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The tunneling between the two ground states of an Ising ferromagnet is a typical example of
many-body tunneling processes between two local minima, as they occur during quantum annealing.
Performing quantum Monte Carlo (QMC) simulations we find that the QMC tunneling rate displays
the same scaling with system size, as the rate of incoherent tunneling. The scaling in both cases
is O(A?), where A is the tunneling splitting. An important consequence is that QMC simulations
can be used to predict the performance of a quantum annealer for tunneling through a barrier.
Furthermore, by using open instead of periodic boundary conditions in imaginary time, equivalent
to a projector QMC algorithm, we obtain a quadratic speedup for QMC, and achieve linear scaling
in A. We provide a physical understanding of these results and their range of applicability based

on an instanton picture.

Quantum annealing [1-6] (QA) has been proposed as a
method to solve combinatorial optimization problems. In
contrast to its closely related classical counterpart, sim-
ulated annealing (SA) [7], which makes use of thermal
fluctuations to escape local minima of the energy land-
scape in the search for a low energy solution, QA can
additionally exploit quantum tunneling. In QA the sys-
tem closely follows the ground state of a time-dependent
Hamiltonian H(t) whose initial ground state at ¢ = 0
is easy to prepare. The final Hamiltonian H (tgna1) en-
codes the cost function of a combinatorial optimization
problem.

Random ensembles of hard problems are closely con-
nected to spin glass models known in statistical physics.
There one typically passes through a second order quan-
tum phase transition from a paramagnetic into a glassy
phase, where the energy gap closes polynomially with
problem size N, and then encounters a cascade of avoided
level crossings with typically exponentially small gaps
A o e~ N inside the glassy phase [3, 8-10]. In other
problems, such as Grover search or number partitioning,
there may just be a single exponentially small gap at a
single first order quantum phase transition. Avoided level
crossings with exponential gaps are the main bottleneck
in quantum annealing and are in most cases associated
with tunneling processes.

Simulations are important to understand the mecha-
nisms of QA and find the class of problems for which
QA may perform better than SA and other classical algo-
rithms. QMC simulations have been performed [3, 11, 12]
on problems of much larger sizes than accessible by direct
integration of the time dependent Schrodinger equation.
In particular, a recent numerical study of random Ising
spin glass instances [12] has reconciled expectations of
quantum speedup based on QMC simulations [3] with
experiments that failed to detect it [5].

The major bottlenecks of QMC simulations of QA are

also associated with tunneling events. However, while
QMC faithfully samples the equilibrium thermal state of
a quantum system it does not directly simulate its uni-
tary time evolution. In particular, the universal critical
exponents at second order quantum phase transitions are
different than those of the stochastic QMC dynamics, as
was recently pointed out in this context [13]. Neverthe-
less, correlations between QMC dynamics and the gap
have recently been observed in simple models [14].

In this Letter we show that despite the different dy-
namics there exists a broad class of tunneling problems
where QMC is not “merely” a quantum-inspired classi-
cal optimization algorithm [3-5]. In these problems the
time of QMC to simulate quantum mechanical tunnel-
ing scales identically (in leading exponential order) with
the problem size to the tunneling rate of a physical sys-
tem and QMC is thus a quantitatively faithful predictor
of QA performance. We also discuss possible types of
problems where this may not apply.

Tunneling decay of a metastable state — To gain in-
sight into the equivalence of QA and QMC we consider
the tunneling between two nearly degenerate minima x;
and x5 of a potential V(x). The pioneering work of
Langer [15, 16] makes an explicit connection between the
tunneling rate of a particle and the classical Kramers
escape rate from the metastable state of a non-linear
stochastic field process. This sheds light on how QA and
QMC tunneling dynamics are related.

Within a semiclassical picture, the wave function de-
cays exponentially in the classically forbidden region.
In the particular case where the action under the bar-
rier is purely imaginary this corresponds to a parti-
cle moving with imaginary momentum along the imag-
inary time axis ¢ = —it [17, 18]. The amplitude A
of tunneling from the ground state associated with a
local minimum V(x;) = 0 is determined by the path
integral K, (x',x;) = [ D[x(r’)] e~S-*/M between



the local minimum x(0) =~ x; and the turning point
x(7) = x' at the barrier exit chosen to maximize K.
Here S;[x(7')] = [ dr’3mx*(7')+V (x(7')) is the action
of the path under the barrier and 7 — oco. The domi-
nant contribution comes from the stationary action path
(instanton) x*(7') corresponding to a particle moving in
the inverted potential —V'(x). The tunneling amplitude
is A x exp(=8;[x*(7')]/h).

Similar arguments are known in statistical physics
where the partition function Z = Tr K3 of a state ther-
malized near a local minimum x; of the potential cor-
responds to the path integral in imaginary time with
periodic boundary conditions for x(7) with 0 < 7 <
8 = h/kgT. By tunneling away from the minimum,
the partition function acquires an imaginary part. It is
dominated by the instanton/anti-instanton path x**(7)
that moves under the barrier starting near xy, reaches
the turning point x’, and returns [19]. We note that
—2ImZ/(BReZ) x A? [20] gives a squared tunneling
amplitude (oc =87 (MI/7) because we pay the cost of
creating an instanton and an anti-instanton.

In the context of QA we introduce a slowly varying field
that changes the order of the minima x; 2 of V(x,t). At
the start of QA the system is localized in the vicinity of
x; and at the end it arrives at the vicinity of xo after
a tunneling event at time t. when V(x1,t.) =~ V(xa, t¢).
In the case of open system QA when the dephasing time
Ty < A~! there is incoherent tunneling at ¢t ~ t. from x;
to x5 with rate To A2, determining the time scale of open
system QA [21-23]. The same scaling with A? is also
obtained in closed systems by the Landau-Zener formula.

