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Abstract
We present a novel task that involves prediction of linguistic
typological features from the World Atlas of Language Struc-
tures (WALS) from multilingual speech. We frame this task as
a multi-label classification involving predicting the set of non-
mutually exclusive and extremely sparse multi-valued WALS
features. We investigate whether the speech modality has
enough signals for an RNN to reliably discriminate between
the typological features for languages which are included in the
training data as well as languages withheld from the training.
We show that the proposed approach can identify typological
features with the overall accuracy of 91.6% for the 16 in-domain
and 71.1% for 19 held-out languages. In addition, our approach
outperforms language identification-based baselines on all the
languages. Also, we show that correctly identifying all the ty-
pological features for an unseen language is still a distant goal:
for 14 languages out of 19 the prediction error is well above
30%.
Index Terms: linguistic typology, speech, low-resource lan-
guages, multi-label classification, neural networks

1. Introduction
The field of linguistic typology organizes the world’s languages
according to their structural and functional features and helps
to describe and explain their linguistic diversity [1]. In re-
cent years there has been a growing interest in employing lin-
guistic typology resources in natural language processing [2],
where linguistic typology is used to scale up existing language
technologies to the long tail of the world’s languages [3] for
which the traditional resources are very scarce or missing al-
together. Typological resources such as PHOIBLE [4], Glot-
tolog [5], and PanPhon [6] have been successfully used in di-
verse speech and language tasks such as grapheme-to-phoneme
conversion [7], multilingual language modeling [8] and depen-
dency parsing [9].

In this study we present a novel task of learning linguis-
tic typological information from multilingual speech corpora.
We frame this problem as a classification task where, given the
speech utterance, one needs to determine the structural features
of a corresponding language. The source for the features is the
World Atlas of Language Structures (WALS) [10] that contains
phonological, lexical, grammatical and other attributes gathered
from descriptive materials for 2,679 languages. The main mo-
tivation for this study is to discover structural typological prop-
erties of the low-resource languages and dialects for which very
little or no training data is available. This task is different from
spoken language identification [11]: As a hypothetical example,
when applied to the spoken Scots, the language identification is
likely to detect it as English. This is not very helpful because,
for this task, one hopes to discover the features that make Scots
unique, such as its hypothesized phonological link to Scandi-
navian languages [12, 13]. Moreover, this task is compelling
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Figure 1: WALS features sparsity estimated as percentage of the
features not attested for each language.

because having an accurate linguistic feature detector can aid
development work. For example, correctly identifying broad
phonetic features of an unknown language can help one build
crude grapheme-to-phoneme rules and phoneme inventories for
automatic speech recognition and text-to-speech.

This paper is organized as follows: we introduce our ap-
proach to predicting WALS features as a sparse multi-label clas-
sification problem in Section 2. The goal of the experiments, de-
scribed in Section 3, is to determine which features and groups
thereof can be reliably predicted for the in-domain and out-of-
domain languages. For the out-of-domain languages for which
the data was withheld when training our model, we compare the
results against a language identification baseline that we train.
This baseline uses the predicted language as a lookup key into
WALS. We show that the network does not simply memorize
the features for language identification, but is able to generalize
over the held-out set. We also show that the speech modality of-
fers enough signal to discriminate well between some groups of
features. Section 4 concludes the paper. It is important to note
that we treat this task as discriminating between WALS feature
tags, not making any claims about the discovery of actual struc-
ture of underlying phenomena. Since this is a novel task, our
goal is to provide a baseline, a very likely crude one, but one
that can be improved upon over time.

