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Abstract

Many commonly used learning algorithms work by iteratively updating an intermediate solution
using one or a few data points in each iteration. Analysis of differential privacy for such algorithms
often involves ensuring privacy of each step and then reasoning about the cumulative privacy cost of the
algorithm. This is enabled by composition theorems for differential privacy that allow releasing of all
the intermediate results. In this work, we demonstrate that for contractive iterations, not releasing the
intermediate results strongly amplifies the privacy guarantees.

We describe several applications of this new analysis technique to solving convex optimization prob-
lems via noisy stochastic gradient descent. For example, we demonstrate that a relatively small number
of non-private data points from the same distribution can be used to close the gap between private and
non-private convex optimization. In addition, we demonstrate that we can achieve guarantees similar to
those obtainable using the privacy-amplification-by-sampling technique in several natural settings where
that technique cannot be applied.
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1 Introduction

Differential privacy [DMNS06] is a standard concept for capturing privacy of statistical algorithms. In its
original formulation, (pure) differential privacy is parameterized by a single real number—the so-called
privacy budget—which characterizes the privacy loss of an individual contributor to the input dataset.

As applications of differential privacy start to proliferate, they bring to the fore the problem of adminis-
tering the privacy budget, with specific emphasis on privacy composition and privacy amplification.

Privacy composition enables modular design and analysis of complex and heterogeneous algorithms
from simpler building blocks by controlling the total privacy budget of their combination. Improving on
“naı̈ve” composition, which simply (but very consequentially!) states that the privacy budgets of com-
position blocks sum up, “advanced” composition theorems allow subadditive accumulation of the privacy
budgets. All existing proofs of advanced composition theorems assume that all intermediate outputs are
revealed, whether the composite mechanism requires it or not.

Privacy amplification goes even further by bounding the privacy budget—for select mechanisms—of
a combination to be less than the privacy budget of its parts. The only systematically studied instance of
this phenomenon is privacy amplification by sampling [KLN+08, BBKN14, WFS15, BDRS18, WBK18,
ACG+16]. In its basic form, for ε = O(1), an ε-differentially private mechanism applied to a secretly
sampled p fraction of the input satisfies O(pε)-differential privacy. More recent results demonstrate that
privacy can be amplified in proportion to p2 (for a Gaussian additive noise mechanism and appropriate
relaxations of differential privacy).

This work introduces a new amplification argument—amplification by iteration—that in certain contexts
can be seen as an alternative to privacy amplification by sampling. As an exemplar of the kind of algorithms
we wish to analyze, we consider noisy stochastic gradient descent for a smooth and convex objective.

Our preferred privacy notion for formally stating our contributions is Rényi differential privacy (RDP).
For the purpose of this introduction, it suffices to keep in mind that RDP is parameterized with 1 < α ≤ ∞
and measures the Rényi divergence of order α (denoted Dα) between the output distributions of a random-
ized algorithm on two neighboring datasets. It is a relaxation of (pure) differential privacy which has been
instrumental for achieving tighter bounds on privacy cost in a number of recent papers on privacy-preserving
machine learning. In addition, to being a privacy definition in its own right, one can easily translate RDP
bounds to usual (ε, δ)-DP bounds.

Our first contribution is a general theorem that states that, under certain conditions on an iterative pro-
cess, the process shrinks the Rényi divergence between distributions. We will focus on the simplest form
of these conditions in which the mechanism is a composition of a sequence of contractive (or 1-Lipschitz)
maps and an additive Gaussian noise mechanism. This is a natural setting for several differentially private
optimization algorithms. A more general treatment that allows other Banach spaces and noise distributions
appears in Section 3.3.

Theorem 1 (Informal). Let x0 ∈ Rd and let XT be obtained from x0 by iterating

xt+1
.
= ψt+1(xt) + Zt+1

for some sequence of contractive maps {ψt}Tt=1 and Zt+1 ∼ N (0, σ2Id). Let X ′T denote the output of the
same process started at some x′0. Then for every α ≥ 1, Dα(XT ‖ X ′T ) ≤ α‖x0−x′0‖

2Tσ2 .

We note that in this result we measure the divergence only between the final steps, in other words, the
intermediate steps of the iteration are not revealed. This theorem is a special case of our more general
result Theorem 22. This result translates a metric assumption of bounded distance between x0 and x′0 to an
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information-theoretic conclusion of bounded Rényi divergence between XT and X ′T . While standard facts
about the Gaussian distribution allow one to make such a statement for a one-step process, the intermediate
arbitrary contractive steps essentially rule out a first principles approach to proving such a theorem. We
use a careful induction argument that rests on controlling the “distance” between Xt and X ′t. We start
by measuring the metric distance when t = 0 and gradually transform this to an information theoretic
divergence at t = T . We interpolate between these two using a new hybrid distance measure that we refer
to as shifted divergence. We believe that this notion should find additional applications in the analyses of
stochastic processes. Our bounds are tight (with no loss in constants) and show that the worst-case for such
a result is when all the contractive maps are the identity map.

This result has some surprising implications. Consider an iterative mechanism that processes one input
record at a time, n iterations in total. The immediate application of this result to this mechanism leads
to the following observation about individuals’ privacy loss. The person whose record was processed last
experiences privacy loss afforded by the Gaussian noise added at the last iteration. At the same time, the
person whose record was processed first suffers the least amount of privacy loss, equal to 1/n of the last
one’s. Importantly, the order in which the inputs were considered need not be random or secret for this
analysis to be applicable. In contrast, privacy amplification by sampling depends crucially on the sample’s
randomness and secrecy.

We outline some applications of this analysis in privacy-preserving machine learning via convex opti-
mization.

Distributed stochastic gradient descent. In this setting records are stored locally, and the parties engage
in a distributed computation to train a model [DKM+06]. Using amplification by sampling as in DP-SGD
by Abadi et al. [ACG+16] would require keeping secret the set of parties taking part in each step of the
algorithm. When the communication channel is not trusted, hiding whether or not a party takes part in a
certain step would essentially require all parties to communicate in all steps, leading to an unreasonable
amount of communication. In addition, the assumption that the sample of parties participating in each step
is a random subset may itself be difficult to enforce in many settings.

Our approach does not need the order of participating parties to be random or hidden. It is sufficient
to hide the model itself until a certain number of update steps are applied. This approach then allows
significantly reducing communication costs to be proportional to the size of the mini-batch (the number of
records consumed by each update). Additionally, our approach can amplify privacy even when the noise
added in each step is too small to guarantee much privacy. This is in contrast to amplification by sampling,
which requires the unamplified privacy cost to be small to start with: a starting ε becomes≈ qε(1 + exp(ε))
which is close to 2qε for small ε but grows quickly, and for instance, precludes setting ε ≥ 1/q for small
q. Our main result applies for arbitrary σ so that even if each σ is very small (say, 1/

√
n) the final privacy

is non-vacuous. A smaller noise scale then permits a smaller size of each mini-batch, further reducing the
communication cost. On the negative side, the privacy guarantee we get varies between examples: examples
used early in the SGD get stronger privacy than those occurring late.

Multi-query setting. Our approach above gives better privacy than competing approaches to the parties
taking part early in the computation, while giving similar guarantees to the last user. This better per-user
privacy guarantee can allow one to solve several such convex optimization problems on the same set of
users, at no increase in the worst-case privacy cost. Specifically, if we have n parties, then we can solve
Ω̃(n) such convex optimization problems at the same privacy cost as answering one of them. More generally,
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the privacy cost grows linearly in Õ(
√

max{k/n, 1}). To our knowledge, except for privacy-amplification-
by-sampling, existing techniques such as output perturbation have utility bounds that grow linearly in

√
k.

Public/private data. The setting in which some public data from the same distribution as private data
is available has been recently identified as promising and practically important [PAE+17, AKZ+17]. The
public corpus can be based on opt-in population, such as a product’s developers or early testers, data shared
by volunteers [Chu05], or be released through a legal process [KY04].

In this model, the last iterations of the iterative algorithm can be done over the public samples whose
privacy need not be preserved. Since data points used early lose less privacy, we can add much less noise
at each step. In effect, having m public samples decreases the error due to the addition of noise by a factor
of
√
m. In the absence of public data, privacy comes at a provable cost: while the statistical error due

to sampling scales as 1/
√
n independently of the dimension, the error of the differentially private version

scales as
√
d/
√
n [BST14a]. Our results imply that for convex optimization problems satisfying very mild

smoothness assumptions, given Õ(d) public data points, we can ensure that the additional error due to
privacy is comparable to the statistical error.