Following Refs. [15, 16], the tunneling decay rate for-
mally corresponds to the Kramers escape rate from a
metastable state of a classical 1D field with order param-
eter x(7) satisfying the periodic boundary conditions and
free energy functional F = Sg[x(7)]/B8. The stochas-
tic evolution of this field x(7,¢) in time ¢ is described
by the Langevin equation x; = —ufS~[VV — mx,.] +
(2ufi/B)'/? 1, where n(7,t) is a random force delta cor-
related in both of its arguments and p is a relaxation
coefficient. We now observe that the same dynamics de-
scribes the standard path integral QMC to calculate the
partition function Z. QMC samples paths x(7,t) with
sweeping rate o . The functional F[x(7)] has a sad-
dle point x**(7) that the QMC trajectory x(7,t) crosses
during the escape event from the metastable state x; to-
wards Xo. According to Kramers theory the escape rate is
W o e F/kBT — ¢=Sslx""(T)/h This saddle point is pre-
cisely the instanton/anti-instanton path, and therefore
the QMC escape rate W o A2 o« —Im Z. Therefore, in
this archetypical example, the time needed for a physical
system to tunnel is equal, within exponential accuracy,
to the corresponding simulation time of quantum Monte
Carlo.

We validated these arguments by simulations of tun-
neling in a one-dimensional double well potential V(z) =

Figure 1. Upper panel: Typical instanton/anti-instanton tra-
jectory with periodic boundary condition in imaginary time.
Along such trajectories the path samples both the |1 ) and || )
states. The magnetization m exhibits two jumps correspond-
ing to instantons (tunneling events) in imaginary time (red
arrows). Lower panel: with open boundary condition only
one instanton is required and the tunneling probability thus
increased. On the right we sketch the double-well potential.

Az* — 22, where A depends exponentially on A. Per-
forming QMC simulations in continuous space [24] we
compared the average QMC tunneling time to 1/A? and
find excellent agreeement over a wide range of time scales
(see Supplementary Materials (SM)). Furthermore, we
find that the QMC scaling does not significantly de-
pend on whether local or global updates are used. Using
open instead of periodic boundary conditions in imagi-
nary time describes a so-called path integral ground state
(PIGS) simulation [25]. There, the tunneling trajectory
is dominated by configurations with a single instanton
x*(7) with corresponding escape rate W o« A — giving
quadratic speedup of QMC over incoherent tunneling.

Tunneling in a transverse field Ising model — We now
show that our findings are not limited to continuous
variables, but extend to tunneling through barriers in
quantum spin systems. To establish the equivalence of
QA and QMC tunneling dynamics in this case we study
the archetypical model of an Ising ferromagnet in the
presence of a weak transverse field I' with Hamiltonian
H = T} 0} — > Jijofoj, considering both a linear
chain with couplings J;; = &; j+1 + d; j—1 and fully con-
nected clusters with J;; = 1/2L, where L is the number
of spins.

For small T" there are two degenerate ground states:
the configuration labeled |1) with spins aligned pointing
(predominantly) up and average magnetization per site
m = 1.,(07) ~ +1 and the configuration labeled | )
with m =~ —1. For finite L the transverse field term mixes
the two states with an exponentially small (in L) but
nonzero tunneling matrix element e = (1|H||). This lifts
the degeneracy between the two ground states, resulting
in an exponentially small energy gap A = 2¢ between the
states |¢4) = 1/v2(|1) £[1)).

Adiabatically tuning a (weak) longitudinal field



—h), o from a small positive to a small negative value,
we encounter a tunneling problem, which is similar to the
typical tunneling problem of QA at avoided level cross-
ings, with the spins having to tunnel from | 1) to | ).
This event is described by an instanton path m = m(7)
in which all spins evolve in an identical fashion (see SM).
The instanton dynamics can be described by an effective
double well model, whose degenerate minima are located
at m = £1 (see Fig. 1).

We note that coupling to an environment could lead
to thermally activated events, whose pathways traverses
the high energy states m ~ 0 with energy Eparrier ~ L/2
for a fully connected cluster and Fyappier = 4 for a linear
chain. These are suppressed by a factor exp(—8Eparrier)
and at low temperatures quantum tunneling becomes ad-
vantageous, as shown in Fig. 2).

Tunneling in path integral QMC — QMC simulations
are performed by sampling imaginary time paths, ob-
tained from a mapping of the partition function of a D-
dimensional quantum system to a (D + 1)-dimensional
classical path integral configuration. For the transverse
field Ising model this is just a classical Ising model in
D +1 dimensions. -The path integral configurations con-
sist of P replicas of the same physical system with spins
Si + = £1 where the index ¢ = 1,--- , L denotes the spa-
tial index and the index 7 = 1,.--, P labels the time
slices. Our QMC simulations have been performed both
with a large number of replicas P = 128 in order to
be close to the physical continuous time limit, and also
directly in the continuous time limit [26]. For updates
we use variants of the Wolff [27] and Swendsen-Wang al-
gorithm [28] to build local (in space) clusters along the
imaginary time direction [29].
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Figure 2. Path integral QMC transition time £ as a function
of the inverse temperature for a chain at I' = 0.7. At high
temperatures £ is independent of the system size L and sup-
pressed as exp(—Ebarrier/T). At low temperatures, quantum
tunneling becomes more efficient and depends only on L.

