116 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO.2, MARCH/APRIL 2017

A Novel Class of Robust Covert Channels
Using Out-of-Order Packets

Adel EI-Atawy, Member, IEEE, Qi Duan, Member, IEEE, and Ehab Al-Shaer, Member, IEEE

Abstract—Covert channels are usually used to circumvent security policies and allow information leakage without being observed. In
this paper, we propose a novel covert channel technique using the packet reordering phenomenon as a host for carrying secret
communications. Packet reordering is a common phenomenon on the Internet. Moreover, it is handled transparently from the user and
application-level processes. This makes it an attractive medium to exploit for sending hidden signals to receivers by dynamically
manipulating packet order in a network flow. In our approach, specific permutations of successive packets are selected to enhance the
reliability of the channel, while the frequency distribution of their usage is tuned to increase stealthiness by imitating real Internet traffic.
It is very expensive for the adversary to discover the covert channel due to the tremendous overhead to buffer and sort the packets
among huge amount of background traffic. A simple tool is implemented to demonstrate this new channel. We studied extensively the
robustness and capabilities of our proposed channel using both simulation and experimentation over large varieties of traffic
characteristics. The reliability and capacity of this technique have shown promising results. We also investigated a practical mechanism

for distorting and potentially preventing similar novel channels.

Index Terms—Covert channels, data-hiding, packet reordering, packet sequence, protocol-based steganography

1 INTRODUCTION

COVERT channels are defined as a communication mech-
anism that can evade access control policies by using a
medium that normally goes by unmonitored. Using another
channel as the host/overt medium, a sender can piggyback
his secret along with other public pieces of information to
an accomplice on the other side of the security perimeter.
Network covert channels include any communication over
data networks that uses network-specific mechanisms to
construct such an invisible channel.

In the past few years, the Internet has exploded to include
millions of users communicating with thousands of applica-
tions using hundreds of protocols. However, data transmis-
sion has been always characterized by being visible, in the
open and available to anyone to collect and analyze. All data
protection techniques focus on protecting the payload rather
than hiding the existence of the channel itself. In other words,
everyone is aware of the communication taking place even if
the content itself is not readily available. Covert communica-
tions are addressed as another dimension of the information
confidentiality requirement for secure systems. Knowing that
a communication exists between two parties is a valuable
piece of information even if the content is unknown.

Previous attempts to design network covert channels
were mostly in one of two directions. The first direction is
using a storage channel were actual bits in traffic packets
are manipulated in order to store the required secret. For

o A. El-Atawy is with the Google Inc.
e Q. Duan and E. Al-Shaer are with the University of North Carolina at
Charlotte. E-mail: giduan@gmail .com, ealshaer@uncc.edu.

Manuscript received 15 Apr. 2013; revised 8 Apr. 2015; accepted 20 May
2015. Date of publication 10 June 2015; date of current version 15 Mar. 2017.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TDSC.2015.2443779

example, the use of packet identifier and other fields in the
IP header to store information bits was surveyed in [20].
The downside of these techniques is that they are prevent-
able by techniques such as packet normalization. The sec-
ond family of techniques try to build a timing channel by
manipulating inter-packet gaps (directly or indirectly) to
encode the covert channel (CC) (e.g. [10], [29]). Many of
these timing channels can be prevented by traffic shaping
and jitter manipulation [14], [17], although some time-based
techniques show resistance to random jitters [13], [18].

We propose a technique that can use the unconventional
channel of packet order to be our covert communication
medium. By manipulating the order of packets sent over
the network at the sender-side, we emulate the packet reor-
der phenomenon which takes place naturally. Detecting the
presence of the reordering based covert channel through
monitoring at the network core is difficult because Intercep-
tors or Monitors will not be able to order these packets due
to the overwhelming computational cost of buffering and
sorting packets at the network core.

Moreover, the reorder extent is designed not to affect the
normal operation of the transport layer protocol. The trans-
port protocol (e.g. TCP) will perform its duty in reordering
the packets for delivery to the application layer transpar-
ently of the underlying hidden operations.

The covert channel communicators discussed in this paper
are assumed to be the sender and receiver of the overt channel
(OCQ). Ideally, the receiver will get ordered packets; 1,2,...,n
(i.e., sending order). Any out-of-order packets will be handled
transparently by the transport layer. This unordered sequence
bares more information that we will utilize as our covert chan-
nel medium. In our approach, we intentionally send out-of-
order packets where different permutations carry different
values/codes. Therefore, our channel is independent from

1545-5971 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

EL-ATAWY ET AL.: ANOVEL CLASS OF ROBUST COVERT CHANNELS USING OUT-OF-ORDER PACKETS 117

the packets’ payloads and not very sensitive to inter-packet jit-
ter, which means that our proposed method goes well beyond
previous works that used packet payload to hide the secret
messages. The proposed mechanism consists of 1) a code
selection mechanism that applies coding theory to carefully
select permutation patterns that will enhance robustness and
error-resistance, 2) a traffic imitation component that calcu-
lates the codeword distribution in order to evade detection,
and 3) an encoder component at the sender-side as well as 4) a
decoder technique for retrieving the sent secret codes at the
receiver end.

The goal of this work is to build a channel which is reli-
able and practical while maintaining a reasonable band-
width. In such systems, there are always three factors
competing: bandwidth, robustness, and stealthiness. By
increasing the bandwidth, the channel used to hide infor-
mation (host channel) becomes more susceptible to noise
and being discovered by adversaries. Lowering the hidden
bandwidth (i.e., data transmitted in the host channel) causes
the transmission to be more stealthy and more resistant to
change due to external noise. We will investigate the param-
eters that will affect each of these factors, and analyze the
consequences of changes applied to each one.

Although the technique is hard to detect or eliminate
completely, we will show that it is still possible to effectively
disrupt the ongoing communication. The straightforward
solution by complete re-sorting of packets to eliminate the
channel completely is very expensive, and impractical in
most cases. Therefore, we take another approach where we
show how noise (i.e., extra out-of-sequence packets) can be
practically injected into the traffic by packet shuffling. While
the technique is far from being guaranteed to prevent the
existence of such a channel, it is quite effective in reducing its
possible bandwidth. A better protection (and possible detec-
tion) mechanism for this channel and other similar designs is
still an open research topic. The difficulty arises from the fact
that any responsive system carries the implicit potential of
being a medium for covert channels, and it is theoretically
impossible to eliminate it completely [8], [31].

The following sections start with an overview of the
related work in the area of covert communication in Section 2,
and the phenomenon of out-of-order packets and studies of
its abundance and persistence in Section 3. The proposed
covert channel design is then described in Section 4 including
a simple prototype followed by the complete design. Imple-
mentation details and examples of potential applications are
discussed in Section 5. Suggestions for hindering the channel
success is shown in Section 6. The evaluation are provided in
Section 7. Limitations and final discussion are in Sections 8
and 9, respectively.

2 RELATED WORK

Previous work on covert channels in Internet traffic have
focused on hiding information in either packet payload (not
true network-based), or inside IP header fields. Some work
used IP options fields, or source port patterns to hide the
secret information. Others used timing information of packet
sequences. The closest work to what we are planning to do,
and one of the most recent, is the work by Shah et al. in [30],
that used timing channels for leaking types passwords from
and [1] that used packet sequences/order as a storage media.

Previous work on covert channels [27] in network traffic
can be divided according to the storage media used: packet
payload, packet header, or packet timing/behavior. Differ-
ent researchers have focused on identifying the possible
applications in public networks [33] and their theoretical
capacity bounds [32]. Here we focus on methods that using
timing channels.

Timing channels were originally suggested to attack
crypto-systems and to leak information between HI and LO
processes (security-clearance wise) [14]. Many researchers
worked on analysis of timing information over Internet traffic
to obtain worst case bandwidth variation and end-to-end
delay/jitter measurements. These are necessary in the analy-
sis of channel capacity. The work in [19] presents a new class
of reliable timing channels called Cloak which encodes a mes-
sage by the unique distribution of packets over TCP flows.
Our work is more stealthier than Cloak since we consider the
frequency distribution of different re-orderings. The work in
[1]is very close to our approach where packet order is manip-
ulated to store information. However, their approach is lim-
ited by having a specific number of patterns, and lack of
generalization in the analysis. Also, code selection was not
made to specifically to evade packet order metrics in the litera-
ture. There has been extensive theoretical study of this type of
side channels. In [31], it was shown that for real time systems
to exist, security requirements have to be relaxed as the band-
width of covert-timing channels associated with system
events can increase indefinitely. The capacity of transmission
channels having a queue as the source of non-determinism is
given in [2]. The authors showed that it is possible to exceed
the raw capacity of the channel by augmenting this channel
with a side-timing-channel. The analysis was theoretical and
not directly applicable to our network environments, yet it
shows the high potential of such techniques. Other works
such as [8] tried to characterize the abilities of such channels
in more complex multi-level systems and design a generic
method for limiting its bandwidth.

The work in [34] demonstrates the theoretical limitations
of low-latency anonymous communications systems, and
shows that achieving anonymity in low-latency communi-
cation systems is difficult for current flow transformation
based systems. The steganographic timing channel intro-
duced in [18] is both robust and provably undetectable for
network traffic with independent and identically distrib-
uted (i.i.d.) inter-packet delays. In [13], the authors present
the CoCo covert channel which modulates the covert mes-
sage in the inter-packet delays of the network flows, with a
coding algorithm that is used to ensure the robustness of
the covert message to different perturbations.

