What is in a Web View? An Analysis of Progressive Web App
Features When the Means of Web Access is not a Web Browser

Thomas Steiner
Google Germany GmbH
20354 Hamburg, Germany
tomac@google.com

ABSTRACT

Progressive Web Apps (PwA) are a new class of Web applications,
enabled for the most part by the Service Workers aris. Service Work-
ers allow apps to work offline by intercepting network requests to
deliver programmatic or cached responses, Service Workers can
receive push notifications and synchronize data in the background
even when the app is not running, and—together with Web App
Manifests—allow users to install PwAs to their devices’ home screens.
Service Workers being a Web standard, support has landed in sev-
eral stand-alone Android Web browsers—among them (but not
limited to) Chrome and its open-source foundation Chromium,
Firefox, Edge, Opera, uc Browser, Samsung Internet, and—eagerly
awaited—ios Safari. In this paper, we examine the pwa feature
support situation in Web Views, that is, in-app Web experiences
that are explicitly not stand-alone browsers. Such in-app browsers
can commonly be encountered in chat applications like WeChat or
WhatsApp, online social networks like Facebook or Twitter, but also
email clients like Gmail, or simply anywhere where Web content is
displayed inside native apps. We have developed an open-source
application called pwa Feature Detector that allows for easily testing
in-app browsers (and naturally stand-alone browsers), and have
evaluated the level of support for pwa features on different devices
and Web Views. On the one hand, our results show that there are
big differences between the various Web View technologies and the
browser engines they are based upon, but on the other hand, that
for Android the results are independent from the devices’ operating
systems, which is good news given the problematic update policy of
many device manufacturers. These findings help developers make
educated choices when it comes to determining whether a pwa is
the right approach given their target users’ means of Web access.

CCS CONCEPTS

« Information systems — Browsers;

KEYWORDS
Progressive Web Apps, Service Workers, Web Views, Android, ios

This paper is published under the Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND 4.0) license. Authors reserve their rights to
disseminate the work on their personal and corporate Web sites with the appropriate
attribution.

WWW °18 Companion, April 23-27, 2018, Lyon, France

© 2018 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC BY-NC-ND 4.0 License.

ACM ISBN 978-1-4503-5640-4/18/04.

https://doi.org/10.1145/3184558.3188742

1 INTRODUCTION

In recent years, there has been a paradigm shift from browser
to native apps and back to browser again. The Web currently is
undergoing a silent revolution with Web apps, more descriptively
Progressive Web Apps, or for short just pwa. How did we get there?

1.1 History of Progressive Web Apps

Since around 2005, Web development has moved from static multi-
page documents to single-page applications, heavily enabled by the
XMLHttpRequest API, a process that eventually led Garrett to coin
the term Ajax (Asynchronous JavaScript and xmL [18]) to describe
this shift. Despite an early push for Web-based apps on devices
such as the 2007 iPhone, attempts at Web apps mostly failed by
comparison to native apps that are distributed through app stores
rather than the Web. Native apps not only had direct hardware
access to, e.g., camera and microphone, to various sensors like ac-
celerometer or geolocation, but also just in general provided a better
user experience and booted faster, compared to having to load in
a browser at runtime. Additionally, advanced offline support and
push notifications were simply unthinkable for Web applications of
the epoch, and Web app icons—that already could be added to de-
vices” home screens—were mostly just bookmarks with—apart from
full screen mode—no special behavior. While straightforward of-
fline scenarios could be realized with AppCache [36], more complex
offline scenarios were error-prone and hard to get right [7].

As the Web platform matured, and more and more hardware-
related Ap1s were implemented in browsers, in the end it was the
addition of Service Workers [33] to the Chromium browser in
2014 [16] that started to unlock a new class of Web apps that finally
could work offline, receive push notifications and synchronize data in
the background even when the app was not running, and—together
with Web App Manifests [12]—allowed users to actually install
PwAs to their devices” home screens with proper operating system
integration [24]. Other Android browsers like Mozilla Firefox, Mi-
crosoft Edge, Opera, uc Browser, Samsung Internet, and—eagerly
awaited—Apple Safari on ios, as well as several browsers more fol-
lowed in implementing Service Workers. Now, even multinational
companies like Twitter or trivago bet on pwa [17, 39], as well as gi-
ant national players like Tencent News or Sina Weibo in China [41].
Figure 1 shows the pwa of Flipkart, a shopping site popular in India,
running in the Google Chrome browser on Android.

1.2 Research Question and Paper Structure

In this paper, we look at a special means for accessing pwas, namely
accessing them explicitly not through stand-alone browsers like
the ones listed above, but through in-app browsers that render Web

https://doi.org/10.1145/3184558.3188742

SALE 21-23an

Figure 1: Screenshots showing some pwa features in ac-
tion at the example of Flipkart (https://www.flipkart.com):
(i) add to home screen prompt, (ii) icon on the home screen
(iii) splash screen while launching, (iv) launched in full
screen mode without URL bar, and (v) signaling offline state.

content in the context of native applications. Examples of such ap-
plications with in-app browsers are chat apps like WeChat (Weixin)
or WhatsApp, online social networks like Facebook or Twitter,
but also email clients like Gmail, or simply anywhere where Web
content is displayed inside native apps. The technology that these
applications leverage internally are so-called Web Views.! In order
to understand why this presents an interesting research problem,
one needs to first understand the role that applications like WeChat
and thus Web Views play in markets like China. Chan writes in
an article [14] for the venture capital firm Andreessen Horowitz
(emphasis ours): “Millions (note, not just thousands) of lightweight
apps live inside WeChat, much like webpages live on the inter-
net. This makes WeChat more like a browser for mobile websites,
or, arguably, a mobile operating system—complete with its own
proprietary app store. The lightweight apps on WeChat are called
‘official accounts’. Approved by WeChat after a brief application
process, there are well over 10 million of these official accounts on
the platform—ranging from celebrities, banks, media outlets, and
fashion brands to hospitals, drug stores, car manufacturers, internet
startups, personal blogs, and more”. Chan goes on: “WeChat focuses
on taking care of the plumbing—overseeing the integration of such
pre-existing services into its portal—by simply linking users from
the wallet menu to webpages from within the app. It’s yet another
way in which WeChat becomes an integrated browser for the mobile
(and web) world”. 1t is to be noted that this development comes to
the detriment of the so-called Open Web. As Yang and Yang write
in the Financial Times [40]: “[WeChat’s] news feed and search tools
pull content only from within WeChat’s walls rather than from
the open web, including updates posted by individual users called
moments, corporate accounts and an immense collection of WeChat
accounts which are used by newspapers and independent bloggers”.
While personally we do not embrace this development and are
advocates of the open Web, we nevertheless examine implications
of an in-app closed Web experience and its impact on Pwas.

