
Rethinking the Faster R-CNN Architecture for Temporal Action Localization

Yu-Wei Chao1∗, Sudheendra Vijayanarasimhan2, Bryan Seybold2, David A. Ross2, Jia Deng1, Rahul Sukthankar2

1University of Michigan, Ann Arbor
{ywchao,jiadeng}@umich.edu

2Google Research
{svnaras,seybold,dross,sukthankar}@google.com

Abstract

We propose TAL-Net, an improved approach to temporal
action localization in video that is inspired by the Faster R-
CNN object detection framework. TAL-Net addresses three
key shortcomings of existing approaches: (1) we improve
receptive field alignment using a multi-scale architecture
that can accommodate extreme variation in action dura-
tions; (2) we better exploit the temporal context of actions
for both proposal generation and action classification by
appropriately extending receptive fields; and (3) we explic-
itly consider multi-stream feature fusion and demonstrate
that fusing motion late is important. We achieve state-of-
the-art performance for both action proposal and localiza-
tion on THUMOS’14 detection benchmark and competitive
performance on ActivityNet challenge.

1. Introduction
Visual understanding of human actions is a core ca-

pability in building assistive AI systems. The problem
is conventionally studied in the setup of action classifica-
tion [44, 36, 29], where the goal is to perform forced-choice
classification of a temporally trimmed video clip into one of
several action classes. Despite fruitful progress, this classi-
fication setup is unrealistic, because real-world videos are
usually untrimmed and the actions of interest are typically
embedded in a background of irrelevant activities. Recent
research attention has gradually shifted to temporal action
localization in untrimmed video [23, 31, 45], where the task
is to not only identify the action class, but also detect the
start and end time of each action instance. Improvements in
temporal action localization can drive progress on a large
number of important topics ranging from immediate ap-
plications, such as extracting highlights in sports video, to
higher-level tasks, such as automatic video captioning.

Temporal action localization, like object detection, falls
under the umbrella of visual detection problems. While ob-
ject detection aims to produce spatial bounding boxes in

∗Work done in part during an internship at Google Research.

a 2D image, temporal action localization aims to produce
temporal segments in a 1D sequence of frames. As a result,
many approaches to action localization have drawn inspira-
tion from advances in object detection. A successful exam-
ple is the use of region-based detectors [17, 16, 32]. These
methods first generate a collection of class-agnostic region
proposals from the full image, and go through each proposal
to classify its object class. To detect actions, one can follow
this paradigm by first generating segment proposals from
the full video, followed by classifying each proposal.

Among region-based detectors, Faster R-CNN [32] has
been widely adopted in object detection due to its competi-
tive detection accuracy on public benchmarks [27, 12]. The
core idea is to leverage the immense capacity of deep neural
networks (DNNs) to power the two processes of proposal
generation and object classification. Given its success in
object detection in images, there is considerable interest in
employing Faster R-CNN for temporal action localization
in video. However, such a domain shift introduces several
challenges. We review the issues of Faster R-CNN in the
action localization domain, and redesign the architecture to
specifically address them. We focus on the following:

1. How to handle large variations in action durations?
The temporal extent of actions varies dramatically
compared to the size of objects in an image—from a
fraction of a second to minutes. However, Faster R-
CNN evaluates different scales of candidate proposals
(i.e., anchors) based on a shared feature representation,
which may not capture relevant information due to a
misalignment between the temporal scope of the fea-
ture (i.e. receptive field) and the span of the anchor.
We propose to enforce such alignment using a multi-
tower network and dilated temporal convolutions.

2. How to utilize temporal context? The moments pre-
ceding and following an action instance contain criti-
cal information for localization and classification (ar-
guably more so than the spatial context of an object).
A naive application of Faster R-CNN would fail to ex-
ploit this temporal context. We propose to explicitly
encode temporal context by extending the receptive
fields in proposal generation and action classification.



3. How best to fuse multi-stream features? State-of-
the-art action classification results are mostly achieved
by fusing RGB and optical flow based features. How-
ever, there has been limited work in exploring such fea-
ture fusion for Faster R-CNN. We propose a late fusion
scheme and empirically demonstrate its edge over the
common early fusion scheme.

Our contributions are twofold: (1) we introduce the Tempo-
ral Action Localization Network (TAL-Net), which is a new
approach for action localization in video based on Faster R-
CNN; (2) we achieve state-of-the-art performance on both
action proposal and localization on the THUMOS’14 detec-
tion benchmark [21], along with competitive performance
on the ActivityNet dataset [4].

2. Related Work
Action Recognition Action recognition is conventionally
formulated as a classification problem. The input is a
video that has been temporally trimmed to contain a spe-
cific action of interest, and the goal is to classify the action.
Tremendous progress has recently been made due to the in-
troduction of large datasets and the developments on deep
neural networks [36, 29, 42, 47, 6, 13]. However, the as-
sumption of trimmed input limits the application of these
approaches in real scenarios, where the videos are usually
untrimmed and may contain irrelevant backgrounds.

Temporal Action Localization Temporal action localiza-
tion assumes the input to be a long, untrimmed video, and
aims to identify the start and end times as well as the action
label for each action instance in the video. The problem has
recently received significant research attention due to its po-
tential application in video data analysis. Below we review
the relevant work on this problem.