2. Problem Formulation and Models
2.1. World Atlas of Language Structures
We use WALS [10] as a source of typological information for
2,679 languages. The 192 WALS typological multi-valued lan-
guage features are organized into 152 chapters, each chapter
corresponding to a particular phonological, morphological or
syntactic linguistic property. For example, there are 18 chap-
ters corresponding to “Word Order” syntactic property where
most chapters contains one typological feature, such as “Order
of Genitive and Noun”, while other chapters, such as “Order
of Negative Morpheme and Verb” contain 7 features, such as
“Obligatory Double Negation” [14]. The dataset is very sparse,
as demonstrated by Figure 1. For example, for 1,801 languages
out of 2,679 only 20% (or less) of the WALS features are at-
tested. Only 149 languages have 50% (or more) coverage. We
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prune WALS by removing the set of 57 languages for which no
ISO 639-3 code is defined. In addition, we remove three lan-
guages for which no WALS features are attested.

2.2. Multi-label classification
Given an example variable-length speech sequence x in an in-
put feature space X , the classification task consists of selecting
a set of multiple applicable WALS feature labels {λi} from a
finite set of labels L = {λ1, λ2, . . . , λNL}, where NL = 192
is the number of WALS features. Each candidate label takes its
value from a set of disjoint classes Yi = {yij}, 1 ≤ i ≤ NL,
corresponding to the values of a particular WALS feature λi.
For example, a language may or may not have a “number of
genders” feature label present, but if it is present this feature
cannot take the values of “None” and “Four” simultaneously.
The cardinality C of the set of all unique feature values is 1316.
This scenario fits the multi-label multi-class classification prob-
lem [15, 16].

2.3. Model architecture
The model architecture is an extension of automatic language
identification architecture described in [17]. Given the input
speech parametrization, the input layer is a convolutional neural
network (CNN) [18]. The CNN employs one-dimensional tem-
poral convolutions similar to the architecture described in [19]:
There are three one-dimensional convolution layers containing
20, 40 and 60 filters, respectively. Receptive field sizes r for
each layer are 5, 5 and 3. The stride parameter is set to 1. Rec-
tified linear units (ReLU) are used in each layer [20]. Batch
normalization is applied before each layer [21]. Each convo-
lution layer is followed by a max-pooling layer with filter size
r′ set to 2. Dropout [22] with probability 0.5 is applied to the
last max-pooling layer. In our experiments we found that using
this configuration of the input layers aided feature extraction
and improved the overall accuracy compared to a simpler feed-
forward layer or no input layer at all.

The CNN outputs are fed into recurrent neural network
(RNN) which is a bidirectional variant [23] of a long short term
memory (LSTM) model [24]. The RNN consists of two lay-
ers of bidirectional LSTMs with 128 forward and 128 back-
ward cells in each layer. Dropout is applied to each layer with
a probability of 0.5. The uniform weight initialization scheme
from [25] was used. The forward and backward outputs corre-
sponding to the last time step of the last layer of bidirectional
LSTM are concatenated together and provided to the single
fully-connected linear activation layer. Each output of this layer
corresponds to a particular value of a WALS feature. There are
1316 outputs in total.

2.4. Dealing with data imbalance
As noted in [26, 27], many typological databases are designed
to suit the needs of theoretical linguistic typology, resulting
in a sparse representation of features across languages (mostly
due to intentional statistical balancing of features across lan-
guage families and geographic areas). Also, for certain lan-
guages the maintainers are sometimes unable to obtain a reli-
able description of linguistic attributes from the available lin-
guistic sources [28]. This situation is problematic for statistical
modeling because it results in heavy data imbalance between
different types of features and complicates construction of ma-
chine learning models. A classifier constructed without regard
to data imbalance leans towards correctly predicting the major-
ity class, which in case of WALS corresponds to missing or in-

Table 1: Languages used for training, development and testing.

Languages Type Train Dev Test

Egyptian Arabic, Bulgarian, Czech, Danish,
Dutch, French, German, Greek, Spanish,
Hebrew, Hindi, Italian, Japanese, Korean,
Latvian, Nepali

I X X X

Amharic, Basque, Bengali, Burmese, Gujarati,
Nigerian English, Lao, Lithuanian, Kannada,
Maithili, Malayalam, Marathi, Romanian,
Russian, Sinhala, Swedish, Tamil, Telugu,
Urdu

H X

tentionally undefined features, while the “interesting” features
with low coverage are heavily underestimated.