We remark that our technique requires that the optimized functions satisfy a mild smoothness assump-
tion. However, as we show, in our applications we can always achieve the desired level of smoothness by
convolving the optimized functions with the Gaussian kernel. Such convolution introduces an additional
error but this error is dominated by the error necessary to ensure privacy.

Organization. The rest of the paper is organized as follows. After discussing some additional related
work, we start with some preliminaries in Section 2. We present our main technique in Section 3. Section 4
shows how this technique can be applied to versions of the noisy stochastic gradient descent algorithm.
Finally, in Section 5, we apply this framework to derive the applications mentioned above.

1.1 Related Work

The field of differentially private convex optimization spans almost a decade [CM08, CMS11, JKT12,
KST12, ST13, DJW13, Ull15, JT14, BST14b, TTZ15, STU17, WLK+17, INS+19]. Many of these results
are optimal under different regimes such as empirical loss, population loss, the low-dimensional setting
(d� n) or the high-dimensional setting d� n. Some of the algorithms (e.g., output perturbation [CMS11]
and objective perturbation [CMS11, KST12]) require finding a global optimum of an optimization problem
to argue privacy and utility, while the others are based on the variants of noisy stochastic gradient descent.
In this section we restrict ourselves to only the population loss, and allow comparisons to algorithms that
can be implemented with one pass of stochastic gradient descent over the data set S for a direct comparison
(which is close to the typical application of optimization algorithms in machine learning). We note that
our analysis technique also applies to multi-pass and batch versions of gradient descent. In this setting our
algorithm achieves close to optimal bounds on population loss (see Table 1 for details).

In this table we also compare the local differential privacy of the algorithms [KLN+08]. In several
settings (such as distributed learning) we want the published outcome of the optimization algorithm to
satisfy a strong level of (central) differential privacy while still guaranteeing εlocal differential privacy. Local
differential privacy protects the user’s data even from the aggregating server or an adversary who can obtain
the complete transcript of communication between the server and the user.

We note that some architectures may not be compatible with all privacy-preserving techniques or guar-
antees. For instance, we assume secrecy of intermediate computations, which rules out sharing intermediate
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Excess loss LDP (εlocal)
Algorithm for one task for k ≤ n tasks for one task

Noisy SGD + sampling† [BST14b] Õ

(√
d
εn

)
Õ

(√
d
εn

)
Õ(n)

Noisy SGD [DJW13, STU17] Õ

(√
d
ε2n

)
Õ

(√
dk
ε2n

)
ε

Output perturbation∗ [CMS11, WLK+17] Õ

(√
d
ε2n

)
Õ

(√
dk
ε2n

)
∞

This work Õ

(√
d
ε2n

)
Õ

(√
d
ε2n

)
ε

Table 1: The excess loss corresponds to the excess population loss. Comparison for a single pass over the
dataset (i.e., at most n gradient evaluations). For brevity, the table hides dependence on poly ln(1/δ). (†)
This bound is not stated explicitly but can be derived by setting the parameters in [BST14b] appropriately. (∗)
For output perturbation, we used the variant that can be implemented via SGD in a single pass [WLK+17].
LDP stands for local differential privacy.

updates (which is a standard step in federated learning [MMR+17]). In contrast, analyses based on secrecy
of the sample (e.g., [KLN+08, ACG+16]) require that either data be stored centrally (thus eliminating local
differential privacy guarantees) or all-to-all communications.

2 Preliminaries

We recall definitions and tools from the learning theory, probability theory, and differential privacy and
define the notion of shifted divergence. In the process we set up the notation that we will use throughout the
paper.

2.1 Convex Loss Minimization

Let X be the domain of data sets, and P be a distribution over X . Let S = {x1, . . . , xn} be a data set drawn
i.i.d. from P . Let K ⊆ Rd be a convex set denoting the space of all models. Let f : K × X → R be a loss
function, which is convex in its first parameter (the second parameter is a data point and dependence on this
parameter can be arbitrary). The excess population loss of solution w is defined as

Ex∼P [f(w, x)]−min
v∈K

Ex∼P [f(v, x)] .

In order to argue differential privacy we place certain assumptions on the loss function. To that end, we need
the following two definitions of Lipschitz continuity and smoothness.

Definition 2 (L-Lipschitz continuity). A function f : K → R is L-Lipschitz continuous over the domain
K ⊆ Rd if the following holds for all w,w′ ∈ K: |f(w)− f(w)| ≤ L ‖w − w′‖2.

Definition 3 (β-smoothness). A function f : K → R is β-smooth over the domain K ⊆ Rd if for all
w,w′ ∈ K, ‖∇f(w)−∇f(w′)‖2 ≤ β ‖w − w′‖2.
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2.2 Probability Measures

In this work, we will primarily be interested in the d-dimensional Euclidean space Rd endowed with the `2
metric and the Lebesgue measure. Our main result holds in a more general setting of Banach spaces.

We say a distribution µ is absolutely continuous with respect to ν if µ(A) = 0 whenever ν(A) = 0 for
all measurable sets A. We will denote this by µ� ν.

Given two distributions µ and ν on a Banach space (Z, ‖ · ‖), one can define several notions of distance
between them. The first family of distances we consider is independent of the norm:

Definition 4 (Rényi Divergence [Rén61]). Let 1 < α < ∞ and µ, ν be measures with µ � ν. The
Rényi divergence of order α between µ and ν is defined as

Dα(µ ‖ ν)
.
=

1

α− 1
ln

∫ (
µ(z)

ν(z)

)α
ν(z) dz.

Here we follow the convention that 0
0 = 0. If µ 6� ν, we define the Rényi divergence to be∞. Rényi divergence

of orders α = 1,∞ is defined by continuity.

Proposition 5 ([vEH14]). The following hold for any α ∈ (1,∞), and distributions µ, µ′, ν, ν ′:

Additivity: Dα(µ× µ′ ‖ ν × ν ′) = Dα(µ ‖ ν) + Dα(µ′ ‖ ν ′).

Post-Processing: For any (deterministic) function f , Dα(f(µ) ‖ f(ν)) ≤ Dα(µ ‖ ν), where we f(µ) de-
notes the distribution of f(X) where X ∼ µ.

As usual, we denote by µ∗ν the convolution of µ and ν, that is the distribution of the sum X+Y where
we draw X ∼ µ and Y ∼ ν independently.

We will also need the following “norm-aware” statistical distance:

Definition 6 (∞-Wasserstein Distance). The ∞-Wasserstein distance between distributions µ and ν on a
Banach space (Z, ‖ · ‖) is defined as

W∞(µ, ν)
.
= inf

γ∈Γ(µ,ν)
ess sup
(x,y)∼γ

‖x− y‖,

where (x, y) ∼ γ means that the essential supremum is taken relative to measure γ over Z × Z parame-
terized by (x, y). Here Γ(µ, ν) is the collection of couplings of µ and ν, i.e., the collection of measures on
Z × Z with marginals µ and ν on the first and second factors respectively.

The following is immediate from the definition.

Lemma 7. The following are equivalent for any distributions µ, ν over Z:

1. W∞(µ, ν) ≤ s.

2. There exists jointly distributed r.v.’s (U, V ) such that U ∼ µ, V ∼ ν and Pr[‖U − V ‖ ≤ s] = 1.

3. There exists jointly distributed r.v.’s (U,W ) such that U ∼ µ, U +W ∼ ν and Pr[‖W‖ ≤ s] = 1.

Next we define a hybrid1 between these two families of distances that plays a central role in our work.
1Here we use a budgeted version of the definition, putting a hard constraint on theW∞ portion of the distance, as it is most con-

venient for reasoning about differential privacy. A Lagrangian version of the definition may be more natural in other applications.
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Definition 8 (Shifted Rényi Divergence). Let µ and ν be distributions defined on a Banach space (Z, ‖ · ‖).
For parameters z ≥ 0 and α ≥ 1, the z-shifted Rényi divergence between µ and ν is defined as

D(z)
α (µ ‖ ν)

.
= inf

µ′ : W∞(µ,µ′)≤z
Dα

(
µ′
∥∥ ν).

The following follows from the definition:

Proposition 9. The shifted Rényi divergences satisfy the following for any µ, ν, and any α ∈ (1,∞):

Monotonicity: For 0 ≤ z ≤ z′, D
(z′)
α (µ ‖ ν) ≤ D

(z)
α (µ ‖ ν).

