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Abstract

In this work we adapt the predictive state smooth-

ing (PRESS) framework to classification, which

leads to a fully probabilistic, non-linear classi-

fier that estimates the minimal sufficient statistic

for predicting class membership probabilities. It

can be used for high-dimensional problems, both

in number of observations and covariates, and

allows for variable selection using LASSO and

Ridge penalties. Out-of-sample prediction per-

formance is comparable to existing state-of-the-

art classifiers on several benchmark datasets; yet

a trained PRESS classifier provides meaningful

domain-specific insights based on regression coeffi-

cients using standard frequentist as well Bayesian

inference. We also formulate PRESS as an equiv-

alent state-dependent neural network representa-

tion. Algorithms scale linearly in the number of

observations, can be optimized in batch mode,

and can be easily implemented in R, STAN, or

TensorFlow.

Keywords: kernel classification, predictive

states, non-parametric smoothing, minimal suffi-

cient statistic, distribution clustering, variable se-

lection, high-dimensional data, dimension reduc-

tion, probabilistic neural nets.

1 Introduction

Recently Goerg (2017) introduced predictive state

smoothing (PRESS) – a fully probabilistic frame-

work for estimating minimal sufficient predictors.

For the regression problem of predicting response

y from features, PRESS can be viewed as a met-

ric learner that estimates the smoothing matrix

S from p-dimensional features x ∈ X to get

smoothed response ŷ = S × y. It achieves this

by mapping features to a latent predictive state

space S, ε : x 7→ S, which then constructs the ker-

nel matrix via an inner product. This state space

is constructed in such a way that it is minimal suf-

ficient to predict y (Lauritzen, 1974; Dawid, 1979;

Shalizi, 2003). It makes y independent of x given

its state, P (y | x, ε(x)) = P (y | ε(x)), and it does

so in a way that achieves maximal compression of

x while not losing any information to predict y.

This leads to a smoothing method that learns a

generative model for S from x.

It is important to note that the predictive state

framework is fully probabilistic and does not

require continuous response y. Hence in this work

we adapt PRESS to the multi-label classification

setting to estimate class membership probabilities
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for y ∈ {1, . . . ,K} conditioned on features x.1

Just as for regression, we show that a PRESS

classifier achieves predictive performance on

a par with state-of-the-art machine learning

approaches such as Random Forests or support

vector machines (SVMs) (Breiman, 2001; Cortes

and Vapnik, 1995; Hearst, 1998); yet it is a gener-

ative model that conforms to laws of probability

and hence can be used as building blocks in other

probabilistic models. PRESS models usually have

a lower dimensional parameter space compared to

deep neural nets (Schmidhuber, 2015) or Random

Forests – at comparable predictive performance

–, which leads to smaller computing and mem-

ory requirements for estimation and storage of

trained models. Moreover, it is also easy to

interpret using parametric inference familiar from

generalized linear models; it even lends itself

naturally to a Bayesian inference approach.

The main contributions of this work are three-

fold: a) extend PRESS to the case of Bernoulli

and Multinomial response; b) embed PRESS into

a standard neural network structure with specific

requirements for layers and activation functions;

c) a fully Bayesian inference approach.

Section 2 adapts the predictive state framework

from PRESS regression to the (multi-label) classi-

fication setting and gives a review of related work.

In Section 3 we present algorithms for maximum

likelihood estimation (MLE) as well as Bayesian

inference of the state space (S) and the mapping

(ε) from features to states. In Section 4 we apply

PRESS to several benchmark datasets and show

that it does not only match or even outperform

state-of-the-art classifiers, but also gives mean-

1All of the terminology, methodology, interpretation for
predictive states for classification carries over exactly from
the regression setting. Hence unless any classification spe-
cific insights are noteworthy we refer the reader to Goerg
(2017) for details.

ingful domain-specific insights from the estimated

state space and ε mapping. Section 5 summarizes

the methodology.

