
When Not to Comment

�estions and Tradeoffs with API Documentation for C++ Projects

Andrew Head∗

UC Berkeley
andrewhead@berkeley.edu

Caitlin Sadowski
Google, Inc.

supertri@google.com

Emerson Murphy-Hill∗

NC State University
emerson@csc.ncsu.edu

Andrea Knight
Google, Inc.

aknight@google.com

ABSTRACT

Without usable and accurate documentation of how to use an API,

developers can find themselves deterred from reusing relevant code.

In C++, one place developers can find documentation is in a header

file. When information is missing, they may look at the correspond-

ing implementation code. To understand what’s missing from C++

API documentation and the factors influencing whether it will be

fixed, we conducted a mixed-methods study involving two experi-

ence sampling surveys with hundreds of developers at the moment

they visited implementation code, interviews with 18 of those de-

velopers, and interviews with 8 API maintainers. In many cases,

updating documentation may provide only limited value for devel-

opers, while requiring effort maintainers don’t want to invest. We

identify a set of questions maintainers and tool developers should

consider when improving API-level documentation.

ACM Reference Format:

Andrew Head, Caitlin Sadowski, Emerson Murphy-Hill, and Andrea Knight.

2018. When Not to Comment. In Proceedings of ICSE ’18: 40th International

Conference on Software Engineering , Gothenburg, Sweden, May 27-June 3,

2018 (ICSE ’18), 11 pages.

https://doi.org/10.1145/3180155.3180176

1 INTRODUCTION

Seeking information is a substantial part of day-to-day program-

ming work. Both professional [32] and hobbyist [5] developers

frequently search for code examples. For routine coding, debug-

ging, and maintenance tasks, developers spend a large portion of

the time navigating and searching existing code [14, 25]. Developers

report that understanding existing code is one of the most time-

consuming parts of software development, and that understanding

the rationale behind code is a serious challenge [16].

Developers sometimes find that missing or insufficient documen-

tation can block them from using an API [29, 30, 38]. At Google,

274 of 601 surveyed developers reported that they encountered

“Missing/poor documentation for an API” their project depended

on in the last 6 months. In the words of one of the interviewees

in our study, missing information is a “standard fact of life.” While

the literature demonstrates documentation is often incorrect or

missing, it remains unclear what information is missing, what it

∗Authors did this research while an Intern and Visiting Scientist at Google, repectively.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5638-1/18/05.
https://doi.org/10.1145/3180155.3180176

would take for maintainers to add or update this information, and

whether improved documentation would help developers in typical

situations where documentation is insufficient.

In this paper, we report the results of a mixed-methods study of

what developers are looking for when they leave an API specifica-

tion to look at implementation code, and maintainers’ perspectives

about updating documentation to answer these developers’ ques-

tions. To make this study feasible, we focus on C++ APIs where

developers could easily search both the API specification and imple-

mentation code, a typical context for professional and open source

development. We instrumented Google’s internal code search tool

with an in-situ survey to find out what questions developers were

asking when they navigated from a .h “header” file containing API

declarations, to a corresponding .cc “implementation” file contain-

ing API definitions. We interviewed developers who made these

transitions. With stories and questions from these developers, we

interviewed maintainers for these and other APIs to see whether

they thought the questions represented missing documentation,

and whether they would update the documentation.

Concretely, the findings from this study were as follows. First,

a minority (between around 5–25%) of visits to implementation

files were to learn about API usage. Some visits were for questions

that possibly should have been answered in the documentation

(input values, return values). Other visits were for questions that

aren’t often answered in low-level documentation (hidden contracts,

implementation details, side effects).

Second, respondents frequently reported that it would have been

most convenient to find answers to these questions in header files,

instead of implementation code or documents on our Markdown

server. This was the case even for some questions typically left out

of API-level documentation. However, developers we interviewed

sometimes preferred to find answers in implementation code, which

could be more accurate and quick enough to read.

Finally, maintainers were reluctant to answer searchers’ ques-

tions for several reasons, falling into themes of it not being the

right time to document, and keeping explanations minimal.

Themain contributions of this paper are: 1) a set of questions that

developers are seeking to answer about C++ APIs when viewing

implementation files, and 2) trade-offs for maintainers to consider

when updating documentation to answer searchers’ questions. At

Google, developers and technical writers invest effort in choosing

and organizing content to document APIs and tools, and they need

to decide how to prioritize that effort. Software engineering re-

searchers are developing tools to mine API information and serve it

in helpful places (e.g., [24, 37]). We believe our study helps inform

what information should be surfaced, and the software develop-

ment context that would determine the acceptance and value of

tools and strategies to improve API documentation.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Andrew Head, Caitlin Sadowski, Emerson Murphy-Hill, and Andrea Knight

2 RELATED WORK

2.1 How Developers Reference Documentation

The literature suggests that developers face a number of challenges

when looking for information in API documentation. From inter-

views with developers, Lethbridge et al. reported that documen-

tation can be out-of-date, poorly written, and some systems may

have too much of it [17]. In a survey of professional developers,

Robillard found that inadequate learning resources were a com-

mon obstacle for learning about APIs [29]. Robillard and DeLine

interviewed and surveyed developers about learning obstacles, rec-

ommending that common obstacles could be avoided if the intent

of an API is documented, code examples cover non-trivial use cases

and best practices, and documentation helps developers find API

elements for their tasks, understand relevant parts of APIs’ internal

behavior, and avoids fragmentation [30]. In another survey, Uddin

and Robillard found that developers were more likely to report

incompleteness, ambiguity, and incorrectness of documentation as

“blockers” or “severe” issues than other documentation issues [38].

Prior studies indicate that the perceived and actual utility of com-

ments varies based on where they appear and who is reading them.

Roehm et al. observed that most professional developers in their

study reported getting their main information from source code

and inline comments rather than documentation, as documentation

could be sparse or inaccurate [31]. Salviulo et al. found that young

professional developers, compared to student programmers, were

less likely to consult comments during in-lab code comprehension

tasks [33]. Borstler et al. showed that although source code with

“good” comments was reported as more readable, these comments

didn’t appear to impact actual comprehension [4].

