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ABSTRACT

This paper presents a robust, small-footprint, far-field keyword spot-

ting (KWS) algorithm, which was inspired by the human auditory

system’s ability to achieve the so-called cocktail party effect in ad-

verse acoustic environments. It introduces the idea of combining

microphone-array speech enhancement with machine learning, by

incorporating a feedback path from the neural network (NN) KWS

classifier to its signal preprocessing frontend so that frontend noise

reduction can benefit from, and in turn, better serve backend ma-

chine intelligence. We find that the new system can significantly

improve KWS performance for Google Home when there is strong

music or TV noise in the background. While this innovative and

successfully validated strategy of combining signal processing and

machine learning is developed for KWS, its technical feasibility is

presumably extensible to many other applications, including noise

robust speaker identification and automatic speech recognition.

Index Terms— Keyword spotting, supervised noise reduction,

smart speech enhancement, microphone array processing for ma-

chine learning, cocktail-party effect

1. INTRODUCTION

Voice-based search has recently enjoyed unprecedented and still ac-

celerating growth [1]. At Google, more than 20% of search queries

are driven by speech. As voice-first devices (e.g., Google Home and

Amazon Echo) are making their way into millions of homes, speech

is becoming an essential way for people to search for assistance from

today’s rapidly changing digital world.

Speech interfaces ought to be completely hands-free, and it is a

common practice to summon voice-based services by saying some

preset keywords. Keyword spotting (KWS) is thus the entrance por-

tal and a privacy safeguard1 of many Google speech services, like

Assistant on Google Home and Android phones. Its accuracy and

robustness to noise and far-field distortions are crucial to consumer

acceptance and loyalty.

Practical on-device KWS systems need to continuously listen to

audio inputs from always-on microphones. Hence they should have

a small memory and power footprint. Moreover, on-line KWS algo-

rithms must have low latency. Early KWS approaches meeting these

requirements were based on hidden Markov modeling (HMM) tech-

niques [2, 3, 4]. Recent work on this topic followed great successes

of using deep neural networks (DNNs) for automatic speech recog-

nition (ASR) [5]. They were built on either recurrent neural network

(RNN) [6, 7, 8], DNN [9], or convolutional neural network (CNN)

[10] structures.

Our research on KWS algorithms at Google began with a DNN-

based classifier [9], which was then replaced by a CNN-based sys-

1Google voice services only listen after the spotted keywords.

tem [10]. Multi-style training (MTR), automatic gain control (AGC),

and a per-channel energy normalization (PCEN) frontend were de-

veloped to increase robustness to noise and far-field distortions

[11, 12, 13]. Even after rounds of optimization and fine tuning, the

performance of our state-of-the-art KWS methods still degraded sig-

nificantly when the background has music or TV noise. In these cir-

cumstances, machine intelligence has not yet achieved the capability

that human auditory systems demonstrate in the so-called cocktail

party effect [14].

The cocktail party effect refers to our ability to selectively fo-

cus our hearing on one particular conversation, filtering out all other

conversations and noise around us. Our auditory system does this

by mediating both sensory and cognitive resources (ears/cochleae

and brain, respectively). The mediation is never a unilateral service

but rather involves both sensory-driven bottom-up and cognitive-

directed top-down processing [15]. By analogy, prior KWS systems

implemented only the bottom-up mechanism, without the top-down

feedback. In this research we propose a new system architecture,

feeding the neural network’s outputs of keyword scores back into the

multichannel frontend preprocessor such that background noise can

be more effectively canceled. The new system enables our voice-

based assistants to hear the user even in adverse acoustic environ-

ments.

2. SYSTEM OVERVIEW

As shown in Fig. 1, we feed keyword scores estimated by the CNN

back into the microphone array preprocessor so that the preprocessor

can better reduce noise for improved KWS. This system works more

like the human auditory system, with both bottom-up and top-down

processing between its sensory and cognitive subsystems. Each part

of this new system will be discussed in more detail in the following

sections.