Early approaches address the task by applying temporal
sliding windows followed by SVM classifiers to classify the
action within each window [23, 31, 45, 30, 52]. They typ-
ically extract improved dense trajectory [44] or pre-trained
DNN features, and globally pool these features within each
window to obtain the input for the SVM classifiers. Instead
of global pooling, Yuan et al. [52] proposed a multi-scale
pooling scheme to capture features at multiple resolutions.
However, these approaches might be computationally inef-
ficient, because one needs to apply each action classifier ex-
haustively on windows of different sizes at different tempo-
ral locations throughout the entire video.

Another line of work generates frame-wise or snippet-
wise action labels, and uses these labels to define the tempo-
ral boundaries of actions [28, 37, 9, 25, 53, 19]. One major
challenge here is to enable temporal contextual reasoning
in predicting the individual labels. Lea et al. [25] proposed
novel temporal convolutional architectures to capture long-
range temporal dependencies, while others [28, 37, 9] use

recurrent neural networks. A few other methods add a sep-
arate contextual reasoning stage on top of the frame-wise
or snippet-wise prediction scores to explicitly model action
durations or temporal transitions [33, 53, 19].

Inspired by the recent success of region-based detectors
in object detection [17, 16], many recent approaches adopt
a two-stage, proposal-plus-classification framework [5, 35,
11, 2, 3, 34, 54], i.e. first generating a sparse set of class-
agnostic segment proposals from the input video, followed
by classifying the action categories for each proposal. A
large number of these works focus on improving the seg-
ment proposals [5, 11, 3, 2], while others focus on building
more accurate action classifiers [34, 54]. However, most of
these methods do not afford end-to-end training on either
the proposal or classification stage. Besides, the proposals
are typically selected from sliding windows of predefined
scales [35], where the boundaries are fixed and may result
in imprecise localization if the windows are not dense.

As the latest incarnation of the region-based object de-
tectors, the Faster R-CNN architecture [32] is composed of
end-to-end trainable proposal and classification networks,
and applies region boundary regression in both stages. A
few very recent works have started to apply such archi-
tecture to temporal action localization [14, 8, 15, 49], and
demonstrated competitive detection accuracy. In particular,
the R-C3D network [49] is a classic example that closely
follows the original Faster R-CNN in many design details.
While being a powerful detection paradigm, we argue that
naively applying the Faster R-CNN architecture to temporal
action localization might suffer from a few issues. We pro-
pose to address these issues in this paper. We will also clar-
ify our contributions over other Faster R-CNN based meth-
ods [14, 8, 15, 49] later when we introduce TAL-Net.

In addition to the works reviewed above, there exist other
classes of approaches, such as those based on single-shot
detectors [1, 26] or reinforcement learning [50]. Others
have also studied temporal action localization in a weakly
supervised setting [40, 46], where only video-level action
labels are available for training. Also note that besides tem-
poral action localization, there also exists a large body of
work on spatio-temporal action localization [18, 22, 39],
which is beyond the scope of this paper.

3. Faster R-CNN
We briefly review the Faster R-CNN detection frame-

work in this section. Faster R-CNN is first proposed to ad-
dress object detection [32], where given an input image, the
goal is to output a set of detection bounding boxes, each
tagged with an object class label. The full pipeline con-
sists of two stages: proposal generation and classification.
First, the input image is processed by a 2D ConvNet to gen-
erate a 2D feature map. Another 2D ConvNet (referred to
as the Region Proposal Network) is then used to generate



RoI Pooling

DNN Classifier

Person Bike Background

2D Feature Map

Input ImageMulti-scale
Anchor Boxes

Region
Proposal
Network

Region
Proposals

2D ConvNet

c

DNN Classifier
Dunk Background

SoI Pooling

1D Feature Map

Multi-scale
Anchor

Segments

Segment
Proposal
Network

Segment
Proposals

2D or 3D ConvNet

Dunk

c

Input Frame Sequence

c c

Figure 1: Contrasting the Faster R-CNN architecture for object detection in images [32] (left) and temporal action localization in video [14,
8, 15, 49] (right). Temporal action localization can be viewed as the 1D counterpart of the object detection problem.

a sparse set of class-agnostic region proposals, by classify-
ing a group of scale varying anchor boxes centered at each
pixel location of the feature map. The boundaries of the
proposals are also adjusted with respect to the anchor boxes
through regression. Second, for each region proposal, fea-
tures within the region are first pooled into a fixed size fea-
ture map (i.e. RoI pooling [16]). Using the pooled feature, a
DNN classifier then computes the object class probabilities
and simultaneously regresses the detection boundaries for
each object class. Fig. 1 (left) illustrates the full pipeline.
The framework is conventionally trained by alternating be-
tween the training of the first and second stage [32].

Faster R-CNN naturally extends to temporal action lo-
calization [14, 8, 49]. Recall that object detection aims to
detect 2D spatial regions, whereas in temporal action local-
ization, the goal is to detect 1D temporal segments, each
represented by a start and an end time. Temporal action lo-
calization can thus be viewed as the 1D counterpart of ob-
ject detection. A typical Faster R-CNN pipeline for tempo-
ral action localization is illustrated in Fig. 1 (right). Similar
to object detection, it consists of two stages. First, given a
sequence of frames, we extract a 1D feature map, typically
via a 2D or 3D ConvNet. The feature map is then passed to
a 1D ConvNet 1 (referred to as the Segment Proposal Net-
work) to classify a group of scale varying anchor segments
at each temporal location, and also regress their boundaries.
This returns a sparse set of class-agnostic segment propos-
als. Second, for each segment proposal, we compute the
action class probabilities and further regress the segment
boundaries, by first applying a 1D RoI pooling (termed “SoI
pooling”) layer followed by a DNN classifier.