Approaches to data imbalance have been extensively stud-
ied in the literature [29, 30]. In this study we employ the recip-
rocal frequency approach inspired by [31]. We apply sigmoid
non-linearities to the outputs of fully-connected layer and opti-
mize all predictions ŷ against the true labels y all at once using
the weighted variant of a cross-entropy function [32] defined as

L(θ) = − 1

N

N∑

n=1

C∑

i=1

w(i)yi
n log

(
ŷi(xn,θ)

)
+ r(θ) , (1)

where θ represents network parameters, x is the training set, C
is the dimension of the prediction vector, r is an l2-norm regu-
larization term and w(c) is the weight function associated with
class c which, for the observed classes, is defined as N/Nc,
where N is the number of training sequences and Nc is the
feature value count (c ∈ L) for feature L. The counts are com-
puted solely from the training data. For the unobserved classes
w(c) = 0. The purpose of the function is to penalize the fre-
quent classes and boost the rare ones. The unattested classes do
not contribute to the overall loss.

3. Experiments and Discussion
Our experiments focus on four aspects: First, we aim to es-
tablish the baselines that correspond to the lower performance
bounds for the neural network-based WALS feature classifier.
In particular, we investigate the majority class prediction and
what happens when the network learns by chance. Second, we
investigate a regular scenario where the generalization over the
unseen examples from a language observed in the training data
is tested. Third, we present the results for the languages with-
held from training. Finally, we compare our approach with a
feature lookup guided by language identification.

When computing the various metrics we ignore the unde-
fined WALS feature values focusing on attested features only.
For the attested features we rely on the weighted loss function
from equation (1) to alleviate the inherent imbalance between
the WALS classes.

3.1. Dataset details
Our dataset consists of a small subset of an in-house corpus of
mobile speech collected over the years using Datahound - a spo-
ken utterance data collection application running on Android
devices [33]. The speech comes from a variety of speakers of
both genders. The recording conditions range from the quiet
indoor recordings to very noisy recordings in public places.
The languages used for training, development and testing are
shown in Table 1. The training and development sets consist
of 122,610 and 18,006 utterances from 16 languages from di-
verse language groups (Semitic, Balto-Slavic, Germanic, Indo-
Aryan, Romance, Koreanic and Japonic). Each language in
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Figure 2: WALS feature value (class) counts displayed on a log-
arithmic scale. Classes are sorted by their counts. 886 classes
out of 1316 are unobserved.

training and development set has roughly the same number of
utterances. The test set for the above 16 languages consists of
14,437 utterances. Because this set contains the data for the
languages observed in training, we denote this test set as in-
domain (I). We keep an additional test set of 16,125 utterances
corresponding to the 19 languages excluded from the training.
We denote this test set as held-out (H). Most of the languages
in this set have some (possibly remote, as is the case between
Amharic and Hebrew) relation to the languages in the training
data apart from the languages belonging to Dravidian and Tai-
Kadai language families, as well as Basque.

In Section 2.1 we provided initial analysis of WALS feature
sparsity based on feature value counts computed solely from the
WALS corpus (Figure 1). The dimension of difficulty involved
in training a neural network on our speech dataset is demon-
strated in Figure 2, which shows the counts for all possible
WALS feature values (corresponding to classes that a classifier
has to predict) encountered in the training data. A significant
proportion of the classes (886 out of 1316) are not encountered
in the training data for the 16 languages. The distribution of
counts for the majority of the remaining 430 classes is approxi-
mately log-linear.