In relation to these past findings about documentation, this study

provides a perspective on what information may be missing from

low-level API documentation, and an understanding of costs and

benefits of improving missing documentation in header files.

2.2 Information Foraging in Code

Software engineering is an information intensive task, requiring

developers to gather information from peers, code, design docu-

mentation, and more [16]. Recently, information foraging theory

has been used to describe how software developers search for in-

formation, and tradeoffs in designing software engineering tools

(see [11] for a primer). In information foraging, a developer searches

to satisfy a goal (e.g., a piece of code with desired functionality).

They locate information patches to inspect for features satisfying

their goal, called prey. Developers make choices to maximize the

value of information they find, and minimize the cost of navigation.

To choose where to look, developers estimate the expected value of

information within a patch, and the cost of finding it. When there

is a mismatch between the expected and actual costs and values, a

developer could benefit from a better strategy or tools. For some

tasks, foraging consistently delivers less value than expected: in

one study, as many as 50% of navigation choices yielded less value

than expected, and 40% cost more than expected [25].

The software engineering research community has elicited many

information goals as concrete questions developers ask as theywrite

and maintain code. Sillito et al. describe 44 such questions arising

during software change tasks, which belonged to four categories:

finding initial focus points, building on these points, building a

model connecting found information, and integrating an under-

standing across such models [34]. Sadowski et al. observed develop-

ers’ queries to a code search tool, grouping them into questions of

how to do something, what code does, why it is behaving the way

it is, finding where something is, who did something, and when

they did it [32]. Duala-Ekoko and Robillard describe 20 questions

developers ask about APIs, based on talk-aloud data of developers

performing in-lab coding tasks [10].

Developers adapt their foraging strategies to their goals. In one

study, developers inspected codemore when collecting details about

types, and searched code more to find initial locations relevant to

their debugging task [26]. From a foraging perspective, our study

seeks to characterize a specific foraging strategy: looking for API

usage information in implementation code. We report a set of infor-

mation goals developers have when they look at implementation

code for an API, and describe factors influencing the cost and value

of finding answers to API usage information in code vs. documen-

tation in a real-world software development setting.

2.3 Choosing What to Document

When considering how maintainers decide what to document, we

build on prior studies of writing both unofficial and official docu-

mentation. Parnin et al. interviewed programming bloggers, finding

that they face challenges keeping up with community contributions

and preparing examples [23]. Dagenais and Robillard spoke with

contributors to open source projects, finding that maintainers’ mo-

tivation to write and maintain documentation could be low, though

maintainers may update documentation in response to commu-

nity contributions [8]. Our study can be seen as providing context

about the choices maintainers make when writing and considering

making updates to low-level documentation.

Maalej and Robillard described twelve types of knowledge in ref-

erence documentation, including purpose and usage examples [18].

Padioleau et al. observed what code comments describe by classify-

ing hundreds of comments: 52.6% went beyond explaining the code,

to describe types, relationships between code entities, aspects of

code evolution, synchronization, and more [22]. In relation to this

work, our study provides some examples of questions that were

not answered in API-level comments.

Recent research has proposed tools for automatically improv-

ing documentation. Such tools synthesize code examples [6, 21],

generate method [19, 35] and parameter descriptions [36], mine

API usage patterns (e.g., [20, 40]), collect insightful sentences de-

scribing APIs [37], and identify improvable documentation [39, 41].

Researchers have extended development environments to reveal

important usage information [9] and integrate online documen-

tation [27] and web search history [12]. This study provides an

understanding of developer questions and perspectives on docu-

mentation that we hope can help motivate the design of such tools.

3 METHODS

3.1 Overview of Mixed Methods

We used a mixed-methods approach to understand what developers

are looking for in implementation code and whether more infor-

mation should be added to documentation. Through Code Search

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Andrew Head, Caitlin Sadowski, Emerson Murphy-Hill, and Andrea Knight

#include "display.h"

int main(void) {

 displayNumber(1);

}

/**

 * Display number to the

 * console. Returns 0 if

 * successful. No runtime

 * guarantees.

 */

int displayNumber(int number);

Client's code

Header (in display.h) Implementation (in display.cc)

int displayNumber(int number) {

 if (number == -1)

 throw "Invalid arguments!";

 /* Some complex logic ... */

 printf("%d\n", number);

 return 0;

}

The client can reference the header for API

declarations and usage info....

Though the behavior of the API will be

encoded in the implementation.

Figure 2: Writing docs in .h and implementation in .cc files.

For C++ APIs, the member declarations and actual implementation

are often split between two distinct files, as shown in this toy

example. Clients may have to reference both to understand both

an API’s intended usage and its actual behavior.

3.4 Searcher Interviews

We conducted interviews with 18 developers, whom we refer to

as “searchers” (S1. . . S18), to learn what developers look for when

they leave header files to visit implementation files. We invited

subscribers of an internal C++ developers mailing list to agree to

participate in a 15-minute interview if warranted based on log

analysis. 62 developers opted in.

Twice a day, we ran a script to identify developers in our opt-in

list who had made a transition from a .h file to the corresponding

.cc file. To increase the likelihood of revealingmissing API usability

information, we only considered transitions fromfiles that had visits

from 10 or more distinct developers in the last six months.1 We

then reached out to the developer to arrange an interview. Most

interviews took place on the same day as the searcher had made

the transition from the .h file to the .cc file.2

We held a semi-structured interviews with each developer (API

Searcher Questions in the online appendix [1]). One author con-

ducted all interviews. First, we reminded the developer what .h file

they left to visit implementation code, and asked them to describe

what they were looking for in the .h file, and why they visited

the .cc file. Developers then described their process of looking

for information in the implementation code, including files they

visited, methods they inspected, and the answer they found.