4. TAL-Net
TAL-Net follows the Faster R-CNN detection paradigm

for temporal action localization (Fig. 1 right) but features

1“1D convolution” & “temporal convolution” are used interchangeably.

three novel architectural changes (Sec. 4.1 to 4.3).

4.1. Receptive Field Alignment

Recall that in proposal generation, we generate a sparse
set of class-agnostic proposals by classifying a group of
scale varying anchors at each location in the feature map. In
object detection [32], this is achieved by applying a small
ConvNet on top of the feature map, followed by a 1 × 1
convolutional layers with K filters, where K is the number
of scales. Each filter will classify the anchor of a particu-
lar scale. This reveals an important limitation: the anchor
classifiers at each location share the same receptive field.
Such design may be reasonable for object detection, but
may not generalize well to temporal action localization, be-
cause the temporal length of actions can vary more drasti-
cally compared to the spatial size of objects, e.g. in THU-
MOS’14 [21], the action lengths range from less than a sec-
ond to more than a minute. To ensure a high recall, the
applied anchor segments thus need to have a wide range of
scales (Fig. 2 left). However, if the receptive field is set too
small (i.e. temporally short), the extracted feature may not
contain sufficient information when classifying large (i.e.
temporally long) anchors, while if it is set too large, the ex-
tracted feature may be dominated by irrelevant information
when classifying small anchors.

To address this issue, we propose to align each anchor’s
receptive field with its temporal span. This is achieved by
two key enablers: a multi-tower network and dilated tem-
poral convolutions. Given a 1D feature map, our Segment
Proposal Network is composed of a collection of K tem-
poral ConvNets, each responsible for classifying the anchor
segments of a particular scale (Fig. 2 right). Most impor-
tantly, each temporal ConvNet is carefully designed such
that its receptive field size coincides with the associated an-
chor scale. At the end of each ConvNet, we apply two par-
allel convolutional layers with kernel size 1 for anchor clas-
sification and boundary regression, respectively.



cFeature Map

Classifica�on
Regression

Mul�-scale
Anchors

Recep�ve
Field

Object Detec�on
(1D View)

cFeature Map

Temporal Ac�on Localiza�on

Classifica�on
Regression

Mul�-scale
Anchors

?

c1D Feature Map

Segment Proposal Network

Classifica�on
Regression

1 2 K

Figure 2: Left: The limitation of sharing the receptive field across different anchor scales in temporal action localization. Right: The
multi-tower architecture of our Segment Proposal Network. Each anchor scale has an associated network with aligned receptive field.

s/6

(s/6) x 2

s

s/6

max pooling

conv1

conv2

Classifica�on
Regression

c1D Feature Map

Figure 3: Controlling the receptive field size s with dilated tem-
poral convolutions.

The next question is: how do we design temporal Con-
vNets with a controllable receptive field size s? Suppose
we use temporal convolutional filters with kernel size 3 as
a building block. One way to increase s is simply stacking
the convolutional layers: s = 2L + 1 if we stack L layers.
However, given a target receptive field size s, the required
number of layers L will then grow linearly with s, which
can easily increase the number of parameters and make the
network prone to overfitting. One solution is to apply pool-
ing layers: if we add a pooling layer with kernel size 2 af-
ter each convolutional layer, the receptive field size is then
given by s = 2(L+1) − 1. While now L grows logarith-
mically with s, the added pooling layers will exponentially
reduce the resolution of the output feature map, which may
sacrifice localization precision in detection tasks.

To avoid overgrowing the model while maintaining the
resolution, we propose to use dilated temporal convolutions.
Dilated convolutions [7, 51] act like regular convolutions,
except that one subsamples pixels in the input feature map
instead of taking adjacent ones when multiplied with a con-
volution kernel. This technique has been successfully ap-
plied to 2D ConvNets [7, 51] and 1D ConvNets [25] to ex-

pand the receptive field without loss of resolution. In our
Segment Proposal Network, each temporal ConvNet con-
sists of only two dilated convolutional layers (Fig. 3). To
attain a target receptive field size s, we can explicitly com-
pute the required dilation rate (i.e. subsampling rate) rl for
layer l by r1 = s/6 and r2 = (s/6) × 2. We also smooth
the input before subsampling by adding a max pooling layer
with kernel size s/6 before the first convolutional layer.

Contributions beyond [8, 14, 15, 49] Xu et al. [49] fol-
lowed the original Faster R-CNN and thus their anchors at
each pixel location still shared the receptive field. Both Gao
et al. [14, 15] and Dai et al. [8] aligned each anchor’s recep-
tive field with its span. However, Gao et al. [14, 15] average
pooled the features within the span of each anchor, whereas
we use temporal convolutions to extract structure-sensitive
features. Our approach is similar in spirit to Dai et al. [8],
which sampled a fixed number of features within the span of
each anchor; we approach this using dilated convolutions.

4.2. Context Feature Extraction

Temporal context information (i.e. what happens imme-
diately before and after an action instance) is a critical sig-
nal for temporal action localization for two reasons. First,
it enables more accurate localization of the action bound-
aries. For example, seeing a person standing still on the far
end of a diving board is a strong signal that he will soon
start a “diving” action. Second, it provides strong semantic
cues for identifying the action class within the boundaries.
For example, seeing a javelin flying in the air indicates that
a person just finished a “javelin throw”, not “pole vault”.
As a result, it is critical to encode the temporal context fea-
tures in the action localization pipeline. Below we detail
our approach to explicitly exploit context features in both
the proposal generation and action classification stage.