(Sl

= 10°f + [=03 e
« T=04 =

st v T =045 ]
W2 rZos el e

107 [ I'=0.55 // — ]

/".//
106 [ ]
105 L T - ]

10* ©

Tunneling time &, a(T)L~1/A(L,

103 b ]
102 L "o QMC: open symbols
ED: closed symbols
8 10 12 14 16

L

Figure 3. Average QMC tunneling time £ as a function of sys-
tem size L (open symbols) for a fully connected graph at 8 = 8
for various values of the transverse field I'. Exponential fits of
the times for 12 < L < 16 are shown as solid lines. To com-
pare to physical QA we also show «(T")/A(T, L)?, obtained
by exact diagonalization (ED). Rescaling by L-independent
constants «(I") we find identical scaling with system size L.

During the QMC simulation the total magnetization
m(t) = 1 Zf:l S+ evolves stochastically in Monte
Carlo time t. Preparing the system in the vicinity of a lo-
cal minimum, for example by choosing S; » = 1, most of
the time all replicas sample spin configurations which are
fluctuations around the same minimum energy configura-
tion, i.e. m(7) = 1. Every now and then the path m(7, )
evolves towards a transition state m**(7) corresponding
to the saddle point of the free energy functional F[m(7)]
of the classical spin model. Similar to the discussion in
the continuous case, this saddle point corresponds to an
instanton/anti-instanton pair (see Fig. 1 and SM). The
instantonic path m**(7) costs energy as it creates two
domain walls in the imaginary time axis, which separate
replicas which opposite magnetization m(7). These do-
main walls can diffuse in opposite directions around the
imaginary time loop, changing the total manetization to
m(7) = —1 V7 when they annihilate, signaling the com-
pletion of a tunneling event. The creation of m**(7) rep-
resents the rate-limiting process of tunneling decay in
both QMC and QA whose rate is oc A2,

To measure the tunneling time £ we start QMC sim-
ulations in a fully polarized state with m(r) = 1 and
measure the number of QMC sweeps (defined as one at-
tempted update per spin) required to obtain a well sepa-
rated instanton/anti-instanton pair. We detect the latter
by requiring that at least the 25% of the replicas reverse
their magnetization to m(7) = —1 [30].

In Fig. 3 we show the measured average tunnelling time
¢ in QMC fully connected clusters as a function of L
and I' and observe an exponential scaling with L. There
is only a very weak temperature dependence for QMC
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Figure 4. (color online). Average PIGS tunneling time £ as a

function of L (open symbols) for fully connected graph at 8 =
8 with various values of the transverse field I'. Exponential fits
of the times for 12 < L < 18 are shown as solid lines. Points
proportional to 1/A(L), obtained with exact diagonalization,
are shown with filled symbols.

in the low temperature quantum regime, mostly due to
instanton diffusion. As shown in Fig. 3 the scaling of
QMC simulations is identical to 1/A? within error bars,
thus confirming the identical scaling behavior of both
types of dynamics. The same behavior is observed for
linear chains (see SM).

Accelerating tunneling in QMC — Similar to the con-
tinuous case, we expect a quadratic speedup for PIGS
simulations with open boundary conditions as in this case
only one domain wall (instanton) is created in the magne-
tization reversing process (see Fig. 1). Indeed, as shown
in Fig. 4 and Table I of SM the scaling exponent is re-
duced by a factor of two compared to QMC with periodic
boundary conditions and open system QA, and the tun-
neling time now scales as 1/A instead of 1/A2. PIGS
algorithm can be viewed as projecting from a trial state
(given by the boundary conditions in imaginary time)
and sampling from the ground state wave function at
large enough S, hence providing the tunneling probabil-
ity amplitude A. This finding may explain the recently
observed superiority of QMC projecting techniques com-
pared to PIMC in continous space models [31].

Potential obstructions for QMC — While our findings
apply to tunneling in a broad class of mean field mod-
els with purely imaginery time instantons, we shall also
mention several areas where obstructions for the efficient
simulation of quantum tunneling with QMC might exist.

QMC sampling may sometimes be inefficient due to
topological obstructions such as winding numbers of
world lines [32]. While PIGS simulations often solve
this problem by cutting the periodic boundary condi-
tions, an obstruction remains if the ground state wave-

function and its square are concentrated on different sup-
ports [32] — although suitable trial wave functions at the
boundaries of the path integral can alleviate this prob-
lem. Conversely, the quantum system might have con-
served quantum numbers that limit tunneling paths to a
lower-dimensional subspace than that explored by QMC
(see SM).

QMC may also be less efficient in optimization prob-
lems that require tunneling to or from multidimensional
minima. In such problems the semiclassical action un-
der the barrier S(x) is often not purely imaginary and
displays complex features due to the presence of caus-
tics, non-integrability and non-analyticity [18, 33]. Due
to a highly oscillating nature of the wave function in the
classically forbidden region it is not clear if the tunneling
dynamics can be faithfully recovered with QMC.

Another important open question arises in problems
that exhibit a many-body location/delocalization tran-
sition at finite values of transverse field [34]. There a
delocalized phase can exist in a range of energies with ex-
ponentially many local minima separated by large Ham-
ming distances and connected by a large number of tun-
neling paths [35]. QA, in contrast to QMC dynamics,
may profit from the positive interference between expo-
nentially many paths.

Conclusions — We conclude by discussing the conse-
quences of our results for quantum annealing. Despite
QMC dynamics being different from unitary evolution,
the relevance of instanton configurations for tunneling
processes in a class of models with purely imaginery time
instantons leads to the same exponential scaling of tun-
neling rate through a tall barrier in both cases. A conse-
quence of this equivalence is that QMC simulations are
predictive of the performance of QA for hard optimiza-
tion problems where the performance is limited by such
tunneling events.

