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ABSTRACT 
Smart watches can enrich everyday interactions by providing both 
glanceable information and instant access to frequent tasks. 
However, reading text messages on a 1.5-inch small screen is 
inherently challenging, especially when a user’s attention is 
divided. We present SmartRSVP, an attentive speed-reading 
system to facilitate text reading on small-screen wearable devices. 
SmartRSVP leverages camera-based visual attention tracking and 
implicit physiological signal sensing to make text reading via Rapid 
Serial Visual Presentation (RSVP) more enjoyable and practical on 
smart watches. Through a series of three studies involving 40 
participants, we found that 1) SmartRSVP can achieve a 
significantly higher comprehension rate (57.5% vs. 23.9%) and 
perceived comfort (3.8 vs. 2.1) than traditional RSVP; 2) Users 
prefer SmartRSVP over traditional reading interfaces when they 
walk and read; 3) SmartRSVP can predict users’ cognitive 
workloads and adjust the reading speed accordingly in real-time 
with 83.3% precision. 
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1  INTRODUCTION 
Small-screen wearable devices are flourishing nowadays. By staying 
on users’ wrists 24/7, smart watches can assist users’ access to 
frequent tasks and important notifications. Smart watches are also 
ideal for tracking users’ activities and physiological signals for 
personal wellbeing. Although many new interaction techniques [6] 

and input modalities [25][30] have been proposed for smart watches 
during recent years, it remains a major challenge to read textual 
information on smart watches. 
There are three major challenges when a user reads text messages 
on a smart watch. First, most of today’s smart watches use a small 
display size approximately 1.5-inch diagonal, which only affords to 
show three or four words per line. Therefore, a user must rely on 
more frequent lateral eye gaze movements, i.e. saccade, during 
reading. Second, more scrolling actions are needed due to the limited 
number of words per screen. Such scrolling operations not only 
exacerbate the notorious “fat finger problem”, but also occupy a 
user’s both hands. Third, text reading on smart watches increases 
the probability of divided attention and interruptions. Paradoxically, 
the growing amount and type of information accessible via smart 
watches increase our exposure to such reading interfaces. 

 

Figure 1. SmartRSVP continuously monitors the visual attention of 
a user via real-time image processing and infers the user’s cognitive 
workload via implicit physiological signal sensing. SmartRSVP uses 

the visual attention to play/pause dynamic text presentation and 
adjusts text display speed via the inferred cognitive workload.* 

To address these challenges, we present SmartRSVP (Figure 1), a 
novel speed-reading system to facilitate text reading on small-screen 
wearable devices. SmartRSVP leverages real-time visual attention 
tracking and implicit physiological signal sensing to make text 
reading via Rapid Serial Visual Presentation (RSVP) more enjoyable 
and practical on smart watches. SmartRSVP uses camera-based 
facial alignment and eye gaze tracking techniques to determine 
whether a user is paying visual attention to text messages and then 
leverages the attention information to play/pause the presentation of 
dynamic texts. At the same time, SmartRSVP uses heart-rate 
variability (HRV) features to infer the user’s cognitive workload, 
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which is further used to regulate the speed of RSVP in real time. 
Overall, SmartRSVP exploits both the spatial and temporal efficacy 
of the RSVP technique, and reduces users’ workloads in both visual 
and cognitive attentions. 
This paper offers three major contributions.  

 We present SmartRSVP, a perceptual and affect-aware 
intelligent interface to facilitate text reading on wearable 
devices via visual attention tracking and implicit cognitive 
state sensing.  

 We propose novel algorithms and interaction designs to make 
text reading via RSVP more enjoyable and practical on small-
screen wearable devices.  

 We show the feasibility, accuracy, robustness, and usability of 
SmartRSVP via three user studies involving 40 participants. 

