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Abstract
Understanding, reasoning, and manipulating semantic concepts of images have
been a fundamental research problem for decades. Previous work mainly focused
on direct manipulation on natural image manifold through color strokes, key-
points, textures, and holes-to-fill. In this work, we present a novel hierarchical
framework for semantic image manipulation. Key to our hierarchical framework is
that we employ structured semantic layout as our intermediate representation for
manipulation. Initialized with coarse-level bounding boxes, our structure generator
first creates pixel-wise semantic layout capturing the object shape, object-object
interactions, and object-scene relations. Then our image generator fills in the
pixel-level textures guided by the semantic layout. Such framework allows a
user to manipulate images at object-level by adding, removing, and moving one
bounding box at a time. Experimental evaluations demonstrate the advantages
of the hierarchical manipulation framework over existing image generation and
context hole-filing models, both qualitatively and quantitatively. Benefits of the
hierarchical framework are further demonstrated in applications such as semantic
object manipulation, interactive image editing, and data-driven image manipulation.

1 Introduction
Learning to perceive, reason and manipulate images has been one of the core research problems in
computer vision, machine learning and graphics for decades [1, 7, 8, 9]. Recently the problem has
been actively studied in interactive image editing using deep neural networks, where the goal is to
manipulate an image according to the various types of user-controls, such as color strokes [21, 33],
key-points [19, 33], textures [27], and holes-to-fill (in-painting) [17]. While these interactive image
editing approaches have made good advances in synthesizing high-quality manipulation results, they
are limited to direct manipulation on natural image manifold.

The main focus of this paper is to achieve semantic-level manipulation of images. Instead of
manipulating images on natural image manifold, we consider semantic label map as an interface for
manipulation. By editing the label map, users are able to specify the desired images at semantic-level,
such as the location, object class, and object shape. Recently, approaches based on image-to-
image translation [3, 11, 25] have demonstrated promising results on semantic image manipulation.
However, the existing works mostly focused on learning a style transformation function from label
maps to pixels, while manipulation of structure of the labels remains fully responsible to users. The
requirement on direct control over pixel-wise labels makes the manipulation task still challenging
since it requires a precise and considerable amount of user inputs to specify the structure of the
objects and scene. Although the problem can be partly addressed by template-based manipulation
interface (e.g. adding the objects from the pre-defined sets of template masks [25], blind pasting
of the object mask is problematic since the structure of the object should be determined adaptively
depending on the surrounding context.

In this work, we tackle the task of semantic image manipulation as a hierarchical generative process.
We start our image manipulation task from a coarse-level abstraction of the scene: a set of semantic
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Figure 1: Overall pipeline of the proposed semantic manipulation framework.

bounding boxes which provide both semantic (what) and spatial (where) information of the scene in
an object-level. Such representation is natural and flexible that enables users to manipulate the scene
layout by adding, removing, and moving each bounding box. To facilitate the image manipulation
from coarse-level semantic bounding boxes, we introduce a hierarchical generation model that
predicts the image in multiple abstraction levels. Our model consists of two parts: layout and image
generators. Specifically, our structure generator first infers the fine-grained semantic label maps
from the coarse object bounding boxes, which produces structure (shape) of the manipulated object
aligned with the context. Given the predicted layout, our image generator infers the style (color and
textures) of the object considering the perceptual consistency to the surroundings. This way, when
adding, removing, and moving semantic bounding boxes, our model can generate an appropriate
image seamlessly integrated into the surrounding image.

We present two applications of the proposed method on interactive and data-driven image editing.
In the experiment on interactive image editing, we show that our method allows users to easily
manipulate images using object bounding boxes, while the structure and style of the generated objects
are adaptively determined depending on the context and naturally blended into the scene. Also, we
show that our simple object-level manipulation interface can be naturally extended to data-driven
image manipulation, by automatically sampling the object boxes and generating the novel images.

The benefits of the hierarchical image manipulation are three-fold. First, it supports richer manip-
ulation tasks such as adding, moving or removing objects through object-level control while the
fine-grained object structures are inferred by the model. Second, when conditioned on coarse and
fine-grained semantic representations, the proposed model produces better image manipulation results
compared to models learned without structural control. Finally, we demonstrate the effectiveness of
the proposed idea on interactive and automatic image manipulation.