In the remainder of this paper, we first look at the technical
background of Web Views on both Android and ios in Section 2.
We then describe the examined pwa features and their underlying
APIs in Section 3, wherein we also introduce our application pwa
Feature Detector. In continuation, we present and discuss our results
in Section 4. We close the paper with an outlook on future work in
Section 5 and draw our conclusions in Section 6.

!We differentiate the general concept of Web View from the Android class WebView.

2 BACKGROUND ON WEB VIEWS

There are different ways to integrate Web content in native ap-
plications, each having their own benefits and drawbacks. In the
following, we describe the options on the two popular mobile op-
erating system Android and ios. While Android browsers have
enjoyed Service Worker support since 2014 [16], at time of writing
(February 2018), Safari on ios for the first time supported Service
Workers in Beta versions of ios 11.3 [30]. The implementation is still
incomplete and several bugs exist, but in the spirit of Progressive
Enhancement [13] the situation is expected to improve over time.

2.1 Web Views on Android

Android Web Views with WebView. In the Android operating sys-
tem, a WebView [2] is a subclass of a View that displays Web pages.
This class is the basis upon which developers can create their own
Web browser or simply display some online content in their apps.
It does not include any features of a fully developed Web browser,
such as navigation controls or an address bar. All that WebView
does, by default, is show a Web page. Therefore, it uses the system
browser’s rendering engine to display Web pages and includes meth-
ods to navigate forward and backward through a history, zoom in
and out, perform text searches, inject custom JavaScript, and more.
Looper describes [28] the development of the component as follows:
“Whereas earlier versions of the Android os relied on the WebKit
rendering engine to power its WebView, as of Android 4.4, vari-
ous versions of Chromium are implemented. Typically, with each
consecutive update of Android’s os, a new version of Chromium
would also be included, thereby giving access to the new rendering
engine’s capability. This causes issues in backward compatibility
for developers who must support earlier versions of Android. To
combat this particular problem, as of Android 5.0, the concept of
the auto-updating WebView has been introduced. Instead of the
WebView version and capabilities depending on Android os’ update
cycle, the Android 5.0 WebView is a system-level . apk file available
in Google Play that can update itself in the background”.

Chrome Custom Tabs with CustomTabsIntent. While WebViews
are completely isolated from the user’s regular browsing activities,
Chrome Custom Tabs [22], available since Chrome 45 (September
2015) and instantiatable as CustomTabsIntent, provide a way for
an application to customize and interact with a Chrome Activity on
Android. This makes the Web content feel like being a part of the
application, while retaining the full functionality and performance
of a complete Web browser through a shared cookie jar and permis-
sions model, so users do not have to log in to sites they are already
connected to, or re-grant permissions they have already granted.

Trusted Web Activity with TrustedWebUtils. Chrome Custom
Tabs solved many issues of Android WebViews, however, have the
constraint of being fullscreen with obligatory URL bar. As of October
2017, Trusted Web Activities [21] are a new way to integrate Web
app content such as pwas with Android apps. They can be instanti-
ated with the TrustedWebUtils and use a communication protocol
based on Chrome Custom Tabs. Content in a Trusted Web Activity
is trusted—the app and the site it opens are expected to come from
the same developer, this is verified using Digital Asset Links.? The

Digital Asset Links: https://developers.google.com/digital-asset-links/

https://www.flipkart.com
https://developers.google.com/digital-asset-links/

host app does not have direct access to Web content in a Trusted
Web Activity or any other kind of Web state. Transitions between
Web and native content are between activities. Each activity (i.e.,
screen) of an app is either completely provided by the Web, or by
an Android activity. While not enforced at time of writing, Trusted
Web Activities will ultimately need to meet content requirements
similar to the “improved add to home screen” flow [24], which is
designed to be a baseline of interactivity and performance.

2.2 Web Views on ios

ios Web Views with UIWebView. Similar to Android, onios as well
Web content could be embedded with a simple system-level Web
View called UIWebView [5]. With the release of ios 4.3 in early 2011,
Apple introduced Nitro, a faster, just-in-time (jIT) JavaScript engine
for Safari that considerably sped up the browser’s performance in
loading complex Web pages. Nitro was exclusive to Safari: third-
party developers could not benefit from the faster performance in
their Web Views based on UIWebView, which was widely considered
a calculated move to encourage usage of Safari over Web Views
and Web apps saved to the iPhone’s home screen [37].

ios Web Views with WKWebView. In June 2014, Apple announced
WKWebView [6], a new API that would allow developers to display
Web content in custom Web Views with the same performance ben-
efits of Safari. Designed with security in mind, WKWebView featured
the same Nitro engine of Safari, while still allowing developers to
customize the experience with their own user interface and features.
Due to Apple’s App Store restrictions, third-party browsers on ios
internally need to depend on WKWebView. Implications thereof are
documented, e.g., for Edge for ios [29] or Chrome for ios [15].

ios Web Views with SFSafariViewController. In September
2015 with the release of ios 9, Apple introduced a new Web View
called SFSafariViewController [4], which enables apps to del-
egate the responsibility of showing Web content to Safari itself,
avoiding the need to write custom code for built-in browsers. Up
until i0s 10, SFSafariViewController shared cookies and website
data with Safari, which means that if users were already logged in
to a given website in Safari and a link to that website was opened
in SFSafariViewController, they did not have to log in again.
As of ios 11, cookie and website data is no longer shared auto-
matically, but developers can on an as-needed basis leverage an
SFAuthenticationSession [3] that shares data upon user consent.

2.3 Parallels Between Both Operating Systems

The development on the two operating systems has clear parallels
that can be summarized as follows. From initially slow, gradually
improved simple Web Views, namely WebView (with the transpar-
ent internal switch from WebKit to Chromium) on Android and
UIWebView and WKWebView on ios, there was an evolution to more
powerful and better integrated browser tab experiences, namely
CustomTabsIntent on Android and SFSafariViewController on
ios, which both (only upon user consent since ios 11) share cookies,
permissions, etc. with the particular system’s main browser. Solely
Android’s Trusted Web Activity so far has no ios equivalent yet.