2 Predictive States for Clas-

sification

For sake of simplicity, consider a binary class label

y ∈ {0, 1},2 which we model as a Bernoulli random

variable with success probability p ∈ [0, 1] and pdf

P (y) = py · (1− p)(1−y) . (1)

For the purpose of this work we consider classifi-

cation problems where estimating well-calibrated

class membership probabilities is important –

rather than only a good label prediction. In that

case one is interested to learn how the probabil-

ity of success changes with additional information

from features x ∈ X

P (y | x) = p(x)y · (1− p(x))(1−y) . (2)

A common approach is then to estimate p(x)

using, e.g., a linear model on logit scale for

logistic regression or a deep neural network

that maps inputs x via a convolution of sev-

eral linear combination layers to an output

p̂ = sigmoid(f̂weights(x)), where the sigmoid

activation function guarantees that p̂ ∈ (0, 1).

PRESS, on the other hand, does not assume

a deterministic functional relationship p(x) =

2All of the presented methodology, derivations, and al-
gorithms apply without modification to multi-label classi-
fication (Multinomial distribution) by viewing it as a mul-
tivariate boolean response using a one-hot encoding of the
class label. For example, for K = 3 classes represent label
i = 1, 2, 3 as the 3-dimensional y = ei, where ei is a row-
vector with a 1 in the i-th position, and 0 otherwise, e.g.,
e1 = (1, 0, 0).
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sigmoid(f(x)), but obtains the optimal predictive

representation to predict y from x using latent

states S ∈ S,

ε : X 7→ S, S = ε(x). (3)

The state space is constructed in such a way that

ε maps x to an equivalence class of all x̃ ∈ X
that have the same predictive distribution as x.

Formally,

ε : x 7→ [x] = {x̃ | P (y | x) ≡ P (y | x̃)} . (4)

The set [x] is non-empty as it contains at least x

itself. As shown in Shalizi (2003); Goerg (2017)

ε(x) is the minimal sufficient statistic for predict-

ing y from x, P (y | ε(x),x) = P (y | ε(x)). This is

key for prediction and estimation as

P (y | x) =

∫
s∈S

P (y | s,x)P (s | x)ds (5)

=

∫
s∈S

P (y | s)P (s | x)ds, (6)

where (6) follows from conditional independence

of y and x given the (minimal) sufficient ε(x).

As for PRESS regression we use a finite state

space S = {s1, . . . , sJ} that forms the basis of a

continuous, probabilistic state space, where each

sj is a a basis or extremal state. In this case, (6)

reduces to a mixture distribution

P (y | x) =

J∑
j=1

P (y | sj) · P (sj | x)

=

J∑
j=1

wj(x) · psj , (7)

where psj := P (y | sj) are state-conditional dis-

tributions and wj(x) := P (sj | x). Each weight

vector w(x) = (w1(x), . . . , wJ(x)) lies in the J-

dimensional probability simplex

∆(J) := {p ∈ RJ | pj ≥ 0 and

J∑
j=1

pj = 1}, (8)

and represents the probabilistic predictive state of

x. A sample of N observations, X ∈ RN×p, can

be represented as an N × J matrix W with

[0, 1] 3Wi,j = P (sj | xi), (9)

with row sums adding up to 1 as they represent

a probability distribution over J states. The col-

umn sums, σj =
∑N
i=1 Wi,j , represent number of

samples in state sj and satisfy
∑J
j=1 σj = N .

Predictive states in practice: As a motivat-

ing example of the applicability and interpretation

of (probabilistic) predictive states consider the

problem of assessing the risk of a life-threatening

surgery. Doctors might characterize a patient as a

“low”, “medium”, or “high” risk case with an as-

sociated chance of survival {plow, pmedium, phigh}.
For an individual patient’s survival chance, all

one needs to know is where their health history

lies in the 3-dimensional state space S = {“low”,

“medium”, “high”}.

From a standard statistical machine learning

point of view, this categorization usually occurs

given model predictions, i.e., patients are labeled

as “low” / “medium” / “high” risk after estimat-

ing p(y | x) using a classifier and bucketing fit-

ted probabilities in low / medium / high inter-

vals, e.g., terciles. PRESS, on the other hand,

uses the domain-specific inference as a natural

– latent – component of the model, i.e., “low”,

“medium”, “high” risk patients are not an out-

come of a completely unrelated classifier (logis-

tic regression, SVMs, random forest, neural nets,

etc.), but are an inherent building block of the

model in that they exactly represent the predic-
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Predictive state space
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(a) Predictive state space with J = 3 for
the surgery dataset (Section 4.1). Patient
i is represented by wi ∈ ∆(3) (the color of
each dot is the RGB value of wi).
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(b) Estimates of the marginal probability of each state p(sj) as
well as marginal and state-conditional label distributions, p(y) and
p(y | sj).