3. CNN CLASSIFIER

Our KWS framework uses a CNN for acoustic modeling. The net-

work consists of five layers, with three hidden layers between the

input and output layers. A single-channel microphone signal is first

segmented into 25ms long frames with 10ms hops. For each frame,

40-channel log-mel-filter-bank energies are computed and normal-

ized using PCEN [13]. The input to the CNN consists of stacked

feature vectors, with 24 left and 15 right context frames. On top

of the input layer sits a convolutional layer which sweeps 308 non-

overlapping 8× 8 patches across time and frequency. That convolu-

tional layer is followed by a linear projection layer with 32 outputs

and a fully connected rectified linear unit (ReLU) layer with 128

outputs. The neurons in the output layer use a softmax activation

function. There is one output (posterior probability) for each of the
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Fig. 1: Structure of the proposed KWS system (a) in comparison to

that of human auditory systems (b).

phoneme targets in the keyword phrases (“Ok Google” and “Hey

Google”), plus a single additional output representing all frames that

belong to none of the aforementioned target classes. For more back-

ground information about our CNN structure for KWS, please read

[10] and the references therein.

4. KEYWORD SIFTER: SUPERVISED SPEECH

ENHANCEMENT

Our core KWS system operates on monophonic audio, but we would

like to leverage stereo microphones to improve performance. To do

this, we allow the KWS system to supervise a stereo speech enhance-

ment algorithm.

As illustrated by Fig. 2, when a new frame of stereo audio sam-

ples is captured, the left channel (without loss of generality) is used

by the monophonic CNN-based KWS classifier to calculate the key-

word score of the new frame in its context. By comparing the score

against two preset thresholds, the new frame is tagged with one of

the three class labels: trigger (higher than the high threshold), near-

trigger (between the two thresholds), and noise (lower than the low

threshold). The high threshold is the threshold of the KWS classifier,

while the low threshold is a small fraction of the high threshold. The

new data frame and its class label are pushed into a first-in-first-out

(FIFO) buffer of fixed length.

A controller is designed to deal with the data in the buffer. De-

pending on the frame tags, we face one of the following three situa-

tions:

a) If the data frames in the buffer are all noise frames, the controller

outputs only one data frame from the buffer. Between the two

channels of this popped frame, we apply adaptive noise cancella-

tion (ANC) [16]: an ANC filter is convolved with the right chan-

nel and the result is subtracted from the left channel to form an

error signal; the filter coefficients are then adjusted to minimize

the mean square power of the error signal. Meanwhile, the error

signal is output as a frame of the filtered utterance, which is sent

to the second CNN for further processing.

b) When the buffer contains some near-trigger but no trigger

frames, the whole buffer will be flushed. Since the chunk of data

looks like a keyword but fails to trigger the first CNN, this actu-

t
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Fig. 2: Illustration of the keyword sifter. Note that ANC stands for

adaptive noise cancellation.

ally is the moment in the utterance that we should double-check

to avoid false rejects (FRs). The current ANC filter is used to

process all the stereo audio samples in the buffer. But note that

the filter coefficients are not updated in this process. The ratio-

nale behind this is that we want to suppress background noise

without canceling keywords.

c) When the buffer contains at least one trigger frame, a keyword

has been successfully identified by the first CNN. There is no

need to over-clean the data. So we simply flush the buffer and

pass the left channel of all the data frames in the buffer to the

second CNN. As long as the buffer is long enough, the second

CNN will make the same decision as the first CNN with respect

to this chunk of data.

We see that this keyword mining algorithm is in some ways sim-

ilar to gold sifting. By analogy, when one sifts for gold, good-sized

gold nuggets (triggers) are always taken directly out of the sifting

pan first. Meanwhile, fine or granular sand (noise) that is easy to

separate out is used to characterize all of the sand in the mixture.

This learned knowledge about the background is helpful when sift-

ing the rest of the mixture, which may contain either gold or sand

(near-trigger). As a result, our proposed new system is named a

keyword sifter and the buffer is called a sifting buffer.

An important point is the length of the sifting buffer. If it is too

long, the adaptation of the ANC filter would have been halted much

earlier before the leading edge of a keyword. This makes the ANC

filter less effective to track background noise: the noise at the key-

word becomes remarkably different from the noise used to estimate

the ANC filter. Consequently only a low gain in noise reduction can

be produced. On the other hand, if the buffer length is too short, the

sifting buffer cannot accommodate a whole keyword instance. Then

different phonemes of the keyword may be filtered in significantly

different ways, yielding too much distortion and offsetting the large
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Table 1: Summary of the STFT-domain fast RLS algorithm. Note

that we have omitted jω and denoted P(m) , R−1

x2x2
(m) for clarity

of presentation.

Parameters:

L = filter length, λ = forgetting factor

δ = coefficient to initialize P(0)

Initialization:

h(0) = 0, x2(0) = 0,

P(0) = δ−1I, where I is the identity matrix of rank L.