We also observed that is some cases a version of QMC
with open boundary conditions (PIGS) can provide a
quadratic speedup. While one can, theoretically, recover
such a quadratic speedup [36] in QA if the evolution of
the energy gap is exactly known and if the tunneling is
fully coherent [22], this protocol can hardly be realized in
practical QA. Nevertheless, a quadratic speed up can be
achieved with polynomial overhead on a universal quan-
tum computer using an approach that relaxes the above
conditions [37].

These findings demonstrate that QMC simulations can
be used as a powerful and predictive tool to investigate
optimization problems amenable to quantum annealing.
Our study demonstrates that the quest for quantum
speedup using a physical quantum annealer must focus
on the problems and hardware that allows to reach be-
yond the class of problems discussed in this paper where
the identical scaling of QMC and QA preclude a scal-
ing advantage and where PIGS can achieve a quadratic
speedup for tunneling through individual barriers. The



absence of calibration and programming errors, the flex-
ibility in simulating arbitrary graph topologies without
the need to embed into a hardware graph, and the ob-
served quadratic speedup for tunneling through individ-
ual barriers in PIGS simulations makes QMC a competi-
tive classical technology. Nevertheless, a physical QA can
still be many orders of magnitude faster than QMC simu-
lations [38]. We expect that the physical mechanisms be-
hind the possible obstructions for QMC discussed above
will provide interesting starting points for future stud-
ies of potential quantum speedup. In particular, one has
to explore the power of QA with non-stoquastic Hamil-
tonians for which the negative sign problem prevents a
matching QMC algorithm.
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PATH INTEGRAL MONTE CARLO IN
CONTINUOUS SPACE

Imaginary time path integral Quantum Monte Carlo is
a very well established technique for studying quantum
statistical mechanics of many-particle realistic systems
[1]. In this section we will briefly introduce path inte-
gral QMC in continuous space models. The formalism
is very similar to the one introduced for spin models,
the differences coming only from the different types of
Hamiltonians. The typical real space Hamiltonian (in
one dimension for sake of simplicity) is given by

»?

H= S +V(x) (1)
where x and p are the position and momentum coordi-
nate respectively, m is the mass of the particle and V (z)
is the potential. Here, the kinetic operator p?/2m plays
the role of the quantum fluctuation operator as in the
transverse field Ising model. The strength of the quan-
tum fluctuations is given by the particle’s mass m. By
applying the standard Trotter breakup for the density
operator e /T the partition function at temperature T
is given by

" mPT
Z=tre 1T~ /dx exp|— Z( (2 — Thy1)?
k
1

2
=1

T al) 2)
where xj, is the coordinate of the k—th system’s replica
(time slice) and P is the total number of Trotter repli-
cas. Periodic boundary conditions applies, therefore
xps1 = x1. We refer the reader to Ref. [1] for ad-
ditional details concerning energy estimators and more
sophisticated Trotter breakups, i.e. more accurate ap-
proximate propagators. Eq. 2 represents the partition
function of a classical ring polymer, made of P beads at
the fictitious temperature PT. Each replica is connected
by harmonic springs whose spring constant is given by
k = m(PT)?. This harmonic term represents the con-
tinuous model analogue of the ferromagnetic spin inter-
action between neighboring time slices in the transverse
field model (see e.g. Ref. 2).

Path Integral Monte Carlo

The simplest way to sample Z is to perform Metropo-
lis Monte Carlo moves on this extended system; the
Metropolis weight being the integrand of Eq. 2. Even in
the continuum case, updates can be local or global. The
simplest local update consists in moving only one coor-
dinate replica zj, — x) + 0z and accept/reject the move
accordingly to the Metropolis algorithm. z is a uniform
random number in the range [—1,1] and ¢ is tuned in
order to optimize the autocorrelation times. This is the
kind of local update used in the main text. One MC
sweep consists of P local attempts. Clearly, many more
global updates exist in which several replicas are moved
at the same time. Global moves are extremely more ef-
ficient than the local ones for realistic many particles
system [1, 3].

Path Integral Molecular Dynamics

Employing Molecular dynamics (MD) to sample the
finite temperature canonical distribution of the ring
polymer[3] is another way to perform global updates,
which has no counterpart in spin models. In this case
the forces are used to drive the sampling. Among all the
possible MD integrator scheme we choose the Langevin
equation of motions, because it represents a simple ther-
mostat for sampling canonical distribution and allows er-
godic sampling[4]. Adding the conjugate momenta 7 to
the x coordinates, the ring polymer Hamiltonian reads

P 2 2

mz  m(PT) 9 1

Hy = E <k + ——— (o) — xpp1)” + V(m))
— 2 2 PT

In order to sample the equilibrium distribution e~ Het/PT
we integrate the (discretized) second order Langevin

equation of motion

(1 =6y)m +6/m fu +/29T6/mn  (3)
Ty + TR0 (4)

,

),

where § is the integration time step, 7 is a Gaussian dis-
tributed random number, and fj includes all the forces



acting on the k-th replicas,

fe = —M/P + PT*m(zps1 — 225 + 75-1)  (5)
3xk

In this equation 7 is a parameter which has to be tuned in
order to minimize autocorrelation times and -in general-
can also be position dependent. All the (collective) moves
are accepted at the cost of introducing a time-step dis-
cretization error, which can be systematically removed in
the limit § — 0. This is the kind of global update used
in the main text.