Shifting: For any x ∈ Z , D
(‖x‖)
α (µ ‖ ν) ≤ Dα(µ ∗ x ‖ ν), where we let x denote the distribution of the

random variable that is always equal to x (note that µ ∗ x is the distribution of U + x for U ∼ µ).

Definition 10. For a noise distribution ζ over a Banach space (Z, ‖ · ‖) we measure the magnitude of noise
by considering the function that for a > 0, measures the largest Rényi divergence of order α between ζ and
the same distribution ζ shifted by a vector of length at most a:

Rα(ζ, a)
.
= sup

x : ‖x‖≤a
Dα(ζ ∗ x ‖ ζ).

We denote the standard Gaussian distribution over Rd with variance σ2 by N (0, σ2Id). By the well-
known properties of Gaussians, for any x ∈ Rd, and σ, Dα

(
N (0, σ2Id)

∥∥ N (x, σ2Id)
)

= α‖x‖22/2σ2. This
implies that in the Euclidean space, Rα(N (0, σ2Id), a) = αa2

2σ2 .
WhenU and V are sampled from µ and ν respectively, we will often abuse notation and write Dα(U ‖ V ),

W∞(U, V ) and D
(z)
α (U ‖ V ) to mean Dα(µ ‖ ν), W∞(µ, ν) and D

(z)
α (µ ‖ ν), respectively.

2.3 (Rényi ) Differential Privacy

The notion of differential privacy (Definition 11) is by now a de facto standard for statistical data pri-
vacy [DMNS06, Dwo06, DR14]. At a semantic level, the privacy guarantee ensures that an adversary
learns almost the same thing about an individual independent of the individual’s presence or absence in
the data set. The parameters (ε, δ) quantify the amount of information leakage. A common choice of these
parameters is ε ≈ 0.1 and δ = 1/nω(1), where n refers to the size of the dataset.

Definition 11 ([DMNS06, DKM+06]). A randomized algorithmA is(ε, δ)-differentially private ((ε, δ)-DP)
if, for all neighboring data sets S and S′ and for all events O in the output space of A, we have

Pr[A(S) ∈ O] ≤ eε Pr[A(S′) ∈ O] + δ.

The notion of neighboring data sets is domain-dependent, and it is commonly taken to capture the
contribution of a single individual. In the simplest case S and S′ differ in one record, or equivalently,
dH(S, S′) = 1, where dH(S, S′) is the Hamming distance. We also define

Definition 12 (Per-person Privacy). An algorithm A operating on a sequence of data points x1, . . . , xn is
said to satisfy (ε, δ)-differentially privacy at index i if for any pair of sequences that differ in the ith position,
and for any event O in the output space of A, we have

Pr[A(x1, . . . , xi, . . . , xn) ∈ O] ≤ eε Pr[A(x1, . . . , x
′
i, . . . , xn) ∈ O] + δ.
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Another related model of privacy is local differential privacy [KLN+08]. In this model each user exe-
cutes a differentially private algorithm on their individual input which is then used for arbitrary subsequent
computation (we omit the formal definition as it is not used in our work).

Starting with Concentrated Differential Privacy [DR16], definitions that allow more fine-grained con-
trol of the privacy loss random variable have proven useful. The notions of zCDP [BS16], Moments Ac-
countant [ACG+16], and Rényi differential privacy (RDP) [Mir17] capture versions of this definition. This
approach improves on traditional (ε, δ)-DP accounting in numerous settings, often leading to significantly
tighter privacy bounds as well as being applicable when the traditional approach fails [PAE+17, PSM+18].
In the current work, we will use the nomenclature based on the notion of the Rényi divergence (Definition 4).

Definition 13 ([Mir17]). For 1 ≤ α ≤ ∞ and ε ≥ 0, a randomized algorithmA is (α, ε)-Rényi differentially
private, or (α, ε)-RDP if for all neighboring data sets S and S′ we have

Dα

(
A(S)

∥∥ A(S′)
)
≤ ε.

Per-person RDP can be defined in an analogous way. The following two lemmas [Mir17] allow trans-
lating Rényi differential privacy to (ε, δ)-differential privacy, and give a composition rule for RDP.

Lemma 14. IfA satisfies (α, ε)-Rényi differential privacy, then for all δ ∈ (0, 1) it also satisfies
(
ε+ ln(1/δ)

α−1 , δ
)

-
differential privacy. Moreover, pure (ε, 0)-differential privacy coincides with (∞, ε)-RDP.

The standard composition rule for Rényi differential privacy, when the outputs of all algorithms are
revealed, takes the following form.

Lemma 15. If A1, . . . ,Ak are randomized algorithms satisfying, respectively, (α, ε1)-RDP,. . . ,(α, εk)-
RDP, then their composition defined as (A1(S), . . . ,Ak(S)) is (α, ε1 + · · · + εk)-RDP. Moreover, the i’th
algorithm can be chosen on the basis of the outputs of algorithms A1, . . . ,Ai−1.

2.4 Contractive Noisy Iteration

We start by recalling the definition of a contraction.

Definition 16 (Contraction). For a Banach space (Z, ‖ · ‖), a function ψ : Z → Z is said to be contractive
if it is 1-Lipschitz. Namely, for all x, y ∈ Z ,

‖ψ(x)− ψ(y)‖ ≤ ‖x− y‖.

A canonical example of a contraction is projection onto a convex set in the Euclidean space.

Proposition 17. Let K be a convex set in Rd. Consider the projection operator:

ΠK(x)
.
= arg min

y∈K
‖x− y‖.

The map ΠK is a contraction.

Another example of a contraction, which will be important in our work, is a gradient descent step for a
smooth convex function. The following is a standard result in convex optimization [Nes04]; for complete-
ness, we give a proof in Appendix A.
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Proposition 18. Suppose that a function f : Rd → R is convex and β-smooth. Then the function ψ de-
fined as:

ψ(w)
.
= w − η∇wf(w)

is contractive as long as η ≤ 2/β.

We will be interested in a class of iterative stochastic processes where we alternate between adding noise
and applying some contractive map.

Definition 19 (Contractive Noisy Iteration (CNI)). Given an initial random state X0 ∈ Z , a sequence of
contractive functions ψt : Z → Z , and a sequence of noise distributions {ζt}, we define the Contractive
Noisy Iteration (CNI) by the following update rule:

Xt+1
.
= ψt+1(Xt) + Zt+1,

where Zt+1 is drawn independently from ζt+1. For brevity, we will denote the random variable output by
this process after T steps as CNIT (X0, {ψt}, {ζt}).

3 Coupled Descent

In this section, we prove a bound on the Rényi divergence between the outputs of two contractive noisy iter-
ations. Suppose thatX0 andX ′0 are two random states such thatW∞(X0, X

′
0) ≤ 1. The map’s contractivity

and the fact that we are adding noise ζ ensures that X1 and X ′1 are Rα(ζ, 1)-close in α-Rényi divergence.
By the post-processing property of Rényi divergence, XT and X ′T are similarly close. Our main theorem
says that this can be substantially improved if we do not release the intermediate steps. The noise added in
subsequent steps further decreases the Rényi divergence even when contractive steps are taken in between
the noise addition.

While the final result is a statement about Rényi divergences, the shifted Rényi divergences play a crucial
role in the proof. We start with an important technical lemma that for the noise addition step, allows one to
reduce the shift parameter z. We will then show how contractive maps affect the shifted divergence. Armed
with these results, we prove the main theorem in Section 3.3.

3.1 The Shift-Reduction Lemma

In this section we prove the key lemma that relates D
(z)
α (µ ∗ ζ ‖ ν ∗ ζ) to D

(z+a)
α (µ ‖ ν). Recall that we use

Rα(ζ, a) to measure how well noise distribution ζ hides changes in our norm ‖ · ‖ (see Definition 10):

Rα(ζ, a)
.
= sup

x : ‖x‖≤a
Dα(ζ ∗ x ‖ ζ).

Lemma 20 (Shift-Reduction Lemma). Let µ,ν and ζ be distributions over a Banach space (Z, ‖ · ‖). Then
for any a ≥ 0,

D(z)
α (µ ∗ ζ ‖ ν ∗ ζ) ≤ D(z+a)

α (µ ‖ ν) +Rα(ζ, a).