3 DETECTING PWA FEATURES

What exactly makes a Web app a Progressive Web App is not clearly
defined. One of the most open definitions comes from Samsung [34],
maker of the Samsung Internet browser (emphasis ours): “Progres-
sive Web Apps (pwas) are regular mobile and desktop web appli-
cations that are accessible in any web browser. In browsers that
support new open web standards [...] they can provide additional
capabilities including offline support and push notifications”. Just
like with Ajax [18], the term PwA became a catch-all umbrella brand
for Web apps that in some way or the other use Service Worker
APIs, feel (native) “app-like;” use latest browser features if they are
available (Progressive Enhancement [13]), or that can be installed
to the home screen. Russell [32] lists a number of requirements
for what he calls “baseline appyness”: “A Progressive Web App
is functionally defined by the technical properties that allow the
browser to detect that the site meets certain criteria and is worthy
of being added to the homescreen. [...] Apps on the homescreen:

e Should load instantly, regardless of network state. [T]hey
[don’t] need to function fully offline, but they must put their
own UI on screen without requiring a network round trip.

e Should be tied in the user’s mind to where they came from.
The brand or site behind the app shouldn’t be a mystery.

e Can run without extra browser chrome (e.g., the URL bar).
[...] To prevent hijacking by captive portals (and worse),
apps must be loaded over TLs connections.”

In continuation, Russell translates these requirements into more
technical terms, writing that PwAs must (emphasis ours):

e “Originate from a Secure Origin. Served over TLs and green
padlock displays (no active mixed content).

e Load while offline (even if only a custom offline page). By
implication, this means that Progressive Web Apps require
Service Workers.

o Reference a Web App Manifest [...]”

In consequence, we consider a “Pwa feature” any feature that
requires one or more of the Service Worker ap1s. Additionally, iff (if
and only if) the Web View implements Service Workers, we further
consider additional recent browser ApIs, detailed in the following.

3.1 Detecting Service Worker Support

A ServiceWorker is installed by calling the register method on
the navigator object, whose first parameter is obligatory and con-
tains a URL that points to a JavaScript file with the Service Worker
code. The result of this promise-based Ap1 in the success case is
then a ServiceWorkerRegistration object, which is either newly
created if there was no previous ServiceWorker, or updated in the
alternative case where a previous ServiceWorker existed [33]. In
order to detect if a given Web View supports Pwa features at all,
we can thus make a simple existence check for the ar1, and then
try to register a Service Worker, as outlined in Listing 1.

3.2 Considered Progressive Web App Features

Offline Capabilities The ability to still load and work at least
to some extent, even when the device is offline [33], for
example, when the so-called airplane mode is activated or
when the device temporarily has no network coverage.

Push Notifications The capability to display push notifica-
tions as defined in the Push ar1 [11], for example, to point
users to fresh content, even when the app is not running.

Add to Home Screen The capability to be installed (added)
to a device’s home screen for easy access as outlined in [24].

Background Sync The capability to synchronize data in the
background [33], for example, to send messages in a deferred
way after a temporary offline situation in a chat app.

Navigation Preload The capability to start network naviga-
tion requests even while the Service Worker has not booted
yet [8], which would else be a blocking operation.

Silent Push The capability to use the Web Budget ap1 [10]
to determine if potentially expensive operations like back-
ground refresh may be started upon a silent push notification.

Storage Estimation The capability to estimate the available
storage that an application already uses and to know the
available quota enforced by the browser [35].

Persistent Storage The capability to persistently store data
that is guaranteed not to be purged by the browser without
user consent, even if memory is running out [35].

Web Share The capability to invoke the native sharing widget
of the operating system, as defined in the Web Share ap1 [19].

Media Session The capability to show customized media meta-
data on the platform user interface, customize available plat-
form media controls, and access platform media keys found
in notification areas and on lock screens of mobile devices
as defined in the Media Session standard [26].

Media Capabilities The ability to make an optimal decision
when picking media content for the user by exposing in-
formation about the decoding and encoding capabilities for
a given format, but also output capabilities to find the best
match based on the device’s display as defined in the Media
Capabilities standard [25].

Device Memory The capability to read the amount of avail-
able Random Access Memory (RaM) in Gigabyte of a device
in order to allow servers to customize the app experience
based on the built-in memory [31].

Getting Installed Related Apps The capability to detect if
a corresponding native application is installed alongside the
PWA in order to, for example, avoid showing push notifica-
tions twice on both the native app and the pwa [23].

Payment Request The capability to act as intermediary among
merchants, users, and payment methods by means of a stan-
dardized payment communication flow that supports differ-
ent secure payment methods [9].

Credential Management The capability to request a user’s
credentials from the browser, and to help the browser cor-
rectly store credentials for future use to facilitate logins [38].

3.3 Feature-Detecting Various pwa Features

A core principle of Progressive Enhancement [13] is feature detec-
tion. The idea behind feature detection is to run a test to determine
whether a certain feature is supported in the current browser, and
then conditionally run code to provide an acceptable experience
both in browsers that do support the feature, and browsers that
do not. It is distinct from browser sniffing, where based on the

// This commonly should happen after ‘window.onload®
// has fired in order to prioritize content display
if ('serviceWorker' in navigator) {
navigator.serviceWorker.register(scriptURL, options)
.then(registration => {
console.log(registration);
H
.catch(error => {
console.log(error);
s
} else {
console.log('Service Workers not supported');

}

Listing 1: Checking for Service Worker support.