If the developer was looking for information in a .cc file for how

to use an API, we asked them where it would be most convenient

to find this information. With any time remaining, we asked the

developer about one of two topics. The first topic was to recall recent

experiences of information missing from .h files, or of reading well-

maintained .h files. The second topic was having them describe

their team’s process for deciding how to document their code, so

we could gather context about how API documentation was written

and maintained at Google.

1With one exception: for one interview (S12), the header had no views in the past.
2One interview was held 2 days after the searcher had made the transition from header
to implementation, and four were held 1 day after the transition.

Survey N Questions

API

Usage

Survey
1,147

• Q1:What best describes the information

you are looking for?

• Q2: What would be the most convenient

location for this information?

• Q3: What question are you trying to

answer about this API? e.g., how this

API behaves when passing in dates that

are in the past

• Q4: What “.cc” files are you looking at?

Implemented

Behavior

Survey
778

Q1 from “API Usage Survey” and:

• Why are you looking into how a behav-

ior was implemented?

• You selected “None of the above”. Please

describe what you are trying to find out

by looking at the implementation.

Table 1: Experience sampling surveys to collect developers’

questions for implementation code. We ran two main surveys

to ask developers to describe the questions they had about code as

they left header files to inspect implementation files.

The interviewer did live transcription while interviewing each

participant. To validate these transcripts, we recorded audio for

all but three participants.3 For each of the interviews where audio

was recorded, the notes were replaced with a transcript of the full

session audio. We observed that the difference between the live

transcription and the audio was minimal.

Threats to validity: Developers who opted into the Searcher In-

terviews may not be representative of all developers, at Google or

other institutions. Many interviewees had strong opinions, which

represented a diversity of viewpoints; there’s a chance that some

perspectives on the experience of finding answers in code vs. docu-

mentation were not represented in this sample. Furthermore, the

interviews were aimed at finding anti-patterns in documentation;

there are many benefits of getting information from documentation

that are not reported in our results.

3.5 Code Search Experience Sampling

We instrumented the web-based Code Search tool so that an ex-

perience sampling survey would pop-up whenever a developer

navigated from a .h file to a .cc file in the same directory with the

same name. Either one of our surveys appeared in the lower-right

corner of the Code Search app (Figure 1), and could be closed if a

developer did not want to answer the questions.

The aim of our surveys was to understand what questions devel-

opers ask when they visit implementation code to learn about APIs,

at the moment they left a header file. We launched two variants

of the same survey, each designed to collect information about

a different type of API question: the API Usage and Implemented

Behavior Surveys. Each survey had hundreds of respondents. The

design of the two surveys is summarized in Table 1.

3Due to technical issues, audio for S1, S2, and S9 is missing.

When Not to Comment ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

The API Usage Survey was designed to elicit the types of ques-

tions developers asked when visiting implementation code. We

asked developers to choose one of seven reasons that best matched

why they opened the implementation code. These reasons were

chosen based on prior work [10, 32] and the Searcher Interviews:

(1) What best describes the information you are looking for?

• How to use this API (common cases)

• How to use this API (special cases)

• Who has been working on this code

• Where I can make a change to the code

• Performance / non-functional API details

• How a behavior was implemented

• None of the above

If a respondent selected one of the first two answers, indicating

that they were interested in learning about how to use the API, we

asked them where it would have been most convenient to find an

answer to their question. Participants could choose from one of

three options—a .h file, a .cc file, and the project’s g3doc. We also

asked what question developers were trying to answer in this case.

(2) What would be the most convenient location for this infor-

mation?

(3) What question are you trying to answer about this API? e.g.

how this API behaves when passing in dates that are in the

past

(4) What .cc file are you looking at?

The survey also asked respondents to enter the path of the ‘.cc’

file, since the survey tool could not collect this information.

We piloted these questions with 246 responses. In the pilot, we

asked Q2 regardless of which options were selected for Q1. In addi-

tion, the pilot run of the API Survey included the question, “Where

would you expect to find this type of information?” with the same

options. However, we dropped this question since the responses

were essentially the same as answers to Q2. When piloting we

used different wording for Q3: “What information are you trying to

gather by viewing this ‘.cc’ file?”, but received too many responses

reporting “implementation details”.

The API Usage Survey was deployed over a period of 3 workdays.

After a developer completed the survey once, it would not be shown

to them again until at least 5 hours had passed. The survey received

a total of 1,147 responses (out of what we expect was about 8,000

total prompts). 60 respondents were looking for information about

API usage. 54 of these 60 completed all four questions in the survey;

all 54 were looking at different source code files.

The Implemented Behavior Survey was designed to answer ques-

tions raised internally about what exactly respondents meant by

“How a behavior was implemented”, a response that a majority

of respondents selected in the API Usage Survey. Using the first

question from the API Usage Survey, we screened respondents to

just those asking a question about implemented behavior. Then we

asked two additional questions:

(2) Why are you looking into how a behavior was implemented?

• Understanding unexpected code behavior

• Finding code or logic to reuse

• Planning a code refactoring

• Checking specific values (e.g. path name)

• Checking style or best practices

• None of the above

(3) (If “None of the above” selected). You selected “None of the

above”. Please describe what you are trying to find out by

looking at the implementation:

The Implemented Behavior Survey was deployed over a period of

2 workdays. After a developer completed the survey once, it would

not be shown to them again until at least 36 hours had passed. The

survey received 625 responses. 325 respondents were looking for

how a behavior was implemented.

Threats to validity: In the API Usage Survey, some respondents

may not have been looking for information about the API defined

in the .h file, but rather to understand how to use an API called

from the implementation code. This possibility is more likely for

some types of API questions than others — for example, questions

about input types were likely about the API in the .h file. As

we discuss in the results, question order could have also biased the

responses so that we underestimate the percentage of questions

that are about API usage patterns in the API Usage Survey.

3.6 Maintainer Interviews

We interviewed the maintainers for a handful of internal APIs

(M1. . .M8) to understand the maintainers’ process and rationale for

writing and updating API documentation.