2 Related Work
Deep visual manipulation. Visual manipulation is a task of synthesizing the new image by ma-
nipulating parts of a reference image. Thanks to the emergence of generative adversarial networks
(GANs) [6] and perceptual features discovered from deep convolutional neural networks [13, 22, 23],
neural image manipulation [5, 14, 17, 21, 31, 33] has gained increasing popularity in recent years.
Zhu et al. [33] presented an novel image editing framework with a direct constraint capturing real
image statistics using deep convolutional generative adversarial networks [18]. Li et al. [14] and Yeh
et al. [31] investigated semantic face image editing and completion using convolution encoder-decoder
architecture, jointly trained with a pixel-wise reconstruction constraint, a perceptual (adversarial)
constraint, and a semantic structure constraint. In addition, Pathak et al. [17] and Denton et al.
[5] studied context-conditioned image generation that performs pixel-level hole-filling given the
surrounding regions using deep neural networks, trained with adversarial and reconstruction loss.
Contrary to the previous works that manipulate images based on low-level visual controls such
as visual context [5, 14, 17, 31] or color strokes [21, 33], our model allows semantic control over
manipulation process through labeled bounding box and the inferred semantic layout.

Structure-conditional image generation. Starting from the pixel-wise semantic structure, recent
breakthroughs approached the structure-conditional image generation through direct image-to-image
translation [3, 11, 16, 34]. Isola et al. [11] employed a convolutional encoder-decoder network
with conditional adversarial objective to learn label-to-pixel mapping. Later approaches improved
the generation quality by incoorporating perceptual loss from a pre-trained classifier [3] or feature-
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matching loss from multi-scale discriminators [25]. In particular, Wang et al. [25] demonstrated a
high-resolution image synthesis results and its application to semantic manipulation by controlling the
pixel-wise labels. Contrary to the previous works focusing on learning a direct mapping from label
to image, our model learns hierarchical mapping from coarse bounding box to image by inferring
intermediate label maps. Our work is closely related to Hong et al. [10], which generates an image
from a text description through multiple levels of abstraction consisting of bounding boxes, semantic
layouts, and finally pixels. Contrary to Hong et al. [10], however, our work focuses on manipulation
of parts of an image, which requires incorporation of both semantic and visual context of surrounding
regions in the hierarchical generation process in such a way that structure and style of the generated
object are aligned with the other parts of an image.

3 Hierarchical Image Manipulation
Given an input image Iin ∈ RH×W×3, our goal is to synthesize the new image Iout by manipulating
its underlying semantic structure. Let M in ∈ RH×W×C denotes a semantic label map of the image
defined over C categories, which is either given as ground-truth (in training time) or inferred by the
pre-trained visual recognition model (in testing time). Then our goal is to synthesize the new image
by manipulating M in, which allows the semantically-guided manipulation of an image.

The key idea of this paper is to introduce an object bounding box B as an abstracted interface to
manipulate the semantic label map. Specifically, we define a controllable bounding box B = {b, c}
as a combination of box corners b ∈ R4 and a class label c = {0, . . . , C}, which represents the
location, size and category of an object. By adding the new box or modifying the parameters of
existing boxes, a user can manipulate the image through adding, moving or deleting the objects1.
Given an object-level specification by B, the image manipulation is then posed as a hierarchical
generation task from a coarse bounding box to pixel-level predictions of structure and style.

Figure 1 illustrates the overall pipeline of the proposed algorithm. When the new bounding box B
is given, our algorithm first extracts the local observations of label map M ∈ RS×S×C and image
I ∈ RS×S×3 by cropping squared windows of size S × S centered around B. Then conditioned on
M , I and B, our model generates the manipulated image by the following procedures:

• Given a bounding box B and the semantic label map M , the structure generator predicts the
manipulated semantic label map by M̂ = GM (M,B) (Section 3.1)

• Given the manipulated label map M̂ and image I , the image generator predicts the manipu-
lated image Î by Î = GI(M̂, I) (Section 3.2)

After generating the manipulated image patch Î , we place it back to the original image to finish the
manipulation task. The manipulation of multiple objects is performed iteratively by applying the
above procedures for each box. In the following, we explain the manipulation pipeline on a single
box B.

3.1 Structure generator
The goal of the structure generator is to infer the latent structure of the region specified byB = {b, c}
in the form of pixel-wise class labels M̂ ∈ RS×S×C . The outputs of the structure generator should
reflect the class-specific structure of the object defined by B as well as interactions of the generated
object with the surrounding context (e.g. a person riding a motorcycle). To consider both conditions
in the generation process, the structure generator incorporates the label map M and the bounding box
B as inputs and performs a conditional generation by M̂ = GM (M,B).