Figure 1: Surgery dataset: PRESS estimates for predictive state space (J = 3) and associated optimal
predictive distributions.

tive states that are sufficient to inform the prob-

ability of survival.

After learning how patients health history – fea-

tures like tumor size or whether they smoke –

map to the {“low”, “medium”, “high”} state

space, the probability of survival for an individ-

ual patient, p(yi | xi), can be computed using a

weighted average across the survival probabilities

for each state according to (7). This does not

only yield an efficient data reduction from p co-

variates xi to a 3-dimensional state space wi, but

also yields domain-specific interpretable insights

on what contributes to being a “low” / “medium”

/ “high” risk patient, which is often difficult or

impossible to obtain with alternative non-linear,

non-parametric methods.

Figure 1a shows an estimated J = 3 dimensional

state space, with corners of the triangle repre-

senting the extremal states slow, smedium, and

shigh, respectively. Each patients health history

xi has its probabilistic state representation wi

represented as points on the simplex.

Figure 1b shows the (relative) size of each state

(p̂(S = sj) = σj/N) and the state-conditional

distributions p(y | sj). State 3 is the smallest

state, yet if a patient is close to state 3 they

have a high risk of complications after the surgery

(p(y | shigh) = 0.57).

2.1 Bernoulli random variables as

latent state level

Due to sufficiency of sj

p(y | x̃) =

J∑
j=1

P (S = sj | x̃)p(y | sj), (10)

is a weighted average of state-conditional predic-

tive distributions p(y | sj), which – by construc-

tion – are again Bernoulli with success probability

psj . Hence one can view a PRESS classifier as a

multilevel hierarchical model with a latent state-

c© Google 4 of 14



conditional level,

yi | xi ∼ Bernoulli(p(xi)) (11)

yi | sj ∼ Bernoulli(psj ), j = 1, . . . , J, (12)

p(xi) = w(xi)× pS , (13)

w(xi) ∼ Dirichlet(x
ᵀ

i β), (14)

where pS = (ps1 , . . . , psJ ) ∈ [0, 1]J , psj is the

probability of success when in state sj , and β are

regression coefficients that parametrize the map-

ping from p features to J states (assuming a linear

ε mapping).

Predictive states in practice (cont’d): To

understand what contributes to a higher risk,

it is useful to examine the coefficients that

parametrize the (linear) mapping from features

to states β in (14). The estimated β̂ in Figure 2

shows that it’s more likely for a patient to be at

“high” risk if – as expected – they have a large

tumor size or if they smoke. See Section 4.1 for

more details.

2.2 Neural network interpretation

Originally derived from first principles of statisti-

cal inference for optimal probabilistic prediction,
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Figure 2: Coefficient estimates for linear mapping of
p features to J states. Features are ordered from top
to bottom, sorted by decrease in importance (value on
left in parenthesis). See (24) for details.

PRESS can also be thought of as a metric learner

for a smoothing matrix (Goerg, 2017). In its sim-

plest form, the metric learner is parametrized us-

ing a linear relationship between features x and

∆(J), and the smoothing matrix is constructed us-

ing an inner product on the predictive state space.

The neural network point of view is another way

to understand and interpret PRESS, as (7) can be

written as

outputi = 〈ε (inputi) , a(ν)〉, (15)

where a(·) is an activation function, ν is a free

parameter satisfying ν := a−1(µ) by construction,

and 〈·, ·〉 is the dot product. The two components

are:

ε mapping: This can be easily generalized to

any neural net classifier with J nodes and

a “softmax” activation for the last layer

(DNNsoftmax with all node weights repre-

sented as a high-dimensional parameter θ).