M1–M5 were maintainers of header files participants in the

Searcher Interviews reported as missing API usage information. It

wasn’t always straightforward to find an active and relevant main-

tainer for a file. In two cases, the person we initially contacted was

a recent contributor to the file, but made only a handful of contri-

butions, and the document’s original authors or main contributors

had left the company or were out of the office.

M6 and M7 contributed to files containing API functions that

Code Search users click extremely frequently. We interpreted a

large number of clicks on a function as an indication that some

information about the method was missing. Before contacting the

maintainers, we inspected the headers and verified that some im-

portant information was likely missing from the comments.

M8 was a maintainer of a widely-used internal API, updating

the documentation as part of an open sourcing effort.

One interviewer conducted all eight interviews (see "Questions:

API Maintainer" [1]). For M1–M5, we described questions that

searchers had about the API, asked whether the question was an-

swered in the header, and if it was not, whether it should be, and

where the answer should appear. We also asked if they were sur-

prised that a developer was using their API in this way. All main-

tainers (M1–M8) were asked to describe their process of deciding

what goes into the project’s documentation. The interviewer took

notes during each interview and transcribed the audio recording

from each one. Interviews typically lasted 20–30 minutes.

Threats to validity: As with the Searcher Interviews, maintainers

who opted to answer questions about their process could have sys-

tematically stronger or different opinions about what belongs in

documentation than those who did not opt in; these results should

be seen as representing an important but perhaps not comprehen-

sive set of maintainer perspectives.

When Not to Comment ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

API Usage Question Sample Responses .h .cc g3doc N

Input Values

“How a given argument behaves when it’s empty”

“What does the arguments mean exactly”

“I’m trying to figure out how the flags are used”
9 2 2 13

How Do I. . . ? “What method to use to convert the current timestamp into a string” 6 2 1 9

Return Values “What does the return value mean and how can this method fail” 7 1 0 8

Recommended Use
“Sample use cases of this API”

“How to properly update deprecated functions to use this API”
3 2 2 7

Hidden Contracts “If I need to do a special tear-down in order not to leak memory” 3 1 2 6

Implementation Details “How this API passes data to TensorFlow session run calls in C” 3 2 0 5

Side Effects “What logs it writes or status messages it returns when it finishes reading the file” 2 1 0 3

Extension Points “Whether I should need to override this method in my subclass” 1 1 0 2

Verify Inconsistency
“Why the service in the proto says one thing but the code does something else, and if

I can file a fix to correct that”
0 1 0 1

Total 34 13 7 54

Table 2: Nine API usage questions developers asked when looking up implementation code, and where they wanted to find

the answers. For each question, we report how many respondent had that question (N), and how many thought it would be most convenient

to find an answer in a header file (.h), implementation code (.cc), or the projects g3doc (g3doc). Respondents often reported it would be most

convenient to find answers in .h files, even for implementation-specific questions like those about hidden contracts and side effects.

run calls in C”), and side effects (“what logs it writes or status mes-

sages it returns when it finishes reading the files”). Respondents still

sometimes thought it would be most convenient to find answers to

such questions in headers.

4.2.3 �estions about How a Behavior Is Implemented. In the

Implemented Behavior Survey, when respondents were looking for

information about how a behavior was implemented, the majority

of respondents were “finding code or logic to reuse” (30.4%) or “un-

derstanding unexpected code behavior” (31.7%). While it is expected

that developers need to consult implementation code when looking

for code to reuse, perhaps some unexpected code behaviors should

have been documented in these headers.

4.3 Seeking Answers in Code vs.
Documentation

Survey respondents frequently reported it would be most conve-

nient to find answers questions about API usage in headers. How-

ever, developers we interviewed in the Searcher Interviews indi-

cated they sometimes preferred to find answers in implementation

code, which could be more accurate and quick enough to read.

4.3.1 Convenient Locations to Find Answers. In the API Usage

Survey, 61.7% of the 60 respondents looking for API usage infor-

mation believed that the information they were looking for would

have been most convenient to find in a .h file. This included

66.7% of respondents looking for information about common usage,

and 52.4% looking for information about special case usage. Of the

six interviewees in the Searcher Interviews looking for API usage

information, four reported that it would have been convenient to

find that information in a header file. Survey respondents were

more likely to want to find answers in .h files for API-related ques-

tions than other questions: when piloting the API Usage Survey we

asked all respondents (not just respondents looking for API usage

information) where they wanted to find the answer to their ques-

tion. Only 14.2% of the 183 pilot respondents that weren’t looking

for API usage information thought the header file would be the

most convenient place to find the answer to their question.

However, header files weren’t always reported as the most con-

venient place to find answers about APIs. For each type of question,

at least one developer always thought it would be most convenient

to find an answer in implementation code or g3doc. The proportion

of respondents who preferred each location varied somewhat by

question (see the rightmost columns of Table 2). For example, in line

with our expectations that questions about discovering functional-

ity and recommended usage belong in high-level documentation,

g3doc was a preferred medium for some of these questions.

4.3.2 Rationale for Seeking Answers in Code vs. Documentation.

The potential benefits developers could have reaped from improved

comments varied based on the code that the developer was looking

at and the question they had. We distilled a set of themes from the

Searcher Interviews describing why some developers expected or

preferred to find information about APIs in implementation code

as compared with comments in a header file (Figure 4).

Correctness and Completeness. Because it is “what the computer

will execute” (S4), developers could count on source code as an

accurate representation of that code’s behavior. Some interviewees

distrusted code comments in general. In the words of S2, “to a first

order approximation, I have stopped reading comments, because

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Andrew Head, Caitlin Sadowski, Emerson Murphy-Hill, and Andrea Knight

Pros for Referencing Code

• Sometimes quick to read

• Always "accurate"

• All accessible from Code Search

• Offers implementation choices

hidden by public API

• Answers can be in a different file

than where you expect it

• Sometimes complicated to

comprehend

• Generated code will be very

difficult to understand

Cons for Referencing Code

Pros for Referencing Docs

• Typically of good enough quality

for popular internal APIs

• Handy for understanding

recommended usage

Cons for Referencing Docs

• Can be inaccurate,

untrustworthy, or missing

• Fragmented, i.e. across .h files,

g3doc, external sites

Figure 4: Why look at implementation code vs. header com-

ments?Developers in the Searcher Interviews described when they

would look for answers to API usage questions in API documenta-

tion or implementation code.

the comments are just lies. My eyes have just learned to skip them.”