Adaptation: for m = 1, 2, · · ·
A-priori error:

E(m) = X1(m)− hH(m− 1)x2(m),

Kalman gain vector:

g(m) =
P(m− 1)x2(m)

λ+ xH

2
(m)P(m− 1)x2(m)

,

Update:

P(m) = λ−1
[

P(m− 1)− g(m)xH

2 (m)P(m− 1)
]

,

h(m) = h(m− 1) + g(m)E∗(m).

gain in noise reduction. For “Ok Google” and “Hey Google” this

length is empirically set to 1.5 s in our system.

Finally we would like to point out that while ANC is used here,

other microphone array noise reduction techniques (e.g., beamform-

ing [17]) can also be incorporated in this framework.

5. STFT-DOMAIN ADAPTIVE NOISE CANCELLATION

There are many widely-used adaptive algorithms that can be applied

to implement the ANC subsystem [18]. Here we choose to present

a short-time Fourier transform (STFT) based recursive least squares

(RLS) method for its flexibility and computational efficiency when

in combination with KWS feature extraction.

At frame m and for radian frequency ω, the STFT coeffi-

cients of the two microphone signals are denoted as X1(jω,m) and

X2(jω,m), respectively, where j ,
√
−1. The ANC filters the sec-

ond microphone signal with a complex finite impulse response (FIR)

filter of L taps

h(jω,m) ,
[

H0(jω,m) H1(jω,m) · · · HL−1(jω,m)
]

T
, (1)

where (·)T denotes the transpose of a vector or a matrix. The result

is subtracted from the first microphone signal to get the error signal

E(jω,m) , X1(jω,m)− h
H(jω,m)x2(jω,m), (2)

where (·)H is the Hermitian transpose of a vector or a matrix and

x2(jω,m) ,
[

X2(jω,m) X2(jω,m− 1) · · · X2(jω,m− L+ 1)
]

T
,

is the collection of the STFT coefficients of the second channel in

the current and the last L − 1 frames. The weighted least squares

cost function is expressed as

J {h(jω,m)} ,

m
∑

i=0

λ
m−i |E(jω, i)|2 , (3)

where 0 < λ ≤ 1 is the forgetting factor. This cost function is

minimized by taking the partial derivatives of (3) w.r.t. hH(jω,m)
and setting the result to zero

∂J

∂hH(jω,m)
= Rx2x2(jω,m)h(jω,m)−rx2x1

(jω,m) = 0, (4)

where

Rx2x2(jω,m) ,
∑

m

i=0
λm−ix2(jω, i)x

H

2 (jω, i),

rx2x1
(jω,m) ,

∑

m

i=0
λm−ix2(jω, i)X

∗

1 (jω, i),

and (·)∗ is the conjugate of a complex variable. Solving (4) for

h(jω,m) yields the RLS solution

hRLS(jω,m) = R
−1

x2x2
(jω,m)rx2x1

(jω,m). (5)

Using the Woodbury’s identity [19], direct computation of the matrix

inversion in (5) can be avoided and a computationally more efficient

version is deduced. For brevity, this fast RLS algorithm is summa-

rized in Table 1.

6. EXPERIMENTS

6.1. Experimental Setup

Our keyword sifter system is based on the mono-channel CNN

classifier as described in Sec. 3. The CNN was implemented us-

ing Google’s TensorFlowTM library [20] and was trained with deep

learning algorithms on large internal training data collected from a

gender-balanced pool of volunteers with a variety of accents from

around the world [21]. The acoustic feature extraction module and

the CNN runtime engine are both implemented using fixed-point

arithmetic in order to minimize power consumption [22].

The sifter works on a Google Home [23] device with two mi-

crophones separated by a distance of 71mm. Its performance is

compared against two independent CNN baseline systems that take

the two microphone signals as their inputs. It is worth noting that

these baseline systems and the two KWS subsystems of the sifter are

exactly the same.

In this study, we used re-recorded data on a Google Home in

a 10m by 8m living-room lab with a couch, chairs, tables, a cof-

fee table, a TV, and hardwood floors. Speech utterances with either

“Ok Google” or “Hey Google” were collected from 50 volunteers

(a gender-balanced pool of adults and some kids) and played back

from a mouth simulator at five different radial positions relative to

the Google Home at a distance ranging from 1.5m to 5m. The back-

ground was either quiet or filled with music or TV noise. Music was

streamed from Google Play Music and played with two KRK Rokit

external loudspeakers. TV contents were pulled from YouTube in-

cluding movies, cartoons, and news. Each of the re-recorded utter-

ances has a known signal-to-noise radio (SNR) of 0-10 dB. We have

also re-recorded a much larger set of TV noise which do not con-

tain any of the target keywords and are hence used as the ‘negative’

evaluation dataset. In this recording, the Google Home was placed

at three different distances (0.5, 1.5, and 2.5m) from the TV, each

providing about the same length of audio. Table 2 presents a sum-

mary of the evaluation data. These data have no overlap with those

used for training our CNN KWS system and all of them are from

volunteers.