In this case one can think of ε as simply a

feature transformation step that transforms

input features through several layers to the

predictive states.

state-conditional mean E(y | sj): If state-

conditional means µ = a(ν) ∈ RJ×k are

considered free parameters, this is a J × k

dimensional weight matrix. The type of

activation function depends on the problem

(e.g., sigmoid for classification), with the

restriction that it must be closed under

convex combination as activations for each

state are averaged over wi = ε(xi). For

example, identity, sigmoid, and softmax are

all closed under convex combinations.

It is important to point out that the activation

occurs inside the dot product, not outside, i.e., a

weight constraint, not a kernel activation. This
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(a) A standard dense neural network architecture
with 1 hidden layer (3 nodes) and a univariate out-
put y = a

(
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∑
i wi · hi(x)
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(b) Architecture of a PRESS smoother for y =∑J
j=1 wj(x)·a(νj) with a J = 3-dimensional predictive

state space. An equivalent way to represent this as a
standard DNN (left) is to impose activation function
constraints on the edge weights, i.e., wi  a(wi).

Figure 3: Comparison of a standard dense neural network with the analogous PRESS version. Instead of
mapping from input to outputs directly (left), PRESS maps to the probabilistic predictive state space ∆(J)

and then estimates E(y | x) conditioned on the – minimal sufficient – state space. The conditional distributions
(expectations) can be estimated separately as free parameters a(νj) or are inferred as weighted MLE from
training data y and weights W.

also hints at an interesting “role switch” for edges

and nodes in a standard NN versus PRESS. Fig-

ure 3 illustrates these differences as both architec-

tures model the output y as a linear combination

of values: in a standard dense DNN, nodes rep-

resent predictions that are combined using edge

weights; in PRESS, roles are reversed, as nodes

are the weights (obtained via the “softmax” ac-

tivation), which are used to combine prediction

estimates. Figure 3 shows the state-conditional

predictions as separate nodes, a(νj), for a more

intuitive illustrations. However, one can equiva-

lently represent PRESS with the same architec-

ture in Figure 3a, but where edge weights from

the last state are constrained by the activation

function, i.e., weights equal a(vi).

The rationale is that contrary to standard DNNs,

in PRESS inputs flow to the state space and the

output prediction is a weighted average over the

state space. Conceptually this aligns better with

a probabilistic view of the world, rather than the

deterministic view in standard DNNs that maps

inputs to outputs directly.

In practice, we observe that this leads to faster

convergence as the optimization can separate op-

timizing the low-dimensional µ to give good state-

conditional estimates from the harder problem of

estimating the much higher-dimensional θ that

maps to the bounded predictive state simplex.

Moreover, if ν is initialized to a−1(ȳ) (ȳ being the

sample mean) for each state, then ŷi ≡ ȳ for each i

– for any initial θ0 in DNNsoftmax. In practice, this

results in substantial convergence speedups com-

pared to standard multi-level DNNs that have to

map inputs to outputs directly and thus are not

guaranteed to be at least as good as the sample

mean at initialization.

2.3 Kernel smoothing

The state-conditional psj can be estimated using

the maximum likelihood estimator (MLE), which

c© Google 6 of 14



is a weighted average of labels in each state,

p̂sj =
1

σj

N∑
i=1

Wi,j · yi, (16)

and the point prediction for observation i, p̂i, is

a weighted average of state-conditional estimates.

As for regression, this leads to a linear smoother

with a closed form expression for the in-sample

probability fit

[0, 1]N 3 p̂ = S(W)× y, (17)

[0, 1]N×N 3 S(W) = W ×D(W)×W
ᵀ

, (18)

where D(W) ∈ RJ×J is a diagonal matrix with

Dj,j = σ−1
j .

While PRESS methodology builds on the N ×N
kernel matrix S, it can rely on the kernel trick

(Hofmann et al., 2008) and does not ever need

to compute it explicitly, but predictions can be

obtained in two steps with each scaling linearly in

N : i) estimate state-conditional predictions, p̄S =

D(W) ×W
ᵀ × y ∈ [0, 1]J ; ii) average over state

predictions, p̂ = W × p̄S ∈ [0, 1]N .

2.4 Literature review

The proposed methodology can be viewed from

several angles. Here we focus on the linear kernel

smoothing as well as the predictive neural network

decomposition point of view.