Model, instanton detection and results

The simple onedimensional model considered in this
work is given by the double well potential V (z) = A\z* —
22. The smaller the )\ parameter the larger is the distance
d between the two wells, which goes as d = 2%, =
24/1/2X. The energy barrier also grows with decreasing
A, as AV = 1/4\. Therefore the control parameter A in
this toy model shares the same features as the system size
L for the transverse field Ising model, defined in the main
text. Accurate energy gaps A, between the ground and
the first excited states, as a function of A are calculated in
Ref. [5] for the Hamiltonian H = p?+ \x? — 22, which can
be used for direct comparison if we set the mass m = 1/2
in the above equations. In this work A spans between
0.05 and 0.20 which can provide a broad range of 1/A2(\)
values, varying over 5 orders of magnitude. We choose
the temperature T' < AV in order to rule out thermally
activated transitions. We set T'= 0.05 and P = 64. We
start the simulations with all the replicas located at the
bottom of the right well, i.e. xx = Z.nin. We identify the
tunneling time in the following way: when the 25% of
the replicas exceed the coordinate — ., /2 we stop the
simulation and record this passage time expressed as the
number of MC sweeps (in the case of local updates with
PIMC) or MD integration steps (for PIMD).

TUNNELING IN FERROMAGNETIC P-SPIN
MODEL

We first summarize the theory of tunneling in p-spin
model closely following the theory developed in [6]. Con-
sider the quantum Hamiltonian for an L-qubit system
corresponding to a ferromagnetic p-spin model in a trans-
verse field

L
H=TY ;Lo 13 05| - ©
j=1

Here T' is the strength of the transverse field and the
function g is the mean-field potential energy of the spin
system. We will consider the case where the function g
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Figure 1.  (color online). Average QMC tunneling time as

a function of 1/\ at 8 = 20, corresponding to a temperature
always much lower than the barrier height. Simulations are
performed with two different types of updates: local updates
(PIMC) and global updates, using path integral molecular dy-
namics (PIMD). Finally, we show a/A%()), from Ref. 5 scaled
by a constant a to demonstrate once more the identical scal-
ing for tunneling times varying over five order of magnitudes.
The inset shows the double well potential V' (z) for three dif-
ferent values of 1/A=5, 10, 20.

admits a metastable state and will be interested in the
tunneling decay of this state at zero temperature. A well
known example is given by the Curie-Weiss model where
the function g takes the form

1
gm) = 5m? + hm 7)
where h is a local field.
The Hamiltonian (6) is symmetric with respect to per-
mutation of individual spins. To understand the struc-
ture of the eigenstates we use the total spin operators

. A 1
O'Ja-:, Sy:§
1 J

Sy =

DN | =
O |

L
j=

L 1 L
7, S.=2 67 (8)
= j=1

1

The system Hamiltonian can be written in terms of these
operators:

H = —2I'S, — Lg(25./L) (9)

We are interested in the eigenstates of the Hamiltonian
H|¥) = E|¥). They correspond to certain values of the
total spin operator

S% =82+ 82 +52, (10)
which can take the following discrete values

L L
§=5-K. K:o,1,2,...,bJ (11)



The number of distinct irreducible subspaces of a given
total spin S is

N(L,S) = (IL{) _ <KL 1) (12)

each subspace has dimension 25+1 = L—2K+1. We will
expand the eigenstates of H in the basis of the operators
S, and S?

L/2 N(L,S) §

=3 > 3 oyIMS) (13)

S=—L/2 ~y=1 M=-S

where
S%|M, S,y) = S(S +1)|M, S,7), (14)
S.|M,S,v) = M|M,S,~) (15)
and the coefficients Cif obey the stationary

Schrédinger equation

~TV(S+M)(S—M+1)Cry_s
~TV/(S+M+1)(S — M)Crrsa
— Lg(2M/L)Cy = ECy - (16)

(here we omitted the indices v and S.)

In what follows we will study the limit L > 1 and
assume that for the case of interest S = O(L). We em-
ploy the discrete Wentzel-Kramers-Brillouin method de-
veloped in Ref. [7] applied to a mean-field model of a
composite large spin [6, 8].

To the leading order in the parameter S the stationary
Schrédinger equation can be written in the form

- (2&/52 — M?Zcosp+ Lf(zM/L)) Car = ECur,

p=—2m7

where we omitted the indices S and ~ for brevity. Fol-
lowing the discrete WKB approach we write the wave
function amplitudes Cj; as follows
1
Cy = ———=exp(iA(M, E 17
= e P GAGLE) (7

A(M, E) = / Y B (18)

where the momentum p(M,E) obeys the classical
Hamilton-Jacobi equation

H(M,p)=—-2I'\/S? — M?cosp— Lg(2M/L) = E .
(19)
We note that in the classically-allowed region, in the case
relevant to us, 0 < cosp < 1 and therefore

2T/ S2 — M2 > —(Lg(2M/L) + E) > 0. (20)

We now introduce the rescaled quantities

mzéM E=Le
L /L

We note that with the above rescaling we must also in-
troduce a new time variable s. In order to satisfy the
condition

dM dm
—=L— 22
dr ds (22)
we must set
s=27 (23)

Using (21) we write
e(m,k,0) = —T'v/¢? —m?coshk — g(m) (24)
We introduce the effective potential
Vegg(m, 0) = e(m,0,0) = =T/ {2 —m? —g(m) (25)

This potential corresponds to the energies for the turning
points m of the classical trajectories of the system with
the Hamiltonian function (24). The potential at differ-
ent values of £ is depicted in the right panel of Fig. 2.
It has a double well shape in certain parameter range
of /. We denote the extreme points of the potential as
{m(£), ex(¢)}, which for k=1,2,3 correspond to the local
minimum, maximum and global minimum respectively
(cf. right panel of Fig. 2).

The imaginary momentum in the classically forbidden
region under the barrier can be written in the form

V(e +g(m))? —T2(2 —m?)
I'vie2 —m?