Counter-Steganography Techniques: Techniques for dis-
covering the existence of covert channels is far less mature
than the hiding techniques themselves, and the theoretical
work behind them. In [15], a discussion of the relationship
between covert channels and steganography is presented. In
[9], techniques are presented that manipulates packet timing
in order to ruin the secret channels. A classic technique was
suggested before in [14], where fuzzy timing is introduced to
add non-determinism into the timing channels and signifi-
cantly lower its bandwidth. Their focus was information leak-
ing between OS processes, but the same concept still applies.
In [7], a framework to detect data-hiding via tunneling in web

118 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO.2, MARCH/APRIL 2017

traffic was shown. By monitoring statistical properties
expected to be prevalent like packet size and inter request tim-
ing, alerts can be issued when suspected tunneling occurs.
Information theory and entropy measurements were used in
[12] to detect covert timing channels by observing changes in
the information content in the packet timing. A very effective
technique but its applicability is still limited to timing chan-
nels only. In [36], a DSSS-based network flow marking tech-
nique is developed to introduce invisible marks into a target
traffic flow which is persist and detectable despite a variety of
anonymity schemes, making it possible to trace anonymous
communications.

3 PACKET REORDERING PHENOMENON

Packet reordering in network traffic is receiving packets in a
different order than that used to send them. Obviously, this
phenomenon is only applicable to packet switched net-
works. Circuit switching makes such behavior almost
impossible (e.g. connection break/reestablish can be a rare
cause for data to be received out of order). Previous studies
[21] showed that it is mainly due to one of two reasons: 1)
local built-in parallelism and connection slicing, and 2)
multi-path forwarding routes [23]. The first reason was
shown to be more influential. As the need for faster process-
ing speeds and the increasing ease of adding parallel proc-
essing capabilities, the packet reordering phenomenon is
not going to disappear in the near future, as shown in [6].
Therefore, we can claim we have a property that is abun-
dant, and can be observed as a natural behavior.

3.1 Measuring the Extent of Out-of-Order Packets

Efficient, yet concise, metrics for measuring the amount of
packet reordering has been the center topic for several
research work. In [24], a survey of reordering metrics is pre-
sented. reorder density (RD) and reorder buffer-occupancy
density (RBD) are the most applicable metrics to use in our
application. They measure the reordered packets with
respect to how far the received packets are away from what
is expected, and how much buffering is needed for reorder,
respectively. In this paper we use a variant of RD through-
out the analysis and discussion. However, RBD can be used
as well with no significant change to the logic or implemen-
tation of the channel. The problem with coming up with a
valid metric for measuring the severity of out-of-order pack-
ets is that it can not be a single scalar value. For example, we
can not simply count how many packets were out of
sequence. If such a simplistic metric is used, should the
sequence < 3,1,2 > (shorthand for receiving packets in
this order: pkts, pkti, pkts) be counted as just three coming
early or one and two being late? This problem gets more
complicated when we need to measure how out of order a
packet is. For example, orders < 4,1,2,3 > and
< 1,2,4,3 > should be result in different values for the
metric to emphasize on the fact that in the first case it was
shifted over three other packets rather than being swapped
with an adjacent packet. Putting these factors (i.e., how
many out-of-order packets and how out of order is a packet)
together, we come to the conclusion that we need a vector
metric. In [25] and [26] such metrics were introduced. RD
(Reorder late/early Density) represents the distribution of

differences between the packet original sequence number
and the order by which it was received, while Obviously, a
natural order will result in the distribution being concen-
trated around zero: packets received in their order or
slightly early or late. Another property of RD is that spans
both positive and negative values, making it unbounded at
both ends and a bit harder to use as is in our application.
On the other hand, reorder buffer-occupancy density meas-
ures the effect of reordered packets by building the fre-
quency distribution of the receiving buffer usage. As more
packets needs reorder, the more the reordering buffer will
be used, and the number of elements in the buffer reflects
the extent by which a packet is shifted from its ideal order.
RBD has the advantage of being a single sided histogram
and reflects to a greater extent the effect of out-of-order
packets on the receiving end.

4 PACKET REORDER CHANNEL

To smooth the introduction of our design, we start with a
very simple prototype to introduce the general idea of our
channel. Afterwards, we will focus on each of the features
needed to render the channel a fully functioning, stealthy,
and robust channel.

4.1 Simple Prototype

In a connection-oriented session, the order of packets
received is irrelevant at the application level thanks to
underlying layers that sort received packets to reach the cor-
rect stream structure. In such connections (e.g. TCP flows),
the original packet order is maintained by buffering out-of-
order packets till intermediate (i.e., late) ones arrive at the
destination. Each packet is marked with some sequence
identifier (e.g. sequence_number in TCP or IPSec) whose
nature and range depends on the end-to-end protocol used.
As indicated before, many reasons contribute to causing
this unordered reception of packets. It has always been con-
sidered a nuisance to the receiver and fixing it was one of
the top priorities of such protocols. In our application
domain, this phenomenon can be used or, more specifically,
induced, to build a covert channel.

The normal/perfect received order of packets is
1,2,...,n.If packets were sent in a specific order, then there
is a great chance they will be received as such. Therefore, this
out-of-order was always considered as either rare or an
annoying property of some channels. However, if we consid-
ered the received packet order as a source of information,
then we have a channel that is independent from the packets’
payloads and not very sensitive to inter-packet jitter. If pack-
ets were never received out-of-order as in circuit switched
networks, then this channel has zero capacity as its output is
deterministic. However, this is not the case, and packet reor-
dering is not that rare over the Internet (see [6]).

The question is: can we send information bits
masqueraded in the form of packet order? If we assumed that
packets in-order is one state of the channel (i.e., conveying
one specific symbol, say a 0 bit), then other packet orders that
deviate from the perfect order are other symbols of our alpha-
bet. The number of different orders we can impose over the
packet sequence implies the capacity. Quantitatively, the loga-
rithm of the number of distinguishable orders equals the

EL-ATAWY ET AL.: ANOVEL CLASS OF ROBUST COVERT CHANNELS USING OUT-OF-ORDER PACKETS 119

channel’s capacity in bits. Therefore, for n packets the maxi-
mum capacity will be log n!~n logn. Taking a file transfer as
our example: a 700 MB file, using 1.5 Kbyte packets. This will
have 8.7 Mbit~1.1 MB (466 K packets). Impressive as it may
seem, this range is far from being practical as it literally
destroys the host channel (no TCP stack can handle reorder-
ing this number of packets without failing). Moreover, this
will jeopardize the stealthiness of the channel. Therefore, we
will take a simple subset of this full-permutation space for
demonstration: only adjacent packets can be reordered
together. The coding space now is limited to 1 bit per packet
pair (i.e., O:in-order, 1:swapped), reducing the overall capacity
to 233 Kbit~30Kbyte. In other words, the entropy of this
channel is 1-bit per symbol, where a symbol is represented via
a packet-pair. In terms of the overt channel, the side channel
provides a capacity of 0.5 bits per overt packet.

Furthermore, a TCP stream with a high rate of out-of-
order packets (e.g. 50 percent of pairs on average being
flipped) will look suspicious if monitored, and reducing
this is a further step towards better stealthiness. Assuming
a pair is swapped with a probability of 0.05, the entropy per
packet-pair will be lowered to H(0.05) = —0.05log0.05—
0.95log 0.95 = 0.2864 bits and the overall capacity will be
66.8 Kbit ~ 8.3 Kbyte.

In this channel, we omitted some basic features that are
highly needed for successful communication. Namely, error
detection and correction on the symbol level. If a packet
pair is reordered due to naturally occurring network behav-
ior, our induced packet order might be canceled out causing
a 1-bit to be received as a 0-bit or vice versa. It is not possible
to detect this kind of errors other than relying on multi-bit
code words (e.g. adding even/odd parity, or more sophisti-
cated codes as Hamming code, Reed-Solomon, etc) or plain
error detection via CRC-like mechanisms. In the following
section, we will discuss how to build a real channel with
enough details to support this feature in an intrinsic
manner. This is achieved by extending the unit of transmis-
sion to be multiple packets for each transmitted symbol
rather than a packet-pair. Moreover, better distribution and
selection of packet-ordering patterns will be discussed in
order to satisfy the stealthiness property as well as boosting
the resilience for errors.

4.2 Refined Design

In order to extend our simple prototype to a realistic and
valuable channel, some important features are needed.
These features include error resistance via error detection
and correction on the basic transmission level that corre-
sponds to the physical layer in traditional channels. Also,
for our specific application, the stealthiness of the channel
is an important goal by definition. Therefore, the overall
reorder should be kept within normal levels. This is repre-
sented via two factors: reorder depth, and reorder volume. The
former indicates the farthest packets that can be swapped,
or the extent by which a packet can be moved, and the latter
represents the percentage of packets that are out of order.
Both metrics can be represented concisely in the reorder
density and the reorder buffer-occupancy distance metrics
proposed by Piratla et al. in [25], [26]. The above two main
features, if carefully addressed, will result in a channel that
is, both robust and stealthy to a great extent. In the

remaining portion of this section, we address each of our
goals by: 1) defining our channel parameters, 2) selecting
the codewords (i.e.,, permutation patterns), 3) enhancing
error resilience by better codeword selection, 4) avoid detec-
tion by adjusting codeword probabilities.