Figure 2 illustrates the overall architecture of the structure generator. The structure generator takes in
the masked layout M̄ ∈ RS×S×C and the binary mask B̄ ∈ RS×S×1, where M̄ijc = 1 and B̄ij = 1
for all pixels (i, j) inside the box for class c. Given these inputs, the model predicts the manipulated
outcome using two decoding pathways.

Our design principle is motivated by generative layered image modeling [19, 24, 28, 29, 30], which
generates foreground (i.e. object) and background (i.e. context) using separate output streams. In our
model, the foreground output stream produces the predictions on binary object mask M̂obj ∈ RS×S×1,
which defines the object shape tightly bounded by object box B. The background output stream
produces per-pixel label maps M̂ctx ∈ RS×S×C inside B.

1We used c = 0 to indicate a deletion operation, where the model fills the labels with surroundings.
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Masked 
Layout

Foreground branch

Background branch

Figure 2: Architecture of the structure generator. Given a masked layout M̄ and a binary mask
B̄ encoding the class and location of the object, respectively, the model produces the manipulated
layout M̂ by the outputs from the two-stream decoder corresponding to the binary mask of object
and semantic label map of entire region inside the box.

The objective for our structure generator is then given by

Llayout = Ladv(M̂obj,M
∗
obj) + λobjLrecon(M̂obj,M

∗
obj) + λctxLrecon(M̂ctx, M̄), (1)

where M∗obj is the ground-truth binary object mask on B and Lrecon(·, ·) is the reconstruction loss
using cross-entropy. Ladv(M̂obj,M

∗
obj) is the conditional adversarial loss defined on object mask

ensuring the perceptual quality of predicted object shape, which is given by

Ladv(M̂obj,M
∗
obj) = EM∗obj

[
log(DM (M∗obj, M̄))

]
+ EM̂obj

[
1− log(DM (M̂obj, M̄))

]
, (2)

where DM (·, ·) is a conditional discriminator.

During inference, we construct the manipulated layout M̂ using M̂obj and M̂ctx. Contrary to the prior
works on layered image model, we selectively choose outputs from either foreground or background
streams depending on the manipulation operation defined by B. The output M̂ is given by

M̂ =

{
M̂ctx if c = 0 (deletion)

(M̂obj1c) + (1− (M̂obj1c))�M otherwise (addition)
, (3)

where c is the class label of the bounding box B and 1c ∈ {0, 1}1×C is the one-hot encoded vector
of the class c.

3.2 Image generator

Given an image I and the manipulated layout M̂ obtained by the structure generator, the image
generator outputs a pixel-level prediction of the contents inside the regions defined by B. To make
the prediction being semantically meaningful and perceptually plausible, the output from the image
generator should reflect the semantic structure defined by the layout while being coherent in its style
(e.g. color and texture) with the surrounding image. We design the conditional image generator
GI such that Î = GI(I, M̂), where I, Î ∈ RS×S×3 represent the local image before and after
manipulation with respect to bounding box B.

Figure 3 illustrates the overall architecture of the image generator. The model takes the masked
image Ī whose pixels inside the box are filled with 0 and the manipulated layout M̂ as inputs, and
produces the manipulated image Î as output. We design the image generator GI to have a two-stream
convolutional encoder and a single-stream convolutional decoder connected by an intermediate
feature map F . As we see in the figure, the convolutional encoder has two separate downsampling
streams, which we referred to as image encoder fimage(Ī) and layout encoder flayout(M̂), respectively.
The intermediate feature F is obtained by an element-wise feature interaction layer gated by the
binary mask BF on object location.

F = flayout(M̂)�BF + fimage(Ī)� (1−BF ). (4)

Finally, the convolutional decoder gimage(·) takes the fused feature F as input and produces the
manipulated image through Î = gimage(F ). Note that we use the ground-truth layout M during model
training but the predicted layout M̂ is used at the inference time during testing.
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Figure 3: Architecture of the image generator. Given a masked image Ī and the semantic layout M̂ ,
the model encodes visual style and semantic structure of the object using separate encoding pathways
and produces the manipulated image.

We define the following loss for the image generation task.

Limage = Ladv(Î , I) + λfeatureLfeature(Î , I). (5)

The first term Ladv(Î , I) is the conditional adversarial loss defined by

Ladv(Î , I) = EI

[
log(DI(I, M̂))

]
+ EÎ

[
1− log(DI(Î , M̂))

]
. (6)

The second term Lfeature(Î , I) is the feature matching loss [25]. Specifically, we compute the distance
between the real and manipulated images using the intermediate features from the discriminator by

Lfeature(Î , I) = EI,Î

∑
i=1

‖D(i)(I, M̂)−D(i)(Î , M̂)‖2F , (7)

where D(i) is the outputs of ith layer in discriminator, ‖ · ‖F is the Frobenius norm.