In proposal generation, we showed the receptive field for
classifying an anchor can be matched with the anchor’s span
(Sec. 4.1). However, this only extracts the features within



s s/2s/2

(s/6) x 2 x 2

(s/6) x 2

max pooling

conv1

conv2

Classifica�on
Regression

c1D Feature Map

(s/6) x 2

Figure 4: Incorporating context features in proposal generation.

1D Feature Map

Proposal

d

FC

d

7

Classifica�on
Regression

SoI pooling

1D Feature Map

Proposal

d

FC

d

7

s s/2s/2

Classifica�on
Regression

SoI pooling

Figure 5: Classifying a proposal without (top) [16, 32] and with
(bottom) incorporating context features

the anchor, and overlooks the contexts before and after it.
To ensure the context features are used for anchor classi-
fication and boundary regression, the receptive field must
cover the context regions. Suppose the anchor is of scale s,
we enforce the receptive field to also cover the two segments
of length s/2 immediately before and after the anchor. This
can be achieved by doubling the dilation rate of the convo-
lutional layers, i.e. r1 = (s/6)× 2 and r2 = (s/6)× 2× 2,
as illustrated in Fig. 4. Consequently, we also double the
kernel size of the initial max pooling layer to (s/6)× 2.

In action classification, we perform SoI pooling (i.e. 1D
RoI pooling) to extract a fixed size feature map for each ob-
tained proposal. We illustrate the mechanism of SoI pooling
with output size 7 in Fig. 5 (top). Note that as in the origi-
nal design of RoI pooling [16, 32], pooling is applied to the
region strictly within the proposal, which includes no tem-
poral contexts. We propose to extend the input extent of SoI

Segment
Proposal
Network

1D Feature Map (RGB) 1D Feature Map (Flow)

Proposal Logits (RGB) Proposal Logits (Flow)

Proposal Logits 

Averaging

SoI Pooling

DNN 
Classifier

Classification Logits (RGB) Classification Logits (Flow)

Classification Logits 

Averaging

Action Classification

SoI Pooling

Proposal Generation

Figure 6: The late fusion scheme for the two-stream Faster R-
CNN framework.

pooling. As shown in Fig. 5 (bottom), for a proposal of size
s, the extent of our SoI pooling covers not only the proposal
segment, but also the two segments of size s/2 immediately
before and after the proposal, similar to the classification
of anchors. After SoI pooling, we add one fully-connected
layer, followed by a final fully-connected layer, which clas-
sifies the action and regresses the boundaries.

Contributions beyond [8, 14, 15, 49] Xu et al. [49] did
not exploit any context features in either proposal genera-
tion or action classification. Dai et al. [8] included context
features when generating proposals, but used only the fea-
tures within the proposal in action classification. Gao et
al. exploited context features in either proposal generation
only [15] or both stages [14]. However, they average-pooled
the features within the context regions, while we use tem-
poral convolutions and SoI pooling to encode the temporal
structure of the features.

4.3. Late Feature Fusion

In action classification, most of the state-of-the-art meth-
ods [36, 29, 47, 6, 13] rely on a two-stream architecture,
which parallelly processes two types of input—RGB frames
and pre-computed optical flow—and later fuses their fea-
tures to generate the final classification scores. We hypothe-
size such two-stream input and feature fusion may also play
an important role in temporal action localization. There-
fore we propose a late fusion scheme for the two-stream
Faster R-CNN framework. Conceptually, this is equivalent
to performing the conventional late fusion in both the pro-
posal generation and action classification stage (Fig. 6). We
first extract two 1D feature maps from RGB frames and
stacked optical flow, respectively, using two different net-
works. We process each feature map by a distinct Segment



Proposal Network, which parallelly generates the logits for
anchor classification and boundary regression. We use the
element-wise average of the logits from the two networks
as the final logits to generate proposals. For each proposal,
we perform SoI pooling parallelly on both feature maps,
and apply a distinct DNN classifier on each output. Finally,
the logits for action classification and boundary regression
from both DNN classifiers are element-wisely averaged to
generate the final detection output.

Note that a more straightforward way to fuse two fea-
tures is through an early fusion scheme: we concatenate the
two 1D feature maps in the feature dimension, and apply
the same pipeline as before (Sec. 4.1 and 4.2). We show
by experiments that the aforementioned late fusion scheme
outperforms the early fusion scheme.

Contributions beyond [8, 14, 15, 49] Xu et al. [49] only
used a single-stream feature (C3D). Both Dai et al. and Gao
et al. used two-stream features, but either did not perform
fusion [15] or only tried the early fusion scheme [8, 14].

5. Experiments
Dataset We perform ablation studies and state-of-the-art
comparisons on the temporal action detection benchmark
of THUMOS’14 [21]. The dataset contains videos from 20
sports action classes. Since the training set contains only
trimmed videos with no temporal annotations, we use the
200 untrimmed videos (3,007 action instances) in the vali-
dation set to train our model. The test set consists of 213
videos (3,358 action instances). Each video is on average
more than 3 minutes long, and contains on average more
than 15 action instances, making the task particularly chal-
lenging. Besides THUMOS’14, we separately report our
results on ActivityNet v1.3 [4] at the end of the section.

Evaluation Metrics We consider two tasks: action pro-
posal and action localization. For action proposal, we cal-
culate Average Recall (AR) at different Average Number of
Proposals per Video (AN) using the public code provided
by [11]. AR is defined by the average of all recall values
using tIoU thresholds from 0.5 to 1 with a step size of 0.05.
For action localization, we report mean Average Precision
(mAP) using different tIoU thresholds.