2  RELATED WORK 
RSVP 
Rapid Serial Visual Presentation (RSVP) is a visualization technique 
that displays textual information one word at a time1 in a sequential 
order. Although RSVP was originally invented to examine the 
temporal characteristics of human attention, Gilbert [21] first used 
RSVP for text reading in 1959. Forster [19] investigated the 
comprehension and processing of written language in 1970. With 
the rise of personal computing and digital media, researchers began 
to treat RSVP as a speed-reading technique for computing devices 
during the past forty years [5].  
RSVP has both spatial and temporal efficacy when compared with 
traditional reading. However, RSVP may not always be efficient due 
to the lack of an easy mechanism for regressions. RSVP achieves 
spatial efficacy by displaying unlimited text within a limited space. 
RSVP also achieves temporal efficacy when compared to traditional 
reading. In traditional reading, a reader processes word information 
through eye gaze in three major types of movements [52]: 1) fixing 
her eye gaze on a word; 2) making a saccade to the next fixation; 3) 
moving to the next line via a return sweep. In RSVP, the user can 
keep the same eye gaze fixation during reading. As a result, the 
duration of saccades and return sweeps can be highly reduced or 
even eliminated, and content is actively presented for readers’ 
attention [32]. On the other hand, the missing of regressions causes 
the weakness of RSVP. Regressions are letter-level, word-level, line-
level, and even section-level backward saccades, which is 10-15% of 
all saccades [46]. Such regressions are vital for text comprehension 
[31][46][47][48], but are missing in RSVP reading. Despite lacking 
regressions, RSVP also faces challenges such as attentional blink 
[45], repetition blindness [29], demanding higher visual attention 
[5], higher recovery cost [45], and higher cognitive workload 
[40][41][53]. 
The obvious strength and weakness of RSVP lead to the mix results 
when compared with traditional reading. Some studies show that 
traditional reading surpasses the performances of RSVP, especially 
on large computer displays [2][5][12]. There are also some studies 
that demonstrate the advantage of RSVP for speed-reading over 
traditional reading. For example, Rubin [52] found that RSVP 
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reading rates were consistently higher than traditional reading rates, 
with adequate comprehension levels even on large screen devices. 
Wobbrock et al [57] reported that as many as 720 wpm (12 words 
per second) are readable via RSVP, whereas the traditional reading 
speed is around 250 wpm. Most implementations of RSVP on 
pocket-sized devices achieved comparable reading speed [40][53] 
and comprehension level [40][41][53] as traditional reading.  
Researchers proposed adaptations of RSVP to improve the RSVP 
reading experience. Chien [10] adapted RSVP by decreasing the 
speed from 350wpm to 150wpm, and achieved 17.3% increase in 
comprehension. Masson [36] adapted RSVP by adding a 500ms 
pause between sentences of reading materials, which enhanced user 
comprehension by 10%-20%. More complex adaptations such as 
adapting each word’s exposure time based on its length 
[2][40][41][57], font, the type of the followed punctuation [57], and 
its frequency and position in the sentence [40] were also explored.  
Different from content-based speed adaptation policies adopted by 
existing research, we explore how unique sensors, such as the front 
camera2 and the Photoplethysmography (PPG) sensor on a smart 
watch can be used to adapt RSVP depending on users visual and 
cognitive workload in real-time. Therefore, SmartRSVP can exploit 
both spatial and temporal efficacy of RSVP on small-screen wearable 
devices without sacrificing practicability. Guo and Wang [20] 
verified the feasibility of detecting users’ cognitive workload in 
RSVP via pilot studies and offline benchmarking. We further 
designed, implemented, and evaluated an interactive system via 
principled research systemically. 

Eye-gaze Aware Interfaces 
Eye-gaze tracking has been widely used to understand user behavior 
and attention [42] in human-computer interaction tasks. Eye-gaze 
has also been used as an expressive input modality to facilitate 
pointing, typing, and multi-modal switching, even on mobile devices 
[3][16] and small screen devices [17][24]. 
In the context of reading, SocialReading [8] visualized teachers’ gaze 
movements on academic readings in order to improve student 
comprehension. SwitchBack [37] tracked the periodic return sweep 
of eye gaze via a front camera to estimate and highlight the current 
sentence in a reading task where the user was interrupted by 
divided attention.  
Our visual attention tracking feature was inspired by the “gaze 
locking” technique by Smith et al. [54] and the seeTXT technique by 
Dickie et al. [11].  Gaze locking refers to the robust binary sensing of 
eye contact in a static image via computer vision algorithms. seeTXT 
relies on a customized infrared eye-contact sensor (ECS) to augment 
media consumption on mobile devices. In comparison, our 
SmartRSVP technique focuses on improving the speed-reading 
experiences on smart watches. In addition to real-time visual 
attention tracking, SmartRSVP can also infer cognitive workload 
from implicit PPG sensing and regulate the speed of reading 
accordingly. Further, we also directly compare the users’ 
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performance and preferences with SmartRSVP against alternative 
techniques in three studies.  
Hansen et al [23] demonstrated the feasibility of using a commercial 
gaze tracker to control RSVP playback running on a PC. Dinger and 
colleagues [13] demonstrated gaze-controlled RSVP with a head-
mounted gaze tracker and visual markers. In comparison, 
SmartRSVP does not rely on any external sensors and achieves 
portability, which is the vital characteristic of smart watch. Besides 
being portable and enabling gaze-based control, SmartRSVP also 
offers implicit cognitive state sensing for the dynamic speed 
regulation of RSVP. This paper goes beyond a feasibility test by 
running controlled experiments to quantify and compare the 
performances of alternative techniques.  

