing in this setting. □

Lemma 1. If an advertiser with value v is placed in position k, then this advertiser obtains

a payoff of xkv −
∑s

j=k(xj − xj+1)bj+1 =
∑s

j=k(xj − xj+1)(v − bj+1).

Proof. Since the advertiser in position k obtains xk clicks and pays a cost-per-click of c =

1
xk

∑s
j=k(xj − xj+1)bj+1, we know that this advertiser obtains a payoff of xk(v− c) = xk(v−
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1
xk

∑s
j=k(xj − xj+1)bj+1). This then simplifies to xkv −

∑s
j=k(xj − xj+1)bj+1 =

∑s
j=k(xj −

xj+1)(v − bj+1). □

Proof of Theorem 3: It suffices to prove this result for the case in which advertiser i

would not change its bid as a result of sharing its data. Note that if advertiser i does

not share its data, then the advertiser will be placed in position i and obtain a payoff of∑s
j=i(xj − xj+1)(vi − bj+1) (by Lemma 1). If the advertiser does share its data, then there

are two possibilities:

The first possibility is that the advertiser will continue to be placed in position i after

sharing its data. In that case, all of the advertisers in positions j > i will still be making the

same bids as before, so advertiser i will continue to obtain a payoff of
∑s

j=i(xj − xj+1)(vi −

bj+1).

The second possibility is that the advertiser will be placed in some position k < i after

sharing its data. In this case, advertiser i will obtain a payoff of
∑s

j=k(xj − xj+1)(vi − b′j+1),

where b′j+1 denotes the new j + 1th-highest bid in the auction. Now
∑s

j=k(xj − xj+1)(vi −

b′j+1) ≥
∑s

j=i(xj−xj+1)(vi−b′j+1) since k < i and (xj−xj+1)(vi−b′j+1) ≥ 0 for all j ≥ k. And∑s
j=i(xj − xj+1)(vi − b′j+1) ≥

∑s
j=i(xj − xj+1)(vi − bj+1) since b

′
j+1 ≤ bj+1 for all j ≥ i. Thus∑s

j=k(xj − xj+1)(vi − b′j+1) ≥
∑s

j=i(xj − xj+1)(vi − bj+1), meaning the payoff the advertiser

achieves by sharing its data will be at least as high as the payoff the advertiser would achieve

if the advertiser did not share its data. The result then follows. □

Proof of Theorem 4: Note that if advertiser i does not share its data, then advertiser i

will be placed in position i and obtain a payoff of
∑s

j=i(xj − xj+1)(vi − bj+1) (by Lemma 1).

To prove the result, I must then show that advertiser i’s expected payoff will be at least this

large if the advertiser shares its data. First I prove this for the case in which advertisers in

positions j ≤ i do not change their bids as a result of advertiser i sharing its data.

Note that if advertiser i shares its data, then each advertiser j > i will have its bid

multiplied by some common multiplier m, and advertiser i will then be placed in the highest

position k satisfying vi > mbk+1 and obtain a payoff
∑s

j=k(xj − xj+1)(vi − mbj+1). This
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payoff can then alternatively be expressed as
∑s

j=k(xj − xj+1)(vi − mbj+1) =
∑s

j=i(xj −

xj+1)(max{0, vi −mbj+1}).

Now since E[m] = 1 and max{0, vi − mbj+1} is a convex function of m, we know from

Jensen’s inequality that E[max{0, vi −mbj+1}] ≥ max{0, vi − bj+1}. And since max{0, vi −

bj+1} = vi − bj+1 for all j ≥ i, it then follows that E[max{0, vi −mbj+1}] ≥ vi − bj+1 for all

j ≥ i. Thus advertiser i’s expected payoff from sharing data, E[
∑s

j=i(xj −xj+1)(max{0, vi−

mbj+1})], satisfies E[
∑s

j=i(xj − xj+1)(max{0, vi − mbj+1})] ≥
∑s

j=i(xj − xj+1)(vi − bj+1),

meaning this advertiser would achieve at least as large an expected payoff from sharing data

as from not sharing data.

The above result was for the case in which advertisers in positions j ≤ i do not change

their bids as a result of advertiser i sharing its data. But we know from the result in Theorem

3 that advertiser i can only benefit if sharing data induces advertisers in positions j ≤ i to

change their bids as a result. Thus the conclusion in the previous paragraph also extends

to settings in which all advertisers may change their bids as a result of data sharing. The

result then follows. □

Proof of Theorem 5: To prove this result it suffices to prove that if an arbitrary individual

advertiser changes its bid as a result of sharing data, then this will make advertiser i at least

as well off. We know from Theorem 3 that if an advertiser j ≤ i adjusts its bid as a result of

advertiser i sharing its data, then this will necessarily make advertiser i at least as well off.

Thus it suffices to prove that if some advertiser j > i adjusts its bid as a result of advertiser

i sharing its data, then this will make advertiser i at least as well off.