First, we want to highlight that Nadaraya-Watson

smoothers (Nadaraya, 1964; Watson, 1964) are

usually for real-valued observations y with low-

dimensional covariates x. Under the assumption

that the conditional expectation E(y | x) is a

smooth function one can estimate by smoothing

over the X -space. This works well in low di-

mensions, but practical performance and also the-

oretical guarantees quickly deteriorate even for

more than a couple of features (see also Geenens

(2011) for an overview of “curse of dimensional-

ity” in non-parametric regression). The proposed

PRESS smoothers can be applied directly to bi-

nary and multi-label data, and also do not suffer

from curse of dimensionality as demonstrated on

the MNIST dataset with p = 784 features and

N = 55, 000 observations. For classification, a

linear smoother does not have the direct interpre-

tation of estimating a smooth function as ground

truth, but rather one estimates the probability

p. It may be for that reason that linear matrix

smoothers are usually applied for regression prob-

lems only.

The neural network implementation of PRESS

evolves naturally from statistical optimality in a

predictive modeling framework. Cao et al. (2015)

uses similar techniques for topic modeling in text

data. Recently, interpretation and inference on

neural networks has gained attention (Lipton,

2016; Lundberg and Lee, 2017). In particular,

the information-theoretic explanation and analy-

sis by Shwartz-Ziv and Tishby (2017) resembles

the inherent optimality conditions and derivations

of predictive states, in the information-theoretic

sense of not losing information to predict. How-

ever, rather than a post-analysis of a given neural

network, PRESS has interpretation and a fully

probabilistic inference approach built in. Hence

the two sides of interpretability as discussed in

Lipton (2016), transparency and post-hoc expla-

nation, are given by construction of how predictive

states are defined in the first place.

We thus think that the PRESS framework pro-

vides a natural way to build transparent, inter-

pretable, yet highly scalable and well-performing

models.
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3 Estimation

For classification E(y | ε(x)) = pε(x) = P (y | ε(x))

and thus a PRESS classifier returns to its roots

in the causal state literature (e.g., Shalizi, 2003;

Shalizi and Crutchfield, 2001) in estimating opti-

mal predictive distributions, rather than only ex-

pectations.

The latent-level model formulation in (11) sug-

gests two ways to estimate pS : a) follow PRESS

regression and use the weighted MLE in each state

(Eq. (16)); or b) estimate pS directly as part of

the frequentist or Bayesian inference algorithm.3

Recall that we are not only interested in a good

binary prediction of yi, but want to obtain prob-

abilistic predictions. Using the kernel matrix fac-

torization in (17) the log-likelihood becomes

`(Ξ; y,X) =

N∑
i=1

yi · log (p(xi)) + (19)

(1− yi) · log (1− p(xi))

=

N∑
i=1

yi · log
(
wi(θ)

ᵀ

pS

)
+ (20)

(1− yi) · log
(

1−wi(θ)
ᵀ

pS

)
where Ξ = (θ, pS) parametrizes the ε-mapping (θ)

and – optionally – free parameters from the state-

conditional Bernoulli distributions (pS). The

maximum likelihood estimator (MLE)

Ξ̂ = arg max
Ξ

`(Ξ; y,X), (21)

can be obtained via numerical optimization.

3If pS (= µ) is considered a free parameter then the
resulting model is not anymore equivalent to the symmetric
factorization in (18), but a general matrix factorization,
S = WV

ᵀ
.

3.1 Bayesian inference

As PRESS is a fully probabilistic model, it nat-

urally lends itself to Bayesian posterior sampling

for inference and prediction – which can be diffi-

cult for alternative methods like random forests or

SVMs. In particular, a PRESS model with linear

ε mapping has a straightforward implementation

in STAN (Carpenter et al., 2017).

Identifiability of state labeling: The state

label assignment is arbitrary and a PRESS model

is unidentifiable with respect to permutation of

states. In order to maintain a consistent baseline

state identification we follow the suggestion in

Goerg (2017) and re-order state labels according

to the (estimated) conditional mean, i.e., re-order

states such that 0 ≤ p̂s1 < . . . < p̂sJ ≤ 1.

A disadvantage of this re-ordering is that states

have to be estimated before imposing the order.