3.2. Model training details
The 16 kHz speech was parameterized into HTK-style Mel Fre-
quency Cepstral Coefficients (MFCC) [34] using a 10 msec
frame shift. The dimension of the MFCC parameters is 39 (13
static + ∆ + ∆∆ coefficients). We compute the mean and stan-
dard deviation over all the parameters in the training set and use
these values to scale the training parameter sequences to have
zero mean and unit variance. The same values of mean and
standard deviation are used to scale the parameter sequences in
the development and test sets. The parameters serve as inputs
to our hybrid CNN-LSTM classifier network, which we intro-
duced in Section 2.3. No language identifying features are used.
The models are trained using AdaDelta [35] with ρ = 0.95 and
ε = 10−8. We use an exponential learning rate decay, with an
initial learning rate set to 10−3, a reasonably slow decay fac-
tor of 0.95 and the number of decay steps is set to 4 ∗ 105. In
our experiments we found that the above settings for learning
rate lead to better convergence. L2 regularization is applied to
the recurrent layer weights, with the weight scaling factor set
to 0.05. In addition, the global gradient clipping limit is set to
10 and the training mini-batch size is 10. We tuned the above
hyper-parameters manually.

3.3. Baselines: majority class and learning by chance
Our first baseline corresponds to the simplest scenario where
the classifier makes the decisions based on majority class labels
only. In this case, instead of predicting the class corresponding

Table 2: Baseline system accuracies.

Baseline Type Accuracy (%)
In-domain (I) Held-out (H)

Majority class (WALS) 54.4 60.1
Randomized inputs 71.8 68.0

to the value of a particular WALS feature using a neural net-
work, we select the most frequent value of that feature. The
frequency is computed solely from the WALS corpus using the
information from 2,679 languages. The overall accuracies for
all the WALS features computed over the in-domain (I) and
held-out (H) test sets are shown in Table 2. The results for the
second baseline correspond to the lower bound on the capacity
of our network to learn by chance. In this scenario, before train-
ing the network the input acoustic parameters in our training
set are sampled from a normal distribution with zero mean and
unit standard deviation. The network is then tested against orig-
inal unpermuted test sets. This baseline significantly outper-
forms the majority class approach, which implies that the net-
work is learning something about the sparse WALS labels from
the totally corrupt data. The result is intriguing because robust-
ness property has so far been only confirmed to the extremely
noisy labels rather than features [36]. Since in our models we
batch-normalize the inputs, we hypothesize that this result cor-
responds to the lower bound of what can be learned from the
inputs scaled to zero mean and unit variance.

3.4. WALS chapter types
For the following experiments we introduce an additional base-
line system in order to investigate whether our feature predictor
is simply memorizing the properties of language identification.
This baseline, denoted LANGID, consists of the language iden-
tification network trained using an unweighted softmax cross-
entropy loss on the same training data and similar topology to
WALS feature predictor. The system is evaluated on the in-
domain (I) and held-out (H) languages by using the predicted
language code as a lookup key into the WALS features. The re-
sults are shown in Table 3. This baseline is evaluated on the
same data against WALS feature predictor, denoted M . All
the results are aggregated by the WALS feature chapter types,
where, for each of the four evaluations, the total number of com-
parisons between the predicted and ground-truth values (Ne),
accuracy (A), precision (P ), recall (R) and F1 scores are dis-
played. The overall feature prediction accuracy (rather than the
average over chapter types) is displayed at the bottom row of
the table.

As can be seen from the table, the feature predictor M out-
performs language identification-based approach LANGID on
both the in-domain and held-out languages, leading us to con-
clude that in our case the language identification approach has
simply not enough signal to robustly discriminate between lan-
guages and, as a result, their features, which is especially true
for the held-out scenario. The network M also strongly outper-
forms the majority class baseline from Table 2. In the held-out
scenario, the improvement over the network trained on random-
ized data amounts to 3.1%, which is not as high as was orig-
inally hoped and indicates an overall model confusion when
faced with languages not seen during the training. The highest
accuracy (76.5%) on the held-out languages is obtained for the
WALS features belonging to the phonological chapter. This im-
plies that, compared to other types of features, rather unsurpris-
ingly the model has greater leeway to utilize the signals present
in speech. The second and third most accurate chapters (“Word
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Table 3: Metrics for WALS features grouped by WALS chapter type.