Proof. Let U be distributed as µ and V as ν. We first show the result for the case when z = 0. Let µ′ be
the distribution certifying D

(a)
α (µ ‖ ν), that is Dα(µ′ ‖ ν) = D

(a)
α (µ ‖ ν) and W∞(µ, µ′) ≤ a. Let (U,W )
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be the random variable whose existence is given by Lemma 7. That is, ‖W‖ ≤ a with probability 1, U ∼ µ
and U +W ∼ µ′. Let Y be an independent random variable distributed as ζ. We can write

Dα(µ ∗ ζ ‖ ν ∗ ζ) = Dα(U + Y ‖ V + Y )

= Dα(U +W −W + Y ‖ V + Y )

≤ Dα((U +W,−W + Y ) ‖ (V, Y )),

where we have used the post-processing property of Rényi divergence. Note that the distribution (V, Y ) is a
product distribution, whereas the factors of (U +W,−W + Y ) are dependent. Denoting the pX the density
function of a random variable X , we expand

exp((α− 1)Dα((U +W,−W + Y ) ‖ (V, Y ))

=

∫ ∫ (
p(U+W,−W+Y )(v, y)

p(V,Y )(v, y)

)α
ζ(y)ν(v)dydv

=

∫ ∫ (
pU+W (v) · p−W+Y |U+W=v(y)

ν(v) · ζ(y)

)α
ζ(y)ν(v)dydv

=

∫ (
pU+W (v)

ν(v)

)α
·
(∫ (

p−W+Y |U+W=v(y)

ζ(y)

)α
ζ(y)dy

)
ν(v)dv

≤
∫ (

pU+W (v)

ν(v)

)α
ν(v)dv · ess sup

(v′,w)∼p(U+W,W )

∫ (
p−W+Y |W=w,U+W=v′(y)

ζ(y)

)α
ζ(y)dy

≤
∫ (

µ′(v)

ν(v)

)α
ν(v)dv · ess sup

w∼pW

∫ (
p−W+Y |W=w(y)

ζ(y)

)α
ζ(y)dy

≤ exp((α− 1)Dα

(
µ′
∥∥ ν)) · exp ((α− 1)Rα(ζ, a)) . (Proposition 5)

Taking logs and dividing by (α− 1), we get the claim for z = 0.
The general z case reduces readily to the z = 0 case. Define

hz(x) =

{
x if ‖x‖ ≤ z,

x
‖x‖z otherwise.

It is easy to see that ‖hz(x)‖ ≤ z for all x, and that ‖x− hz(x)‖ ≤ a whenever ‖x‖ ≤ z + a.
As before, let (U,W ) be r.v.’s from the joint distribution guaranteed by Lemma 7. Let W1

.
= hz(W )

and W2
.
= W −W1. It follows that ‖W1‖ ≤ z and ‖W2‖ ≤ a with probability 1. We write

D(z)
α (U + Y ‖ V + Y ) = D(z)

α (U +W1 + Y −W1 ‖ V + Y )

≤ Dα(U +W1 + Y ‖ V + Y )

≤ D(a)
α (U +W1 ‖ V ) +Rα(ζ, a),

where we have used the z = 0 case in the last step. On the other hand,

D(a)
α (U +W1 ‖ V ) ≤ Dα(U +W1 +W2 ‖ V )

= Dα(U +W ‖ V )

= D(z+a)
α (U ‖ V ).

This completes the proof.
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3.2 Contractive Maps

We next show that contractive maps cannot increase a shifted divergence. In the lemma below we give a
more general version that allows using different contractive maps.

Lemma 21 (Contraction reduces D
(z)
α ). Suppose that ψ and ψ′ are contractive maps on (Z, ‖ · ‖) and

supx ‖ψ(x)− ψ′(x)‖ ≤ s. Then for r.v.’s X and X ′ over Z ,

D(z+s)
α

(
ψ(X)

∥∥ ψ′(X ′)) ≤ D(z)
α

(
X
∥∥ X ′).

Proof. By definition of D
(z)
α (· ‖ ·) (see Definition 8)and Lemma 7, there is a joint distribution (X,Y ) such

that Dα(Y ‖ X ′) = D
(z)
α (X ‖ X ′) and Pr[‖X − Y ‖ ≤ z] = 1. By the post-processing property of

Rényi divergence, we have that Dα(ψ′(Y ) ‖ ψ′(X ′)) ≤ Dα(Y ‖ X ′) = D
(z)
α (X ‖ X ′). Moreover,

‖ψ(X)− ψ′(Y )‖ ≤ ‖ψ(X)− ψ(Y )‖+ ‖ψ(Y )− ψ′(Y )‖
≤ ‖X − Y ‖+ s

≤ z + s.

Thus (ψ(X), ψ′(Y )) is a coupling establishing the claimed upper bound on D
(z+s)
α (ψ(X) ‖ ψ′(Y )).

3.3 Privacy Amplification by Iteration

We are now ready to prove our main result. We prove a general statement that can handle changes in
several ψ’s; this enables us to easily analyze algorithms that access data points more than once2. Recall that
Rα is introduced in Definition 10 and measures the maximal Rényi divergence of order α between a noise
distribution and its shifted copy.

Theorem 22. Let XT and X ′T denote the output of CNIT (X0, {ψt}, {ζt}) and CNIT (X0, {ψ′t}, {ζt}). Let
st

.
= supx ‖ψt(x) − ψ′t(x)‖. Let a1, . . . , aT be a sequence of reals and let zt

.
=
∑

i≤t si −
∑

i≤t ai. If
zt ≥ 0 for all t, then

D(zT )
α

(
XT

∥∥ X ′T ) ≤ T∑
t=1

Rα(ζt, at).

In particular, if zT = 0, then

Dα

(
XT

∥∥ X ′T ) ≤ T∑
t=1

Rα(ζt, at).

Proof. The proof is by induction where we use the contraction-reduces-D(z)
α lemma and then reduce the

shift amount by at using the shift-reduction lemma.
Let Xt (resp., X ′t) denote the t’th iterate of the CNI(X0, {ψt}, {ζt}) (resp., CNI(X0, {ψ′t}, {ζt}). We

argue that for all t ≤ T ,

D(zt)
α

(
Xt

∥∥ X ′t) ≤ t∑
i=1

Rα(ζi, ai).

2Since Rényi divergence does not satisfy the triangle inequality, blackbox analyses of such algorithms use the group privacy
properties of RDP that can be loose.
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The base case is t = 0. By definition, X0 = X ′0 and z0 = 0. For the inductive step, let Zt+1 denote the
random variable drawn from ζt+1.

D(zt+1)
α

(
Xt+1

∥∥ X ′t+1

)
= D(zt+1)

α

(
ψt+1(Xt) + Zt+1

∥∥ ψ′t+1(X ′t+1) + Zt+1

)
≤ D(zt+1+at+1)

α

(
ψt+1(Xt)

∥∥ ψ′t+1(X ′t)
)

+Rα(ζt+1, at+1) (Lemma 20)

= D(zt+st+1)
α

(
ψt+1(Xt)

∥∥ ψ′t+1(X ′t)
)

+Rα(ζt+1, at+1) (Definition of zt+1)

≤ D(zt)
α

(
Xt

∥∥ X ′t)+Rα(ζt+1, at+1) (Lemma 21)

≤
t∑
i=1

Rα(ζi, ai) +Rα(ζt+1, at+1). (induction hypothesis)

This completes the induction step and the proof.

4 Privacy Guarantees for Noisy Stochastic Gradient Descent

We will now apply our analysis technique to derive the privacy parameters of several versions of the noisy
stochastic gradient descent algorithm (also referred to as Stochastic Gradient Langevin Dynamics) defined
as follows. We are given a family of convex loss functions over some convex set K ⊆ Rd parameterized by
x ∈ X , that is f(w, x) is convex and differentiable in the first parameter for every x ∈ X . Given a dataset
S = (x1, . . . , xn), starting point w0, rate parameter η, and noise scale σ the algorithm works as follows.
Starting from w0 ∈ K perform the following update vt+1

.
= wt − η(∇wf(wt, xt+1) + Z) and wt+1

.
=

ΠK(vt+1), where Z is a freshly drawn sample fromN (0, σ2Id) and ΠK denotes the Euclidean projection to
set K. We refer to this algorithm as PNSGD(S,w0, η, σ) and describe it formally in Algorithm 1.