// nav ==> navigator

// win ==> window

// doc ==> document

// reg ==> ServiceWorkerRegistration

const detectFeatures = (reg) => {
return {

'0ffline Capabilities': 'caches' in win,

'Push Notifications': 'pushManager' in reg,

'Add to Home Screen': doc.createElement('link")
.relList.supports('manifest') &&
'onbeforeinstallprompt' in win,

'Background Sync': 'sync' in reg,

‘Navigation Preload': 'navigationPreload' in reg,

'Silent Push': 'budget' in nav &&
'reserve’' in nav.budget,

'Storage Estimation': 'storage' in nav &&
'estimate' in nav.storage,

'Persistent Storage': 'storage' in nav &&
'persist' in nav.storage,

'Web Share': 'share' in nav,

'Media Session': 'mediaSession' in nav,
'Media Capabilities': 'mediaCapabilities' in nav,
'Device Memory': 'deviceMemory' in nav,
'Getting Installed Related Apps':
'getInstalledRelatedApps' in nav,
'Payment Request': 'PaymentRequest' in win,
'‘Credential Management': 'credentials' in nav,
};
3

Listing 2: Feature detection of various pwa features.

user agent string assumptions are being made regarding feature
support, which is generally considered problematic and bad prac-
tice [1]. Listing 2 shows the tests we run in order to detect the
pwa features listed in the previous subsection. As outlined before,
a ServiceWorkerRegistration, ie., an active Service Worker, is
a prerequisite for all tests. The variables nav for navigator, win for
window, doc for document, reg for ServiceWorkerRegistration
purely serve for code minification purposes.

3.4 Implementation Details

We have developed an open-source application called pwa Fea-
ture Detector that allows for easily testing in-app browsers (and
naturally stand-alone browsers as well) and check for the avail-
able pwa features. The code of the application can be found at
https://github.com/tomayac/pwa-feature-detector, the app itself is
deployed at https://tomayac.github.io/pwa-feature-detector/. When
the window. load event fires, it tries to register a no-op Service
Worker that—in the success case—immediately claims its clients

https://github.com/tomayac/pwa-feature-detector
https://tomayac.github.io/pwa-feature-detector/

LENON] Q 30w

X w Progressive Web App Feature D...

£, Feature Detector

Mozilla/5.0 (Linux; Android 8.1.99;
Build/PPR1.180104.003; wv) AppleWebKit/537.36
(KHTML, like Gecko) Version/4.0
Chrome/65.0.3310.3 Mobile Safari/537.36
MicroMessenger/6.6.1.1220(0x26060140)

X @ £ Progressive Web App Feat

TWEET
tomayac.github.io

£, Feature Detector

Mozilla/5.0 (Linux; Android 8.1.99;
Build/PPR1.180104.003) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/65.0.3310.3 Mobile
Safari/537.36

() Share

@ tomayac.github.io

Mozilla/5.0 (iPhone; CPU iPhone OS 11_3 like

Mac OS X) AppleWebKit/605.1.15 (KHTML, like
Gecko) Mobile/15E5167f
[FBAN/FBIOS;FBAV/155.0.0.36.93;FBBV/87992437

00:04 v

"
]

& tomayac.github.io

Feature Detector

Mozilla/5.0 (iPhone; CPU iPhone OS 11_3 like
Mac OS X) AppleWebKit/605.1.15 (KHTML, like

NetType/WIFI Language/en
Offline Capabilities

Offline Capabilities Push Notifications

Push Notifications X Add to Home Screen
Add to Home Screen Background Sync
Background Sync Navigation Preload

Navigation Preload Silent Push

Silent Push Storage Estimation
Storage Estimation Persistent Storage
Persistent Storage Web Share

Web Share Media Session

Media Capabilities

Device Memory

Getting Installed Related Apps
Payment Request

Credential Management

Media Session

Media Capabilities

Device Memory

Getting Installed Related Apps
Payment Request

(a) In WeChat in a Chrome 65
based WebView.

XX XXX

(b) In Twitter in a Chrome 65
based CustomTabsIntent.

Figure 2: pwa Feature Detector running on Android 8.1.99.

in order to obtain a ServiceWorkerRegistration, which is re-
quired for the then executed feature detection tests in Listing 2.
Finally, it displays the results in tabular form, and also prints
the browser’s user agent string. Figure 2a shows a screenshot
of pwa Feature Detector running on Android 8.1.99 in the chat
app WeChat in a WebView based on Chrome 65. In contrast, Fig-
ure 2b shows a screenshot of pwa Feature Detector running on
the same device, but this time in the social networking app Twit-
ter, which, rather than using a WebView, displays Web content in
a CustomTabsIntent. Despite the exact same underlying browser
engine (Chrome/65.0.3310.3), the CustomTabsIntent-based in-app
browser clearly wins the pwa feature competition. For non-domain
experts we note that on Android WebViews can be easily spotted
by looking for the string “wv” in the displayed user agent [20].
The corresponding ios screenshots, likewise based on the same
underlying browser engine (Safari 11.1) on the same device, can be
seen in Figure 3a with a WKWebView displayed in Facebook and in
Figure 3b with an SFSafariViewController displayed in Twitter.

4 RESULTS AND DISCUSSION
4.1 Android

We have run pwa Feature Detector on a representative range of
devices with different Android operating system versions, browser
engines, and several applications with in-app browsers of users
in China and Germany. We covered everything from Android 6
(“Marshmallow”), to Android 7 (“Nougat”), to the (at time of writ-
ing) most up-to-date Android 8 (“Oreo”). For the browser engines,
we had devices running Chrome 53, 55, 57, 59, 61, 63, and 65. An
online album with all collected screenshots is available at the urL
https://photos.app.goo.gl/Kh3DyhpL6Q58G7tn1. The popularity of
WeChat [14] in China clearly was reflected in the applications with

Device Memory

Getting Installed Related Apps Media Capabilities
Payment Request Device Memory
Credential Management Getting Installed Related Apps

— . Payment Request

Offline Capabilities a Gecko) Version/11.0 Mobile/15E148
Safari/604.1
Push Notifications X
Add to Home Screen (V] Offline Capabilities
Background Sync X Push Notifications X
Navigation Preload x Add to Home Screen a
Silent Push x Background Sync x
Storage Estimation x Navigation Preload x
Persistent Storage X Silent Push X
Web Share X Storage Estimation X
Media Session X Persistent Storage X
Media Capabilities x Web Share x
X Media Session X
X X
X X
X X
V]
X

Credential Management

(a) In Facebook in a Safari 11.1
based WKWebView.

(b) In Twitter in a Safari 11.1
based SFSafariViewController.