Chapter Type
M(I) LangId(I) M(H) LangId(H)

Ne A (%) P R F1 A (%) P R F1 Ne A (%) P R F1 A (%) P R F1

Complex Sentences 40,739 87.2 0.87 0.88 0.87 84.4 0.71 0.89 0.79 49,006 68.3 0.77 0.55 0.65 36.7 0.35 0.58 0.43
Lexicon 51,975 88.1 0.78 0.80 0.79 81.8 0.79 0.85 0.82 61,401 66.9 0.42 0.44 0.43 23.6 0.34 0.59 0.43
Morphology 77,679 91.2 0.87 0.89 0.88 79.4 0.79 0.84 0.81 119,664 71.6 0.49 0.50 0.49 29.0 0.25 0.47 0.33
Nominal Categories 23,189 89.1 0.89 0.86 0.88 80.1 0.84 0.83 0.83 326,369 67.4 0.55 0.52 0.53 32.6 0.31 0.43 0.36
Nominal Syntax 63,564 91.6 0.86 0.89 0.87 80.4 0.78 0.79 0.78 104,968 71.0 0.63 0.47 0.54 41.1 0.37 0.40 0.33
Other 1,917 100.0 1.00 1.00 1.00 85.6 0.77 0.79 0.78 - - - - - - - - -
Phonology 140,124 91.4 0.82 0.87 0.84 79.6 0.81 0.82 0.81 230,796 76.5 0.50 0.60 0.54 36.9 0.29 0.41 0.34
Sign Languages 4,198 97.2 0.98 0.97 0.97 88.3 0.66 0.93 0.77 6,640 14.1 0.61 0.42 0.50 7.2 0.59 0.38 0.46
Simple Clauses 192,493 91.1 0.89 0.79 0.84 79.9 0.82 0.79 0.80 274,105 74.3 0.64 0.63 0.63 39.0 0.37 0.36 0.36
Verbal Categories 172,194 87.3 0.85 0.74 0.79 83.9 0.79 0.83 0.81 220,197 65.3 0.44 0.58 0.50 38.8 0.21 0.54 0.30
Word Order 361,012 91.2 0.90 0.88 0.89 84.6 0.87 0.86 0.86 461,693 75.0 0.65 0.55 0.60 43.5 0.36 0.56 0.44

Total 1,129,084 91.6 82.6 1,854,839 71.1 36.3

Table 4: Selected features from the “Phonology” area.

Id R Name Ne Accuracy (%)

7A 9 Glottalized Consonants 9,211 89.5
10A 10 Vowel Nasalization 4,631 88.9
5A 11 Voicing and Gaps in Plosive Systems 9,211 88.4
11A 14 Front Rounded Vowels 9,211 86.8
8A 36 Lateral Consonants 8,220 66.4
12A 48 Syllable Structure 8,214 59.7

Table 5: WALS feature accuracies aggregated by language.

In-domain M(I) Held-out M(H)

Language Ne Accuracy (%) Language Ne Accuracy (%)

Latvian 127,836 98.3 Romanian 640 82.0
Japanese 135,447 97.0 Russian 132,957 76.5
Nepali 61,620 95.1 Swedish 72,450 74.9
Hebrew 139,731 95.1 Lithuanian 75,316 73.1
Czech 53,070 92.5 Sinhala 41,538 70.7
Arabic (Egypt) 27,390 92.1 Maithili 18,642 67.4
French 150,416 91.5 Kannada 109,909 65.9
Greek 142,135 91.1 English (Nigeria) 147,339 60.4
Hindi 132,912 89.9 Basque 127,380 57.2
Bulgarian 77,364 88.3 Telugu 52,140 54.3
Danish 54,694 87.9 Amharic 70,125 52.4
Italian 78,084 83.3 Bengali 48,363 51.5
German 95,732 75.9 Marathi 52,140 50.9
Dutch 85,885 75.7 Lao 39,640 50.7
Korean 69,285 72.8 Gujarati 33,520 50.3
Spanish 962 60.0 Urdu 34,727 49.7

Burmese 109,450 47.5
Tamil 72,048 47.3
Malayalam 60,099 44.2

Order” and “Simple Clauses”) are related to syntax. The result
for these two chapters is likely explained by the relatively low
class sparsity of the features in these two chapters in our train-
ing data, which results in a model which is relatively robust in
the held-out scenario.