Re-recorded data did not take into account of the Lombard effect

[24] which refers to the involuntary tendency of speakers to increase

their vocal effort (loudness, pitch, rate, duration of syllables, etc.)
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Table 2: Summary of collected data for performance evaluation.

Dataset Number of Utterances Length (hours)

Clean 1831 6.23

Music 1520 5.83

TV 1455 5.51

Negative 7528 229.32

when speaking in loud noise to enhance the audibility of their voice.

So the KWS performance degradation measured on re-recorded data

may not reflect the true loss due to noise. But this is a fast and eco-

nomic way to collect a large amount of speech utterances in actual

rooms at controlled SNRs, and nevertheless the re-recorded data is

valid for justifying the proposed sifter in comparison with the base-

line systems.

We measure the performance of a KWS system using the well-

known receiver operating curve (ROC), which visualizes the false

reject (FR) rate (in number of FRs per instance) as a function of the

false accept (FA) rate (in number of FAs per hour). The lower the FR

at a preset FA rate, the more accurate is the KWS system. Practically

we aim to reduce the FR rate while keeping the FA rate at a very low

level to maximize user satisfaction.

6.2. Results

Let’s first examine how the sifter works on far-field speech utter-

ances in a quiet acoustic condition. Figure 3(a) presents the evalu-

ation results. All of the three KWS systems are highly accurate on

this clean dataset. There are some disparities between the two base-

line ROCs at low FA rates but the difference is insignificant at the

operating point of 0.02 FA/hr. So a simple logical-or combination of

these two systems won’t be able to offer much gain in accuracy. The

sifter system doesn’t degrade the performance, which is noteworthy.

The comparisons in ROC among the three KWS systems on

speech utterances with music and TV noise are plotted in Fig. 3(b)

and (c), respectively. These are two very challenging evaluation

datasets for KWS, containing a large number of utterances of low

SNRs. In these utterances, keywords get submerged in background

noise and even human listeners can sometimes have difficulties to

spot them. Moreover, since the last phoneme of “Ok Google” and

“Hey Google” is a consonant, it is not an uncommon pronunciation

in which the sound fades out at the tail. So the last phoneme target of

the two keywords tends to be easily masked by noise in noisy envi-

ronments with a much lower than average SNR. This inherent feature

of our unique keyword phrases makes the KWS task more problem-

atic, leading to high FR rates. The sifter system evidently outper-

forms the baseline systems, with relative average improvements of

32.0% (music) and 35.9% (TV) in FR rates at the operating point.

Informal listening tests of some of the sifted utterances also report

that the sifter can effectively suppress the noise, making keywords

emerge prominently from the background. This is consistent with

what is revealed by a closer examination of target-level recognition

of our keywords – e.g., the confidence scores of the last consonant

are remarkably improved.

7. CONCLUSIONS

In this paper, we have presented a machine-supervised noise re-

duction framework for multichannel KWS. We explained that hu-

man auditory systems could accomplish the cocktail party effect
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Fig. 3: ROC curves comparing performance of the keyword sifter

against two baseline systems that use only one microphone signal of

the keyword sifter system for (a) clean, (b) music (0-10 dB SNR),

and (c) TV noise (0-10 dB SNR) evaluation datasets.

thanks to the collaboration between both sensory-driven bottom-up

and cognitive-directed top-down processing; but, by analogy, prior

KWS methods followed only the bottom-up mechanism and missed

out on the top-down path. A novel multichannel noise reduction

algorithm was developed under the supervision of KWS machine in-

telligence. Feedback from the KWS neural network made the noise

reduction algorithm more aware of its specific task such that it can

exploit the knowledge estimated during non-keyword periods about

surrounding noise and better filter out noise when keywords possibly

appear. The KWS system based on this new algorithm worked more

like human auditory systems. Using re-recorded speech utterances

on Google Home, we found that the proposed framework produced

a greater than 32% relative improvement in performance over the

baseline systems in typical noisy conditions.
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