Algorithm 1 Projected noisy stochastic gradient descent (PNSGD)
Input: Data set S = {x1, . . . , xn}, f : K×X → R a convex function in the first parameter, learning rate η,

starting point w0 ∈ K, noise parameter σ.
1: for t ∈ {0, . . . , n− 1} do
2: vt+1 ← wt − η(∇wf(wt, xt+1) + Z), where Z ∼ N (0, σ2Id).
3: wt+1 ← ΠK (vt+1), where ΠK(w) = arg minθ∈K ‖θ − w‖2 is the `2-projection on K.
4: return the final iterate wn.

The key property that allows us to treat noisy gradient descent as a contractive noisy iteration is the
fact that for any convex function, a gradient step is contractive as long as the function satisfies a relatively
mild smoothness condition (see Proposition 18). In addition, as is well known, for any convex set K ∈
Rd, the (Euclidean) projection to K is contractive (see Proposition 17). Naturally, a composition of two
contractive maps is a contractive map and therefore we can conclude that PNSGD(S,w0, η, σ) is an instance
of contractive noisy iteration. More formally, consider the sequence v0 = w0, v1, . . . , vn. In this sequence,
vt+1 is obtained from vt by first applying a contractive map that consists of projection to K followed by
the gradient step at wt and then addition of Gaussian noise of scale η · σ. Note that the final output of the
algorithm is wn = ΠK(vn) but it does not affect our analysis of divergence as it can be seen as an additional
post-processing step.

For this baseline algorithm we prove that points that are used earlier have stronger privacy guarantees
due to noise injected in subsequent steps.
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Theorem 23. LetK ⊆ Rd be a convex set and {f(·, x)}x∈X be a family of convex L-Lipschitz and β-smooth
functions over K. Then, for every η ≤ 2/β, σ > 0, α > 1, t ∈ [n], starting point w0 ∈ K, and S ∈ X n,
PNSGD(S,w0, η, σ) satisfies

(
α, α·ε

n+1−t

)
-RDP for its t’th input, where ε = 2L2

σ2 .

Proof. Let S .
= (x1, . . . , xn) and S′ .= (x1, . . . , xt−1, x

′
t, xt+1, . . . , xn) be two arbitrary datasets that differ

at index t. As discussed above, under the smoothness condition η ≤ 2/β the steps of PNSGD(S,w0, η, σ)
are a contractive noisy iteration. Specifically, on the dataset S, the CNI is defined by the initial point w0,
sequence of functions gi(w)

.
= ΠK(w) − η∇f(ΠK(w), xi) and sequence of noise distributions ζi ∼

N (0, (ησ)2Id). Similarly, on the dataset S′, the CNI is defined in the same way with the exception of
g′t(w)

.
= ΠK(w) − η∇f(ΠK(w), x′t). By our assumption, f(w, x) is L-Lipschitz for every x ∈ X and

w ∈ K and therefore

sup
w
‖gt(w)− g′t(w)‖2 = sup

w
‖η∇f(ΠK(w), xt)− η∇f(ΠK(w), x′t)‖2 ≤ 2ηL.

We can now apply Theorem 22 with a1, . . . , at−1 = 0 and at, . . . , an = 2ηL
n−t+1 . Note that st = 2ηL and

si = 0 for i 6= t. In addition, zi ≥ 0 for all i ≤ n and zn = 0. Hence we obtain that

Dα

(
Xn

∥∥ X ′n) ≤ α

2η2σ2

n∑
i=1

a2
t ≤

2αL2

σ2 · (n− t+ 1)

as claimed.

We now consider privacy guarantees for several variants of this baseline approach. These variants are
needed to ensure utility guarantees, that require that the algorithm output one of the iterates randomly.
Specifically, we define the algorithm Skip-PNSGD(S,w0, η, σ) as the algorithm that picks randomly and
uniformly t0 ∈ {0, 1, . . . , bn/2c} and then skips the first t0 points. That is, it makes only n − t0 steps and
at step t the update is w′t+1 = wt − η(∇wf(wt, xt+1+t0) + Z). It is easy to see that the privacy guarantees
Skip-PNSGD(S,w0, η, σ) are at least as good as those we gave for PNSGD(S,w0, η, σ) in Theorem 23.

Theorem 24. LetK ⊆ Rd be a convex set and {f(·, x)}x∈X be a family of convex L-Lipschitz and β-smooth
functions over K. Then, for every η ≤ 2/β, σ > 0, α > 1, t ∈ [n], starting point w0 ∈ K, and S ∈ X n,
Skip-PNSGD(S,w0, η, σ) satisfies

(
α, α·ε

n+1−t

)
-RDP for point with index t, where ε = 2L2

σ2 .

Finally, we consider a version of PNSGD with random stopping. Namely, instead of running for n steps
the algorithm picks T ∈ [n] randomly and uniformly, makes T steps and outputswT . We refer to this version
as Stop-PNSGD(S,w0, η, σ). To analyze this algorithm we will need to prove a weak3 form of convexity
for the Rényi divergence that might have other applications.

Lemma 25. Let µ1, . . . , µn and ν1, . . . , νn be probability distributions over some domain Z such that for
all i ∈ [n], Dα(µi ‖ νi) ≤ c/(α − 1) for some c ∈ (0, 1]. Let ρ be a probability distribution over [n] and
denote by µρ (or νρ) the probability distribution over Z obtained by sampling i from ρ and then outputting
a random sample from µi (respectively, νi). Then

Dα(µρ ‖ νρ) ≤ (1 + c) · E
i∼ρ

[Dα(µi ‖ νi)].

3The weakness here is the strong (if necessary) assumption that Dα(pi ‖ qi) ≤ c/(α− 1) for some c ≤ 1.
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Proof. Let µ′ρ (or ν ′ρ) be the probability distribution over [n] × Z obtained by sampling i from ρ and then
sampling a random x from µi (respectively, νi) and outputting (i, x). We can obtain µρ from µ′ρ by applying
the function that removes the first coordinate and the same function applied to ν ′ρ gives νρ. Therefore, by
the post-processing properties of the Rényi divergence, we obtain that Dα(µρ ‖ νρ) ≤ Dα

(
µ′ρ
∥∥ ν ′ρ). Now

observe that for every i ∈ [n] and x ∈ Z , µ′ρ(i, x) = ρ(i) · µi(x). Therefore,

Dα

(
µ′ρ
∥∥ ν ′ρ) =

1

α− 1
ln E

(i,x)∼ν′ρ

[(
µ′ρ(i, x)

ν ′ρ(i, x)

)α]
=

1

α− 1
ln E
i∼ρ

[
E

x∼νi

[(
µi(x)

νi(x)

)α]]
=

1

α− 1
ln E
i∼ρ

[
e(α−1)·Dα(µi ‖ νi)

]
≤ 1

α− 1
ln E
i∼ρ

[1 + (1 + c)(α− 1) ·Dα(µi ‖ νi)]

=
1

α− 1
ln

(
1 + (1 + c)(α− 1) · E

i∼ρ
[Dα(µi ‖ νi)]

)
≤ 1

α− 1

(
(1 + c)(α− 1) · E

i∼ρ
[Dα(µi ‖ νi)]

)
= (1 + c) · E

i∼ρ
[Dα(µi ‖ νi)] ,

where to obtain the inequality in the fourth line we used the fact that for every a ≤ c ≤ 1, ea ≤ 1+a+a2 ≤
1 + (1 + c)a.

We can now state and prove the privacy guarantees for Stop-PNSGD(η, σ).

Theorem 26. LetK ⊆ Rd be a convex set and {f(·, x)}x∈X be a family of convex L-Lipschitz and β-smooth
functions over K. Then, for every η ≤ 2/β, α > 1, starting point w0 ∈ K, σ ≥ L

√
2(α− 1)α, and dataset

S ∈ X n, Stop-PNSGD(S,w0, η, σ) satisfies
(
α, 4αL2·lnn

nσ2

)
-RDP.

Proof. Let S .
= (x1, . . . , xn) and S′ .= (x1, . . . , xt−1, x

′
t, xt+1, . . . , xn) be two arbitrary datasets that differ

in the element at index t. For every value of T ∈ [n], let XT denote the output of Stop-PNSGD(S,w0, η, σ)
on S after T steps and analogously define X ′T for Stop-PNSGD(S′, w0, η, σ). If t > T then the algorithm
does not reach xt (or x′t) and hence Dα(XT ‖ X ′T ) = 0. Otherwise, we can use Theorem 23 with n = T to
obtain that

Dα

(
XT

∥∥ X ′T ) ≤ 2αL2

σ2 · (T − t+ 1)
.