Figure 3: pwa Feature Detector running on ios 11.3 Beta 3.

in-app browsers that we covered. We observed WeChat (that iden-
tifies itself as “MicroMessenger” in user agent strings), Sina Weibo,
Facebook, Facebook Messenger, and Twitter. Table 1 shows our
results for in-app browsers based on WebView, Table 2 shows the
results for CustomTabsIntent. The results in both tables are pri-
marily ordered by browser engine version and secondarily ordered
by Android version. As the tables show, the Android version has no
impact on the set of supported pwa features, which makes sense
given the technical background information in Section 2 regarding
the decoupling of operating system version and WebView version.

Discussion of WebView Results. Table 1 unsurprisingly shows
that the more mature the underlying browser engine gets, the
more PWA features become available. We see that pwa features
that—according to the feature detection tests from Listing 2—were
reported to be working from the earliest examined browser engine
on are Offline Capabilities, Background Sync, Credential Management,
and Add to Home Screen. However, we need to have a closer look.

PWA Features Reported to Be Working.

Offline Capabilities Supported from the start, the feature Of-
fline Capabilities is working as expected.

Credential Management The feature Credential Management
is presumably erroneously exposed, which is tracked in
Chromium bug https://crbug.com/589829.

Add to Home Screen While in theory supported from the
start, the situation with Add to Home Screen is blurry. First,
the criteria for when exactly the install prompt actually trig-
gers are not exposed publicly. The conditions listed in [24]

https://photos.app.goo.gl/Kh3DyhpL6Q58G7tn1
https://crbug.com/589829

Feature Examples
Offline Capabilities

Credential Management

Add to Home Screen
Background Sync

Persistent Storage

Navigation Preload

Silent Push

Storage Estimation

Device Memory

Media Capabilities

Getting Installed Related Apps
Web Share

Media Session

Payment Request

Push Notifications

Android Version 7.0 711 71.2 7.0 6.0.1 7.0 7.0 711 7.0 7.0 8.1.0 7.0 8.1.0 8.1.0 8.1.0 8.1.99 8.1.99 8.1.99
Browser Engine Chrome 53 Chrome 53 Chrome 53 Chrome 55 Chrome 57 Chrome 57 Chrome 57 Chrome 57 Chrome 57 Chrome 59 Chrome 59 Chrome 61 Chrome 63 Chrome 63 Chrome 63 Chrome 63 Chrome 65 Chrome 65 Chrome 65|
Application i i i Weibo i i i i Weibo Weibo Facebook Weibo MicroMess Facebook Facebook MicroMess Facebook WebView
enger enger enger 7.12.0 enger enger enger enger 8.0.2 8.0.2 154.0.0.33 8.0.2 enger 154.0.0.33 148.0.0.20 enger 155.0.0.22
6.6.1 6.6.1 6.6.1 6.6.1 6.6.1 6.6.1 6.6.1 .385 6.6.1 .385 381 6.6.1 .96

Table 1: Increasingly improving pwa feature support situation on various Android WebViews, ordered by browser engine and
Android version. The sole seemingly supported Web Share feature in Chrome 61 was actually a bug (https://crbug.com/765923).

Feature Examples
Offline Capabilities

Credential Management

Add to Home Screen
Background Sync

Persistent Storage

Navigation Preload

Silent Push

Storage Estimation

Device Memory

Media Capabilities

Getting Installed Related Apps
Web Share

Media Session

Payment Request

Push Notifications

Android Version 8.1.0 8.1.0 8.1.99 8.1.99
Browser Engine Chrome 61 Chrome 63 Chrome 65 Chrome 65|

Application Twitter Twitter Twitter Chrome
7.280 7.28.0 7.27.0 Custom
Tab

Table 2: Increasingly improving pwa feature support sit-
uation on various Android CustomTabsIntents, ordered by
browser engine and Android version.

are necessary, but not sufficient. What the feature test does is
check if the browser supports the onbeforeinstallprompt
event that fires just before a potential install prompt would
be shown, and whether it knows how to deal with a Web
App Manifest. However, if the browser then actually shows
a prompt is left to browser implementers [12].
Background Sync While in theory supported from the start,
Background Sync exists, but fails upon trying to use it. This
is tracked in Chromium bug https://crbug.com/570713.
Persistent Storage Chrome 55 added support for Persistent
Storage [35], but while the navigator.storage.persist
method exists and can be called, the result is always negative,
which means data actually never can be persisted.
Navigation Preload The feature Navigation Preload, added in
Chrome 59 is working as expected.
Silent Push Silent Push, added in Chrome 61 has a method
navigator.budget.reserve that returns nothing, where

Feature

Offline Capabilities
Credential Management
Add to Home Screen
Background Sync
Persistent Storage
Navigation Preload
Silent Push

Storage Estimation
Device Memory

Media Capabilities
Getting Installed Related Apps
Web Share

Media Session
Payment Request

Push Notifications

iOS Version 11.3 Beta 1 11.3 Beta 1
Browser Engine Safari 11.1 Safari 11.1
Application Facebook Twitter

156.0.0.36 7.15
.93

Table 3: pwa feature support situation on ios for both
WKWebView (Facebook) and CustomTabsIntent (Twitter).

a boolean value is expected. Like user-visible Push Notifica-
tions, it is not supposed to work.

Storage Estimation The feature Storage Estimation, added in
Chrome 61, is working as expected.

Device Memory The feature Device Memory, added in Chrome
version 63, is working as intended.

‘Web Share The Web Share feature, introduced in Chrome 61,
was for the one version of Chrome 61 reported to be working,
but the issue got fixed in Chromium bug https://crbug.com/
765923 and the feature is no longer exposed in the browser .

PWA Features Reported Not to Be Working.

Push Notifications The feature Push Notifications is supposed
and confirmed not to be working.

Payment Request The feature Payment Request is supposed
and confirmed not to be working.

https://crbug.com/765923
https://crbug.com/570713
https://crbug.com/765923
https://crbug.com/765923

Media Session The feature Media Session is confirmed not to
be working, it might be enabled in the future, though, as
discussed in Chromium bug https://crbug.com/678979.

Media Capabilities The feature Media Capabilities is confirmed
not to be working, it might be enabled in the future, though,
as discussed in Chromium bug https://crbug.com/690364.

Getting Installed Related Apps The feature Getting Installed
Related Apps is supposed and confirmed not to be working.