4.3 Model and Notation

Let N be the total number of packets transmitted in the
overt channel. Our covert channel will be built using every
k packets from the overt channel to represent one code-
word/symbol. A code word is a specific permutation of the
k packets. Each codeword will be one of ! different values
selected from the set of code words L (I = |L|). Therefore,
the upper bound on the information content of codeword is
logs (1) bits (when codewords are selected uniformly). Thus
resulting in a total capacity of N/k x logs(l) bits. In our sim-
ple example from the previous section, we have k =1=2
resulting in an overall data volume of N/2 bits. The two
possible codewords used were “ordered” and “swapped”
resulting in a plain single-bit binary coding. After introduc-
ing non-uniform use of codes for better stealthiness, the
average information per codeword drops to H(p;), where
pr, is the probability distribution of the L codewords the
source uses to encode his hidden message.

In the case of having the transmission reorder of more
than two packets exploited into a single codeword, say k
packets; we will be having a maximum of k! codewords. For
the simple channel, this did not reflect any difference in our
analysis. However, for & > 2, the capability of having error
detection and correction is introduced, and some changes in
our simple calculations are needed.

In general, an n-bit block code is denoted by (n, m) block
code, if m bits of information were encoded into n-bit blocks.
In that case, the coding rate R is equal to m/n. However, in
our model, the difference in notation from bits per codeword
to packets per codeword, and the use of permutation instead
of bit values will change the resulting expressions. The block
code will be denoted a (klogy(k),loga (1)) block code, and will
have a code rate of logs(l)/kloga(k). This will be needed
when discussing the error correcting capabilities.

From now on, packets in the overt channel will be
denoted by Py, P», ... Py. Inside code block i (i.e., symbol S;
transmitted over CC), the constituent packets will be
denoted by C; 1,C; s, ...C; . Then, the overall sequence will
be Cii,...Ci4,Con,...Coy,.... If the symbol index in
understood, or the discussion is not referring to a specific
symbol then the first subscript will be dropped: C; ; ~ C;.

The communication between sender and receiver is
assumed to be established after communicating through
another form of secure communication to agree on system
parameters (e.g. k, I, etc) and the flows to be used.
Although this information can be guessed with some extra
effort by the receiver, it will not be assumed in this paper.
Table 1 shows the notations and symbols used in the paper.

4.4 Codeword Selection

From a covert channel owner point of view, the perfect envi-
ronment is where: 1) no one suspects the presence of a CC
(detectability constraint), and 2) no reordering is introduced
from the network itself (noise in transmission). The first con-
straint limits the code size and codewords used. The longer

120 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO.2, MARCH/APRIL 2017

TABLE 1
Notations and Symbols Used

total packets in OC

packets to represent each codeword
number of transmitted symbols in CC
set of valid codewords
sizeofset L, [= | L|

DL probability distribution of codewords
bits represented by each codeword
code rate, R = log;/klogs (k)

the codeword (i.e., higher k), the higher the probability a mon-
itor will suspect the covert channel presence. The reason is
that long reorders (e.g. 10 packets in perfect reverse order) are
not naturally occurring in data networks. The noise effect can
be limited by introducing larger block codes and deeper
swaps. Both constraints can be handled via code block size
compromise and intelligent codeword selection.

Limiting the codeword size k to low values (e.g. less than
5) will be enough for most cases, and it should be adjusted
not to deviate significantly from the network’s naturally
induced reorders. Codeword selection and their probability
distribution p;, can affect both constraints. For example, we
can put a constraint that no codeword should correspond to
a complete reverse of more than three packets. Also, we can
limit the distribution of packets out of order to a certain
threshold to evade detection.

Each codeword is defined by the order of the constituent
packets. We defined packets in a codeword to be
< C1,Cy,...Cy >. These values are assigned based on the
original packets to be sent in that time order. Then,
< C,05,C5,Cy >=<1,4,3,2 > means we are defining
one of the codewords to be a four packet-sequence sent in
such an order that the second and fourth packets are
swapped. Also, we define the reverse symbol: C/ to denote
the position of packet number i. So, in this example, C, will
be equal to 4 (i.e., the new position of packet 2). At the
receiving end, the transport layer will unknowingly resort
them to be < 1,2,3,4 > and forward the corrected
sequence to the application layer. In the same time, a lower
level module will be able to see the difference before resort-
ing and extract the coded secret information.

Obviously, we have k! ways to define codewords of
length k. However, in order to be able to implement error-
detection and correction, only a few of those will be used.
The goal is to select a few, namely | codewords, out of the £!
possible permutations. This gives the previously calculated
code rate that is sometimes also called efficiency
R =1n=1logy!/logs k!. In our original prototype, n =1 as
expected, as there were no loss in efficiency to support error
detection/correction. In a more sophisticated channel, take
l=3, k=4, we have n = 0.3456. Normally, n <1, where
the equality is achieved if and only if all k! codewords are to
be used. This should be always avoided unless: 1) the value
of k is very low (e.g. < 5), and 2) the host channel is known
not to introduce any further reordering of its own.

4.4.1 Detecting Single Errors

To be able to detect (though, not correct) all single bit errors,
all code words are selected to be even permutations.

A permutation is even if it needs an even number of ele-
ment-swaps to reach the desired order starting from the
perfect order (i.e., all packets are send in their intended
order). Thus, our valid codewords must include the identity
permutations (e, < C >=<1,2,...,k >). Any single
transposition between packets will yield an error in trans-
mission that can be detected, yet not corrected. Considering
that a high portion of errors taking place in natural trans-
mission is in the form of a single adjacent packet swap, such
code can achieve good error detection rates. However, our
target is to select codewords that can detect and correct mul-
tiple errors in transmissions. In other words, if one packet
(or more) are shifted from their intended location as speci-
fied by the original codeword, the receiver should be able to
detect and optionally correct those into the correct permuta-
tion. Note that all the permutations are even to detect single
errors, which might make the channel vulnerable for detec-
tion. However, it would be trivial to add a pseudo-random
sequence known to the sender and receiver that randomly
switches between even and odd.

4.4.2 General Code Selection

To be able to generate more powerful coding schemes, we
formulate (and map) our permutation patterns into regular
linear code blocks. Any of the [(I <k!) codewords
< C >=< (). > can be represented efficiently using
klogs(k) bits. Each of the packets in a codeword is repre-
sented by a number that is essentially the RBD [26] before
processing the packet. In other words, each packet in the
codeword is represented by the number of packets of higher
index received before it. code(Cj) =) u(i—j), where
u(z) =1 (if x > 0) and u(z) =0 otherwise. For example,
receiving a codeword < 1,4,3,2 > is translated to 0,2, 1, 0.
The packet indexed by 1 was not preceded by any other
packet with larger index, while packet with index 2 was pre-
ceded by another two packets with higher index, and so on.
Obviously, the packet with the highest index will always
be translated to 0 regardless of its order, so it will be
omitted from the mapping. Therefore, we represent each of
the k — 1 packets using log, k bits, resulting in an overall
(k—1)[logs k] bits. This representation is asymptotically
optimal, as the overall number of permutation patterns is k!,
and it needs O (klog, k) bits to be encoded.

Furthermore, in order to have a correct mapping regard-
ing the Hamming distance induced by packet shift errors;
we represent these numbers via binary reflected gray codes
(BRGC) [28]. This representation is the easiest to compute
from normal binary representation (i.e, G =N @ (N/2)),
and we guarantee having each packet shift represented as a
single extra Hamming distance.

In Table 2, we demonstrate an example using k = 3, with
L equals the whole possible set of permutations (.e.,
l = k! = 6). Say, we need to detect single errors, then a dis-
tance of 2 is required. In such cases, the maximum number
of codewords we can use (to increase the code rate) is 3. The
selected code words L will be {C,C,,C5}, and the code
rate will be R = log, 3/3! = 0.264. Using these selected block
code, we will be able to detect any single step shift of pack-
ets in the transmission due to natural causes. As another
example, for the enhanced requirement of correcting a sin-
gle error we need a Hamming distance of at least 3.

EL-ATAWY ET AL.: ANOVEL CLASS OF ROBUST COVERT CHANNELS USING OUT-OF-ORDER PACKETS 121

TABLE 2
Example Code Using k = 3 and [= k!

codeword block coded RD
C=<1,23> 0000 < 1,0,0 >
Cy=<1,3,2 > 00 01 < 2/3,1/3,0 >
Cy3=<2,1,3 > 0100 < 2/3,1/3,0 >
Ci=< 231> 1100 < 1/3,1/3,1/3 >
Cy=< 3,1,2 > 0101 < 2/3,0,1/3 >
Co=< 3,2,1 > 1101 < 1/3,1/3,1/3 >

The block code is written in BRGC. The RD column shows normalized histo-
gram on the metric after the effect of a specific permutation.

Therefore, our only solution for selecting codewords will be
{C4, Cs}. Using this block code we will correct single errors
while detecting up to two errors. In general, for detecting e
errors a minimum distance of e+ 1 is needed, and for
e-error correction the requirement increases to 2e + 1.

Generally, the selection process is performed on the
block code to achieve the desired characteristics. However,
in our case this is not a straightforward task, as there will be
some block codes that are impossible to convert back to a
permutation pattern. The space defined by (k — 1)[logs k|
bits is an upper bound to k!, with k = 5 as the highest ratio
between the two space sizes: (k—1)[logs k]/[logs k!l =
(5—1)[logs 5]/ [logs 5! = 1.714.