By definition, the output of Stop-PNSGD(S,w0, η, σ) corresponds to picking T randomly and uniformly
from [n] and then outputting XT . We denote the resulting random variable by Yn and denote Y ′n the corre-
sponding random variable for S′. By our assumption, σ ≥ L

√
2(α− 1)α and therefore for every t ≥ T ,

2αL2

σ2 · (T − t+ 1)
≤ 2αL2

σ2
≤ 1

α− 1
.

Hence the conditions of Lemma 25 are satisfied with c = 1. This implies that
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Dα

(
YT
∥∥ Y ′T ) ≤ 2 · 1

n

∑
T∈[n]

Dα

(
XT

∥∥ X ′T ) ≤ 2 · 1

n

n∑
T=t

2αL2

σ2 · (T − t+ 1)

≤ 4αL2 · ln(n− t+ 1)

nσ2
≤ 4αL2 · lnn

nσ2
.

In Appendix B, we present a simple analysis of a multiple-pass version of the SGD algorithm. While it
gives results that are quantitatively similar to what can be achieved using privacy amplification by sampling
results from [ACG+16], the approach here works in the distributed setting and leads to a significantly simpler
proof.

Finally, we remark that PNSGD(S,w0, η, σ) and its variants described above satisfy local differential
privacy (even without the smoothness assumption). Specifically,

Lemma 27. Let K ⊆ Rd be a convex set and {f(·, x)}x∈X be a family of convex L-Lipschitz functions
over K. Then, for every η > 0, α > 1, starting point w0 ∈ K, and dataset S ∈ X n, (Stop/Skip)-
PNSGD(S,w0, η, σ) satisfies local

(
α, 2αL2

σ2

)
-RDP. In particular, for every ε, δ > 0 and σ = 2L

√
2 ln(1.25/δ)/ε

it satisfies local (ε, δ)-DP.

5 Applications

We now show how to use the algorithms we have analyzed to derive new results for privacy-preserving
convex optimization. One of the applications we discussed is concerned with a distributed model, where the
input records are spread across users’ devices. In the “Our data, ourselves” model proposed by [DKM+06],
each user’s device holds their data, and there is no central trusted party. Under reasonable assumptions on the
devices, one can simulate a trusted party by means of a Secure Multi-party Computation protocol. While one
can assume that all peer-to-peer channels are encrypted, it is reasonable to assume that an attacker can detect
the presence or absence of communication. Additionally, in many settings of interest, bandwidth is at a
premium and the number of users is large enough that all-to-all communication becomes an implementation
bottleneck.

These constraints rule out algorithms that require all parties to be active in every iteration. Consequently,
since the presence or absence of communication may be observed by an adversary, we cannot apply privacy
amplification by sampling. While algorithms such as bolt-on differential privacy [WLK+17] may be usable
in the trusted central party setting, their privacy guarantee is uniform and weaker than ours. Our approach
gives some baseline local differential privacy and a stronger global privacy guarantee for most users.

5.1 Private Stochastic Optimization of Smooth Functions

We will present our results for stochastic convex optimization. Specifically, let K ⊆ Rd be a convex body
contained in a ball of radius R around the origin. Let P be a distribution over convex L-Lipschitz functions
over K and let F (w)

.
= Ef∼P [f(w)]. We will assume that each data point corresponds to an independent

sample from P and the goal is to optimize F (x). In order to analyze the performance of the noisy projected
gradient descent algorithm for this problem we will need the following classical result about stochastic
convex optimization (e.g., [Bub15]). For the purposes of this result F (w) can be an arbitrary convex function
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over K for which we are given an unbiased stochastic (sub-)gradient oracle G. That is for every w ∈ K,
E[G(w)] ∈ ∂F (w). Let PSGD(G,w0, η, T ) denote the execution of the following process: starting from
point w0, use the update wt+1

.
= ΠK(wt + ηG(wt)) for t = 0, . . . , T − 1.

Theorem 28. Let K ⊆ Rd be a convex body contained in a ball of radius R, let F (w) be an arbitrary
convex function over K and let G be an unbiased stochastic (sub-)gradient oracle G for F . Assume that for
every w ∈ K, E[‖G(w)‖22] ≤ L2

G. For η = 2R/(LG
√
T ) and w0 ∈ K, let w1, . . . , wT denote the iterates

produced by PSGD(G,w0, η, T ). Then

1

T

∑
t∈[T ]

E[F (wt)] ≤ F ∗ +
4RLG√

T
,

where F ∗ .= minw∈K F (w) and the expectation is taken over the randomness of G.

Note that this result gives a bound on the expected value of F averaged over all the iterates. Equivalently,
it can be seen as the expected value of F (wt) with the expectation also taken over t being chosen randomly
and uniformly from [T ]. This corresponds to the random stopping of PSGD(G,w0, η, T ). As a result we
get the following baseline guarantees for Stop-PNSGD(S,w0, η, σ) we defined in Section 4 (namely, these
guarantees do not use our amplification analysis and do not require smoothness).

Theorem 29. Let K ⊆ Rd be a convex body contained in a ball of radius R and {f(·, x)}x∈X be a family
of convex L-Lipschitz functions over K. Then for every ε > 0, δ > 0, starting point w0 ∈ K, σ =
2L
√

2 ln(1.25/δ)/ε, η = 2R/
√
n(L2 + dσ2) and dataset S ∈ X n, Stop-PNSGD(S,w0, η, σ) satisfies

local (ε, δ)-DP. In addition, if S consists of samples drawn i.i.d. from an arbitrary distribution P over X ,
then

E
S∼Pn

[F (W )] ≤ F ∗ +
4RL√
n
·
√

1 +
8d ln(1.25/δ)

ε2
,

where W denotes the output of Stop-PNSGD(S,w0, η, σ) and F (w)
.
= Ex∼P [f(w, x)].

Proof. By Lemma 27, setting σ
.
= 2L

√
2 ln(1.25/δ)/ε ensures local (ε, δ)-DP. Now we observe that

G(w) = ∇f(w, x) + Z where x is drawn from P and Z is drawn from N (0, σ2Id) is an unbiased gra-
dient oracle for F (w). Further,

E[‖G(w)‖2] = E
x∼P

[‖∇f(w, x)‖2] + dσ2 ≤ L2 +
8dL2 ln(1.25/δ)

ε2
.

Hence, we can apply Theorem 28 for LG = L
√

1 + 8d ln(1.25/δ)
ε2

and η = 2R/(LG
√
n) to obtain that

E
S∼Pn

[F (W )] ≤ F ∗ +
4RL√
n
·
√

1 +
8d ln(1.25/δ)

ε2
.

5.2 Per-person Privacy

We will now show how to combine our stronger privacy guarantees for some of the individuals in the dataset
with the utility guarantees in Theorem 28.
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Theorem 30. Let K ⊆ Rd be a convex body contained in a ball of radius R and {f(·, x)}x∈X be a family
of convex L-Lipschitz, β-smooth functions over K. For every ε > 0, δ > 0, starting point w0 ∈ K,
σ = 2L

√
2 ln(1.25/δ)/ε, dataset S ∈ X n and index t ∈ [n], if η =

√
8R/

√
n(L2 + dσ2) ≤ 2/β, then

Skip-PNSGD(S,w0, η, σ) satisfies local (ε, δ)-DP and (ε/
√
n− t+ 1, δ)-DP at index t. In addition, if S

consists of samples drawn i.i.d. from an arbitrary distribution P over X , then

E
S∼Pn

[F (W )] ≤ F ∗ +
4
√

2RL√
n
·
√

1 +
8d ln(1.25/δ)

ε2
,

where W denotes the output of Skip-PNSGD(S,w0, η, σ) and F (w)
.
= Ex∼P [f(w, x)].

Proof. Our privacy guarantees follow directly from Theorem 23 and Lemma 27. Let us denote by Stop(n/2)-
PNSGD(S,w0, η, σ) the algorithm that runs PNSGD(S,w0, η, σ) with a randomly and uniformly chosen
stopping time T ∈ {dn/2e, . . . , n}. Observe that the distribution of the output of Skip-PNSGD(S,w0, η, σ)
on S ∼ Pn is identical to the output distribution of Stop(n/2)-PNSGD(S,w0, η, σ) on S ∼ Pn. (This is
true since in both cases the starting point, the distribution on the number of steps and the stochastic gradient
oracle are identical). Stop(n/2)-PNSGD(S,w0, η, σ) can be seen as running Stop-PNSGD on n/2 points
starting from some random point W0 (where W0 is the output of PNSGD on the first n/2 points). The
utility guarantees for Stop-PNSGD hold for an arbitrary starting point and therefore the utility guarantees
for Stop(n/2)-PNSGD are the same as those for Stop-PNSGD (Theorem 29) for a dataset consisting of n/2
points.