Discussion of CustomTabsIntent & TrustedWebUtils Results.
The results in Table 2 show a steadily improving pwa feature sup-
port situation. We can see that Device Memory support and Getting
Installed Related Apps support were added in Chrome 63, and Media
Capabilities in Chrome 65. As expected, all features are confirmed
to be working as intended due to the fact that CustomTabsIntent
is as close to the system browser as it gets, as outlined in Section 2.

Regarding TrustedWebUtils, the results are exactly the same
as with CustomTabsIntent, because TrustedWebUtils internally
just launches a CustomTabsIntent and sets a special flag called
EXTRA_LAUNCH_AS_TRUSTED_WEB_ACTIVITY.

4.2 ios

We have run pwa Feature Detector on an iPhone x with Beta ver-
sions of ios 11.3, the first operating system by Apple that ships
with a pwa-capable browser. Unlike with Android, on ios the
browser is tied to the operating system. Table 3 shows the very
limited set of pwa features that are available so far on WKWebView
and SFSafariViewController. Albeit Apple made no official an-
nouncement about Service Worker support in the release notes,
Safari Engineer Mondello’s tweet [30] was widely shared and fa-
vorited, serving as a proof point as to how eagerly awaited Apple’s
support and buy-in was in the broader PwA community.

PWA Features Reported to Be Working.

Offline Capabilities While some bugs exist,? the feature Of
fline Capabilities is working as expected on both WKWebView
and SFSafariViewController.

Add to Home Screen The browser is confirmed [30] to make
use of the information in the Web App Manifest, but no
automatic prompting to install applications happens. The
corresponding onbeforeinstallprompt event is missing.
As no prompt is being shown, and the manual “Add to Home
Screen” functionality is only exposed in stand-alone Safari,
neither SFSafariViewController nor WKWebView actually
support add to home screen.

Payment Request The feature Payment Request is supposed
to be working on SFSafariViewController, but calling
the paymentRequest.canMakePayment() method always
returns a negative result.

PWA Features Reported Not to Be Working.

All other pwa features are currently confirmed not to be working.

The WebKit Feature Status page shows the Web Share ap1 [19] and

the Credential Management AP1 [38] as “Under Consideration”.

3https://bugs.webkit.org/buglist.cgi?component=Service%20Workers&list_id=
3439423&product=WebKit&resolution=---
“https://webkit.org/status/

4.3 Summary of the Results

What can be observed on both platforms, Android and ios, is a dis-
satisfying inaccuracy of the feature tests, especially on WebView
and WKWebView. The situation is better on the browser tab experi-
ences CustomTabsIntent and SFSafariViewController and all
reported to work features indeed work—with the exception of Add
to Home Screen, which is non-deterministic. On the former two,
WebView and WKWebView, the pure presence of an ApI object or
method does not necessarily guarantee that the feature will then
actually work. In the opposite direction, at least the absence of an
API object or method ensures that the feature does not work.

In summary, on Android, the only features that at time of writing
are reliably supported in WebView are Offline Capabilities, Naviga-
tion Preload, Storage Estimation, and Device Memory. On ios, the
only reliably available feature on WKWebView is Offline Capabilities.

5 FUTURE WORK

Future work will cover two angles: we look at potential research
directions from the point of view of app developers programming
pwas for Web Views, and from the perspective of a browser vendor.

5.1 Improving Feature Tests

First, we will look into improving the feature detection tests in
Listing 2. Such tests always need to be side-effect-free, so in the
majority of cases naively trying to execute an exposed method
rather than just testing for its existence is prohibitive. We have
seen that no-op or dummy methods like with Silent Push, where
navigator.budget.reserve just did nothing, or with Persistent
Storage, where the method navigator.storage.persist always
returned a negative response, can be the reason for unexpected
results. In an ideal world, existence tests should just be satisfactory
and return reliable results, which requires catching involuntarily
exposed interfaces. Chromium bug https://crbug.com/787868 has
as an objective to automatically identify such cases.

5.2 Polyfilling New ap1s in WebView & WKWebView

While generally if apps let users view websites from anywhere on
the Internet CustomTabsIntent and SFSafariViewController
are the recommended Web Views of choice [4, 22], there may
well be reasons where app developers might prefer WebView or
WKWebView respectively. One such reason is wanting to extend the
functionality of browsers with polyfills. A polyfill is code that im-
plements a feature on Web browsers that do not support the feature.
The two corresponding methods WebView. evaluateJavascript
and WKWebView.evaluateJavaScript allow JavaScript code to be
asynchronously evaluated in the context of the currently displayed
page. For app developers, this can help improve the pwa support
situation for some APIs that can, at least to some extent, be poly-
filled. This technique has been successfully applied by the Chrome
for ios team, when they added Payment Request API support to the
browser [27] before official support landed. Another example might
be Push Notifications, albeit polyfills like notification.js® can
acknowledgedly only partially work due to technical constraints.

Shttps://adodson.com/notification.js/

https://crbug.com/678979
https://crbug.com/690364
https://bugs.webkit.org/buglist.cgi?component=Service%20Workers&list_id=3439423&product=WebKit&resolution=---
https://bugs.webkit.org/buglist.cgi?component=Service%20Workers&list_id=3439423&product=WebKit&resolution=---
https://webkit.org/status/
https://crbug.com/787868
https://adodson.com/notification.js/

6 CONCLUSIONS

In this paper, after introducing the concept and history of Progres-
sive Web Apps, we have first provided the technical background
on Web Views on both Android and ios. Second, we have defined
a number of pPwA features and documented and implemented tests
for detecting them in the open source app Pwa Feature Detector. In
continuation, we have evaluated the approach on a great variety
of devices with diverse versions of operating systems, different
Web Views, and multiple applications with in-app browsers. We
have identified a number of issues with these feature tests and have
collected various features that are erroneously exposed in browsers,
leading to the final set of reliably supported pwa features.

Concluding, we find that the best Web View technology for host-
ing feature-rich pwas is CustomTabsIntent (including Trusted
Web Activity) on Android, and—despite it being early days for Ser-
vice Workers on ios—SFSafariViewController. If one is bound
to WebView on Android or WKWebView on ios, at least Offline Ca-
pabilities are reliably supported across operating systems, which
already has significant potential to make a big performance dif-
ference for repeat visits and enable entirely new offline scenarios.
These findings help developers make educated choices when it
comes to determining whether a Pwa is the right approach given
their target users’ means of Web access.