It was clear why some developers’ experiences could lead them to

distrust documentation: one of the respondents to the API Usage

Survey reported that they were visiting the implementation to

clarify an inconsistency between documentation and behavior.

However, incorrect or incomplete documentation wasn’t univer-

sal. Several interviewees made a distinction between widely-used

internal APIs, and projects written by teammates and collaborators:

“So there’s those sorts of [general utilities], and those tend to be
very well documented. And then there’s the team-specific internal
code, which is all very horribly documented. And it’s relatively
rare for me to find something where I don’t personally know the
person who wrote it but it’s also missing documentation”

— S16

Distrust of documentation could lead to unnecessary searches:

S6 visited the implementation to check for unexpected behavior

when “it was actually documented properly, but I didn’t believe it.”

Intended vs. actual functionality. Source code can reveal undoc-

umented behavior that can be useful for prototyping. S10 studied

how code “actually works” while developing initial “messy code”.

Once they figured out “how to make it work”, then they tried “to

make it clean before I send it off for review” by adjusting the code

to respect how the API was documented to work.

Cost of finding information. Sometimes, a developer could get

an answer to a question about an API pretty quickly by just read-

ing code. For S1 and S14, this only involved looking through a

few dozen lines of code over a few methods. Tooling also plays a

role in reducing the cost of code navigation: with the Code Search

tool, much of the code is indexed in one place, with clickable cross-

references between types and functions. Because of this, it may be

more straightforward to navigate code than looking for documenta-

tion, which could be fragmented across multiple web locations and

break one’s “flow of thought” (S4). However, sometimes it was in-

feasible to glean an answer to an API usage question from the code.

S9 and S11 searched through multiple functions in multiple files.

S9 eventually gave up because the code became too complicated. In

these cases, a well-written comment in the right place could have

Theme Examples

Minimal

explanations

• No need to explain readable signatures

• Readers may have sufficient prior knowledge

• Adding details could clutter the docs

Not the right

time

• Never maintained, won’t be maintained

• Concentrating on evolving or fixing the code

• Good enough documentation already exists

for similar external projects

Preservation
• Should preserve existing comment style

• Writing comments that are unlikely to rot

Table 3: Why (not) update documentation? Themes and sam-

ples of these themes of why and how maintainers might choose to

update the documentation for their APIs.

saved time. There are also some types of code, like generated code,

which will always be difficult to read (S5).

4.4 Factors Impacting Whether Maintainers
Will Update Comments

When presented with questions searchers asked about their APIs,

most maintainers weren’t surprised that searchers were asking

such questions. However, maintainers were sometimes reluctant

to update API comments to answer these questions. Reluctance to

create and update documentation has been observed in the litera-

ture [8]. These interviews provide context behind why proposing

and incorporating updates to API-level comments could be difficult.

We developed three themes (Table 3) from analyzing Maintainer

interview transcripts, and also report on the factors influencing

past choices to change and add to documentation.

4.4.1 Keeping Explanations Minimal. This fundamental tension

was described by M1 who told us, when asked if they should add

a comment to answer S9’s question, “How often do you want to

go into details, which can be easily too much?” M8 was just as

interested in finding out if their API had too much documentation

as whether the comments had the right content.

Maintainers assumed that sometimes, API clients can infer usage

protocol from an API’s declaration. M8 described how the semantics

of a function could be inferred for an API for formatting time:

“So just from looking at that [signature] right there, I believe most
callers would infer that it takes three arguments, a time and a
time zone, and it takes some format that tells it how to format
the time, and it returns the value as a string.”

— M8

However, it is clear is that in practice not all methods in the

Google code base are self-explanatory. M8 also described a popu-

lar API method, written as a complex template in C++ to replace

dozens of other methods with related functionality but distinct sig-

natures. M8 stressed the importance of comments for this method,

suggesting that it could take someone half an hour to understand

the code without documentation.

For one maintainer, explicit functionality marked the boundary

between what deserved to be described in comments and what

When Not to Comment ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

didn’t. M2 quoted Knuth’s programming aphorism, “Premature op-

timization is the root of all evil” [13], to describe how a developer’s

main concern when using an API will be with writing code that

does the right thing, rather than non-functional aspects like per-

formance characteristics. For such non-functional aspects, clients

should already have the requisite background knowledge to success-

fully select and use the API. M2 expected clients of a concurrency

API to understand in what contexts they should use threads vs.

futures. M5 did not believe it was relevant to describe the runtime

of standard algorithms or data structures like maps.

Taken to an extreme, the contents of comments could indicate

who should be using the API. M2 worried that if high-level guid-

ance like performance characteristics of threads and futures was

available, some developers might misinterpret this information, and

be compelled to use it incorrectly or not at all:

“It’s still going to have people that are not experts trying to fol-
low and if you say something is slow, you’ll get people writing
alternatives first of all, or not using it, or, arbitrarily saying, ‘Oh
no, you shouldn’t use that’, just because they, if they’re not an
expert, all they know is what they’ve read in that brief comment.”

— M2

4.4.2 It’s Not the Right Time to Document. In a code base with

millions of lines of code, developers may find APIs that were never

be intended to be widely used, and continue to use use them long

after the authors of that API have moved on to other projects. Logis-

tically, this made it difficult for us to get in contact with maintainers

of APIs mentioned in the Searcher Interviews. Contributions from

core contributors could be years old, and some contributors had

even moved on to other companies.