Discussions. The proposed model encodes both image and layout using two-stream encoding
pathways. With only image encoder, it simply performs image in-painting [17], which attempts to fill
the hole with patterns coherent with the surrounding region. On the other hand, our model with only
layout encoder becomes similar to image-to-image translation models [3, 11, 25], which translates
the pixel-wise semantic label maps to the RGB pixel values. Intuitively, by combining information
from both encoders, the model learns to manipulate images that reflect the underlying image structure
defined by the label map with appearance patterns naturally blending into the surrounding context,
which is semantically meaningful and perceptually plausible.

4 Experiments
4.1 Implementation Details
Datasets. We conduct both quantitative and qualitative evaluations on the Cityscape dataset [4], a
semantic understanding benchmark of European urban street scenes containing 5,000 high-resolution
images with fine-grained annotations including instance-wise map and semantic map from 30
categories. Among 30 semantic categories, we treat 10 of them including person, rider, car,
truck, bus, caravan, trailer, train, motorcycle, bicycle as our foreground object classes
while leaving the rest as background classes for image editing purpose. For evaluation, we measure
the generation performance on each of the foreground object bounding box in 500 validation images.
To further demonstrate the image manipulation results on more complex scene, we also conduct
qualitative experiments on bedroom images from ADE20K dataset [32]. Among 49 object categories
frequently appearing in a bedroom, we select 31 movable ones as foreground objects for manipulation.

Training. As one challenge, collecting ground-truth examples before and after image manipulation
is expensive and time-consuming. Instead, we simulate the addition (c ∈ {1, ..., C}) and deletion
(c = 0) operations by sampling boxes from the object and random image regions, respectively. For
training, we employ an Adam optimizer [12] with learning rate 0.0002, β1 = 0.5, β2 = 0.999 and
linearly decrease the learning rate after the first 100-epochs for training. The hyper-parameters λobj,
λctx, λfeature are set to 10. The network architectures for layout and image generator are described in
Appendix A. Our PyTorch implementation will be open-sourced.
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Layout SSIM Segmentation (%) Human eval. (%)
SingleStream-Image - 0.285 59.6 12.3
SingleStream-Layout GT 0.291 71.5 9.2
SingleStream-Concat GT 0.331 76.7 23.2

TwoStream GT 0.336 78.5 33.6
TwoStream-Pred Predicted 0.299 77.9 20.7

Table 1: Comparisons between variants of the proposed method. The last two rows (TwoStream and
TwoStream-Pred) correspond to our full model using ground-truth and predicted layout, respectively.

Context Layout
SingleStream

Image
SingleStream

Layout
SingleStream

Concat
TwoStream TwoStream

Pred

Figure 4: Qualitative comparisons to the baselines in Table 1. The first two columns show the
masked image and ground-truth layout used as input to the models (except TwoStream-Pred). The
manipulated objects are indicated by blue arrows. Best viewed in color.

Evaluation metrics. We employ three metrics to measure the perceptual and conditional generation
quality. We use Structural Similarity Index (SSIM) [26] to evaluate the similarity of the ground-
truth and predicted images based on low-level visual statistics. To measure the quality of layout-
conditional image generation, we apply a pre-trained semantic segmentation model DeepLab v3 [2]
to the generated images, and measure the consistency between the input layout and the predicted
segmentation labels in terms of pixel-wise accuracy (layout→ image→ layout). Finally, we conduct
user study using Mechanical Turk (AMT) to evaluate the perceptual generation quality. We present
the manipulation results of different methods together with the input image and the class label of the
bounding box and ask users to choose the best method based on how natural the manipulated images
are. We collect the results for 1,000 examples, each of which is evaluated by 5 different Turkers. We
report the performance of each method based on the ratio that method ranked as the best in AMT.

4.2 Quantitative Evaluation
Ablation study. To analyze the effectiveness of the proposed method, we conduct an ablation
study on several variants of our method. We first consider three baselines of our image generator:
conditioned only on image context (SingleStream-Image), conditioned only on semantic layout
(SingleStream-Layout), or conditioned on both by concatenation but using a single encoding
pathway (SingleStream-Concat). We also compare our full model using a ground-truth and the
predicted layouts (TwoStream and TwoStream-Pred). Table 1 summarize the results.