4.5 Codeword Distribution
After selecting which codewords are valid to be used in
order to obtain the desired error correction capabilities,
comes the step to choose the input codeword probability
distribution to our channel. Normally, the aim of choosing
input probabilities is always to achieve the capacity of the
channel being used given its error model. However, in our
case, the goal is different where we are willing to sacrifice
bandwidth in order to follow a behavior that will keep the
stealthiness of the covert channel. For maximum transmis-
sion capacity, codewords should be used equally probable
resulting in a transmission capacity of log! bits per code-
word, or log!/k bits per overt packet used. However, to sat-
isfy the stealthiness requirement we should use some
patterns more than others not to deviate significantly from
the normal behavior and be susceptible to raising alerts and
being detected. Using metrics as reordering density [4], [25]
and reordering buffer-occupied density [26], we will be able
to know this target behavior.

For demonstration, let us consider the easiest case of
k = 2. Although this will limit our code selection as there
will not be any error detection/correct capabilities, we can
still use it as a base for discussion. Assume a study of the
host networks involved showed that a maximum unob-
served RD histogram will have 90 percent of packets
received as expected, and 10 percent are one step earlier.
Let us denote that by the sequence RD; =< 0.9,0.1 >,
where RD; is the target RD. As we have only two possible
codes (i.e, < 1,2 > and < 2,1 >), then we just need to
calculate the probability of using each to go below the detec-
tion radar.

Each code participate in a specific RD (RD,) pattern RD;
which is the RD histogram caused by codeword i. As per
our example, the first code C; =< 1,2 > will contribute

with a normalized RD equals to RD; =< 1,0 > and the
other code: RDy =< 0.5,0.5 >.Then,

(o 03) ()= (57)

where p; is the probability of code 4. Solving for p; we find
that the identity permutation should be used 80 percent
of the time, and the swapped pair should appear only
20 percent in order to satisfy the stealthiness requirements
of the example network.

Generally, we can write RD x P = RD; or in detail:

RDl,l RDM

D1
= RD;, (6))

RDl,k RDlﬁk b

where [RD] is a k by | matrix where each column is an RD;
k-vector, RD; j specifies the contribution of the ith codeword
on element j in the RD metric, and P is the [column vector
of codeword probabilities to solve, and finally RD; is the k
vector with target overall RD effect of our covert channel.

A special case that can take place is having more than
one codeword with the same metric vector. In such case, the
calculations for calculating the distribution take place on
the distinct vectors only. Formally, we solve the equation
RD x Pr = RD;, where L is a subset of L where only code-
words with distinct RD vectors are included. Thus, we have
| = |L| = rank(RD), assuming [> k. Once the equation is
solved and probability of each distinct metric value is
obtained, it will be evenly split over codewords sharing this
value. The uniformity of the distribution is used to provide
the maximum entropy of the distribution [11]. The same
effect can be obtained by including all vectors and perturb-
ing identical vectors with insignificant values to impose
independence. However, this approach might force the
solving algorithm into an unstable state due to the high
error of dealing with tightly related vectors.

To make the codeword stealthy, we need to pad zero
codewords (codewords without any reordering and convey
no information) to make the total number of reorderings
appears to be natural. For a k packet codeword, the
expected number of pairwise reorderings is (k — 1)k/4. Sup-
pose the average probability of pairwise reordering in a nor-
mal flow is ¢, then we need to pad [k(k —1)/(4q) — 1] zero
codewords for every true codeword.

4.6 Performance and Capacity Calculations

Selecting the best set of codewords that satisfy the require-
ments of error detection and correction is a classically hard
problem. The optimal solution is the largest set of code-
words (i.e., maximum code rate) that satisfies the capability
requirements. A generally applicable algorithm is not yet
reached. In traditional linear block codes, the size of such
set (L) is bounded as follows:

2’1

)
dem n
i=0 i

where d,,;, is the minimum Hamming distance required for
handling the specified error rate, and n is the number of bits

I=|L| < @)

122 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO.2, MARCH/APRIL 2017

TABLE 3
The Effect of Increasing the Codeword Size (in Packets) on the
Maximum Detectable £, and Correctable Errors E.

k 2 3 4 5 6 7 8 9 10 11 12

Ec 0 1 2 3 4 5 7 8 10 12 14
Ep 0 2 4 6 8 11 14 17 21 24 28

in the block code (i.e., n ~ klogk). However, this formula
will not be fully applicable in our case, as some of the 2"
codewords are not mapped to permutations we can use.
Moreover, this difference need to be reflected in the numer-
ator and denominator of the given formula complicating
things further.

For a k packet codeword, the resulting block code will be
O(klogk) regardless of the mapping used. Therefore, the
maximum number of errors we can correct E¢ is bounded by
Ec <|(n—1)/2|, and the maximum number of errors
detectable Ep is bounded by Ep < n — 1, where n. These
bounds are only achievable on the expense of having the
minimum code rate R possible; R =1/n=1/(klogs k) by
using only two out of the k! possible permutations. Obvi-
ously, the two codewords that satisfy the maximum distance
are the identity and the reversed permutations. Table 3
shows the effect of increasing the codeword size (in packets)
on the maximum detectable Ep and correctable errors E.

For a complete view of the channel’s bandwidth, one can
combine the information given into a single formula that is
based on k, [, p;,, and desired error-handling capabilities,

H(py)
k

Capacity = B, 3)
where [= |L| is bounded as by Eq. (2), H(.) is the entropy
of a given probability distribution [11] and g is bits/packet.
If maximum capacity is required given a specific error-
handling capability regardless of the stealthiness require-
ment, the H (py,) term will be replaced with its upper bound
log . This in turn can be equated with its limit from Eq. (2).
The overall capacity is given by

9llogy Kl

H(pv) 5
s (P)|

)

Capacity < x logy

7

where d,,;, is given as before based on the error detection/
correction capabilities.

5 IMPLEMENTATION

5.1 Implementation

The sender and receiver have to agree on an overt channel
to host their covert communication. This includes defining

Cy, Cy,..

S, Siv1).-
i |+‘ CcC

Translator > Encoder |

ilp user data

o=

Client

Receiver TCP

Sniffer

INTERNET (Covert Receiver)
Proxy 1

(Covert Sender) . — - ——— -]

Fig. 2. The high level view of the channel deployment.

the maximum allowable RD (or other similar metrics) to be
used in setting the codeword usage distribution. Also, both
parties have to agree on their choice of k, [, and L in order to
successfully decode the sent information. In Fig. 1, the over-
all operation is displayed in a simple diagram showing the
data flow from the sender’s to the receiver’'s side. The
sender translates his data to [distinct symbols that are
encoded to permutations and send over the network. The
receiver receives every k packets and translates their order
into symbols that are translated back to be read.

In our implementation, we send fabricated packets over
IP using the libnet packet handling library. The sequence
number of each packet is included in the payload explicitly.
In a final implementation, these packets will be sorted by an
application-transparent intermediate packet filter. This can
take place as a hook to the protocol stack, or simply as an
intermediate box that acts as a proxy for the sender’s main
machine. On the other side of the channel, the receiver is cur-
rently implemented as a sniffer process implemented over
the libpcap packet capture library, and actual packets are
received by a dummy application that just reads the stream
of packets without any further processing. In the final imple-
mentation, the sender can receive the covert communication
by essentially the same mechanism as the current implemen-
tation, while making use of the overt channel with any appli-
cation level process (e.g. FIP client). It is important to
mention that the current implementation shortcuts do not
change the packet behavior in the network, nor the transmis-
sion capacity. Therefore, our implementation is a valid test-
bed for the proposed covert channel. Fig. 2 shows the high
level view of the channel deployment.

The sender buffers every k packets and sends them in the
order that encodes the covert channel input data. The pro-
cess at the receiver (see Fig. 3) is more complicated due to
the fact that some long span ordering might take place. This
might cause codewords to interleave complicating the
decoding process. The receiver keeps track of the most
recent incomplete codewords. Every received packet is
added at the end of its corresponding codeword. These
codewords are now represented only using their index,
none of the packet’s extra information is stored in this

cc - Data ofp user data
Decoder ™| Extraction -2

C4, Ca,.
—

Noise (external reordering)

Fig. 1. Overall channel design. Starts with user data, translated to symbols that is decoded into permutation codewords to be sent to the receiver. The

receiver decode the permutation into the original data symbols.

EL-ATAWY ET AL.: ANOVEL CLASS OF ROBUST COVERT CHANNELS USING OUT-OF-ORDER PACKETS 123

K=4 / 9 [11(10

‘18‘ 16‘ 15‘12 ‘ — ‘14[13[<5,7,8,6><1,3,2,4>

\ T
Fig. 3. The decoding process. Multiple partially received codewords are
in temporary storage till completed, then forwarded to user.

phase. Once a codeword has all of its packets received, it
will be checked for errors (and corrected if needed and pos-
sible), and saved into the output queue. If the completed
codeword is not the earliest needed, it is kept in the queue
of incomplete codewords till all earlier codewords are com-
pleted, then flushed together into the output stream. These
steps are demonstrated in Algorithm 1.

Algorithm 1. Covert Channel Decode Packet

if First Call then
Negotiate &, L, and py.
Clear Packet Queues
indexStart «— 1
codewordCount «— 0
end if
I — Receive New Packet Index
curCW — | (I — indexStart)/k|
if curCW > codewordCount then
codewordcount+ = (curCW — codewordCount)
end if
CWcurCW] <= ((I — indexStart) mod k) + 1
while size(CW||indexStart/k|]) = k do
flush(CW || indexStart/k]])
indexStart < indexStart + k
codewordcount — —
end while

5.2 Delay Calculations

One has to observe that this channel, while it does not affect
the packets themselves of the overt channel, it affects their
timing in a way that might jeopardize the stealthiness of the
covert session.