M3 told us they weren’t surprised that searchers like S14 were

finding and using an API they had once contributed to. However,

the API wasn’t for use by other teams, and the team had moved on

to other projects. M3 had no intention, and believed no one else

had any intention, to further update the code or comments:

“It’s unlikely this will ever get changed again. They’re going to
delete the underlying data and then, hopefully someone will clean
up this utility, I guess, ostensibly it’s my team that’s responsible
for it, but. . . if you didn’t schedule this meeting I would have
forgo�en this file existed.”

— M3

Even for an API with a lot of development attention and an active

clientele, maintainers could have good reason not to add or update

comments. When informed of a searcher’s question, M4 and M5

told us that it wasn’t the right time to document. Their project was

a re-implementation of a standard C++ library, with “quite a few

early adopters.” M4 told us current development effort was going to

go into improving compiler error messages and fixing performance

bugs. Another complication was that, as a re-implementation of

an externally available library, documentation already existed—

however, this documentationwas not accessible within Code Search.

For M5, writing documentation in the header files would not only

be redundant, it could cause maintenance issues later on:

“. . . recapitulating the entire documentation for [our API] here is
just not a good choice. It duplicates a lot of things, it lets them
fall out of date weirdly. . . Also, [the online reference] is be�er
cross-linked than the documentation in the header.”

— M5

4.4.3 Preference and Preservation. Most searchers and maintain-

ers we interviewed had opinions about what did belong in documen-

tation, at both the level of headers and in-line comments.Maintainers

and searchers mentioned the importance of describing how a file

relates to other files in the project (S17), the state of the world when

a method is called (S8), executable examples (M5, M8), implemen-

tation comments for future maintainers of an API (M5), explicit

links to external documentation (M5), semantics of a function (M8),

main concepts that someone should understand and know to use

the API (M8), “what” the code is doing and “why” at a statement

level (M6), and even a proof of correctness (M6). It is unsurprising

that not all of this information was available for all of the APIs we

saw during this study.

Choices to include or update documentation could also be based

on preserving existing style, and writing comments that can stand

the test of time. M6 preserved the style and placement of existing

comments when making a one-off contribution to a common C++

utility method. M6 also noted the brittleness of concrete perfor-

mance descriptions, describing one such inline comment:

“. . . it had these numbers, like specific numbers, 50% speedup, 25x
speedup, things like that, which are, like, naturally out of date,
you know? They were for a machine in 2006 or something like
that, like, a particular machine. They’re surely not correct today,
you know what I mean?”

— M6

To resist “rot”, M6 replaced this description with a proof that

would hold even as computing infrastructure changed.

4.4.4 Factors Influencing Changes to API Documentation. M2

aptly described the somewhat solitary nature by which comments

were often written and updated when they told us:

“. . . It was mostly just me, a li�le bit of feedback from code re-
viewers, when I was, you know, initially checking this in on what
needed to be documented and what didn’t.”

— M2

While changes to documentation could be on the whole infre-

quent, maintainers mentioned several cases in which they might

update documentation. The most obvious path was through routine

development workflows, by getting feedback from code reviewers

(M8, S14), or cleaning up comments while refactoring or updating

existing code (M6, M8, S19). Beyond typical development process,

some maintainers also told us they had considered (though did not

always accept) suggestions raised through company email and chat

(M1, M7), and questions raised on mailing lists (M4) as potential

indications of usage that should be better explained.

5 DISCUSSION

In this study, we found that a minority of visits to C++ implemen-

tation code were for questions about API usage, some of which

are conventionally covered in documentation and others that are

not. Survey respondents reported it would be most convenient to

find answers to many of these questions in header files, though

interviewees indicated code could be accurate and quick enough to

read in many cases. Maintainers had reason to be reticent to update

documentation in response to some of these questions. What do

these results, as a whole, imply for maintainers and researchers?

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Andrew Head, Caitlin Sadowski, Emerson Murphy-Hill, and Andrea Knight

5.1 Implications

5.1.1 Contributing to a Conceptual Framework of Documenta-

tion. Dagenais and Robillard describe documentation process as

comprising initial effort, incremental changes, and bursts, with de-

cision points throughout [8]. For our sample of APIs, incremental

changes and bursts were not frequent events. Among others fac-

tors, maintainers’ attitudes toward updating documentation were

impacted by factors including whether the API others were using

was something they should be using, keeping explanations minimal

for the intended audience, and the availability of documentation for

comparable APIs. Our conversations with searchers also suggested

additional factors that should be considered:

Should you document for the unexpected client? What happens

when the internal utility you forgot about gets invoked by devel-

opers across the ocean as an API? This was the case for one of the

maintainers we interviewed. At a company with globally visible

source code, it’s possible any file could become a template or API

for another developer’s code. Who should be watching that code

and documentation when the team working on it moves on?

When isn’t code enough to be self-documenting? Sometimes, de-

velopers had no problem reading code, and in fact preferred it

for finding more accurate information. However, there are some

cases where self-documentation isn’t feasible, like code with overly

complex method signatures and generated code. Other details, like

recommended usage, just can’t be conveyed by source code.

Which “implementation details” belong in docs? While documen-

tation standards like Javadoc suggest that the behavior (i.e. input

and output) of APIs functions should be documented, our study

showed that developers had questions about implementation that

didn’t get answered in the headers, including some questions that

would be most conveniently answered in headers. However, this

type of information appears infrequently in reference documen-

tation [18]. It’s clear that it’s not the best choice to break the ab-

straction of an API to discuss internals that are obvious from the

code—which ones should be documented?

5.1.2 Implications for Maintainers. One actionable result of this

study is confirming the existence of unanswered API questions in

authentic programming settings beyond input-output specification

(e.g., side effects). However, this study questions some assumptions

about what belongs in documentation. The results suggest main-

tainers can answer questions with discoverable, understandable

code instead of comments. If code is self-explanatory, it may be

sufficient to answer searchers’ questions, especially if the searchers

are experienced in navigating code for answers. However, code is

no substitute for high-level information or when it is very compli-

cated to read. Furthermore, many surveyed developers felt some

salient implementation details should be surfaced in headers. Up-

dates to documentation should heed a diversity of user questions

and code-vs-documentation expectations we observed.