5.3 Utility of Public Data

In a variety of settings the algorithm may also have access to a relatively small amount of data from the
same distribution that do not require privacy protection. We demonstrate that by using the non-private
data points at the end of the training process our per-index privacy guarantees directly lead to substantially
improved utility guarantees. In particular, given Θ(d ln(1/δ)/ε2) non-private points the utility guarantees
of our algorithm match (up to a constant factor) those of non-private learning on the entire dataset.

Corollary 31. Let K ⊆ Rd be a convex body contained in a ball of radius R and {f(·, x)}x∈X be a family
of convex L-Lipschitz, β-smooth functions over K. Let Spriv ∈ X n−m and Spub ∈ X

m be two datasets

and S .
= (Spriv, Spub). For every ε > 0, δ > 0, starting point w0 ∈ K, σ = 2L

√
ln(1.25/δ)/m/ε, if

η =
√

8R/
√
n(L2 + dσ2) ≤ 2/β, then Skip-PNSGD(S,w0, η, σ) satisfies (ε, δ)-DP relative to Spriv. In

addition, if S consists of samples drawn i.i.d. from an arbitrary distribution P over X , then

E
S∼Pn

[F (W )] ≤ F ∗ +
4
√

2RL√
n
·
√

1 +
8d ln(1.25/δ)

mε2
,

where W denotes the output of Skip-PNSGD(S,w0, η, σ) and F (w)
.
= Ex∼P [f(w, x)].

5.4 Multiple Convex Optimizations

The privacy guarantees in Theorem 26 do not improve on the (ε, δ)-DP guarantees for an individual task
since in order to convert RDP guarantees to (ε, δ)-DP we need to set α > 1/ε (see Lemma 14). At the
same time, Theorem 26 requires setting σ = Ω(Lα) which would give (roughly) the same bound on excess
population loss as the one obtained in Theorem 29. When solving k convex optimization tasks on the same
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dataset, standard analysis requires increasing the noise scale σ (and hence the bound on excess loss) by a
factor of

√
k to keep the same (ε, δ)-DP level. In contrast, our analysis allows to bound (ε, δ)-DP directly

and only requires increasing σ by a factor of max{Õ(k/n), 1}. We note that in the context of PAC learning
sample complexity of solving multiple learning problems with differential privacy was studied in [BNS16b].
The question of optimizing multiple loss functions was also studied in [Ull15, FGV17]. The bounds given
there are incomparable to ours: the multiplicative-weights-update-based approaches there give better bounds
when k � n and d is small but for k ≤ n the bounds given there are worse.

For simplicity of presentation we will state this result for solving a fixed set of k tasks with identical
parameters. Composition properties of RDP imply that the bounds can be extended to using problems with
different parameters and also allow choosing the tasks in an adaptive way (i.e., after observing the outcome
of the previous tasks).

Theorem 32. Let K ⊆ Rd be a convex body contained in a ball of radius R and {fi(·, x)}i∈[k],x∈X be k
families of convex L-Lipschitz, β-smooth functions over K and w0 ∈ K be a starting point. For ε ∈ (0, 1)

and δ ∈ (0, 1
2) let q .

= max
{

2k lnn
n , 2 ln(1/δ)

}
, σ .

=
4L
√
q ln(1/δ)

ε , η .
= 4R/

√
n(L2 + dσ2). For a

dataset S ∈ X n and i ∈ [k], let Wi denote the output of Stop-PNSGD(S,w0, η, σ) on the i’th family of
functions (with independent randomness). Then the entire output (W1, . . . ,Wk) satisfies (ε, δ)-DP whenever
η ≤ 2/β. In addition, if S consists of samples drawn i.i.d. from an arbitrary distribution P over X , then for
every i,

E
S∼Pn

[Fi(Wi)] ≤ F ∗i +
4RL√
n
·
√

1 +
16dq ln(1/δ)

ε2
,

where Fi(w)
.
= Ex∼P [fi(w, x)].

Proof. By the composition properties of RDP and Theorem 26, we have that the output of k executions
of Stop-PNSGD(S,w0, η, σ) satisfies

(
α, 4kαL2·lnn

nσ2

)
-RDP, whenever σ ≥ L

√
2(α− 1)α. We let α .

=

σ
√

ln(1/δ)

L
√
q . Note that this ensures that

σ =
αL
√
q√

ln(1/δ)
≥
αL
√

2 ln(1/δ)√
ln(1/δ)

=
√

2αL > L
√

2(α− 1)α.

Note that for our choice of σ =
4L
√
q ln(1/δ)

ε we get that α = 4 ln(1/δ)
ε > 2.

By Lemma 14, our bound on RDP implies (ε, δ)-DP as

4kαL2 · lnn
nσ2

+
ln(1/δ)

α− 1
<

4k · ln(1/δ) lnn

αqn
+

2 ln(1/δ)

α
≤ 2 ln(1/δ)

α
+

2 ln(1/δ)

α
= ε.

Given the value of σ, we obtain the bound on the excess population loss from Theorem 28 in the same
way as in the proof of Theorem 29.

5.5 Removing the Smoothness Assumption

In this section we show that our assumption on the smoothness of the loss function f(w, x) can effectively
be removed in several of our applications. We do this by convolving f with the Gaussian distribution of an
appropriate variance. While smoothing a non-smooth objective is a standard technique in optimization (e.g.,
see [Nes05, DBW12]) we are not aware of bounds that are stated in the form we need. Specifically, f may
be approximated with its convex Lipschitz extension whose existence and properties are established by the
following theorem (its proof is deferred to Appendix C):
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Theorem 33. Consider an L-Lipschitz convex function f : K → R defined over the convex set K ⊆ Rd.
For every λ > 0, there exists a convex function f̂ : Rd → R with the following properties: i) f̂ is convex,
L-Lipschitz, and L/λ-smooth over K, and ii) for all w ∈ K, |f̂(w)− f(w)| ≤ Lλ

√
d.

In our Theorems 30 and 32 we use η ≤ Rε

L
√
n ln(1/δ)

. Therefore we need our smoothness parameter

β ≤ 2
L
√
n ln(1/δ)

Rε . This means that it suffices to set λ .
= Rε

2
√
n ln(1/δ)

, which by Theorem 33, leads to

approximation error of LRε
√
d

2
√
n ln(1/δ)

. Note that this additional error is dominated by the excess population

loss whenever ln(1/δ) ≥ ε (which is typically the case). For completeness, we state the immediate corollary
of Theorem 33 for per-person privacy formally.

Corollary 34. Let K ⊆ Rd be a convex body contained in a ball of radius R and {f(·, x)}x∈X be
a family of convex L-Lipschitz functions over K. For every ε > 0, δ > 0, starting point w0 ∈ K,
σ = 2L

√
2 ln(1.25/δ)/ε, dataset S ∈ X n, η =

√
8R/

√
n(L2 + dσ2), and index t ∈ [n], then Skip-

PNSGD(S,w0, η, σ) executed on {f(·, x)}x∈X smoothed with λ = Rε

2
√
n ln(1/δ)

satisfies (ε/
√
n− t+ 1, δ)-

DP at index t. In addition, if S consists of samples drawn i.i.d. from an arbitrary distribution P over X ,
then

E
S∼Pn

[F (W )] ≤ F ∗ +
4
√

2RL√
n
·

(√
1 +

8d ln(1.25/δ)

ε2
+

ε
√
d

2 ln(1.25/δ)

)
,

where W denotes the output of Skip-PNSGD(S,w0, η, σ) and F (w)
.
= Ex∼P [f(w, x)].

We remark that in our application that uses public data (Corollary 31) the additional error introduced
by general smoothing might no longer be dominated by bound on the excess population loss we prove.
However, better smoothing techniques can be used for many important classes of functions. For example,
generalized linear models can be smoothed with the smoothing error being on the same order as the statistical
error (or LR/

√
n). Specifically, these are functions of the form f(w) = `(〈w, θ〉, y) for some parameter

θ ∈ Rd and convex loss function ` : R×R→ R. To smoothen such a function it suffices to convolve ` with
a one-dimensional Gaussian kernel.
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A Contractivity of Gradient Descent for Smooth Functions

Contractivity of a Gradient Descent step for a smooth convex function is a well-known result in convex
optimization (see, e.g., Nesterov [Nes04]). We reproduce a proof below.