3.5. Individual WALS features
Table 4 shows the six most accurate phonological features pre-
dicted for the held-out languages. For each feature, the corre-
sponding WALS feature identifier (Id), its accuracy rank (R)
among 192 features, name and the number of predictions (Ne)
are shown. The “Glottalized Consonants” feature tops the ta-
ble. It’s interesting to note, that this feature is only defined
for Korean (as “Ejectives only”) and explicitly set to “None”
for the rest of the languages. Hence, to correctly predict this
feature, the network essentially learns to distinguish Korean
speech from the rest. Similarly, the “Vowel Nasalization” is
only defined for French and Hindi (as “Contrast present”), and
the network learns to contrast this class with the majority class
(“None”). Given this analysis, we hypothesize that these two
features are the easiest to learn from our data.

3.6. Aggregation by languages
Table 5 shows feature prediction accuracies aggregated by lan-
guage for both 16 in-domain and 19 held-out languages, where
Ne is the overall number of feature predictions performed for
each language. The list of held-out languages is topped by the
Indo-European languages for which a related language is avail-
able for training (e.g., Romanian and Italian, Lithuanian and

Latvian). Rather unsurprisingly, the tonal languages Burmese
and Lao do not get accurate predictions because no related lan-
guages are present during the training and F0 information is not
used in acoustic features. Predictions for Dravidian languages
(with a surprising exception of Kannada) are also totally inac-
curate. The model is very inaccurate for Indo-Aryan languages
apart from Sinhala and Maithili, which seem to benefit from the
presence of Nepali and Hindi in the training data.

3.7. Alternatives considered
Since WALS features are non-exclusive but their values corre-
sponding to our predictions are not, we can only hope that the
network described above learns that within each feature its val-
ues are independent. To address this potential shortcoming we
tested an alternative multi-head strategy which constrains the
universe of predicted values for each individual WALS feature
to be mutually independent. We broke the problem down into
192 tasks, one for each WALS feature, effectively replacing a
single sigmoid cross-entropy loss in equation (1) with the linear
combination of weighted softmax cross-entropy loss functions
L(θi) corresponding to each feature. The weight function for
the observed classes ci for label i is defined as N i

L/N
i
c , where

N i
L denotes the count of a WALS feature in the training data

and N i
c is the class count. This model performed slightly worse

than our default model described in this paper.

4. Conclusions and Future Work
In this study we approached the problem of predicting the very
sparsely populated WALS features from speech as a multi-label
classification problem. We have shown that a reasonably stan-
dard recurrent neural network utilizing a reciprocal class fre-
quency weighting optimization loss significantly outperforms
the language identification-based feature lookup approach in
both in-domain and held-out scenarios. The model generalizes
well over the languages observed during the training. Although
it is evident that the network can generalize over unseen lan-
guages as well (the accuracies are above the majority class, ran-
domized and language identification-based lookup approaches),
the predictions for individual features, groups of features and
language-based aggregation are not very accurate. On the one
hand, this is disappointing because the focus of this work is on
the unseen language typology prediction. On the other hand,
there is significant room for several improvements: First, our
training corpus is proprietary, very small and does not cover
some of the major language families (e.g., Tai-Kadai). Second,
the mobile speech is used as is, without any speaker, volume
or noise normalization. Third, MFCC are not the best acoustic
representation for hybrid CNN-LSTMs. Finally, the WALS la-
bels may be too sparse for our task. Filling the gaps using an
approach suggested in [26] will be beneficial.
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