We also note that in the classically forbidden region

—(e+g(m))>TV/2—-m2>0 (27)

The usual canonical relation between velocity and mo-
mentum has the form
Ok(e,m, () 1 dm

9 = “oemD) vie,m,l) = —  (28)

k(e,m,{) = arcsinh . (26)

(the minus sign here occurs because both the velocity and
the momentum are purely imaginary under the barrier).
From here we get

v(e,m,l) = v(e,m,l) = /(e + g(m))2 —T2((2 — m2)

This expression also can be obtained from the Hamilto-
nian equation for coordinate m. We write
dm Oe

s - ok (29)
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Figure 2. (Left) Plot of the effective potential (25) Veg(m, £) vs m for the Curie-Weiss model for £ = 1, I' = 0.4 and h = 0.015.
Red line depicts the tunneling path (instanton) at zero temperature. Barrier energies above the instanton energy are shown
with blue filling. (Right) Plots of the effective potential for the Curie-Weiss model at different values of ¢ shown with green

lines. Dashed blue, red and black lines are {my(¢), ex(€)}i=}.

for £ = 1,2, 3 corresponding to the local minimum, maximum

and global minimum respectively. ¢ changes in the range from ¢, to 1 where ¢, = (h2/ 341 3)3/2 is the smallest value of ¢
beyond which the effective potential is monostable. The domain of the effective potential for each £ is m € (—1,1). We see
by comparison of figures in left and right panels that for a given ¢ the instanton turning point at the barrier exit satisfies the
condition m} < £ where the equality is reached only for £ = 1. In all the plots h = 0.1 and ' = 0.21.

=T+ 02 — m?sinh k (30)
= V(e +g(m))? —T2(2 —m?) (31)

For values of ¢ where metastability exists (cf. Fig. 2)
we write the tunneling amplitude A = A(e, {) to loga-
rithmic accuracy

Ale, f) x exp <—§a(e,€)> , (32)
mf(e,l)
ale,l) = / k(e,m,£)dm . (33)
m1 (e,l)

Here m; and m/) are turning points of the instanton tra-
jectory on different sides of the barrier that satisfy the
condition

e(mi(e,£),k=0,0) =e, i=12 (34)

(the instanton trajectory at zero temperature has the en-
ergy of the local minimum).

Curie- Weiss model with zero bias

The Hamiltonian for the unbiased Curie-Weiss model
corresponds to (6) and (7) with h =0

252

H=-2TS, —
L

(35)

At zero temperature the tunneling occurs exclusively
within the S = L/2 subspace of the maximum total spin.
The analytical expression for the tunneling splitting Aqq
of the ground state energy can be derived in the asymp-
totical limit of large number of qubits L > 1 and has a
form derived by a number of authors in the past (see e.g.

[7])

AR = p(D)eEeD) (36)

1/2 (1 _ F)5/4

(W) 1+ V/i-T2
1
2

c(T") = = log (%) —V1-T2. (38)

(37)

Because we will be comparing the (doubled) scaling ex-
ponent ¢(T") (38) with the scaling exponent for the QMC
tunneling rate obtained from the numerical simulations
of the problems with limited values of L it is important
to understand the finite size effect coming from the pref-
actor b in (37).

The left panel of Fig. 3 shows the L-dependence of the
ratio of the logarithm of the gap computed via the above
analytical expression to that computed via the numer-
ical diagonalization of the Hamiltonian (35). Similarly,
the right panel of Fig. 3 shows the comparison between
the scaling exponent ¢ (38) and the quantity |log A1/ L]
computed via numerical diagonalization of H. Note that



in the later case the convergence with L is O(1/L) while
in the former it is O(1/L?).

Finally, Fig. 4 shows the dependence on I' of the expo-
nent of the tunneling decay rate of the metastable state
given by (32) (for zero basis the result is also computed
by using (38) ).

Tunneling in the Grover problem

The Grover search problem can be recast in the adia-
batic setting using the following Hamiltonian (see [9])

L
H=-TY 67 LI, (39)
1) =1D1@] e ® | Pz (40)

This Hamiltonian can be rewritten in terms of the large
spin operators (8) in the form (9) with the function g(m)

olm) =a (FE). (1)

2

m=-1,-1+=,...,1—>,1 (42)

2
L L’
where §(m) is the Kronnecker delta.

At T > 1 the ground state of this Hamiltonian is | =),
corresponding to all spins along the x axis. The ground
state energy is —LT. At I' < 1 the ground state is | 1)
with energy —L. At I' = 1 the avoided crossing occurs
between the energies with the size of the energy splitting
being

A~ (= |t) =272 (43)

We now recast this result using the WKB approach de-
scribed above. For m < 1 the equation (24) takes the
form e(m, k,£) = —T'v/£2 — m? coshk . The correspond-
ing effective potential is

_ 2 _ 2
vz —m?, m</{ (44)

‘/;ﬁ(m7€>: m="/

—6¢,1,
In complete analogy to the discussion in the general case
presented in the previous section the ground state wave-
function is localized at m = 0 and decays exponentially
away from this point. The tunneling path moves under
the barrier and ends at the point m = ¢. It is imme-
diately clear that the tunneling path can only reach the
target state for £ = 1. In fact this also immediately fol-
lows from inspection of the Fig. 2 (right panel). While
this figure is plotted for a different g(m) the common fea-
ture is that the tunneling path terminates at m} <= ¢
where the equality is reached only for ¢ = 1.