In order to reorder the packets at the proxy module (i.e.,
the covert channel sender) some packets have to be delayed
until the packet indicated by the current codeword (permu-
tation) arrives from the overt sender. For example, if the
sequence to be sent is < 3,1,2 >, then the proxy has to
buffer packets 1 and 2 and wait for the third one to arrive,
then send the three of them in the desired sequence. The
buffering adds a delay that can reveal the channel. The
delay can be calculated to have an average value depending
on k. The average delay a packet will experience will be
given by k= 8« s,/B, where s, is the packet size in bytes,
and B is the average flow rate in bps. Let’s denote this delay
by Dgy..The same delay calculations will be observed when
we discuss prevention in Section 6.

To solve the added delay issue, we can make the proxy
work on a different “time zone”. Once a packet is received
by the proxy, it will be buffered anyway in order to shift the
whole flow with the above mentioned delay. Even if the
received packet is the next to be sent according to the coding
scheme, the proxy will buffer it till it matches the shifted

CI1V2V3V3

With time-shift = (k-1) x packet transmission time

Fig. 4. Delayed/Scheduled sending for inter-packet gap removal.
Example shows both with and without the added time shift for & = 3.

time frame. For example, assume we are building a channel
that is based on k£ =3 and using an overt channel of 1 kB
packets with an initial rate of 1.6 Mbps. Sending packets 1
to 3 from the application at times 0, 5, 10 ms, will mandate a
delay by the proxy for 10 ms (i.e., D). Therefore, packets
will be sent at 10, 15, 20 ms. If the covert codeword to be
sentis < 1,2,3 >, then these are the delays to be applied. If
we would like to send < 3,1,2 >, then we will send the
third packet without delay, and the first and second packets
will be delayed 15 ms each. Fig. 4 shows this example and
how it maintains the back-to-back nature of the original
transmission.

5.2.1 Implementing the Proxy with Delay

This tuned-up proxy module can be implemented using a
simple priority queue. The key for the queue elements will
be the packets’ scheduled sending time. When a packet
arrives at the proxy, its scheduled time will be calculated
based on the current keyword, and once the time of the
packet on top of the queue is less than the current time, the
packet is extracted and sent onto the outgoing link.
The scheduled time of a packet i in a k-code will be

tSC}L = tT'[f’U + D(I’UE’, <1 - (/L mOd k)]izneu} mOd kj)) ’
where i and iy, is the position of the packet in its original
and after-encoding orders, respectively. As we can see,
there is no need for ¢,., to be the exact receiving time of the
packet. Measuring t,., with an error of less than one half
packet transmission time is enough for correct operation.

On the long term, this time shift has the effect of giving
the overt connection a perfect behavior with respect to its
rate. In timing channels where inter-packet transmission
time is the main media, the rate usually fluctuates slightly
based on the hidden signal. This can be used against these
channels to be detected, and or eliminated. The network
PUMP [17], for example, will have zero effect on our chan-
nel even after adding the time shift.

6 COUNTERMEASURES AND PREVENTIONS

In any proposed channel, it is hard to use any countermea-
sure approach without first assessing the parameter or

124 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO.2, MARCH/APRIL 2017

media over which the cover transmission takes place. For
example, using a technique that analyzes packet header sta-
tistics and patterns to stop a timing-channel (e.g. [29]) is
guaranteed to fail. The proposed channel uses packet order,
therefore, a countermeasure must either keep track and ana-
lyze such orders for each flow, or try to eliminate the media
(i.e., the order-based channel).

Using a standard approach, as the network PUMP [17], will
need to be extended to order as well as rate-control all in/out-
going flows to/from a certain host. Other detection techni-
ques as those based on entropy [12] or other model-based
approaches [10] will need to add extensive logging to keep
track of the packet order as well. We will discuss targeted
techniques to packet ordering in practical perspective, and
how to implement them without a massive overhead and cost.

6.1 General Prevention Approaches

The main idea to prevent the existence of such covert channel
is to make the channel too noisy to be practical or make the
traffic too ideal to imitate. As our channel depend on the exis-
tence of some out-of-order packets, both approaches trans-
lates to the following. The first idea, to make the channel too
noisy, necessitates adding more out-of-order packets in a way
to make it very hard to send data reliably using our proposed
approach. This in turn drop the channel capacity (lower val-
ues of [) to make it reliable, and in the same time increase the
value of k£ to compensate for drop in capacity. These changes
will affect the stealthiness of the channel in a way to jeopar-
dize its initial design goal. The second approach, trying to
eliminate the out-of-order phenomenon, will be more effec-
tive in eliminating the channels while being very expensive to
implement. The reason is as follows. First, it can be very costly
to order all passing by flows. Second, even if one want to selec-
tively eliminate the out-of-order phenomenon for specific
flows that contains the covert channel, one needs to first detect
the existence of the channel. This itself is a difficult task due to
the overwhelming overhead of monitoring the network traffic
while the covert channel may be flooded by huge amount of
“normal” traffic. If one tries to disrupt the covert channel by
introducing more reordering (for example, reordering the
whole sequence of packets), the TCP performance will be
greatly degraded [35]. Third, if one want to avoid the heavy
load on an individual device by trying to distribute the reor-
dering load to numerous devices closer to edge nodes, one
will suffer from another problem: massive deployment man-
agement and cost. Therefore, we will focus in the remaining
part of our discussion on the first approach: adding more
noise into the network in order to either push the covert chan-
nel parameters to being very demanding and thus lower its
stealthiness, or lower its bandwidth enough to be impractical.

6.2 Implementation Options

There are several models to implement an efficient preven-
tion mechanism for the proposed covert channel and its
derivatives. In the following we will discuss a few of the
possible deployment and implementation approaches for a
prevention (rather than detection) mechanism.

6.2.1 Per Flow Noise Addition

In order to best add noise into targeted flows, we might need
to keep track of suspected flow types (e.g. TCP is a better

1 & o

0.9

0.8

0.7 —A—q1=01| "1
- 8- q1=0.2
-+ q1=0.3
o - q1=0.4
—*—q1=0.5

0.6

0.5

A
0.4

0.3

02f |

Ratio of correctable codeword

0.1F;

o
9

1 2 3 4 5 6 7
Error correcting ability (num. of reorders)

Fig. 5. Resilience of the error correcting code.

candidate for being used for these channels than UDP, and
FTP more than HTTP due to added delay). Also, flow
source-destination pairs that might be questionable can get
more attention than others (e.g. sources in specific corpora-
tion, countries, ISPs, etc. Or destination that are recently
opened, or targeted to hosts with a particular operating sys-
tem, etc). While this approach gives the highest flexibility to
discriminate between flows and allow the existence of differ-
ent trust levels, and consequently, and differential behavior,
it is very demanding processing and storage wise. Suppose
the adversary take the following steps to add noise to the
flow: 1) with probability 0 < ¢ <= 0.5, delay current
packet and send it after the next packet; 2) with a small prob-
ability 0 < ¢ <= 0.05, randomly drop the current packet.
In this case the covert codeword may be messed up. How-
ever, if one chooses an appropriate error correcting code-
word, the covert channel will still work in the presence of the
introduced noises. For example, if we take k = 8, then for dif-
ferent error correcting abilities and different values of ¢,
Fig. 5 shows the ratio of correctable codeword based on the
value of binomial probability distribution function. We can
see that if the error correcting ability is high (able to correct
six reorders) then the ratio of correctable codeword can reach
more than 0.95. For a codeword size of k=8 there are
8! = 40,320 possible different values (permutations), which
corresponds to a binary codeword of about 15 bits. To make
the codeword to be able to correct six bit-errors will greatly
degrade the bandwidth. However, this is not an issue for a
covert channel. The covert channel may be only used to
transfer very short messages (such as a Bot master command,
which may be only tens of bytes) over a big flow. Even in the
extreme case that we make the 15-bit codeword only repre-
sent one bit information, the resulting bandwidth is still
acceptable in certain scenarios. For example, transferring a
CD image (i.e., 700 MB or approximately 500 K packets) can
easily be accompanied with 160 bits of a hash fingerprint,
along with an additional 32 bits as a CRC of the hash itself or
with error correction information. Note that 500 K packets
can actually transfer 62,500 bits if we use k£ = 8 and assume
that every codeword only represents one bit. Even if we pad
the covert channel to contain 99 percent of zeros (i.e., no-
reordering, to make the total reordering probability looks
stealthy) and 1 percent of true information, it is still more
than enough for the covert channel. To further increase the
error correcting ability, we can add the redundancy in multi-
ple codewords. For example, for every two codewords, we
can make one codeword to represent true information, and

EL-ATAWY ET AL.: ANOVEL CLASS OF ROBUST COVERT CHANNELS USING OUT-OF-ORDER PACKETS 125

the other codeword represent error correcting code. The two-
layered error-correcting (one layer inside individual code-
word, and another layer across multiple codewords) can fur-
ther increase the resilience of the covert channel.

If the adversary randomly drop some packets, then the
effect is similar as introducing reordering. For example,
in the case of k£ = 8, dropping the fourth packets is equiv-
alent to adding four reorderings in the sequence since
packet 4 will appear after packets 5, 6, 7 and 8. In our
implementation, we always consider the first appearance
of a packet as the criteria to determine reordering if a
packet is received multiple times. The analysis of the
error correcting ability in this case is similar. If the adver-
sary intentionally inserts bogus packets that are simply
duplicators of other packets and affect the packet order,
then it can be handled by error correcting code as
described above. If the bogus packets have wrong head-
ers (specifically sequence numbers) then they can be dis-
carded as the case in the protocol. However, if these
packets are not distinguishable by the protocol, they will
mess-up the application as well as our covert channel.