ACKNOWLEDGEMENTS

Alex Russell’s review comments have greatly helped sharpen the
points made in this paper. We would like to thank the participants
of the Google Developer Days 2017 in Shanghai, China, who helped
gather the statistical data and sent us the screenshots on WeChat.
Further, we would like to thank Adam Bar of https://whatwebcando.
today fame for the helpful discussions around feature detection.

REFERENCES

[1] Aaron Andersen. 2008. History of the browser user-agent string. https://webaim.
org/blog/user-agent-string-history/. (2008).

[2] Android Developers. 2018. Building Web Apps in WebView. https://developer.
android.com/guide/webapps/webview.html. (2018).

[3] Apple Developer Documentation. 2018. SFSafariAuthenticationSession.
https://developer.apple.com/documentation/safariservices/
sfauthenticationsession. (2018).

[4] Apple Developer Documentation. 2018. SFSafariViewController. https:
//developer.apple.com/documentation/safariservices/sfsafariviewcontroller.
(2018).

[5] Apple Developer Documentation. 2018. UIWebView. https://developer.apple.com/
library/ios/documentation/UIKit/Reference/UIWebView_Class/. (2018).

[6] Apple Developer Documentation. 2018. WKWebView. https://developer.apple.com/
library/ios/documentation/WebKit/Reference/ WKWebView_Ref/. (2018).

[7] Jake Archibald. 2012. Application Cache is a Douchebag. http://alistapart.com/
article/application-cache-is-a-douchebag. (2012).

[8] Jake Archibald. 2017. Speed up Service Worker with Navigation Preloads. https:
//developers.google.com/web/updates/2017/02/navigation-preload. (2017).

[9] Adrian Bateman, Zach Koch, Roy McElmurry, Domenic Denicola, and Marcos
Caceres. 2017. Payment Request Ap1. w3c Candidate Recommendation 21 Sep-
tember 2017. w3c.

[10] Peter Beverloo. 2017. Web Budget Ap1. wicG Editor’s Draft, 24 May 2017. wicG.
[11] Peter Beverloo, Martin Thomson, Michaél van Ouwerkerk, Bryan Sullivan, and
Eduardo Fullea. 2017. Push Ap1. w3c Editor’s Draft 15 December 2017. w3c.
Marcos Céceres, Kenneth Rohde Christiansen, Mounir Lamouri, Anssi Kostiainen,
and Rob Dolin. 2017. Web App Manifest—Living Document. w3c Working Draft
29 November 2017. w3c.

[13] Steve Champeon. 2003. Progressive Enhancement and the Future of Web
Design. http://hesketh.com/publications/progressive_enhancement_and_the_
future_of web_design.html. (2003).

Connie Chan. 2015. When One App Rules Them All: The Case of WeChat
and Mobile in China. https://a16z.com/2015/08/06/wechat-china-mobile-first/.

[12

[14

[15]

[16

=
=

)
=

I
3

I
22,

@
=

(32]

[33

(34

[35

[36

@
=

[38

[39

[40

(41

(2015).

Chromium Blog. 2016. A faster, more stable Chrome on ios. https://blog.
chromium.org/2016/01/a-faster-more-stable-chrome-on-ios.html. (2016).
Dominic Cooney and Joshua Bell. 2014. Chrome 40 Beta: Powerful Offline and
Lightspeed Loading with Service Workers. https://blog.chromium.org/2014/12/
chrome-40-beta-powerful-offline-and.html. (2014).

Nicolas Gallagher. 2017. How we built Twitter Lite. https://blog.twitter.com/
engineering/en_us/topics/open-source/2017/how-we-built-twitter-lite html.
(2017).

Jesse James Garrett. 2005. Ajax: A New Approach to Web Applications. http:
//adaptivepath.org/ideas/ajax-new-approach-web-applications/. (2005).

Matt Giuca. 2017. Web Share Ap1. Draft Community Group Report 30 November
2017. w3c.

Google Chrome. 2018. User Agent Strings. https://developer.chrome.com/
multidevice/user-agent. (2018).

Google Developers. 2017. Using Trusted Web Activity. https://developers.google.
com/web/updates/2017/10/using-twa. (2017).
Paul Kinlan. 2016. Chrome Custom Tabs.
multidevice/android/customtabs. (2016).

Paul Kinlan. 2017. Detect if your Native app is installed from your web site. https:
//developers.google.com/web/updates/2017/04/getinstalledrelatedapps. (2017).
Paul Kinlan. 2017. The New and Improved Add to Home Screen. https:
//developers.google.com/web/updates/2017/02/improved-add-to-home-screen.
(2017).

Mounir Lamouri. 2017. Media Capabilities. Draft Community Group Report, 12
December 2017. WiCG.

Mounir Lamouri. 2017. Media Session Standard. Editor’s Draft, 17 August 2017.
WICG.

Niels Leenheer. 2017. About Chrome, ios and Payment Request. https:
//nielsleenheer.com/articles/2017/about-chrome-ios-and-payment-request/.
(2017).

Jen Looper. 2015. What is a WebView? https://developer.telerik.com/featured/
what-is-a-webview/. (2015).

Sean Lyndersay. 2017. Microsoft Edge for ios and Android: What developers need
to know. https://blogs.windows.com/msedgedev/2017/10/05/microsoft-edge-ios-
android-developer/. (2017).

Ricky Mondello. 2018. @rmondello on Twitter: “iOS 11.3 and macOS 10.13.4
include Service Workers—a powerful specification that allows background scripts
to power offline web applications. ios 11.3 also consults Web App Manifest when
adding web apps to the home screen”. https://twitter.com/rmondello/status/
956256845311590400. (2018).

Shubhie Panicker. 2017. Device Memory 1. Editor’s Draft, 11 December 2017.
WICG.

Alex Russell. 2016. ~ What, Exactly, Makes Something A Progressive
Web App? https://infrequently.org/2016/09/what-exactly-makes- something-
a-progressive-web-app/. (2016).

Alex Russell, Jungkee Song, Jake Archibald, and Marijn Kruisselbrink. 2017.
Service Workers 1. Editor’s Draft, 22 December 2017. w3c.

Samsung. 2017. Progressive Web Apps. https://samsunginter.net/docs/
progressive-web-apps. (2017).

Anne van Kesteren. 2018. Storage. Living Standard—Last Updated 9 January 2018.
WHATWG.