At the avoiding crossing I' = 1 we solve the equation
(31) for the instanton trajectory m = m*(s) for £ =1
and get

m*(s)=e"®, —oc0o<s<0, (£(=1,T=1) (45)

This trajectory approaches the solution state at m = 1 as
s — 0. The momentum (26) at the instanton trajectory
under the barrier equals

_arcsinh(m)
K(m) = il (46)

With that the action (33) along the instanton is
a =log2 (47)

Using (32) we recover the well-known quadratic speedup
(43).

TUNNELING IN PATH-INTEGRAL QMC FOR
FERROMAGNETIC P-SPIN MODEL

To describe the stochastic QMC process that samples
paths over imaginary time in a spin system with the
Hamiltonian (6) we define the state vector

a(r) ={o1(7),...,on(7)} (48)

In path integral QMC the trajectories satisfy periodic
boundary conditions

a(0) = a(h) (49)

In the PIGS version of QMC one uses open boundary
conditions. There exists an order parameter correspond-
ing to the z-component of the total magnetization

1 L
mlo()] = 1 Y oi(r)

|

The probability functional for a realization of the trajec-
tory o(7) equals

1 —Flo(r
Pla(r)] = e Fle(r)]

Jé] N
Fia()] = [ g migr)) dr =3 logulo,(r)

Above wlo(7)] is a single-spin imaginary time propaga-
tor evaluated along the trajectory o(7) (see e.g. [10] for
details). Marginalizing over the path configurations that
corresponds to a given m(7) = m[o(7)] the probability
functional can be written in the form (cf. [8])

I _ m(T T
Plm(r), A7)l = 7 € EEmAm] (50)

B/2
F— / dr (A\(r)m(r) = g[m(7)]) — log DIA(7)], (51)
—B/2

where

DIMT)l = TTK[5/2,=8/2; M7)]  (52)
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Figure 3. The left plot shows the size L dependence of the ratio of the quantity |log A1o|/L computed via numerical diago-
nalization of H (35) to the same quantity given by WKB (36). Different curves correspond to I' =0.3, 0.4, 0.5, 0.6. They are
depicted with blue, red, green and brown colors, respectively. The deviation of the ratio from unity is O(1/ L2). The right plot
shows the size L dependence of the ratio of the exponents of the energy splitting Ao computed numerically and the analytical
exponent ¢ from Eq. (38). Different curves correspond to I' =0.3, 0.4, 0.5, 0.6. They are depicted with blue, red, green and
brown colors, respectively. The deviation of the ratio from unity is O(1/L).
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Figure 4. Plot show the dependence on I' of the exponents
of the tunneling decay rate for the metastable state for the
Curie-Weiss model at zero temperature. Red points corre-
spond to the incoherent tunneling rate given by a(e1,1) (32)
corresponding to the tunneling with maximum total spin. Cir-
cles correspond to 2¢(I") (38) for the case of h = 0. Crosses
correspond to the exponent of the path integral QMC tunnel-
ing rate estimated using Kramers formulae.

B/2

K[B/2,—B/2; M7)] = T} exp ( Ho(T)dT>

(53)

—B/2

Hy(t)=-To, — A(7)0, (54)

The partition function Z is defined as usual as a normal-

ization factor in the probability functional. In the above

A(7) is a classical “gauge” field associated with m(7).
This functional has “trivial” extremal points m(7) =

mg

oF =0, oF =0, for
dm(T)

)\(7’) = S\k

(55)
corresponding to the extrema of the mean-field free en-
ergy function

m(T) = myg,

fim, ) = m —g(m) — %log2cosh(ﬂ\/ A2 +T2)

=Am—g(m)— VA2 +TI2) (B>1) (56)
af(mkaj\k)

om0 T gy 0 6D

For the sake of bookkeeping we assume that m; and ms
correspond to local and global minima respectively,

/_\k _ ag(mk)

fro=Fmi, ), 1> fo (58)
The free energy functional values at the minima equal
]Fk:Eﬁflm k:172 (59)

During QMC a stochastic evolution of the system state
(48) corresponds to a stochastic evolution of m(r,t),



A(7,t) where t is Monte Carlo time. We initialize the
system state at the vicinity of the local minimum of the
free energy functional F

m(7,0) = my, N7,0) =~ )\

Most of the time {m(7,t), A(7,t)} fluctuates near the lo-
cal minimum. Escape from this minimum can be de-
scribed in terms of the classic Kramers escape theory
as was illustrated in the paper for the case of QMC with
continuous variables. To logarithmic accuracy the escape
rate W is given by the Boltzmann factor

W o e (FIm* (1) A" (1)) =5f1) (60)

where we assumed that the Monte Carlo temperature
equals 1. Here m*(7), \*(7) correspond to a nontrivial
saddle point of the free energy functional satisfying 6F =
0

=0 )= )
(61)
5 OD[A(r
Mg) =0 = m(r) = D[)xl(T)] ag(i))]
Using (52),(53) and (54) we obtain
m(r) = Tr[K(B/2,7)0. K (1,—3/2)] (62)

D

where we dropped the argument A\(7) = ¢g’(m(7)) above.
We introduce a vector

M (7)

my (T) )
m(T)

m(7) = m(1) = m,(7) (63)

Then after some transformations, using (52),(53), (54)
we obtain

%Z—T = % x m(T) (64)
where
H=-Tm, (T) - g(mz (T)) (65>

The above equations has intervals of motion

m-m=/> Hm(r)=e (66)
We set
My = MCOSh k, my= —A/Wsinhk
where m, (1) satisfies the equation o
—T'\/? —m2coshk —g(m,) =e (68)

Upon inspection of the Egs. (68),(24) and (26) one can
see that up to the choice of the integrals of motion e
and ¢ the equation for m,(7) coincides with that for the

quantum instanton described in the previous section. In
the zero-temperature limit of 5 > 1 the value of e must
coincide with the local minimum of Vieg(m,,£) in m..
Then the choice of £ must be done in a way that the
self-consistent equation (62) is satisfied.