6.2.2 Overall Traffic Noise

The same idea can be applied regardless of flow. In other
words, two consecutive packets might be swapped together
even if they belong to different flows. This might seem in
vain, but if it is applied close enough to the edge, and with a
deep enough buffer, it will be effective with a simpler
implementation as no per-flow information, or flow tables
need to be created. A hybrid of this approach and the previ-
ous one can be built by splitting the aggregate flows into
rough granularity bins. For example, we can just extract
flows with connection-oriented protocols (e.g. TCP), while
leaving all audio/video/udp traffic go smoothly without
buffering or noise-adding.

6.2.3 Burst Noise for Delay Tolerant Flows

Random flows can be selected for extra security screening.
The prevention process/module at the gateway/router
will take aside a number of packets, possibly with sampling,
to be investigated. An optional study can be put in place, for
their order and whether they pose any statistical significance
in this regard will be recorded for future manual analysis.
These packets will be fully sorted, then forwarded towards
their destination. This effectively will destroy the signal in a
number of consecutive codewords in this flow (in case it was
used for covert communication in the first place).

6.2.4 Delay Analysis of Prevention Implementation

o Individual packet noise mechanisms. Affected flows
will suffer a delay for only those packets being
swapped/ordered. The analysis will be the same as
shown in the delay calculations in Section 5. We do
not have the restriction to perform under the radar.
However, we should not impose enough delay to the
extent that will it affect user experience. For long
term flows, like FTP data connections and web-
download requests, we have the freedom to add rel-
atively significant delays without jeopardizing the
overall network performance.

TABLE 4
Analysis of SeR Rates in a Packet Index Trace
with 14 Percent Reordering

Errors in codeword 0 1 2 3 4

0.8732 0.0808 0.0376 0.0082 0.0002
0.8732 0954 0.9916 0.9998 1.0

prob. of errors
CDF

Codewords sent using k = 4.

e Burst noise mechanism. Assuming b packets have
been withdrawn from a flow sending at B bits per
second on a C bps link, we can reach the following
figures. With a packet size of 1 K as a typical
value, we see that there will be approximately a
capture time of b 1K/(B/8) seconds. If ordering
the packets took negligible time, we reach a possi-
ble delay of b 1K/(B/8) seconds affecting the first
captured packet, and gets lower as we proceed
with later captured packets. While this look similar
to the previous case, we can always tune the cap-
ture mechanism to bypass the first few packets if
they are already in order. For example, if 100 pack-
ets are to be sorted, and the first 30 packets were
perfectly sorted then we will only delay packets
from 31-100.

7 EVALUATION

To evaluate the proposed covert channel, the main metrics
to evaluate are the covert bandwidth per overt cost (e.g.
packet, bit, or unit time), and the error rate of the covert
transmission. The bandwidth can be calculated based on
the channel parameters k, [, and the target reorder metric
we have to stay below. This was addressed in Section 4.6.
The error rate on the other hand, need evaluation experi-
ments to imitate the behavior over each codeword transmit-
ted not the aggregate effect as given by previously
mentioned metrics (e.g. RD, RBD, etc).

The channel’s most important design parameter is %, the
codeword size in packets. As in Table 2, the effect of £ on the
maximum number of errors that can be detected is obvious.
However, there shall be no need to go beyond the error cor-
recting capabilities needed to successfully transmit through
a specific channel, as that means a direct loss of bandwidth.

A single error in transmission is denoted by number of
shift error rate (SeR) per codeword. SeR is equivalent to the
single bit error rate used in ordinary channel analysis. It
represents the probability by which a packet might shift one
step. It can also be modeled as the probability of a single
swap in position between two packets. An important prop-
erty to verify is that multiple errors within the same code-
word is a rare event. A trace with about 14 percent of out-
of-order packets was used, and only the first 5,000 packets
were analyzed for this experiment. The results show a
sharp decline in the number of errors within the same
codeword (for this experiment, k =4). In Table 4 these
results are shown. The RD of the trace used was
< 0.8545,0.1343,0.0105,0.00054, ... >. This specific trace
was chosen for its heavy reordering where its out-of-order
measures given even exceeds those provided in [24]. This
ensures that our conclusions will be conservative estimates

126 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO.2, MARCH/APRIL 2017

TABLE 5
Undetected Errors Using Only Two Codewords
for Transmission (I = 2)

code word probability of probability of
size (k) undetected errors uncorrected errors
2 0.084654 0.084654

3 1.233 E-03 0.019830

4 1.08 E-04 0.011152

5 3.50 E-05 0.007875

6 2.40 E-05 0.004656

7 7.00 E-06 0.000154

The trace used has an RD of 0.877,0.114, 0.0074, 3.32E-4, 1.64E-5.

about the success of the channel in resisting external noise.
The results show that if the code used is able to correct a sin-
gle error (which is feasible for all k£ > 3) then 95.4 percent of
codewords will be received successfully.

Another important dimension is how accurate can our
transmission be if we sacrificed the bandwidth for maxi-
mum reliability. In other words, if we used only two permu-
tations from the k! possible ones, what will the percentage of
undetected errors be. For the first few values of k', Table 5
shows the percentage of errors goes undetected when
applied for the same trace. Although the probabilities of
undetected errors are considerably low, only detecting the
error will require retransmission which is not possible in all
cases. Obviously, the probability of errors that will go
uncorrected (using the same trace and coding) will be
higher. However, the values shown in Table 5 still show
very high reliability despite the strict requirements of cor-
recting errors rather than stopping at detection.

Fig. 6a shows the effect of increasing k on the distribution
of errors (SeR). Lower values of k give the highest probabil-
ity of error-free codewords, but suffers low decay rate for
the SeR distribution. Therefore, if moderate error-correction
capability is provided, higher k’s will prove useful. The
cumulative error distribution, illustrated in Fig. 6b, shows
this effect. For example, if a code with d,,;, = 3 is used (fea-
sible for k£ > 3), the reliability of the transmission increases
to above 90 percent for k£ = 3,4,5 and increases to higher
than 97 percent if three or less errors are corrected.

The effect of increasing the codeword size while fixing
the error handling capabilities is presented in Fig. 7. We can
see that the capacity per packet can increase from almost no
information transferred (~ 0 bits/packet) to as high as
2.5 bits/packet by increasing the value of k. Each curve
represents a specific error capability represented in the min-
imum distance between codewords (d,,;,). On the other
hand, the effect of increasing d,,;,, on the capacity is shown
in Fig. 8. The drop is clear but gradual enough to give a
wide range of valid design settings.

7.1 PlanetLab Deployment
We deployed our implementation over PlanetLab, which
provides a faithful approximation of Internet. We use

1. From previous studies on extent of reordering, and its effect on
TCP protocol buffers; values of & > 10 are not encouraged as it will
severely degrade the stealthiness as well as the performance of the host
application.

ARXXXRXAX
NOAOON
*

Probability

0 1 2 3 5 6 7
Errors per codeword

(a) Probability of different errors (SeR) for various values of
K.

0.5 |-
09 ¢
0.85 |
o8 |-
0.75 %,
0.7
0.65 [
0.6

055 L
0 1 2 3 4 5 6 7

Errors per codeword

ARXXXXAX
L L

NOAOON

Probability (CDF)

(b) Cumulative probability of different errors (SeR) for vari-
ous values of K.

Fig. 6. At k = 2, the channel will not be able to correct/detect any errors
but is included here for completeness.

PlanetLab nodes covering the six inhabited continents.
Every continent was represented by at least one node, with
a total of 10 nodes in the whole experiment. In our experi-
ment, every pair of PlanetLab nodes send TCP packets with
size of 1,500 bytes to each other, with the rate of 100 packets
per second (which results in a data rate of 1.2 Mbps). The
sending and receiving nodes apply the algorithm described
in Section 5. Although, the deployment was world-wide,
the results did not represent any out of the expected results.
The focus was on evaluating the error rate of our covert
channel for various values of k£ when used for pairs varying
geographical proximity. The codeword selection model was
based on the statistics we collected from those pairs, as well
as those learned from studies in the literature [22], [24].
From our measurements, we found two basic parameters
that affect our channel’s success and reliability. The first

3

Capacity (bits/packet)
&

0 2 4 6 8 10 12 14 16
Codeword size (k packets)

Fig. 7. Effect of increasing codeword size (k) while fixing minimum dis-
tance between codewords (d,). (d = Ep + 1 0ord = 2E¢ + 1).

EL-ATAWY ET AL.: ANOVEL CLASS OF ROBUST COVERT CHANNELS USING OUT-OF-ORDER PACKETS 127

8 K2 ——
o f——
25 K=d ---%--- —
:u_?- K=5 e
< K=6 --m—
g 2 K=7 --o--
> Poo-e—o b oK=8 - -e- -
2 - Koo .o
8 15 “R=10 —a—
= K=11 —v—
5] 1 K=12 ---v-- |
o K=13 ----¢---
8 K14 e
0.5 K=15 ——o—
0 i i

0 2 4 6 8 10 12 14 16 18
Minimum codeword distance (d,;,,)

Fig. 8. Effect of increasing minimum codeword distance on the channel
capacity per packet.

parameter is the number of hops between the two nodes:
the more the hops in the connection the longer the out-of-
order packet sequences. However, this does not necessarily
guarantee an error in transmission. For example, if a block
of 20 packets have been shifted 30 locations in the overt
flow due to hiccup in routing status (and assuming the TCP
connection did not fail due to the excessive delay), we will
find errors only in those codewords that crossed the bound-
aries of the shifted block. If a codeword has all of its packets
shifted together, then the covert channel receiver will see
this as an error-free transmission. A higher number of hops,
usually, translates to a higher RTT. This higher RTT scales
up all out-of-order mishaps causing shifts to be in the multi-
codeword range. In our observations, shifts affecting blocks
of more than 10 packets happened exclusively in connec-
tions including a node in Africa and/or Australia.