Affect/Emotion Aware Interfaces 
Building computers that can understand and respond to user affect, 
emotion, and cognitive states [44] has been a compelling vision 
driving the research on intelligent user interfaces and ubiquitous 
computing. A variety of physiological signals, such as heart rates 
[22][51][28], galvanic skin responses (GSR) [26][58], facial 
expressions, Electroencephalography (EEG) [50], and eye-gaze 
[15][50] have been explored to infer users’ cognitive and affective 
states in different interaction tasks, such as learning [15][28], 
operating user interfaces [51], and gaming [22]. In this paper, we 
propose the sensing and modeling of PPG signals to facilitate speed-
reading on smart watches. We believe that with the ability to stay 
on a user’s wrist 24/7 and collect the user’s physiological signals 
implicitly, smart watches will become a promising testbed for the 
next generation affect/emotion aware interfaces.  

Smart Watch Interfaces 
The portability, size, and sensing power of smart watches have 
brought both opportunities and challenges to interaction design in 
recent years [6][7][9][25][30][39]. Existing research has focused on 
1) designing new interaction techniques [17][24], especially cross-
device interactions [6] and authoring environments [9]; 2) enabling 
more expressive and space-efficient input modalities [25][30]; 3) 
providing efficient text input for ultra-small touch screens [7][39].  
While most existing research has focused on the input and 
interaction techniques with smart watches, SmartRSVP is an attempt 
to create a streamlined and enjoyable text output paradigm on smart 
watches. SmartRSVP addresses the inherent limitations of both 
smart watches and classic RSVP through sensing, inferring, and 
adapting to user attentional and cognitive states in reading.   

3  The DESIGN OF SMARTRSVP 
Figure 1 shows SmartRSVP in action. SmartRSVP displays text via 
RSVP, and continuously monitors the visual attention and cognitive 
states of a user. SmartRSVP pauses the text display if there is no 
human face in the camera viewport, or the user’s eye gaze is not in 
direct contact with the watch screen. SmartRSVP also infers the 
cognitive workload of the user via implicit PPG sensing through a 
dedicated PPG sensor or a back camera. The word presentation 
speed of RSVP will be adjusted based on the cognitive workload.  
SmartRSVP consists of four major components: 1) The RSVP 
module; 2) Algorithms for tracking a user’s visual attention; 3) A 
statistical model to predict the internal cognitive states of a user; and 
4) The speed regulation module.  

3.1  RSVP 
We use a 20dp monospace font (average height = 8.1mm) to render 
words in our RSVP module. This font size provides good legibility 
on a 1.5-inch watch screen, and can display a 12-character word 
without line breaking or resizing. SmartRSVP also aligns each word 
in the Optimal Recognition Point (ORP) [4] and visualizes the ORP 
in red color (Figure 1).  ORP intends to make the gaze fixation point 
of a word stay at a fixed location to avoid unintended saccades when 
the gaze fixes on words of different lengths [4]. We use a monospace 
font to ensure all ORPs3 having the same width and adjacent words 
with the same length being aligned at the same location. The display 
speed of our RSVP module can vary from 200 wpm to 500 wpm. 
Users can tap the watch screen to play or pause the text displayed 
on SmartRSVP.  

3.2  Visual Attention Tracking 
Due to the limited availability of front facing cameras on smart 
watches at the time of our experiment, we used a Google Nexus 5X4 
smartphone running Android 6.0 to simulate a 42.0mm by 35.9mm 
smart watch screen. This choice follows practices of existing 
research on smartwatches [7][39], we allocated the same physical 
region on Nexus 5X for display and touch input.  
Each image frame captured by the front camera goes through the 
following three steps to derive users’ gaze point. 1) Face detection: A 
Viola-Jones face detector [56] is used to detect the existence and 
location of a human face; 2) Face Alignment: We use Cascaded Pose 
Regression [14] to estimate the facial orientation and landmark 
points on a face; 3) Eye contact estimation: similar to [37][54], we 
relied on the location of the pupil relative to the rest of the eye to 
estimate the direction of eye gaze. We used the Qualcomm 
Snapdragon SDK to accelerate the tracking process. The per-frame 
image processing time was 17ms, and we can process 21 frames per 
second on the hexacore Snapdragon 808 CPU in the Nexus 5X. 
Compared to dedicated eye trackers, camera-based gaze tracking 
lacks the accuracy to detect the absolute locations of eye gazes [38], 
however, such accuracy is not necessary given the small display size 
of smart watches. Therefore, we proposed a calibration-free binary 
eye contact algorithm optimized for the visual attention tracking 
requirement in the context of SmartRSVP. We trained a binary eye 
contact classifier from five volunteers: taking the union of all 
volunteers’ visual attention range of the simulated watch screen. 
Therefore, the gazes within the union range will be treated as 
paying visual attention. A 0.5s low-pass filter was used to reduce 
false positives and false negatives from per-frame estimations. 
Figure 2 shows the continual output of the eye gaze prediction 
algorithm and the binary eye contact estimations.  
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Figure 2. Visual Attention Tracking via face detection and eye contact 

estimation. The x-axis is time (~17 sec). Row (a) is the predicted 

horizontal eye gaze locations at each timestamp, and Row (b) is the 

predicted vertical eye gaze locations. Green circles highlight moments 

when a user is not having gaze contact with his smart watch. 