5.1.3 Implications for Tool-Builders. This study presents a di-

versity of questions whose answers could be surfaced, beyond just

function signatures, and even including implementation choices.

Tools for editing and navigating implementation code may benefit

from helping developers find answers to these uestions quickly.

This study also shows the messiness of proposing updates to docu-

mentation. The ideal time to propose changes to documentation is

during code authoring and review, possibly through a surrogate like

a code reviewer. Documentation can get updated only infrequently

after it is initially written, as future updates may raise questions of

whether the information adds clutter or redundancy.

5.2 Results in Context

While this study was conducted at a software engineering company

with billions of lines of code and dedicated code search tools, we

expect our observations apply elsewhere whenever:

Implementation code is searchable. At Google, there are dedicated

tools to support looking up implementation code. For APIs where

source code is less accessible, developers probably won’t ask the

same questions of implementation code, or have the same prefer-

ences of where they find answers. Many professional and open

source projects rely on both a mix of local APIs for which source

code is readily available, and external APIs for which it isn’t.

Developers search the source code. Perhaps because of mature

search tools, Google developers frequently search code when asking

questions about code [32]. Developers’ willingness to reference

code likely varies by company or project. However, we note that

professional developers’ willingness to read code over comments

has been observed in several other research settings [31, 33].

Implementation code and documentation are separated. For other

languages, code and documentation may not be in separate files

(e.g., Javadoc). While one couldn’t replicate our methodology for

such languages, we expect there would be overlap in the questions

developers ask. Specific instances of questions and frequency might

change for other languages: for example, a Python developer may

ask questions about side effects, though likely not the question

about memory leaks one survey respondent reported.

Some APIs are unstable. This study considers APIs from widely-

used utilities to team-specific libraries used by a handful of develop-

ers. Developers likely rely more on documentation for stable APIs

where more effort has been put into documentation.

6 CONCLUSION

In this mixed-methods study, we collected a cross-section of de-

veloper questions about API usage, and API maintainers’ attitudes

about updating documentation in response to these questions. Re-

flecting on the resulting set of questions about APIs, and contextual

factors that influenced maintainer attitudes on updating documen-

tation, our observations provide a new set of questions maintainers

and tool developers should consider in the pursuit of improving

low-level documentation for APIs.

ACKNOWLEDGMENTS

Special thanks to members of Google’s Engineering Productivity Re-

search (EPR) team for guidance, particularly Matthew Jorde, Ciera

Jaspan, and Edward K. Smith and to Edward Huang for interview

transcription. We also thank documentation stakeholders at Google

for providing ideas and feedback about this work, particularly Greg

Miller and Ríona MacNamara.

When Not to Comment ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

REFERENCES
[1] Appendix to this paper. https://goo.gl/wMg3vY.
[2] How to Write Doc Comments for the Javadoc Tool. http://www.oracle.com/

technetwork/java/javase/documentation/index-137868.html. Accessed 12 Febru-
ary 2018.

[3] Stack Overflow. http://www.stackoverflow.com.
[4] Jürgen Börstler and Barbara Paech. 2016. The Role of Method Chains and Com-

ments in Software Readability and Comprehension—An Experiment. IEEE Trans-
actions on Software Engineering 42, 9 (Sept. 2016), 886–898.

[5] Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer.
2009. Two Studies of Opportunistic Programming: Interleaving Web Foraging,
Learning, and Writing Code. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 1589–1598.

[6] Raymond P.L. Buse andWestleyWeimer. 2012. Synthesizing API Usage Examples.
In Proceedings of the 34th International Conference on Software Engineering. IEEE
Press, 782–792.

[7] Mihaly Csikszentmihalyi and Reed Larson. 2014. Validity and Reliability of the
Experience-Sampling Method. In Flow and the Foundations of Positive Psychology.
Springer, 35–54.

[8] Barthélémy Dagenais and Martin P. Robillard. 2010. Creating and Evolving
Developer Documentation: Understanding the Decisions of Open Source Con-
tributors. In Proceedings of the Eighteenth ACM SIGSOFT International Symposium
on Foundations of Software Engineering. ACM, 127–136.

[9] Uri Dekel and James D. Herbsleb. 2009. Improving API Documentation Usability
with Knowledge Pushing. In Proceedings of the 31st International Conference on
Software Engineering. IEEE Press, 320–330.

[10] Ekwa Duala-Ekoko and Martin P. Robillard. 2012. Asking and Answering Ques-
tions about Unfamiliar APIs: An Exploratory Study. In Proceedings of the 34th
International Conference on Software Engineering. IEEE Press, 266–276.

[11] Scott D. Fleming, Chris Scaffidi, David Piorkowski, Margaret Burnett, Rachel
Bellamy, Joseph Lawrance, and Irwin Kwan. 2013. An Information Foraging
Theory Perspective on Tools for Debugging, Refactoring, and Reuse Tasks. ACM
Transactions on Software Engineering and Methodology 22, 2 (2013), 14:1–14:41.

[12] Björn Hartmann, Mark Dhillon, and Matthew K. Chan. 2011. HyperSource:
Bridging the Gap Between Source and Code-Related Web Sites. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. ACM, 2207–2210.

[13] Donald E. Knuth. 1974. Structured Programming with go to Statements. Comput.
Surveys 6, 4 (Dec. 1974), 261–301.

[14] Andrew J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. 2006.
An Exploratory Study of How Developers Seek, Relate, and Collect Relevant
Information during Software Maintenance Tasks. IEEE Transactions on Software
Engineering 32, 12 (Dec. 2006).

[15] John Lakos. 1996. Large-scale C++ Software Design. Addison-Wesley.
[16] Thomas D. LaToza, Gina Venolia, and Robert DeLine. 2006. Maintaining Mental

Models: A Study of DeveloperWorkHabits. In Proceedings of the 28th International
Conference on Software Engineering. ACM, 492–501.