Other parameters were parallelism, load-balancing and
traffic slicing that take place in intermediate nodes.
Although, we do not have access to the configuration and
hardware capabilities of all nodes, we found that some
routes have suffered of these effects more than others (an
order of magnitude more out-of-order packets is quite possi-
ble). Such high reordering rate took place with connections
between pairs like (Virginia tech-Princeton university). In
[5], [6], [21], these device properties were the main reason
accused of causing short term packet reordering, and it is
hypothesized that their effect will increase as high-end
routers make more use of new advances in multi-core pro-
cessors, and load balancing mechanisms.

7.2 Effectiveness of Prevention Mechanism

The prevention mechanism presented in Section 6, was
evaluated using the per-flow perturbation implementation.
Clearly, this is the most demanding implementation
resource-wise, but it is the easiest to analyze, understand
and model. By varying the depth of the shift, and its proba-
bility, we arrived at the following results.

The three main factors selected in the evaluation are k, «,
and d. The first parameter is the codeword size in packets.
The other two are the probability by which a packet is
selected to be shifted in time (i.e., moved to a later order),
and the distance by which such a packet can be shifted (i.e.,
measured in number of packets it jumps over), respectively.
The results were obtained by sending 10° packets with each
combination between varying nodes. The results shown are
a sample of those obtained between east-west coast node

TABLE 6

Effect of Prevention Depth on Error Rate of Covert Channel
dl\k— 2 3 4 5
1 0.982% 1.974% 2.935% 3.930%
2 1.002% 1.935% 2.930% 3.907%
3 1.004% 1.983% 2.975% 3.904%
4 0.987% 1.915% 2.872% 3.910%
5 0.969% 1.945% 2.898% 3.862%
10 0.969% 1.942% 2.880% 3.83%

With « equals 0.01 and | = k! (i.e., Ep = Ec = 0).

pairs (UCLA and Princeton). We opted not use extreme
ordering links, or long-range ordering pairs to be conserva-
tive on our estimates of the success of our channel in real
life. For the range of values selected for each parameter, we
choose to have a reasonable & as can be used by the channel
designer/user, as well as responsible values for d and a. A
higher value for d would have affected the performance of
the receiving end. Besides, a higher value of d and « will
reveal the existence of the prevention technique as well as
force it to be beyond the range of naturally occurring out-of-
order packets. We chose not to go beyond a constant
factor of what was measured by other researchers as in [3],
[4], [6], [16], [26]. The value selected for « ranged from 0.1 to
5 percent. This enabled the implementation to be realizable
without excessive overhead on the node in which the
prevention mechanism will be deployed.

In Table 6, we can see that given a fixed «, the proba-
bility of an error being forced at the receiving end
increases linearly with the codeword size. This observa-
tion matches our expectations, because the probability for
a codeword being hit will necessarily increase as its span
increase. The effect was quite dramatic due to the lack of
use of any error detection or correction (I = k!). Also, note
that there was no effect for the depth d, as it does not
matter how far a packet is shifted when the smallest shift
will cause an error (again due to the lack of error detec-
tion or correction).

We focus on the relation between d and k in Table 7. By
enabling some error detection and correction capability,
namely E- = 1, we saw the effect of error correction capabili-
ties in circumventing our noise-adding technique. We can
see that for a depth of 1, the success-rate of our prevention
technique was very low regardless of the codeword size
(< 0.05%). For higher values of d, the effect was as we saw in
the previous table, where the error introduced into the chan-
nel was linear with code-word size. Therefore, we conclude
that the channel owners can significantly lower the effect of

TABLE 7

Effect of Prevention Power on Error Rate of Covert Channel
dl\k— 2 3 4 5
1 0.005% 0.02% 0.041%
2 0.472% 1.006% 1.475%
3 N/A 0.6525% 1.323% 1.966%
4 0.75% 1.526% 2.170%
5 0.7625% 1.586% 2.425%

With o equals 0.01 and Ec =1. k=2 does not permit Ec to have a
value > 0.

128 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 14, NO.2, MARCH/APRIL 2017

TABLE 8
The Effect of « on the Success of the Prevention Mechanism
Il al\d— 2 3 4 5 10
0.001 0.283% 0.260% 0.276% 0.294% 0.245%
il 0.005 1.483% 1.450% 1473% 1.450% 1.356%
’ 0.01 3.037% 2.834% 2.976% 2.896% 2.847%
0.05 13.42% 13.573% 13.689% 13.756% 13.626%
0.001 0.0% 0.0% 0.033% 0.05% 0.053%
0.005 0.0% 0.0% 0.146% 0.273% 0.4%
2 0.01 0.0% 0.01% 0.323% 0.5% 0.7%
0.05 0.01% 0306% 1.739% 2.573% 3.723%

In this experiment, k = 4, and L is taken to be k! and 2.

our prevention mechanism by choosing E¢ > d. However,
they will suffer from the serious drop in bandwidth as
shown in Fig. 8. Another problem, is that the stealthiness of
the channel will be affected as they try to increase & in order
to accommodate higher correction power.

In the following table (Table 8), we show how increasing
o will affect the success of the prevention system. The first
section of the table, we show the results without any error
detection/correction capabilities, while in the second, we
show the results with the highest possible Ec and Ep by
using [= 2. All entries in the table were obtained for a mod-
erate setting of k = 4. As we can see, and as expected, the
higher the value of « the stronger the effect. However, there
is an important observation, which is the cap we get on our
success rate regardless of the value of the depth parameter
(i.e., d). This can be explained by the way the decoding
mechanism is implemented, which removes any effect of
shuffling packets belonging to different codewords. For
example, delaying the last packet of a codeword for any
arbitrary duration does not affect the decoding of the code-
word, as relatively to its original codeword, the packet still
comes last. Also, we see that for a very cautious channel
operator, it will still be very hard to completely destroy his
packet. For example, if he/she selected £ = 10 and used a
very skewed distribution of codewords (by assuming a very
conservative reordering metric for which to solve RD;, as
shown in Section 4), as well as imposing a very high error
correction capabilities (e.g. Ec =5), it will be definitely
impossible to succeed in completely preventing the channel
from bypassing our prevention mechanism. If such cases
exist, and a complete solution is indeed needed, then a com-
plete reorder of traffic will be essential.

8 LIMITATIONS

The proposed covert channel has the following limitations.
First, it can only be used to transmit small amount of auxil-
iary data, but cannot be used to transfer data of large size.
Transferring big amount of data in the covert channel is
very inefficient and easy to be detected. Second, the pro-
posed covert channel cannot replace other cryptographic
approaches such as encryption. As long as that there is no
pre-agreed encryption key between the sender and receiver,
a powerful eavesdropper will eventually recover all covert
channel information, since the eavesdropper can just repeat
the decoding procedure. However, this applies to any
covert channel that does not use pre-agreed keys. Third, the

stealthiness of the covert channel exists in certain limited
aspect. The covert channel significantly increases the bar for
detection, but cannot prevent any powerful eavesdropper
or monitor to discover the covert channel. Our covert chan-
nel mimics natural reordering by making the reordering
probability similar to that of the natural reordering. If the
estimation of probability of natural reordering is not pre-
cise, it is possible for the adversary to detect the existence of
the channel after observing the channel long enough. Also,
since we only consider the metric for overall reordering, it
is possible to detect the covert channel after statistical analy-
sis for patterns of “bursting” reorderings in the codeword.
We plan to further investigate this in future research.
Another limitation of the scheme is that it cannot be applied
for applications with large delay deviation since the added
delay will cause too much performance degradation.

9 CONCLUSION AND FUTURE WORK

In this paper, we pursue the possibility of building covert
channels that use the packet order as the medium for
transmitting hidden signals. Packet reordering is a nor-
mal behavior in the Internet and it is too hard to closely
monitor and unlikely to raise suspicions. Moreover,
efforts to eliminate it will not be easily implemented due
to high cost and lack of incentive. Also, the main causes
behind this phenomenon are not likely to vanish nor
decrease in the near future.