3.3  Cognitive State Inference 
SmartRSVP infers users’ cognitive states via commodity fingertip 
PPG sensing through the back camera of a smartphone. We choose 
this option rather than relying on built-in heart rate sensors on 
smartwatches because today’s smart watch APIs do not give access 
to raw heart beat waveforms. We expect cleaner PPG signals and 
higher prediction accuracies if we can access raw waveforms from 
dedicated optical heart rate sensors on smart watches.  
We used the LivePulse algorithm [22] to preprocess the temporal 
PPG signals and then used a fixed-size sliding window to extract 
features from them. We extracted 9 dimensions of heart rate and 
HRV features (Table 1) from each window. After normalization, 
these features were used to train a statistical classifier to predict user 
cognitive workload within each sliding window.  

Feature Definition 

MHR Average heart rate 

SDHR Standard deviation of heart rates 

rMSSD 
The square root of the mean squared adjacent RR 

intervals’ difference 

pNN12 
Percentage of more than 12ms difference 

between adjacent RR-intervals 

pNN20 
Percentage of more than 20ms difference 

between adjacent RR-intervals 

pNN50 
Percentage of more than 50ms difference 

between adjacent RR-intervals 

MAD Median of absolute deviation of RR-interval 

AVNN Average RR-interval 

SDNN Standard deviation of the RR-intervals 

Table 1. Heart Rate and HRV Features extracted from raw PPG 

waveforms. 

3.4  Speed regulation 
A one-way, binary adaptation strategy was used to adjust the RSVP 
speed dynamically. This adaptation strategy avoids the confounders 
in number, duration, and scale of speed changes in adaptations. This 
paradigm has been proven to be effective by existing research [59] 
and suits our design purpose. SmartRSVP tracks users’ PPG signals 
during reading and decreases RSVP speed if a multitasking activity 
is detected. The amount of speed reduction was chosen by a 4-user 

pilot study, and finalized to be 100wpm since it was the minimum 
reduction that could be noticed by all participants.  

4  USER STUDIES 
We ran three user studies to investigate different aspects of 
SmartRSVP. The first two studies aimed to evaluate the visual 
control module of SmartRSVP and the last one aimed to evaluate its 
speed regulation module. In the first study, we directly compared 
SmartRSVP with today’s standard reading interface on smart 
watches and traditional RSVP in a sitting condition. We further 
investigated the robustness and efficacy of SmartRSVP in standing 
and walking conditions in the second study. In the third study, we 
evaluated usability and efficacy of the whole SmartRSVP system in 
action. 

4.1  User Study 1 
This study evaluated the efficacy of the visual control channel of 
SmartRSVP and directly compared it with traditional RSVP interface 
and normal watch reading interface in a sitting posture under a 
visual distractive environment. 

4.1.1  Participants  
18 participants (3 females) between 19 and 46 years of ages (µ=26) 
participated in the study. None of the participants had experiences 
with RSVP. 

4.1.2  Apparatus 
There were three interfaces in this study: normal watch reading 
interface (NWR), traditional RSVP (T-RSVP), and SmartRSVP (Figure 
3). NWR used a 20dp sans serif (Droid Sans) font for text display to 
replicate today’s reading interfaces on smart watches. NWR shows 
around four words per line and eight lines per screen. T-RSVP had 
the same appearance as SmartRSVP (details in Design of SmartRSVP 
session). Similar as in SmartRSVP interface, a user could also tap the 
screen to play/pause the text display in T-RSVP. 

 
Figure 3. Three reading interfaces in the study. From left to right: 

Normal Watch Reading (NWR) Interface, Traditional RSVP (T-RSVP) 

interface, and SmartRSVP. 

Thirty unique email pieces were chosen from Enron email database 
as the reading materials. Reading short email messages is a frequent 
task on today’s smart watches. The selected emails have comparable 
lengths (μ = 47 words or 3.5 sentences) and difficulties (average 
Flesch-Kincaid score = 68.65, σ = 14.97).  
We also designed and deployed visual distractions in this study. A 
15-inch laptop was put on the side of a participant (Figure 4) to 
generate distracters. When the participant was reading, for every 4 
to 6 seconds, the laptop generated a distracter—a 3-digit random 
number on the screen along with a beep sound. Once the participant 
heard a beep sound, she was required to look at the laptop screen 



   
 

(Figure 4, right) and read the number out loud. Then the participant 
could resume the reading task. 