Features To extract the feature maps, we first train a two-
stream ”Inflated 3D ConvNet” (I3D) model [6] on the Ki-
netics action classification dataset [24]. The I3D model
builds upon state-of-the-art image classification architec-
tures (i.e. Inception-v1 [41]), but inflates their filters and
pooling kernels into 3D, leading to very deep, naturally spa-
tiotemporal classifiers. The model takes as input a stack of
64 RGB/optical flow frames, performs spatio-temporal con-
volutions, and extracts a 1024-dimensional feature as the
output of an average pooling layer. We extract both RGB

and optical flow frames at 10 frames per second (fps) as
input to the I3D model. To compute optical flow, we use
a FlowNet [10] model trained on artificially generated data
followed by fine-tuning on the Kinetics dataset using an un-
supervised loss [43]. After training on Kinetics we fix the
model and extract the 1024-dimensional output of the av-
erage pooling layer by stacking every 16 RGB/optical flow
frames in the frame sequence. The input to our action local-
ization model is thus two 1024-dimensional feature maps—
for RGB and optical flow—sampled at 0.625 fps from the
input videos.

Implementation Details Our implementation is based
on the TensorFlow Object Detection API [20]. In pro-
posal generation, we apply anchors of the following scales:
{1, 2, 3, 4, 5, 6, 8, 11, 16}, i.e. K = 9. We set the number
of filters to 256 for all convolutional and fully-connected
layers in the Segment Proposal Network and the DNN clas-
sifier. We add a convolutional layer with kernel size 1 to
reduce the feature dimension to 256 before the Segment
Proposal Network and after the SoI pooling layer. We ap-
ply Non-Maximum Suppression (NMS) with tIoU threshold
0.7 on the proposal output and keep the top 300 proposals
for action classification. The same NMS is applied to the
final detection output for each action class separately. The
training of TAL-Net largely follows the Faster R-CNN im-
plementation in [20]. We provide the details in the supple-
mentary material.

Receptive Field Alignment We validate the design for re-
ceptive field alignment by comparing four baselines: (1) a
single-tower network with no temporal convolutions (Sin-
gle), where each anchor is classified solely based on the
feature at its center location; (2) a single-tower network
with non-dilated temporal convolutions (Single+TConv),
which represents the default Faster R-CNN architecture; (3)
a multi-tower network with non-dilated temporal convolu-
tions (Multi+TConv); (4) a multi-tower network with di-
lated temporal convolutions (Multi+Dilated, the proposed
architecture). All temporal ConvNets have two layers, both
with kernel size 3. Here we consider only a single-steam
feature (i.e. RGB or flow) and evaluate the generated pro-
posal with AR-AN. The results are reported in Tab. 1 (top
for RGB and bottom for flow). The trend is consistent on
both features: Single performs the worst, since it relies
only on the context at the center location; Single+TConv
and Multi+TConv both perform better than Single, but still,
suffer from irrelevant context due to misaligned receptive
fields; Multi-Dilated outperforms the others, as the recep-
tive fields are properly aligned with the span of anchors.

Context Feature Extraction We first validate our design
for context feature extraction in proposal generation. Tab. 2
compares the generated proposals before and after incorpo-
rating context features (top for RGB and bottom for flow).



AN 10 20 50 100 200
Single 9.4 15.3 25.3 33.9 41.3
Single + TConv 12.9 20.0 30.3 37.6 44.0
Multi + TConv 13.4 20.6 31.1 38.1 43.7
Multi + Dilated 14.0 21.7 31.9 38.8 44.7

Single 11.0 18.0 28.9 36.8 43.6
Single + TConv 15.1 23.2 33.7 40.0 44.7
Multi + TConv 15.7 24.0 35.0 41.1 46.2
Multi + Dilated 16.3 25.4 35.8 42.3 47.5

Table 1: Results for receptive field alignment on proposal gener-
ation in AR (%). Top: RGB stream. Bottom: Flow stream.

AN 10 20 50 100 200
Multi + Dilated 14.0 21.7 31.9 38.8 44.7
Multi + Dilated + Context 15.1 22.2 32.3 39.9 46.8

Multi + Dilated 16.3 25.4 35.8 42.3 47.5
Multi + Dilated + Context 17.4 26.5 36.5 43.3 48.6

Table 2: Results for incorporating context features in proposal
generation in AR (%). Top: RGB stream. Bottom: Flow stream.

tIoU 0.1 0.3 0.5 0.7 0.9
SoI Pooling 44.9 38.4 28.5 13.0 0.6
SoI Pooling + Context 49.3 42.6 31.9 14.2 0.6

SoI Pooling 49.8 45.7 37.4 18.8 0.7
SoI Pooling + Context 54.3 48.8 38.2 18.6 0.9

Table 3: Results for incorporating context features in action clas-
sification in mAP (%). Top: RGB stream. Bottom: Flow stream.

tIoU 0.1 0.3 0.5 0.7 0.9
RGB 49.3 42.6 31.9 14.2 0.6
Flow 54.3 48.8 38.2 18.6 0.9
Early Fusion 60.5 52.8 40.8 19.3 0.8
Late Fusion 59.8 53.2 42.8 20.8 0.9

Table 4: Results for late feature fusion in mAP (%).

We achieve higher AR on both streams after the context fea-
tures are included. Next, given better proposals, we evalu-
ate context feature extraction in action classification. Tab. 3
compares the action localization results before and after in-
corporating context features (top for RGB and bottom for
flow). Similarly, we achieve higher mAP nearly at all AN
values on both streams after including the context features.