Detailed calculation will be provided elsewhere [11].
One can show that in the zero temperature limit 8 >
1 the value of £ = 1 and the WKB instanton for the
tunneling at zero temperature precisely corresponds to
the path m*(7) = m.(7) that provides the saddle point
of the free-energy functional F (with time rescaling (23)
taken into account). Similarly, the action along the WKB
instanton trajectory equals to the difference of the values
of F between the saddle point and local minimum

Flm™(r), A*(7)] = Bf (M, ¢ (M) = (69)
_ | 2aler, 1) m(=5/2) = m(5/2)
(1(61, 1) m(fﬁ/Q) = ma, m(ﬂ/2) - m/l

Therefore at zero temperature the exponential scaling
with the problem size L of the QMC and quantum tun-
neling are the same.

QMC TUNNELING RESULTS FOR A
FERROMAGNETIC ISING CHAIN

Here we report QMC simulations on a ferromagnetic
Ising chain in the presence of a weak transverse field I'
with Hamiltonian H = —T') o7 —>_ Jijof0%. The near-
est neighbours couplings are given by J;; = 6; j+1+0; j—1.

We measure the average tunneling time for different
sizes L, i.e. the number of sites, as explained in the main
text and compare these values with the inverse gap and
inverse gap squared obtained with exact diagonalization.

In Figs. 5, 6, 7 we compare QMC simulations with pe-
riodic boundary conditions (PIMC), performed with dif-
ferent inverse temperatures 5 = 24, 20,16 and different
transverse field values I', against the inverse squared gap
A(T, L)2. In Figs. 8, 9, 10 we compare instead QMC sim-
ulations with open boundary conditions (PIGS) against
the inverse gap A(T',L). The complete exponential fit
parameters are given in Table I. The scaling of PIMC
(PIGS) simulations compares well to 1/A?% (1/A) within
error bars.



[T B=16 [ B=20] B=24 [ ED |

QMC-PIMC 1/A?
0.8 ] 0.52(2) [0.553(17)] 0.541(4) [0.535(4)
0.75]] 0.64(3) | 0.67(4) [0.6697(14)]0.662(4)
0.7 || 0.78(2) | 0.80(3) | 0.81(5) [0.799(4)

QMC-PIGS 1/A
0.8 [[0.270(12)[0.281(11)] 0.289(11) [0.268(2)
0.75(]0.329(11)]0.341(11)] 0.350(9) [0.331(2)
0.7 ][ 0.397(9) | 0.410(9) | 0.417(9) [0.400(2)
0.65(]0.462(11)] 0.477(8) | 0.482(18) [0.473(2)
0.6 [[0.540(10) [0.556(19)| 0.56(2) |0.553(2)

Table I. Exponents b of the function f(L) = a exp (bL) used
to fit (L), 1/A%(L) and 1/A(L), i.e. the average tunnel-
ing time, observed in PIMC and PIGS simulations (see text),
and the inverse gap obtained with exact diagonalization (ED).
The error bar, for ED data are due to the scaling not perfectly
following an exponential behavior. QMC error bars are dom-
inated by statistical errors.
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Figure 5.  (color online). Average PIMC tunneling time £
as a function of system size L (open symbols) at f = 24,
for various values of the transverse field I'. Exponential fits
of the times for 12 < L < 16 are shown as solid lines. To
compare to physical QA we also show a(vy)/A(T, L)?, obtained
by exact diagonalization (ED) with solid symbols. Rescaling
the latter by L-independent constants a(I') we find identical
scaling with system size L.
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Figure 6. (color online). Average PIMC tunneling time &

as a function of system size L (open symbols) at 8 = 20,
for various values of the transverse field I'. Exponential fits
of the times for 12 < L < 16 are shown as solid lines. To
compare to physical QA we also show a(vy)/A(T, L)?, obtained
by exact diagonalization (ED) with solid symbols. Rescaling
the latter by L-independent constants «(I') we find identical
scaling with system size L.
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Figure 7.  (color online). Average PIMC tunneling time &

as a function of system size L (open symbols) at 8 = 16,
for various values of the transverse field I'. Exponential fits
of the times for 12 < L < 16 are shown as solid lines. To
compare to physical QA we also show a(v)/A(T, L)?, obtained
by exact diagonalization (ED) with solid symbols. Rescaling
the latter by L-independent constants «(I") we find identical
scaling with system size L.
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Figure 8.  (color online). Average PIGS tunneling time &

as a function of system size L (open symbols) at 8 = 24, for
various values of the transverse field I'. Exponential fits of
the times for 12 < L < 18 are shown as solid lines. Points
proportional to 1/A(L), obtained with exact diagonalization,
are shown with filled symbols.
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Figure 9.  (color online). Average PIGS tunneling time &

as a function of system size L (open symbols) at 8 = 20, for
various values of the transverse field I'. Exponential fits of
the times for 12 < L < 18 are shown as solid lines. Points
proportional to 1/A(L), obtained with exact diagonalization,
are shown with filled symbols.
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Figure 10. (color online). Average PIGS tunneling time &

as a function of system size L (open symbols) at 8 = 16, for
various values of the transverse field I'. Exponential fits of
the times for 12 < L < 18 are shown as solid lines. Points
proportional to 1/A(L), obtained with exact diagonalization,
are shown with filled symbols.
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Figure 11. Instanton shape (QMC and analytical) for a
ferromagnetic chain of size L = 16 at I' = 0.4. We see that the
instanton shape in QMC, given by m(7) follows the analytical
curve closely.
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