 
Figure 4. Distracters (random 3-digit numbers) appear on a 15-inch 

laptop screen on the left-hand side of a participant. Left:  reading an 

email message via SmartRSVP; Right: turning left to read the 

distracter.  

4.1.3  Procedure 
This user study included a single session for 30 minutes. The session 
started with an introduction of the three interfaces and distractions. 
Once completed, participants practiced reading on the interfaces 
with distractions for 10 min to get familiar with the interfaces, 
distractions, the genre of reading materials and the comprehensive 
questions. After the practice, participants read a set of 10 emails on 
each interface, 3 sets (30 emails) in total for all interfaces. Both sets 
and interfaces were randomly ordered for each participant. We 
placed 3 distracters for each email message. After reading an email, 
the participant answered one question to test the reading 
comprehension. At the end, participants were asked to complete a 
questionnaire to provide the subjective feedback on the three 
interfaces. 

4.1.4  Design & Analysis 
The study used a within-subjects design with three interfaces: NWR, 
T-RSVP, and SmartRSVP (Figure 3).  
We investigated the following metrics across the three interfaces:  

 False positive and false negative rates of the divided visual-
attention, which were calculated by comparing the recorded 
play/pause timestamps during reading with the distracters. 

 Comprehension rate—the percentage of correctly answered 
questions. There are three levels of text comprehension, i.e. 
literal, inferential, and evaluative [18]. We only used literal 
questions, i.e. recalling key information that was explicitly 
stated in the email, in our study because we focused on 
evaluating and comparing reading interfaces rather than 
testing the language and logical skills of participants.  

 Reading efficiency (E), defined as: E =
W

D
× c, where D denotes 

reading duration (including distractions), W is the number of 
words, and c is comprehension rate [27][53]. 

 Subjective ratings of comfort on a 5-point Likert scale. 

4.1.5  Results  
The average false positive rate of visual attention tracking in 
SmartRSVP was 24.02%, and the average false negative rate was 
3.7%. 
The average comprehension rates and corresponding standard 
deviations were 52.2% (σ=0.16), 23.9% (σ=0.11), and 57.5% (σ=0.20) 

respectively (Figure 5). Pairwise mean comparison (t-tests) with 
Bonferroni correction showed that the comprehension rate of NWR 
was significantly higher than T-RSVP (t(17)=-6.27, p<0.0001). The 
comprehension rate of SmartRSVP was also significantly higher 
than T-RSVP (t(17)=-6.32, p<0.0001). However, the difference of the 
comprehension rates between NWR and SmartRSVP was not 
significant (t(17)=0.88, p=0.39).  
Similar results were discovered on reading efficiency. For NWR, T-
RSVP, and SmartRSVP, the reading efficiencies and the 
corresponding standard deviations were 65.16 wpm (σ=19.49), 43.93 
wpm (σ=21.42), and 67.16 wpm (σ=18.65). There were significant 
differences in reading efficiencies between NWR vs. T-RSVP (t(17)=-
3.02, p<0.005), and between SmartRSVP vs. T-RSVP (t(17)=-3.37, 
p<0.005).  

 
Figure 5. Comprehension rates by reading interfaces 

Figure 6 showed the subjective ratings of perceived comfort across 
three interfaces. The length of each bar represents the average 
perceived comfort of each platform. The color grids are the portions 
of each rating score within the bar. The subjective ratings of the 
perceived comfort were 3.78 (σ = 0.73), 2.06 (σ = 0.96), and 3.28 (σ = 
0.94) for SmartRSVP, T-RSVP and NWR respectively. There were 
significant differences between NWR and T-RSVP (t(17)=-3.87, 
p<0.0005), as well as between SmartRSVP and T-RSVP (t(17)=-6.14, 
p<0.0001). Although SmartRSVP received higher subjective ratings 
in comfort when compared with NWR, the difference was not 
significant (t(17)=1.75, p=0.08). All 18 participants provided positive 
feedback on the use of eye-gaze as an implicit control channel for 
RSVP. More than 80% participants thought the SmartRSVP’s visual 
attention control channel was “responsive”.  

 
Figure 6. Subjective ratings on perceived comfort on a 5-point Likert 

scale (1 = not comfortable at all, 5 = very comfortable). 

4.1.6  Discussions 
By leveraging camera-based visual control channel, SmartRSVP 
overcame the recovery cost of divided attention on T-RSVP and 
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achieved significantly higher comprehension, reading efficiency, and 
perceived comfort than T-RSVP.  
Meanwhile, SmartRSVP had a comparable performance as NWR. 
We believe current results are still promising for three reasons: 1) 
our participants had more than 10 years of experience in normal text 
reading interfaces. In comparison, the results in SmartRSVP were 
immediate pick-up performances with less than an hour of 
exposure; 2) The sitting posture in this study could benefit NWR by 
reducing the tremor of the watch screen (easier fixations) and 
sparing the hands and arms for scrolling purpose (both hands 
available); 3) SmartRSVP is a hands-free interface, which can 
facilitate reading when no hands are available to scroll. In this study, 
SmartRSVP achieved comparable performance as NWR even when 
users’ both hands were available. The results suggest that 
SmartRSVP can be served as a complementary interface to NWR in 
sitting posture without sacrificing a user’s reading performances, 
especially when both of the user’s hands are occupied. 