Anne van Kesteren and Ian Hickson. 2008. Offline Web Applications. w3c Working
Group Note 30 May 2008. w3c.

Federico Viticci. 2015. ios 9 and Safari View Controller: The Future of Web
Views. https://www.macstories.net/stories/ios-9-and-safari-view-controller-
the-future- of-web-views/. (2015).

Mike West. 2017. Credential Management Level 1. w3c Working Draft, 4 August
2017. w3c.

Think with Google. 2017. The Next Billion Users: trivago Embrace Progressive
Web Apps as the Future of Mobile. https://www.thinkwithgoogle.com/intl/en-
gb/consumer-insights/trivago-embrace-progressive-web-apps-as-the-future-
of-mobile/. (2017).

Yuan Yang and Yingzhi Yang. 2017. Tencent pushes into news feed and search
in challenge to Baidu. https://www.ft.com/content/59ca05e8-3ba6-11e7-821a-
6027b8a20£23. (2017).

Shunhao Zhu and Michael Yeung. 2017. PWA and AMP © China (GDD China
’17). https://www.youtube.com/watch?v=JCTjQx56-NY. (2017).

https://developer.chrome.com/

https://whatwebcando.today
https://whatwebcando.today
https://webaim.org/blog/user-agent-string-history/
https://webaim.org/blog/user-agent-string-history/
https://developer.android.com/guide/webapps/webview.html
https://developer.android.com/guide/webapps/webview.html
https://developer.apple.com/documentation/safariservices/sfauthenticationsession
https://developer.apple.com/documentation/safariservices/sfauthenticationsession
https://developer.apple.com/documentation/safariservices/sfsafariviewcontroller
https://developer.apple.com/documentation/safariservices/sfsafariviewcontroller
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIWebView_Class/
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIWebView_Class/
https://developer.apple.com/library/ios/documentation/WebKit/Reference/WKWebView_Ref/
https://developer.apple.com/library/ios/documentation/WebKit/Reference/WKWebView_Ref/
http://alistapart.com/article/application-cache-is-a-douchebag
http://alistapart.com/article/application-cache-is-a-douchebag
https://developers.google.com/web/updates/2017/02/navigation-preload
https://developers.google.com/web/updates/2017/02/navigation-preload
http://hesketh.com/publications/progressive_enhancement_and_the_future_of_web_design.html
http://hesketh.com/publications/progressive_enhancement_and_the_future_of_web_design.html
https://a16z.com/2015/08/06/wechat-china-mobile-first/
https://blog.chromium.org/2016/01/a-faster-more-stable-chrome-on-ios.html
https://blog.chromium.org/2016/01/a-faster-more-stable-chrome-on-ios.html
https://blog.chromium.org/2014/12/chrome-40-beta-powerful-offline-and.html
https://blog.chromium.org/2014/12/chrome-40-beta-powerful-offline-and.html
https://blog.twitter.com/engineering/en_us/topics/open-source/2017/how-we-built-twitter-lite.html
https://blog.twitter.com/engineering/en_us/topics/open-source/2017/how-we-built-twitter-lite.html
http://adaptivepath.org/ideas/ajax-new-approach-web-applications/
http://adaptivepath.org/ideas/ajax-new-approach-web-applications/
https://developer.chrome.com/multidevice/user-agent
https://developer.chrome.com/multidevice/user-agent
https://developers.google.com/web/updates/2017/10/using-twa
https://developers.google.com/web/updates/2017/10/using-twa
https://developer.chrome.com/multidevice/android/customtabs
https://developer.chrome.com/multidevice/android/customtabs
https://developers.google.com/web/updates/2017/04/getinstalledrelatedapps
https://developers.google.com/web/updates/2017/04/getinstalledrelatedapps
https://developers.google.com/web/updates/2017/02/improved-add-to-home-screen
https://developers.google.com/web/updates/2017/02/improved-add-to-home-screen
https://nielsleenheer.com/articles/2017/about-chrome-ios-and-payment-request/
https://nielsleenheer.com/articles/2017/about-chrome-ios-and-payment-request/
https://developer.telerik.com/featured/what-is-a-webview/
https://developer.telerik.com/featured/what-is-a-webview/
https://blogs.windows.com/msedgedev/2017/10/05/microsoft-edge-ios-android-developer/
https://blogs.windows.com/msedgedev/2017/10/05/microsoft-edge-ios-android-developer/
https://twitter.com/rmondello/status/956256845311590400
https://twitter.com/rmondello/status/956256845311590400
https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/
https://infrequently.org/2016/09/what-exactly-makes-something-a-progressive-web-app/
https://samsunginter.net/docs/progressive-web-apps
https://samsunginter.net/docs/progressive-web-apps
https://www.macstories.net/stories/ios-9-and-safari-view-controller-the-future-of-web-views/
https://www.macstories.net/stories/ios-9-and-safari-view-controller-the-future-of-web-views/
https://www.thinkwithgoogle.com/intl/en-gb/consumer-insights/trivago-embrace-progressive-web-apps-as-the-future-of-mobile/
https://www.thinkwithgoogle.com/intl/en-gb/consumer-insights/trivago-embrace-progressive-web-apps-as-the-future-of-mobile/
https://www.thinkwithgoogle.com/intl/en-gb/consumer-insights/trivago-embrace-progressive-web-apps-as-the-future-of-mobile/
https://www.ft.com/content/59ca05e8-3ba6-11e7-821a-6027b8a20f23
https://www.ft.com/content/59ca05e8-3ba6-11e7-821a-6027b8a20f23
https://www.youtube.com/watch?v=JCTjQx56-NY

	Abstract
	1 Introduction
	1.1 History of Progressive Web Apps
	1.2 Research Question and Paper Structure

	2 Background on Web Views
	2.1 Web Views on Android
	2.2 Web Views on ios
	2.3 Parallels Between Both Operating Systems

	3 Detecting pwa Features
	3.1 Detecting Service Worker Support
	3.2 Considered Progressive Web App Features
	3.3 Feature-Detecting Various pwa Features
	3.4 Implementation Details

	4 Results and Discussion
	4.1 Android
	4.2 ios
	4.3 Summary of the Results

	5 Future Work
	5.1 Improving Feature Tests
	5.2 Polyfilling New apis in WebView & WKWebView

	6 Conclusions
	References