Late Feature Fusion Tab. 4 reports the action localiza-
tion results of the two single-stream networks and the early
and late fusion schemes. First, the flow based feature out-
performs the RGB based feature, which coheres with the
common observations in action classification [36, 47, 6, 13].
Second, the fused features outperform the two single-stream
features, suggesting the RGB and flow features complement
each other. Finally, the late fusion scheme outperforms the
early fusion scheme except at tIoU threshold 0.1, validating

101 102 103 104

Average Number of Proposals per Video

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 R

e
ca

ll

Sparse-prop [5]
SCNN-prop [35]
DAPs [11]
TURN [15]
Ours

Figure 7: Our action proposal result in AR-AN (%) on THU-
MOS’14 comparing with other state-of-the-art methods.

tIoU 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Karaman et al. [23] 4.6 3.4 2.4 1.4 0.9 – –
Oneata et al. [31] 36.6 33.6 27.0 20.8 14.4 – –
Wang et al. [45] 18.2 17.0 14.0 11.7 8.3 – –
Caba Heilbron et al. [5] – – – – 13.5 – –
Richard and Gall [33] 39.7 35.7 30.0 23.2 15.2 – –
Shou et al. [35] 47.7 43.5 36.3 28.7 19.0 10.3 5.3
Yeung et al. [50] 48.9 44.0 36.0 26.4 17.1 – –
Yuan et al. [52] 51.4 42.6 33.6 26.1 18.8 – –
Escorcia et al. [11] – – – – 13.9 – –
Buch et al. [2] – – 37.8 – 23.0 – –
Shou et al. [34] – – 40.1 29.4 23.3 13.1 7.9
Yuan et al. [53] 51.0 45.2 36.5 27.8 17.8 – –
Buch et al. [1] – – 45.7 – 29.2 – 9.6
Gao et al. [14] 60.1 56.7 50.1 41.3 31.0 19.1 9.9
Hou et al. [19] 51.3 – 43.7 – 22.0 – –
Dai et al. [8] – – – 33.3 25.6 15.9 9.0
Gao et al. [15] 54.0 50.9 44.1 34.9 25.6 – –
Xu et al. [49] 54.5 51.5 44.8 35.6 28.9 – –
Zhao et al. [54] 66.0 59.4 51.9 41.0 29.8 – –

Ours 59.8 57.1 53.2 48.5 42.8 33.8 20.8

Table 5: Action localization mAP (%) on THUMOS’14.

our proposed design.

State-of-the-Art Comparisons We compare TAL-Net
with state-of-the-art methods on both action proposal and
localization. Fig. 7 shows the AR-AN curves for action pro-
posal. TAL-Net outperforms all other methods in the low
AN region, suggesting our top proposals have higher qual-
ity. Although our AR saturates earlier as AN increases, this
is because we extract features at a much lower frequency
(i.e. 0.625 fps) due to the high computational demand of
the I3D models. This reduces the density of anchors and
lowers the upper bound of the recall. Tab. 5 compares the
mAP for action localization. TAL-Net achieves the highest
mAP when the tIoU threshold is greater than 0.2, suggesting
it can localize the boundaries more accurately. We particu-
larly highlight our result at tIoU threshold 0.5, where TAL-
Net outperforms the state-of-the-art by 11.8% mAP (42.8%



BasketballDunk BasketballDunk

BasketballDunk
BasketballDunk

0 1.3 4.8 29.9 33.5 40.7

CleanAndJerk CleanAndJerk CleanAndJerk

CleanAndJerk
CleanAndJerk

CleanAndJerk

0 20.1 30.5 43.3 80.4 91.2 119.3 134.8 147.8

Shotput Shotput Shotput Shotput Shotput Shotput

Shotput
Shotput

ThrowDiscus
Shotput

Shotput
Shotput

Shotput

0 4.4 9.3 16.4 24.9 29.1 70 81.8 92.6 97.6 141.6 147.8 159.3 165.3 212.7

Figure 8: Qualitative examples of the top localized actions on THUMOS’14. Each consists of a sequence of frames sampled from a full
test video, the ground-truth (blue) and predicted (green) action segments and class labels, and a temporal axis showing the time in seconds.

versus 31.0% from Gao et al. [14]).

Qualitative Results Fig. 8 shows qualitative examples of
the top localized actions on THUMOS’14. Each consists
of a sequence of frames sampled from a full test video, the
ground-truth (blue) and predicted (green) action segments
and class labels, and a temporal axis showing the time in
seconds. In the top example, our method accurately local-
izes both instances in the video. In the middle example, the
action classes are correctly classified, but the start of the
leftmost prediction is inaccurate, due to subtle differences
between preparation and the start of the action. In the bot-
tom, “ThrowDiscus” is misclassified due to similar context.

Results on ActivityNet Tab. 6 shows our action local-
ization results on the ActivityNet v1.3 validation set along
with other recent published results. TAL-Net outperforms
other Faster R-CNN based methods at tIoU threshold 0.5
(38.23% vs. 36.44% from Dai et al. [8] and 26.80% from
Xu et al. [49]). Note that THUMOS’14 is a better dataset
for evaluating action localization than ActivityNet, as the
former has more action instances per video and each video
contains a larger portion of background activity: on av-
erage, the THUMOS’14 training set has 15 instances per
video and each video has 71% background, while the Ac-
tivityNet training set has only 1.5 instances per video and

tIoU 0.5 0.75 0.95 Average
Singh and Cuzzolin [38] 34.47 – – –
Wang and Tao [48] 43.65 – – –
Shou et al. [34] 45.30 26.00 0.20 23.80
Dai et al. [8] 36.44 21.15 3.90 –
Xu et al. [49] 26.80 – – 12.70
Ours 38.23 18.30 1.30 20.22

Table 6: Action localization mAP (%) on ActivityNet v1.3 (val).

each video has only 36% background.