4.2  User Study 2 
This study further evaluated the usability, efficacy, and robustness of 
SmartRSVP’s visual control channel during standing and walking 
conditions when reading longer articles. 

 
Figure 7. Sample participants in study 2.  

4.2.1  Participants & Apparatus & Procedure 
12 participants (5 females) between 18 and 34 years of ages (µ=23) 
participated in the study (Figure 7). Three of them had participated 
in user study 1. None of the rest had experience with RSVP. 
The setting of this study was the same as user study 1, except: 
1) We excluded the T-RSVP interface to simplify the experimental 
design. When compared with the sitting posture in user study 1, the 
standing and walking conditions do not bring additional benefits to 
T-RSVP over SmartRSVP. 
2) The participants completed all the tasks on a treadmill in a local 
gym (Figure 7). The speed of the treadmill was set to 1.5mph in the 
walking posture.  
3) The reading materials were changed from short email messages to 
longer articles to test the range of SmartRSVP’s application. We 
selected four news articles from the New York Times, ranging 300-
400 words (µ=369, σ =24) with comparable difficulties (average 
Flesch-Kincaid score = 49, σ = 8.46).  
4) We updated the binary eye-contact classifier by including 5 more 
volunteers to increase ethnic diversity. 
This study had the same procedure as user study 1.  
 

4.2.2  Design & Analysis 
The study used within-subjects design with two-by-two factors, 
including Standing and Walking postures, as well as SmartRSVP and 
NWR interfaces. Participants completed articles under each unique 
combination of postures and interfaces, leading to 2×2=4 articles for 
the study. Posture and interfaces were randomly ordered for each 
participant. 
The evaluation metrics were the same as user study 1, except we 
used two literal questions after each article to test users’ 
comprehensions. 

4.2.3  Results  

 
Figure 8. Average comprehension rates by postures. 

By applying the updated binary eye-contact classifier in SmartRSVP, 
the average false positive rates and average false negative rates of 
divided visual tracking dropped to 5.05%, 4.5% in Standing posture, 
and 6.06%, 9.09% in Walking posture.  
The average comprehension rates of the NWR and SmartRSVP by 
reading postures were shown in Figure 8. The comprehension 
accuracies were 77.3% (σ=0.69) on NWR in Standing posture (N+S), 
68.2% (σ=0.81) on NWR in Walking posture (N+W), 63.6% (σ=0.61) 
on SmartRSVP in Standing posture (S+S) and 70.8% (σ=0.66) on 
SmartRSVP in Walking posture (S+W). No significant difference was 
found on comprehension accuracies in either reading platforms 
(t(11)=-0.55, p=0.58) or postures (t(11)=-0.11, p=0.91).  
Besides comprehension rates, we also measured reading efficiencies, 
which were 177.3 wpm (N+S, σ=93.98), 163.5 wpm (N+W, σ=110.17), 
129.1 wpm (S+S, σ=59.61), and 170.2 wpm (S+W, σ=117.67). Again, 
neither reading platforms (t(11)=-0.71, p=0.48) nor reading postures 
(t(11)=0.46, p=0.64) had significant impact on reading efficiency. 

 
Figure 9. Subjective ratings on perceived comfort for NWR and 

SmartRSVP (1 = Strongly Disagree, 5 = Strongly Agree). 

The subjective ratings of perceived comfort were 4.55 (σ = 0.52) for 
N+S, 3.18 (σ = 0.98) for S+S, 3.27 (σ = 1.01) for N+W, 3.55 (σ = 0.93) 
for S+W (Figure 9). Participants preferred NWR in standing posture, 
while preferred SmartRSVP in walking posture. 
We also collected users’ raw gaze data (the estimated gaze point 
from our algorithm) to quantify the impact of reading techniques 
and body movements on gaze patterns, and to investigate the 



   
 

robustness of the camera-based gaze tracking technique in 
SmartRSVP (Figure 10). From corresponding Heatmaps we can see 
that the raw eye gaze locations were less scattered for SmartRSVP 
(bottom row) than NWR. At the same time, walking (right column) 
can cause slightly more distributed gaze distributions than standing 
(left column).  

 
Figure 10. Heatmaps of aggregated eye gaze by postures. Top row: 

NWR+Standing and NWR+Walking; Bottom Row: 

SmartRSVP+Standing and SmartRSVP+Walking. 