This is not an issue for point estimates as they can

just be re-labeled after estimation; for Bayesian

inference this can become a problem as a) par-

allel chains are not necessarily in the same state

ordering, and b) successive samples might jump

back and forth between two (or more) equiva-

lent PRESS representations, which wrongly sug-

gest the chain has not yet reached an equilibrium.

We thus propose a reparameterization of the

state-conditional probabilities pS following a

stick-breaking construction (Whye Teh et al.,

2007). Let ρ = (ρ1, . . . , ρJ) ∈ (0, 1)J and con-

struct the state probabilities as

ps1 ← ρ1,

psj ← psj−1
+ (1− psj−1

) · ρj , j = 2, . . . , J.
(22)

This guarantees that psj−1
< psj for any ρ.
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3.2 Feature selection and feature

importance

For feature selection we use an elastic net penalty

(Zou and Hastie, 2005) on the coefficients θ in the

ε mapping. To get consistent results across differ-

ent values of J the penalty per state is weighted

by the probability of being in state j. That is

we add a weighted elastic net penalty to the loss

function,

R(θ) =

J∑
j=1

P (sj) ·

(
λ1

p∑
k=1

|θk,j |+ λ2

p∑
k=1

θ2
j,k

)
.

(23)

Penalty parameters λ1 and λ2 can be chosen by

cross-validation.

Recall that for identifiability, θ is parametrized

such that summing over j (states) adds up to 0 for

each k (features). Hence we can view the weighted

`1 norm as a measure of importance of feature k,

ι(k) =

J∑
j=1

P (sj) · ‖θk‖1 . (24)

We use this measure to sort features by their im-

portance in Figures 2, 5a and 6b.

4 Applications

We illustrate the presented methodology on sev-

eral benchmark datasets and compare its predic-

tive performance to alternative methods. We also

show how to use PRESS for statistical inference

and gain domain-specific insights.

Algorithms were implemented in TensorFlow, R,

and STAN (Abadi et al., 2015; R Core Team,

2017; Carpenter et al., 2017).

4.1 Thoracic surgery

Here we illustrate the motivating example in

Section 2 using the thoracic surgery dataset,4

which contains data on N = 376 patients under-

going a lung cancer surgery and the risk in their

post-operative life expectancy: y = 1 if patient

dies within one year, 0 otherwise. Features to

predict the risk are based on their health status

such as their age or tumor size amongst others

(see Fig. 2 for all features).

This is not only an important prediction problem,

but also highlights the need for domain-specific

inference, as for doctors as well as patients it is

clearly important to know what contributes to a

higher risk. The estimates of S and ε in Figure 1

and 2 tell us that – not surprisingly – tumor size

and smoking contribute to higher risk (state 3) of

complications, as the probability of death within

one year in state 3 lies at 57%, whereas a “low”

risk patient has an estimated 3% chance of dying

(state 1).

For comparison, Figure 4 shows the estimated

weights and kernel matrix for the J = 3 estimates

with a LASSO penalization of λ1 = 0.02 (as de-

termined by cross-validation).

4.2 Iris dataset

The presented estimation and prediction method-

ology is not restricted to binary classification

problems. As a simple example consider the iris

dataset, which contains 3 species of flowers, “vir-

ginica”, “setosa”, and “versicolor”. After trans-

forming the labels to a 3-dimensional one-hot en-

coding, PRESS can estimate the state space and

conditional predictive distributions for predicting

4Source: https://archive.ics.uci.edu/ml/

datasets/Thoracic+Surgery+Data
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Figure 4: Surgery dataset: predictive state estimation and metric learning results for J = 3 states

the species using same algorithms and formulas

above on the multi-dimensional one-hot y.

A J = 3 model achieves a test data accuracy

(80/20 split) of 93.3% accuracy; random forest

predictions have 93.33% as well, but results are

harder to interpret. As for the binary case PRESS

reveals the state space, predictive distributions,

and how covariates contribute to predictions in a

straightforward interpretable way. Figure 5 sum-

marizes the estimates.

4.3 Titanic

As yet another example consider the titanic

dataset to predict whether a passenger has sur-

vived or not.5.