Our proposed channel is designed based on the idea of
assigning different symbols to the different permutations a
number of consecutive packets can have. By using only a
subset of the permutations, we were able to add error detec-
tion and correction capabilities. Subsets used are rotated to
evade detection. Any adversary needs a huge cost to detect
the covert channel due to the tremendous overhead to
buffer and sort the packets among huge amount of back-
ground traffic. The codewords themselves are selected
based on the traffic characteristics to follow closely the
innate reordering characteristics of the host channel. The
outcome was almost identical to the target as given by
the reordering metric (RD in our evaluation). Also, by vary-
ing the codeword input distribution to the channel, as well
as the subset of permutations to use, our channel can be
extremely robust and resilient to external reordering
effects. The channel’s built-in error detection/correction
capabilities increased the correctly received codewords to
more than 98 percent in typical operating parameters. The
evaluation using packet traces showed error rates as low as
0.1 percent if the appropriate coding scheme is selected. As
one example for the capacity and error correcting ability of
the channel, 30 packets are needed per bit of covert commu-
nication, if we require that one error is correctable for every
four bits, with codeword size k = 2, and “natural” probabil-
ity of pairwise reordering ¢ = 0.1. Many additions can be
used to enhance the proposed channel. First, other coding
schemes, e.g. cyclic codes, can be used to enhance the
channel’s resilience to errors. Second, we plan to investigate
more dynamic environments where channel properties
need to be continuously communicated between both par-
ties. This requires adding some learning/monitoring capa-
bilities to the logic at both ends. Third, we can use more

EL-ATAWY ET AL.: ANOVEL CLASS OF ROBUST COVERT CHANNELS USING OUT-OF-ORDER PACKETS 129

than one technique so that we can select the most optimal
one for the target channel will enhance the channel resil-
ience and stealthiness. Fourth, we can apply hybrid metrics
of packet reordering to better evade detectors. Fifth, we
plan to evaluating the possibility of detecting the channel
by monitoring the transport layer protocol performance.
Sixth, we can design more efficient and effective protection
techniques as well as detection mechanisms.

REFERENCES

[1]1 K. Ahsan and D. Kundur, “Practical data hiding in TCP/IP,” in
Proc. Workshop Multimedia Security ACM Multimedia, 2002.

[2] V. Anantharam and S. Verdu, “Bits through queues,” IEEE Trans.
Inf. Theory, vol. 42, no. 1, pp. 4-18, Jan. 1996.

[3] C.M. Arthur, A. Lehane, and D. Harle, “Keeping order: Determin-
ing the effect of TCP packet reordering,” in Proc. 3rd Int. Conf.
Netw. Serv., Washington, DC, 2007, pp. 116-122.

[4] T.Banka, A. A. Bare, and A. P. Jayasumana, “Metrics for degree of
reordering in packet sequences,” in Proc. 27th Annu. IEEE Conf.
Local Comput. Netw., Washington, DC, 2002, pp. 0333-0340.

[5]]. Bellardo and S. Savage, “Measuring packet reordering,” in Proc.
2nd ACM SIGCOMM Workshop Internet Meas., 2002, pp. 97-105.

[6] J.C.R. Bennett, C. Partridge, and N. Shectman, “Packet reorder-
ing is not pathological network behavior,” IEEE/ACM Trans.
Netw., vol. 7, no. 6, pp. 789-798, Dec. 1999.

[71 K. Borders and A. Prakash, “Web tap: Detecting covert web
traffic,” in Proc. 11th ACM Conf. Comput. Commun. Security, New
York, NY, 2004, pp. 110-120.

[8] R.Browne, “An architecture for covert channel control in realtime
networks and multiprocessors,” in Proc. IEEE Symp. Security Priv.,
1995, pp. 155-168.

[9]1 S. Cabuk, C. E. Brodley, and C. Shields, “Ip covert timing chan-

nels: Design and detection,” in Proc. 11th ACM Conf. Comput. Com-

mun. Security, New York, NY, USA, 2004, pp. 178-187.

S. Cabuk, C. E. Brodley, and C. Shields, “Ip covert channel

detection,” ACM Trans. Inf. Syst. Security, vol. 12, no. 4, pp. 22:1-

22:29, Apr. 2009.

T. M. Cover and J. A. Thomas, Elements of Information Theory. New

York, NY, USA: Wiley, 1991.

S. Gianvecchio and H. Wang, “Detecting covert timing channels:

An Entropy-based approach,” in Proc. 14th ACM Conf. Comput.

Commun. Security, New York, NY, USA, 2007, pp. 307-316.

A. Houmansadr and N. Borisov, “Coco: Coding-based covert tim-

ing channels for network flows,” in Proc. 13th Int. Conf. Inf. Hiding,

2011, pp. 314-328.

W. Hu, “Reducing timing channels with fuzzy time,” in Proc. IEEE

Comput. Soc. Symp. Res. Security Priv., 1991, pp. 8-20.

M. Owens, “A discussion of covert channels and steganography,”

SANS Institute InfoSec Reading Room, 2002.

S. Jaiswal, G. Iannaccone, C. Diot,]J. Kurose, and D. Towsley,

“Measurement and classification of out-of-sequence packets in a

tier-1 IP backbone,” IEEE/ACM Trans. Netw., vol. 15, no. 1, pp. 54—

66, Feb. 2007.

M. H. Kang, I. S. Moskowitz, and D. C. Lee, “A network pump,”

IEEE Trans. Softw. Eng., vol. 22, no. 5, pp. 329-338, May 1996.

Y. Liu, D. Ghosal, F. Armknecht, A. Sadeghi, S. Schulz, and S.

Katzenbeisser, “Robust and undetectable steganographic timing

channels for i.i.d. traffic,” in Proc. 12th Int. Conf. Inf. Hiding, Berlin,

Germany, 2010, pp. 193-207.

X. Luo, E. W.W. Chan, and R. K.C. Chang, “Cloak: A Ten-fold way

for reliable covert communications,” in Proc. 12th Eur. Conf. Res.

Comput. Security, 2007, vol. 4734, pp. 283-298.

S. J. Murdoch and S. Lewis, “Embedding covert channels into

TCP/IP,” in Proc. 7th Int. Workshop Inf. Hiding, 2005, pp. 247-261.

V. Paxson, “End-to-end routing behavior in the internet,” SIG-

COMM Comput. Commun. Rev., vol. 36, no. 5, pp. 41-56, Oct. 2006.

N. M. Piratla, A theoretical foundation, metrics and modeling of

packet reordering and methodology of delay modeling using

inter-packet gaps, Ph.D. thesis, Dept. of Electrical and Comput.

Eng., Colorado State Univ., Fort Collins, CO, USA, 2005.

N. M. Piratla and A. P. Jayasumana, “Reordering of packets due to

multipath forwarding-an analysis,” in Proc. IEEE Int. Conf. Com-

mun., 2006, vol. 2, pp. 829-834.

[10]

[11]

[12]

[13]

[14]
[15]

[16]

(171

(18]

[19]

[20]
[21]

[22]

[23]

[24] N. M. Piratla and A. P. Jayasumana, “Metrics for packet reorder-
ing: A comparative analysis,” Int.]. Commun. Syst., vol. 21, no. 1,
pp- 99-113, Jan. 2008.

N. M. Piratla, A. P. Jayasumana, and A. A. Bare, “Reorder density
(RD): A formal, comprehensive metric for packet reordering,” in
Proc. Int. Federation Inf. Process. Netw. Conf., 2005, pp. 78-79.

N. M. Piratla, A. P. Jayasumana, A. A. Bare, and T. Banka,
“Reorder Buffer-occupancy density and its application for evalua-
tion of packet reordering,” Comput. Commun., vol. 30, no. 9,
pp- 1980-1993, 2007.

N. Provos and P. Honeyman, “Hide and seek: Introduction to
steganography,” IEEE Security Priv., vol. 1, no. 3, pp. 32-44, May
2003.

C. Savage, “A survey of combinatorial gray codes,” SIAM Rev.,
vol. 39, pp. 605-629, 1996.

S. H. Sellke, C. Wang, S. Bagchi, and N. B. Shroff, “TCP/IP timing
Channels: Theory to Implementation,” in Proc. IEEE INFOCOM,
2009, pp. 2204-2212.

G. Shah, A. Molina, and M. Blaze, “Keyboards and covert
channels,” in Proc. USENIX Security Symp., 2006, pp. 59-75.

S. H. Son, R. Mukkamala, and R. David, “Integrating security and
real-time requirements using covert channel capacity,” IEEE
Trans. Knowl. Data Eng., vol. 12, no. 6, pp. 865-879, Nov. 2000.

S. Voloshynovskiy and F. Deguillaume, “Information-theoretic
data-hiding: Recent achievements and open problems,” Int. J.
Image Graph., vol. 5, no. 1, pp. 1-31, 2005.

S. Voloshynovskiy, F. Deguillaume, O. Koval, and T. Pun,
“Information-theoretic data-hiding for public network security,
services control and secure communications,” in Proc. 6th Int. Conf.
Telecommun. Modern Satellite, Cable Broadcasting Serv. (TELSIKS),
2003, pp. 1-17.

X. Wang, S. Chen, and S. Jajodia, “Network flow watermarking
attack on low-latency anonymous communication systems,” in
Proc. IEEE Symp. Security Priv., 2007, pp. 116-130.

W. Wu, P. Demar, and M. Crawford, “Sorting reordered packets
with interrupt coalescing,” Comput. Netw., vol. 53, no. 15,
pp- 26462662, Oct. 2009.

W. Yu, X. Fu, S. Graham, D. Xuan, and W. Zhao, “Dsss-based flow
marking technique for invisible traceback,” in Proc. IEEE Symp.
Security Priv., 2007, pp. 18-32.

[25]

[26]

[271

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Adel El-Atawy received the PhD degree in computer science from
Depaul University. He is currently with Google, Inc. His research inter-
ests include network configuration verification and information theory.
He is a member of the IEEE.

Qi Duan received the PhD degree in computer science from University
at Buffalo. He is currently a senior research associate in the University of
North Carolina at Charlotte. His research interests include network secu-
rity and information theory. He is a member of the IEEE.

Ehab Al-Shaer received the PhD degree in computer science from Old
Dominion University. He is currently a professor in the University of North
Carolina at Charlotte. His research interests include network security
and formal methods. He is a member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