4.2.4  Discussions 
These results were still encouraging considering that: 1) participants 
were able to learn to use SmartRSVP “in the wild” with little training 
and no calibration; 2) Our visual attention tracking algorithm was 
able to tolerate the constant but irregular motions during reading in 
standing and walking postures. These findings also suggest that 
SmartRSVP could serve as an effective complement to NWR when a 
user read during walking and both hands are occupied.  

4.3  User Study 3 
This study investigated the usability and efficacy of the speed 
regulation module of SmartRSVP in action. Our goals were two-fold: 
1) determining whether SmartRSVP was able to identify users’ 
focus/multitasking internal cognitive state in everyday tasks, 2) 
determining whether the dynamic speed adjustments by SmartRSVP 
were effective.  

4.3.1  Participants & Apparatus 
14 participants (6 females) between 25 and 33 years of ages (µ=29) 
participated in the study. Only one participant had previous 
experiences in RSVP.  
We adopted the color counting task [50] to induce the internal 
cognitive workload changes. Two workloads were included: the 
focused and multitasking. To induce different cognitive workloads, a 
computer was placed on the side that spoke the names of nine 
different colors randomly at the speed of one second per color. 
Participants were told to read and ignore the background audio in 
the focus condition. In the multi-tasking condition, they read as well 
as counted the number of times the two target colors were spoken, 
i.e. “yellow” and “white”. Conditions and articles were assigned to 
users in random orders. 
The reading articles in this study had an average of 794 (σ = 30.13) 
words and comparable difficulties (average Flesch-Kincaid Reading 
Ease score = 38.64, σ = 4.57). 
 
 

4.3.2  Procedure 
This study included a 20min training session and a 40min testing 
session.  
In the training session, the participants read a news article under 
each cognitive workload condition. Participants rated their focus 
level, and answered comprehensive questions after each reading. 
The testing session was conducted one week after the training 
sesion, where the real-time speed regulation function was enabled. 
In the testing session, two cognitive-workload classifiers were used 
to adjust the RSVP speed. One was the SmartRSVP embedded 
classifier and the other was a baseline method (details in 4.3.3). A 
participant read an article under each unique combination of 
classifiers and cognitive-workload conditions. 

4.3.3  Design & Analysis 
We used a within-subjects design in this study. The training session 
had 2 cognitive-workload conditions. The testing session used two-
by-two (2 cognitive workload conditions and 2 speed adaptive 
classifiers) factorial design. Therefore, each participant completed 
2+2×2=6 articles in the study. 
Two user-dependent cognitive-workload classifiers were evaluated 
in this study. First, we adopted a simple threshold-based classifier 
(TH classifier) as the baseline. To simulate traditional practices [51] 
that predict cognitive workload from heart rate variability signals in 
the HCI community, the TH classifier calculates the one-
dimensional MHR in HRV features to determine a user’s cognitive 
workload. A multitasking state was triggered if the observed MHR 
had less than 5% probability in training-focus distribution and more 
than 5% probability in training-multi-tasking distribution. Second, a 
RBFSVM classifier was used in SmartRSVP due to its promising 
results in previous research [20]. For each real-time input window 
(50s HRV signals), the RBFSVM classifier predicted a probability of 
being multitasking ranging from 0~100%. To increase the precision, 
we classified one as multitasking only when the probability is >90%, 
To assess the performance of SmartRSVP’s real-time speed 
regulation, we compared 1) the accuracy, precision, and recall of 
speed regulation under different cognitive conditions (reliability), 
and 2) users’ subjective feedbacks on SmartRSVP (effectiveness).  

4.3.4  Results  

 Baseline (TH) RBFSVM 

Accuracy 50.0% 70.0% 

Precision 50.0% 83.3% 

Recall 40.0% 50.0% 

Table 2. The live performance of SmartRSVP in study 4.  

In the training phase, the same three-step procedures were used to 
process users’ raw PPG signals and get training instances as in Guo 
and Wang [20]. We used 5s stripe (the gap between the starting 
points of two consecutive windows), 20s initial padding, and 50s 
local window size for both training and testing, which achieved 
optimal performance in a 2-fold user-dependent RBFSVM classifier 
model (accuracy = 68%, kappa = 0.35) in the training dataset.  
As shown in Table 2, SmartRSVP’s RBFSVM classifier achieved 
better real-time prediction accuracies than the baseline classifier. 
The relative improvement in accuracy was around 40%. 



Overall, our users reported positive experiences with the speed 
adjustment module in SmartRSVP (Figure 13). Users considered 
SmartRSVP’s speed adaptations were reliable (µ=3.8, σ=1.03) and 
would like to use SmartRSVP in the future (µ=4.1, σ=0.99).  
 

 

Figure 13. Subjective ratings on a 5-Point Likert scale.  