Proposition 18. Suppose that a function f : Rd → R is convex, twice differentiable4, and β-smooth. Then
the function ψ defined as:

ψ(x)
.
= w − η∇f(w)

is contractive as long as η < 2/β.

Proof. Let w,w′ ∈ Rd. We wish to show that

‖ψ(w)− ψ(w′)‖ ≤ ‖w − w′‖.

We write

ψ(w)− ψ(w′) = w − w′ − η(∇f(w)−∇f(w′)

= w − w′ + η(w − w′)>∇2f(z)

= (w − w′)(I− η∇2f(z)),

for some z on the line joining w and w′. By smoothness and convexity, the Hessian has eigenvalues in [0, β].
Thus,

‖ψ(w)− ψ(w′)‖ ≤ ‖w − w′‖‖I− η∇2f(z)‖.

Since 0 � ∇2f(z) � βI, the claim follows.

B Analyzing Multiple-Epoch SGD

In this section, we show how our techniques can be used to prove privacy for a fixed-ordering version of a
multiple-epoch SGD algorithm for minimizing a convex β-smooth loss function where η ≤ 2/β. Formally,
we consider the following algorithm:

Algorithm 2 Projected noisy multiple-epoch stochastic gradient descent (PNMSGD)
Input: Data set S = {x1, . . . , xn}, f : K×X → R a function convex in the first parameter, learning rate η,

starting point w0 ∈ K, noise parameter σ.
1: for j ∈ {0, . . . , n− 1} do
2: for i ∈ {0, . . . , n− 1} do
3: t← nj + i
4: vt+1 ← wt − η(∇wf(wt, xi+1) + Z), where Z ∼ N (0, σ2Id).
5: wt+1 ← ΠK (vt+1), where ΠK(w) = arg minθ∈K ‖θ − w‖2 is the `2-projection.
6: return the final iterate wn2 .

4This constraint makes the proof simpler but is technically unnecessary.
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An algorithm similar to this was analyzed by [BST14a] who used privacy amplification by sampling
to prove that it satisfies (ε, δ)-DP when σ2 = 32L2 ln(n/δ) ln(1/δ)

ε2
. This analysis can be improved using the

techniques of [ACG+16] to ensure that σ = Θ

(
L
√

ln(1/δ)

ε

)
suffices for a suitable range of ε.

The privacy bound for Algorithm 2 follows in a rather straightforward way from Theorem 22.

Theorem 35. Under the same assumptions as Theorem 23, projected noisy multiple-epoch SGD (Algo-
rithm 2) satisfies

(
α, 4αL2

σ2

)
-RDP.

Proof. Let S and S′ be two datasets that differ in the i’th example. Algorithm 2 run on S (resp., S′) defines
a contractive noise iteration CNI(X0, {ψt}, {ζt}) (resp., CNI(X0, {ψ′t}, {ζt})). Letting st

.
= 2ηL if t ≡ i

(mod n) and 0 otherwise, we observe that supw ‖ψt(w)− ψ′t(w)‖ ≤ st for t ∈ [n2].
We set

at
.
=


0 if t < i,
2ηL
n if i ≤ t < n(n− 1) + i,
2ηL
n−i+1 if n(n− 1) + i ≤ t ≤ n2.

Recall that zt
.
=
∑

i≤t si −
∑

i≤t ai as defined by Theorem 22. It is easy to check that zt ≥ 0 for all
t ∈ [n2] and that zn2 = 0. Applying Theorem 22 and noting that ζt = N (0, (ησ)2Id) for all t, we get that

Dα

(
Xn2

∥∥ X ′n2

)
≤ α

2η2σ2
·
n2∑
t=1

a2
t

=
2αL2

σ2
·
(
n(n− 1)

n2
+

n− i+ 1

(n− i+ 1)2

)
<

4αL2

σ2
.

It follows that Algorithm 2 satisfies (α, 4αL2

σ2 )-RDP as claimed.

Applying Lemma 14, with α = 2 ln(1/δ)
ε and additionally assuming that α ≥ 5, we conclude that the

projected noisy multiple-epoch SGD satisfies (ε, δ)-DP for σ =
5L
√

ln(1/δ)

ε . Compared to the approach
from [ACG+16], we have a significantly cleaner proof with fewer assumptions on σ. We remark that the
two algorithms differ slightly. Here we fix an ordering and make n passes over the data points in the same
order, whereas the algorithm in [BST14a] takes n2 steps, each on a uniformly random data point. To obtain
utility guarantees for this algorithm one can appeal to standard regret bounds for online algorithms (e.g.,
see Bubeck [Bub15]). These bounds imply an upper bound on the empirical loss of the randomly chosen
iterate. To obtain bounds on the population loss one can appeal to the generalization properties of differential
privacy [DFH+15, BNS+16a].

C Smoothing via Convolution with the Gaussian Kernel

In this section we prove Theorem 33, stated earlier in Section 5.5.

Theorem 33 (restatement). Consider an L-Lipschitz convex function f : K → R defined over the convex set
K ⊆ Rd. For every λ > 0, there exists a convex function f̂ : Rd → R with the following properties: i) f̂ is
convex, L-Lipschitz, and L/λ-smooth over K, and ii) for all w ∈ K, |f̂(w)− f(w)| ≤ Lλ

√
d.
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Proof. Consider the Gaussian kernel ζ = N (0, λ2Id). Before convolving f with this kernel we need to
extend f beyond K. Let h(w)

.
= minv∈K f(v) + L‖w − v‖2, where h(w) is defined over the complete

Rd. (The function h is also called the convex Lipschitz extension of f .) We define the approximation to the
function f(w) as

f̂(w)
.
= E

Z∼ζ
[h(w + Z)] .

The function f̂ satisfies the following properties:

1. Total on Rd: By definition, the function f̂ is well-defined on Rd.

2. Lipschitzness and convexity: Since the function f(w) is convex and L-Lipschitz, the Lipschitz
extension function h(w) is also convex and L-Lipschitz. Hence, f̂(w) is both convex and L-Lipschitz
as it is defined as a convolution of h(w) with the Gaussian probability kernel.

3. Smoothness: f̂(w) is L/λ-smooth. For all w,w′ ∈ Rd,∥∥∥∇f̂(w)−∇f̂(w′)
∥∥∥

2
≤ L

λ

∥∥w − w′∥∥
2
.

Let pZ denote the probability density function of the random variable Z. By definition,∥∥∥∇f̂(w)−∇f̂(w′)
∥∥∥

2
=

∥∥∥∥∥ E
Z∼N (0,λ2Id)

[∂h(w + Z)]− E
Z∼N (0,λ2Id)

[
∂h(w′ + Z)

]∥∥∥∥∥
2

=

∥∥∥∥∥ E
Z∼N (0,λ2Id)

[∂h(w + Z)]− E
Z′∼N (w′−w,λ2Id)

[
∂h(w + Z ′)

]∥∥∥∥∥
2

=

∥∥∥∥∫
z
∂h(w + z) (pZ(z)− pZ′(z)) dz

∥∥∥∥
2

≤ sup
w∈Rd

‖∂h(w)‖2 ·
∫
z
|pZ(z)− pZ′(z)| dz

≤ L · 2 TV(pZ , pZ′),

where TV refers to the total variation distance. To complete the proof note that by Pinsker’s inequality,

TV
(
N (0, λ2Id),N (w′ − w, λ2Id)

)
≤
√

1

2
D1(N (0, λ2Id) ‖ N (w′ − w, λ2Id)) ≤

‖w − w′‖2
2λ

.

4. Approximation error: For all w ∈ K,
∣∣∣f̂(w)− f(w)

∣∣∣ ≤ Lλ√d. By definition,

∣∣∣f̂(w)− f(w)
∣∣∣ =

∣∣∣∣∣ E
Z∼N (0,λ2Id)

[h(w + Z)− h(w)]

∣∣∣∣∣
≤ E

Z∼N (0,λ2Id)
[|h(w + Z)− h(w)|]

≤ L · E
Z∼N (0,λ2Id)

[‖Z‖2]

= Lλ
√
d.

Together these properties establish the claim of the theorem.
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