If advertiser i does not share its data, then the advertisers will be ranked in order and

advertiser i will obtain a payoff of
∑s

j=i(xj − xj+1)(vi − bj+1) (by Lemma 1). However, if

advertiser i shares its data, and advertiser k > i adjusts its bid from bk to b′k, then advertiser

i’s payoff will depend on which of the following circumstances the advertiser is in:

The first possibility is that advertiser k will remain in position k even after changing

its bid. In this case, advertiser i will obtain a payoff of
∑s

j=i(xj − xj+1)(vi − b′j+1), where

b′j+1 ≡ bj+1 if j + 1 ̸= k.
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The second possibility is that advertiser k will move down to some lower position l > k

after changing its bid. In this case, advertiser i will obtain a payoff of xivi − [
∑k−2

j=i (xj −

xj+1)bj+1+
∑l−2

j=k−1(xj−xj+1)bj+2+(xl−1−xl)b
′
k+

∑s
j=l(xj−xj+1)bj+1]. Now since xj−xj+1 is

increasing in j for all j ≤ s and b′k < bl, we know that
∑l−2

j=k−1(xj−xj+1)bj+2+(xl−1−xl)b
′
k ≤

(xk−1 − xk)b
′
k +

∑l−1
j=k(xj − xj+1)bj+1. Thus advertiser i’s payoff from sharing data in this

case is greater than or equal to xivi − [
∑k−2

j=i (xj − xj+1)bj+1 + (xk−1 − xk)b
′
k +

∑l−1
j=k(xj −

xj+1)bj+1 +
∑s

j=l(xj − xj+1)bj+1] = xivi −
∑s

j=i(xj − xj+1)b
′
j+1 =

∑s
j=i(xj − xj+1)(vi − b′j+1),

where b′j+1 ≡ bj+1 if j + 1 ̸= k.

The third possibility is that advertiser k will move up to some higher position l ∈ (i, k)

after changing its bid. In this case, advertiser i will obtain a payoff of xivi − [
∑l−2

j=i(xj −

xj+1)bj+1+(xl−1−xl)b
′
k +

∑k−1
j=l (xj −xj+1)bj +

∑s
j=k(xj −xj+1)bj+1]. Now since xj −xj+1 is

increasing in j for all j ≤ s and b′k > bl, we know that (xl−1 − xl)b
′
k +

∑k−1
j=l (xj − xj+1)bj ≤∑k−2

j=l−1(xj − xj+1)bj + (xk−1 − xk)b
′
k. Thus advertiser i’s payoff from sharing data in this

case is greater than or equal to xivi − [
∑l−2

j=i(xj − xj+1)bj+1 +
∑k−2

j=l−1(xj − xj+1)bj + (xk−1 −

xk)b
′
k +

∑s
j=k(xj − xj+1)bj+1] = xivi −

∑s
j=i(xj − xj+1)b

′
j+1 =

∑s
j=i(xj − xj+1)(vi − b′j+1),

where b′j+1 ≡ bj+1 if j + 1 ̸= k.

The final possibility is that advertiser k will move up to some higher position l ≥ i after

changing its bid. In this case, advertiser i will obtain a payoff of
∑s

j=i+1(xj−xj+1)(vi−b′j+1),

where b′j+1 ≡ bj+1. Now since xj − xj+1 is increasing in j for all j ≤ s, we know that∑s
j=i+1(xj − xj+1)(vi − b′j+1) ≥

∑k−2
j=i (xj − xj+1)(vi − b′j+1) +

∑s
j=k(xj − xj+1)(vi − b′j+1).

And since b′k > vi, we also know that
∑k−2

j=i (xj − xj+1)(vi − b′j+1) +
∑s

j=k(xj − xj+1)(vi −

b′j+1) ≥
∑k−2

j=i (xj − xj+1)(vi − b′j+1) + (xk−1 − xk)(vi − b′k) +
∑s

j=k(xj − xj+1)(vi − b′j+1) =∑s
j=i+1(xj − xj+1)(vi − b′j+1). Thus advertiser i’s payoff in this case is again greater than or

equal to
∑s

j=i(xj − xj+1)(vi − b′j+1).

By combining the results in the previous four paragraphs, we see that regardless of how

advertiser k adjusts its bid in response to advertiser i sharing data, advertiser i’s payoff will

be greater than or equal to
∑s

j=i(xj−xj+1)(vi−b′j+1). Since E[
∑s

j=i(xj−xj+1)(vi−b′j+1)] =∑s
j=i(xj−xj+1)(vi−bj+1), and advertiser i would obtain a payoff of

∑s
j=i(xj−xj+1)(vi−bj+1)
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if the advertiser did not share its data, it follows that advertiser i will be at least as well off

if it shares its data. □

Proof of Theorem 6: If the values of mj are drawn from distributions such that ṽs+1 ≥ ṽj

for all j > s + 1 with probability 1, then the outcome of the auction will be the same as

the outcome that would arise if the bidders j > s + 1 did not participate in the auction:

Advertiser i will be placed in position k if and only if exactly k−1 of the top s+1 advertisers

bid more than advertiser i. And if advertiser i is placed in position k, the advertiser’s cost-

per-click will be determined by the bids of the bidders in positions k+1 through s+1, which

are the same as they would be if the bidders j > s+ 1 did not participate in the auction.

But we know from Theorem 5 that if the bidders j > s + 1 do not participate in the

auction, then each advertiser prefers to share its data with its competitors. From this it

follows that each advertiser will obtain at least as large a payoff by sharing its data than by

not sharing in this setting. □
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