[17] Timothy C. Lethbridge, Janice Singer, and Andrew Forward. 2003. How Software
Engineers Use Documentation: The State of the Practice. IEEE Software 20, 6
(Nov.–Dec. 2003), 35–39.

[18] Walid Maalej and Martin P. Robillard. 2013. Patterns of Knowledge in API
Reference Documentation. IEEE Transactions on Software Engineering 39, 9 (Sept.
2013), 1264–1282.

[19] Paul W. McBurney and Collin McMillan. 2014. Automatic Documentation Gener-
ation via Source Code Summarization of Method Context. In Proceedings of the
22nd International Conference on Program Comprehension. ACM, 279–290.

[20] João Eduardo Montandon, Hudson Borges, Daniel Felix, and Marco Tulio Valente.
2013. Documenting APIs with Examples: Lessons Learned with the APIMiner
Platform. In 20th Working Conference on Reverse Engineering. IEEE, 401–408.

[21] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Andrian Marcus. 2015. How Can I Use This Method?. In Proceedings of the 37th
International Conference on Software Engineering. IEEE, 880–890.

[22] Yoann Padioleau, Lin Tan, and Yuanyuan Zhou. 2009. Listening to Programmers—
Taxonomies and Characteristics of Comments in Operating System Code. In
Proceedings of the 31st International Conference on Software Engineering. IEEE

Press, 331–341.
[23] Chris Parnin, Christoph Treude, and Margaret-Anne Storey. 2013. Blogging

Developer Knowledge: Motivations, Challenges, and Future Directions. In Pro-
ceedings of the 2013 IEEE 21st International Conference on Program Comprehension.
IEEE Press, 211–214.

[24] Gayane Petrosyan, Martin P. Robillard, and Renato De Mori. 2015. Discovering
Information Explaining API Types Using Text Classification. In Proceedings of
the 37th International Conference on Software Engineering. IEEE Press, 869–879.

[25] David Piorkowski, Austin Z. Henley, Tahmid Nabi, Scott D. Fleming, Christopher
Scaffidi, and Margaret Burnett. 2016. Foraging and Navigations, Fundamentally:
Developers’ Predictions of Value and Cost. In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering. ACM,
97–108.

[26] David J. Piorkowski, Scott D. Fleming, Irwin Kwan, Margaret M. Burnett, Chris
Scaffidi, Rachel K.E. Bellamy, and Joshua Jordahl. 2013. The Whats and Hows of
Programmers’ Foraging Diets. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 3063–3072.

[27] Luca Ponzanelli, Alberto Bacchelli, and Michele Lanza. 2013. Seahawk: Stack
Overflow in the IDE. In Proceedings of the 35th International Conference on Software
Engineering. IEEE Press, 1295–1298.

[28] Rachel Potvin and Josh Levenberg. 2016. Why Google Stores Billions of Lines of
Code in a Single Repository. Commun. ACM 59, 7 (July 2016), 78–87.

[29] Martin P. Robillard. 2009. What Makes APIs Hard to Learn? Answers from
Developers. IEEE Software 26, 6 (Nov.–Dec. 2009), 27–34.

[30] Martin P. Robillard and Robert DeLine. 2011. A field study of API learning
obstacles. Empirical Software Engineering 16, 6 (Dec. 2011), 703–732.

[31] Tobias Roehm, Rebecca Tiarks, Rainer Koschke, and Walid Maalej. 2012. How
Do Professional Developers Comprehend Software?. In Proceedings of the 34th
International Conference on Software Engineering. IEEE Press, 255–265.

[32] Caitlin Sadowski, Kathryn T. Stolee, and Sebastian Elbaum. 2015. HowDevelopers
Search for Code: A Case Study. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering. ACM, 191–201.

[33] Felice Salviulo and Giuseppe Scanniello. 2014. Dealing with Identifiers and
Comments in Source Code Comprehension and Maintenance: Results from an
Ethnographically-informed Study with Students and Professionals. In Proceedings
of the 18th International Conference on Evaluation and Assessment in Software
Engineering. ACM, 48:1–48:10.

[34] Jonathan Sillito, Gail C. Murphy, and Kris De Volder. 2006. Questions Program-
mers Ask During Software Evolution Tasks. In Proceedings of the 14th ACM
SIGSOFT International Symposium on Foundations of Software Engineering. ACM,
23–34.

[35] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and K. Vijay-
Shanker. 2010. Towards Automatically Generating Summary Comments for Java
Methods. In Proceedings of the IEEE/ACM International Conference on Automated
Software Engineering. ACM, 43–52.

[36] Giriprasad Sridhara, Lori Pollock, and K. Vijay-Shanker. 2011. Generating Param-
eter Comments and Integrating with Method Summaries. In Proceedings of the
2011 IEEE 19th International Conference on Program Comprehension. IEEE, 71–80.

[37] Christoph Treude and Martin P. Robillard. 2016. Augmenting API Documenta-
tion with Insights from Stack Overflow. In Proceedings of the 38th International
Conference on Software Engineering. ACM, 392–403.

[38] Gias Uddin and Martin P. Robillard. 2015. How API Documentation Fails. IEEE
Software 32, 4 (July–Aug. 2015), 68–75.

[39] Hao Zhong and Zhendong Su. 2013. Detecting API Documentation Errors. In
Proceedings of the 2013 ACM SIGPLAN International Conference on Object-Oriented
Programming Systems Languages & Applications. ACM, 803–816.

[40] Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong Mei. 2009. MAPO: Mining and
Recommending API Usage Patterns. In Proceedings of the European Conference on
Object-Oriented Programming. Springer, 318–343.

[41] Yu Zhou, Ruihang Gu, Taolue Chen, Zhiqiu Huang, Sebastiano Panichella, and
Harald Gall. 2017. Analyzing APIs Documentation and Code to Detect Directive
Defects. In Proceedings of the 39th International Conference on Software Engineering.
IEEE Press, 27–37.