Figure 6 shows ROC comparisons to Random For-

est and generalized linear models for 20% test

data, as well as weight estimates for the coeffi-

cients. In this example, the three models have

(practically) the same performance, with PRESS

being interpretable non-linear alternative.

4.4 MNIST

The handwritten digit dataset6 is a good exam-

ple to demonstrate the scalability of this kernel

smoother. The data consists of Ntrain = 55, 000

gray-scale images (28× 28 pixels) of handwritten

digits and their true value, y ∈ {0, . . . , 9}. The

gray-scale images are represented as p = 28 · 28 =

784-dimensional feature vectors xi ∈ R784.

Näıvely a Nadaraya-Watson smoother would

require a 784-dimensional kernel function

Kh (‖x− xi‖) (e.g., Gaussian) with at least 784

bandwidth parameters hk, k = 1, . . . , 784. That

kernel function is then applied to all pairwise

(xi,xj) and renormalized to represent an N ×N
smoothing matrix S. For this dataset S has

about O(N2) ∼ 3 · 109 entries. Even accounting

for symmetry, storing this matrix requires writing

and reading several GBs of memory, for just one

iteration of an estimation algorithm.

As discussed above, PRESS does not ever have to

compute the full N×N matrix, but prediction and

estimation scales linear in N , with the predictive

state matrix W ∈ RN×J being the largest object

that needs to be computed and stored ((J − 1) ·
5Source: http://biostat.mc.vanderbilt.edu/wiki/

pub/Main/DataSets/
6For reproducibility we use pub-

licly available data in TensorFlow:
tf.contrib.learn.datasets.load dataset(’mnist’).
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random forest, and multinomial regression.
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Figure 6: Titanic survival: model comparison with J = 6 states

55, 000 = 495, 000 free values; about 4 MB).

Figure 7a shows the estimated parametrization of

the linear ε mapping to J = 10 predictive states.

Non-zero coefficients highlight areas that are im-

portant to distinguish between states. They re-

semble patterns of associated true digit as well as

digits that are similar in shape but have differ-

ent ground truth.7 For lack of displaying a 10 di-

mensional simplex, one way to interpret predictive

7We only use a linear mapping from features to states as
it already gives meaningful and high quality results. One
could add more layers to ε to achieve higher predictive
accuracy, however, then loses the immediate interpretation
of the weight estimates.

states and their characteristics is to consider prop-

erties of the conditional distributions of the fea-

ture space given the states. In particular, Figure

7b shows (estimated) expected features given the

states, i.e., E(X | sj). As expected the predictive

states correctly identify the true digits. Figure

8a confirms this as the conditional distributions

of each state are highly concentrated around one

digit.

Another interesting quantity is the entropy of the

ε mapping, i.e., H (p(S | x)) = −
∑J
j=1 p(sj |

x) log p(S | x), as it identifies those images that

are easy (difficult) to classify. Figure 8 shows two
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Figure 8: PRESS estimates for the MNIST dataset with J = 10 states.

examples from the test data with lowest and high-

est entropy, respectively. While the left image is

clearly a 2 (entropy practically 0), the right image

is mapped to various states (higher entropy).

5 Summary & Discussion

We introduce predictive state smoothing (PRESS)

classification, a semi-parametric kernel classifier

for high-dimensional data and binary or multi-

label response. PRESS is a metric learner, which

determines that kernel function which gives the

best probabilistic predictions for y given x. It

is not only statistically optimal in a theoreti-

cal sense, but also computationally efficient as

prediction and estimation can rely on the ker-

nel trick and thus compute predicted values lin-

early in N (instead of O(N2) for standard non-

parametric kernel smoothing methods). We also

embed PRESS in a deep neural network frame-

work with specific layer and activation functions

that conforms to the probabilistic basis of predic-

tive states. It scales well in the number of vari-

ables and allows for LASSO or Ridge like vari-

able selection for the p � N case. We present

algorithms for maximum likelihood estimation as

well as Bayesian inference, which can be easily

implemented in TensorFlow, R, or STAN. PRESS

compares well with state-of-the-art classification
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techniques, yet it remains interpretable and can

be used for statistical inference to obtain domain-

specific insights as shown on several real world

datasets.
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