6. Conclusion
We introduce TAL-Net, an improved approach to tempo-

ral action localization in video that is inspired by the Faster
RCNN object detection framework. TAL-Net features three
novel architectural changes that address three key shortcom-
ings of existing approaches: (1) receptive field alignment;
(2) context feature extraction; and (3) late feature fusion.
We achieve state-ofthe-art performance for both action pro-
posal and localization on THUMOS14 detection benchmark
and competitive performance on ActivityNet challenge.

Acknowledgement We thank João Carreira and Susanna
Ricco for their help on the I3D models and optical flow.



References
[1] S. Buch, V. Escorcia, B. Ghanem, L. Fei-Fei, and J. C.

Niebles. End-to-end, single-stream temporal action detec-
tion in untrimmed videos. In BMVC, 2017. 2, 7

[2] S. Buch, V. Escorcia, C. Shen, B. Ghanem, and J. C. Niebles.
SST: Single-stream temporal action proposals. In CVPR,
2017. 2, 7

[3] F. Caba Heilbron, W. Barrios, V. Escorcia, and B. Ghanem.
SCC: Semantic context cascade for efficient action detection.
In CVPR, 2017. 2

[4] F. Caba Heilbron, V. Escorcia, B. Ghanem, and J. C. Niebles.
ActivityNet: A large-scale video benchmark for human ac-
tivity understanding. In CVPR, 2015. 2, 6

[5] F. Caba Heilbron, J. C. Niebles, and B. Ghanem. Fast tempo-
ral activity proposals for efficient detection of human actions
in untrimmed videos. In CVPR, 2016. 2, 7

[6] J. Carreira and A. Zisserman. Quo vadis, action recognition?
a new model and the Kinetics dataset. In CVPR, 2017. 2, 5,
6, 7

[7] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and
A. L. Yuille. Semantic image segmentation with deep con-
volutional nets and fully connected CRFs. In ICLR, 2015.
4

[8] X. Dai, B. Singh, G. Zhang, L. S. Davis, and Y. Q. Chen.
Temporal context network for activity localization in videos.
In ICCV, 2017. 2, 3, 4, 5, 6, 7, 8

[9] A. Dave, O. Russakovsky, and D. Ramanan. Predictive-
corrective networks for action detection. In CVPR, 2017.
2

[10] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazrbas,
V. Golkov, P. van der Smagt, D. Cremers, and T. Brox.
FlowNet: Learning optical flow with convolutional net-
works. In ICCV, 2015. 6

[11] V. Escorcia, F. Caba Heilbron, J. C. Niebles, and B. Ghanem.
DAPs: Deep action proposals for action understanding. In
ECCV, 2016. 2, 6, 7

[12] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I.
Williams, J. Winn, and A. Zisserman. The PASCAL visual
object classes challenge: A retrospective. IJCV, 111(1):98–
136, Jan 2015. 1

[13] C. Feichtenhofer, A. Pinz, and R. P. Wildes. Spatiotemporal
multiplier networks for video action recognition. In CVPR,
2017. 2, 5, 7

[14] J. Gao, Z. Yang, and R. Nevatia. Cascaded boundary regres-
sion for temporal action detection. In BMVC, 2017. 2, 3, 4,
5, 6, 7, 8

[15] J. Gao, Z. Yang, C. Sun, K. Chen, and R. Nevatia. TURN
TAP: Temporal unit regression network for temporal action
proposals. In ICCV, 2017. 2, 3, 4, 5, 6, 7

[16] R. Girshick. Fast R-CNN. In ICCV, 2015. 1, 2, 3, 5
[17] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic
segmentation. In CVPR, 2014. 1, 2

[18] G. Gkioxari and J. Malik. Finding action tubes. In CVPR,
2015. 2

[19] R. Hou, R. Sukthankar, and M. Shah. Real-time temporal
action localization in untrimmed videos by sub-action dis-
covery. In BMVC, 2017. 2, 7

[20] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara,
A. Fathi, I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, and
K. Murphy. Speed/accuracy trade-offs for modern convolu-
tional object detectors. In CVPR, 2017. 6

[21] Y.-G. Jiang, J. Liu, A. Roshan Zamir, G. Toderici, I. Laptev,
M. Shah, and R. Sukthankar. THUMOS challenge: Ac-
tion recognition with a large number of classes. http:
//crcv.ucf.edu/THUMOS14/, 2014. 2, 3, 6

[22] V. Kalogeiton, P. Weinzaepfel, V. Ferrari, and C. Schmid.
Action tubelet detector for spatio-temporal action localiza-
tion. In ICCV, 2017. 2

[23] S. Karaman, L. Seidenari, and A. D. Bimbo. Fast saliency
based pooling of fisher encoded dense trajectories. http:
//crcv.ucf.edu/THUMOS14/, 2014. 1, 2, 7

[24] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier,
S. Vijayanarasimhan, F. Viola, T. Green, T. Back, P. Natsev,
M. Suleyman, and A. Zisserman. The Kinetics human action
video dataset. arXiv preprint arXiv:1705.06950, 2017. 6