4.3.5  Discussions 
In our experiment, the calibration process of the speed adaptation 
module includes 1) choosing the favorite RSVP speed; and 2) 
gathering heart rate signals when the participants were reading two 
articles, one reading in focus and the other one in multitasking. The 
two-step calibration is for first-time users only. 
SmartRSVP could detect users’ cognitive status with 70% accuracy in 
real-time. By leveraging the real-time adaptation algorithm of 
SmartRSVP, users reported positive experiences. 
As expected, RBFSVM classifier worked better than the TH classifier 
(baseline) because multiple dimensions of HRV features were taken 
into account. When further investigating users’ MHR, we found that 
even for a single reader, his MHRmulti−tasking did not always align 

to the same side of MHRfocus. Therefore, users’ cognitive workload 
during RSVP reading was not directly correlated to users’ MHR. 
Instead, users’ perceived difficulties and interestingness of the 
reading materials had stronger correlations with MHR: harder 
reading materials were related to higher MHR (Pearson 
correlation=0.38) and interesting reading material lead to lower 
MHR (Pearson correlation = -0.35). 
We intentionally made two trade-offs to achieve a good balance 
among robustness to environmental changes, ease of use, and 
minimal calibration efforts. First, we focused on detecting the type of 
cognitive workload (i.e. focused vs. multitasking) rather than 
detecting the continual levels of each type. We found such coarse-
grained detection results were sufficient to regulate the speed of 
RSVP dynamically with good accuracies and robustness; Second, we 
used a one-way and fixed-speed adaptation strategy [59] because it 
ensured our algorithm would do no harm to the reading process. 
Multi-way detections will reduce the detection accuracy and 
incorrectly increasing the reading speed can be disruptive to reading 
experiences.  

5  FUTURE WORK 
While SmartRSVP was optimized for smart watches and smart 
wristbands, it could also be helpful for emerging interaction 
technologies, such as smart glasses, augmented reality (AR) displays, 
and heads-up displays (HUDs), where there are limited screen 
estates, restricted input modalities, or insufficient cognitive 
bandwidth to display, navigate, or process textual information.  

Despite promising results, we have only scratched the surface of the 
design space of SmartRSVP. There are several important topics to be 
explored in the future. First, our studies were conducted in indoor 
and consistent lighting conditions. It is harder to track users’ visual 
attention reliably outdoors with inconsistent lighting conditions, e.g. 
the camera may be overexposure under direct sunshine. In addition 
to designing more robust algorithms, it would be important to 
leverage built-in motion sensors such as the GPS, accelerometers 
and gyroscope in the watch to both infer the context of the users (i.e. 
indoor, outdoor, moving, not moving) and estimate the orientation 
and dynamic posture of the smart watch for more accurate 
predictions; Second, as discovered in our study, there were both 
challenges and opportunities to provide feedback for the current text 
presentation when a user was not paying visual attention to the 
display. We believe tactile feedback could play an important role 
here. It will be interesting to explore the feasibility, type, and level of 
tactile feedback in no visual contact state of SmartRSVP in the 
future; Third, although we confirmed the feasibility of speed 
adaptation according to users’ cognitive workloads in SmartRSVP, 
principled research is necessary to further investigate the design 
space of dynamic speed adaptation (e.g. optimal latency and scale of 
speed change). Inspired by Yuksel et al [59], we plan to adjust the 
displaying speed of SmartRSVP in a binary manner from low speed 
to high speed; Fourth, it will be interesting to invent a mixed-
initiative approach for the fine-grained control of display speed, 
where both users and the intelligent interface can change or confirm 
the reading speed in a complementary manner. We plan to explore 
the use of wrist gestures [30] as a mixed-initiative control channel in 
SmartRSVP; Last but not least, several alternative presentation 
techniques, such as showing important words in different colors, 
content-based RSVP speed adaptations such as adjusting the word-
level display durations based on the predicted importance, enabling 
regressions via gesture-based interactions [34][35], and reminding 
users (via tactile feedback, sound, or visualizations) about important 
upcoming messages, could be explored in the context of SmartRSVP. 

6  CONCLUSIONS 
We proposed SmartRSVP, a novel speed-reading system to facilitate 
text reading on small screen wearable devices. SmartRSVP leverages 
camera-based visual attention tracking and implicit physiological 
signal sensing to make text reading via Rapid Serial Visual 
Presentation (RSVP) more enjoyable and practical on smart watches. 
In a set of three user studies, we found that SmartRSVP lead to 
significantly higher comprehension rate (57.5% vs. 23.9%) when 
compared with traditional RSVP. The current implementation of 
SmartRSVP was capable of supporting more realistic conditions such 
as walking in a gym with satisfactory performance and subjective 
preference. Finally, SmartRSVP can adjust the speed of RSVP in real-
time based on users’ cognitive workload with 83.3% precision. 
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