[25] C. Lea, M. Flynn, R. Vidal, A. Reiter, and G. Hager. Tempo-
ral convolutional networks for action segmentation and de-
tection. In CVPR, 2017. 2, 4

[26] T. Lin, X. Zhao, and Z. Shou. Single shot temporal action
detection. In ACM Multimedia, 2017. 2

[27] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollár, and C. Zitnick. Microsoft COCO: Com-
mon objects in context. In ECCV. 2014. 1

[28] S. Ma, L. Sigal, and S. Sclaroff. Learning activity progres-
sion in LSTMs for activity detection and early detection. In
CVPR, 2016. 2

[29] J. Y.-H. Ng, M. Hausknecht, S. Vijayanarasimhan,
O. Vinyals, R. Monga, and G. Toderici. Beyond short snip-
pets: Deep networks for video classification. In CVPR, 2015.
1, 2, 5

[30] B. Ni, X. Yang, and S. Gao. Progressively parsing interac-
tional objects for fine grained action detection. In CVPR,
2016. 2

[31] D. Oneata, J. Verbeek, , and C. Schmid. The LEAR
submission at thumos 2014. http://crcv.ucf.edu/
THUMOS14/, 2014. 1, 2, 7

[32] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-
wards real-time object detection with region proposal net-
works. In NIPS. 2015. 1, 2, 3, 5

[33] A. Richard and J. Gall. Temporal action detection using a
statistical language model. In CVPR, 2016. 2, 7

[34] Z. Shou, J. Chan, A. Zareian, K. Miyazawa, and S.-F. Chang.
Cdc: Convolutional-de-convolutional networks for precise
temporal action localization in untrimmed videos. In CVPR,
2017. 2, 7, 8

[35] Z. Shou, D. Wang, and S.-F. Chang. Temporal action local-
ization in untrimmed videos via multi-stage CNNs. In CVPR,
2016. 2, 7

[36] K. Simonyan and A. Zisserman. Two-stream convolutional
networks for action recognition in videos. In NIPS. 2014. 1,
2, 5, 7

http://crcv.ucf.edu/THUMOS14/
http://crcv.ucf.edu/THUMOS14/
http://crcv.ucf.edu/THUMOS14/
http://crcv.ucf.edu/THUMOS14/
http://crcv.ucf.edu/THUMOS14/
http://crcv.ucf.edu/THUMOS14/


[37] B. Singh, T. K. Marks, M. Jones, O. Tuzel, and M. Shao. A
multi-stream bi-directional recurrent neural network for fine-
grained action detection. In CVPR, 2016. 2

[38] G. Singh and F. Cuzzolin. Untrimmed video classification
for activity detection: submission to ActivityNet challenge.
In ActivityNet Large Scale Activity Recognition Challenge,
2016. 8

[39] G. Singh, S. Saha, M. Sapienza, P. Torr, and F. Cuzzolin.
Online real-time multiple spatiotemporal action localisation
and prediction. In ICCV, 2017. 2

[40] C. Sun, S. Shetty, R. Sukthankar, and R. Nevatia. Tempo-
ral localization of fine-grained actions in videos by domain
transfer from web images. In ACM Multimedia, 2015. 2

[41] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In CVPR, 2015. 6

[42] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri.
Learning spatiotemporal features with 3D convolutional net-
works. In ICCV, 2015. 2

[43] S. Vijayanarasimhan, S. Ricco, C. Schmid, R. Sukthankar,
and K. Fragkiadaki. SfM-Net: Learning of structure and mo-
tion from video. arXiv preprint arXiv:1704.07804, 2017. 6

[44] H. Wang and C. Schmid. Action recognition with improved
trajectories. In ICCV, 2013. 1, 2

[45] L. Wang, Y. Qiao, and X. Tang. Action recognition and
detection by combining motion and appearance features.
http://crcv.ucf.edu/THUMOS14/, 2014. 1, 2, 7

[46] L. Wang, Y. Xiong, D. Lin, and L. Van Gool. Untrimmednets
for weakly supervised action recognition and detection. In
CVPR, 2017. 2

[47] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and
L. Van Gool. Temporal segment networks: Towards good
practices for deep action recognition. In ECCV, 2016. 2, 5,
7

[48] R. Wang and D. Tao. UTS at ActivityNet 2016. In Activi-
tyNet Large Scale Activity Recognition Challenge, 2016. 8

[49] H. Xu, A. Das, and K. Saenko. R-C3D: Region convolutional
3D network for temporal activity detection. In ICCV, 2017.
2, 3, 4, 5, 6, 7, 8

[50] S. Yeung, O. Russakovsky, G. Mori, and L. Fei-Fei. End-
to-end learning of action detection from frame glimpses in
videos. In CVPR, 2016. 2, 7

[51] F. Yu and V. Koltun. Multi-scale context aggregation by di-
lated convolutions. In ICLR, 2016. 4

[52] J. Yuan, B. Ni, X. Yang, and A. A. Kassim. Temporal action
localization with pyramid of score distribution features. In
CVPR, 2016. 2, 7

[53] Z. Yuan, J. C. Stroud, T. Lu, and J. Deng. Temporal action
localization by structured maximal sums. In CVPR, 2017. 2,
7

[54] Y. Zhao, Y. Xiong, L. Wang, Z. Wu, D. Lin, and X. Tang.
Temporal action detection with structured segment networks.
In ICCV, 2017. 2, 7

http://crcv.ucf.edu/THUMOS14/