As shown in Table 1, conditioning the generation with only image or layout leads to either
poor class-conditional generation (SingleStream-Image) or less perceptually plausible results
(SingleStream-Layout). It is because the former misses the semantic layout encoding criti-
cal information on which object to generate, while the later misses color and textures of the im-
age that makes the generation results visually consistent with its surroundings. Combining both
(SingleStream-Concat), the generation quality improves in all metrics, which shows comple-
mentary benefits of both conditions in image manipulation. In addition, a comparison between
SingleStream-Concat and TwoStream shows that modeling the image and layout conditions
using separate encoding pathways further improves the generation quality. Finally, replacing the
layout condition from the ground-truth (TwoStream) to the predicted one (TwoStream-Pred) leads

6



Layout SSIM Segmentation (%) Human eval. (%)
Context Encoder [17] - 0.265 26.4 1.1
Context Encoder++ GT 0.269 35.7 1.4

Pix2PixHD [25] GT 0.288 79.6 18.0
TwoStream GT 0.336 78.5 79.5

Table 2: Quantitative comparison to other methods.

A
B C D E

A B C D E

Figure 5: Generation results on various locations in an image.
occlusiongeometric context

Figure 6: Generation results in diverse contexts. See Figure A.3 for more results.

to a small degree of degradation in perceptual quality partly due to the prediction errors in layout
generation. However, clear improvement of TwoStream-Pred over SingleStream-Image shows
the effectiveness of layout prediction in image generation.

Figure 4 shows the qualitative comparisons of the baselines. Among all variants, our TwoStream
model tends to exhibit most recognizable and coherent appearance with the surrounding environment.
Interestingly, our model with predicted layout TwoStream-Pred generates objects different from
the ground-truth layout but still match the bounding box condition. such as a person walking in the
different direction (the first row) and objects placed in different order (the second row).

Comparison to other methods. We also compare against a few existing work on context hole-
filing and structure-conditioned image generation. First, we consider the recent work on high-
resolution pixel-to-pixel translation [25] (referred as Pix2PixHD in Table 2). Compared to our
SingleStream-Layout model, Pix2PixHD model generates full-sized image from semantic layout
in one shot. Second, we consider the work for context-driven image in-painting [17] (referred as
ContextEncoder) as another baseline. Similar to our SingleStream-Image, ContextEncoder
does not have access to the semantic layout during training and testing. For fair comparisons,
we extended ContextEncoder so that it takes segmentation layout as additional input. We refer
this model as ContextEncoder++ in Table 2. As we see in the Table 2, our two-stream model
still achieves the best SSIM and competitive segmentation pixel-wise accuracy. The segmentation
accuracy of Pix2PixHD is higher than ours since it generates higher resolution images and object
textures non-relevant to the input image, but our method still achieves perceptually plausible results
consistent with the surrounding image. Note that the motivations of Pix2PixHD and our model are
different, as Pix2PixHD performs image generation from scratch while our focus is local image
manipulation. See Figure A.2 for qualitative comparison of Table 2.

4.3 Qualitative Analysis
Semantic object manipulation. To demonstrate how our hierarchical model manipulates structure
and style of an object depending on the context, we conduct qualitative analysis in various settings.
In Figure 5, we present the manipulation results by moving the same bounding box of a car to
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different locations in an image. As we see in the figure, our model generates a car with diverse but
reasonably-looking shape and appearance when we move its bounding box from one side of the road
to another. Interestingly, the shape, orientation, and appearance of the car also change according to
the scene layout and shadow in the surrounding regions. Figure 6 illustrates generation results in
more diverse contexts. It shows that our model generates appropriate structure and appearance of the
object considering the context (e.g. occlusion with other objects, interaction with the scene, etc). In
addition to generating object matching the surroundings, we can also easily extend our framework to
allow users to directly control object style, which we demonstrate below.

Extension to style manipulation Although we focused on addition and deletion of objects as ma-
nipulation tasks, we can easily extend our framework to add control over object styles by conditioning
the image generator with additional style vector s by GI(M̂, I, s). To demonstrate this capability, we
define the style vector as a mean color of the object, and synthesized objects while changing the input
color (Figure 7). The results show that our model successfully synthesizes various objects with the
specified color while retaining other parts of the images unchanged. Modeling more complicated
styles (e.g. texture) can be achieved by learning a style-encoder s = E(X) where X is an object
template that user can select, but we leave it as a future work.

Figure 7: Controlling object color with style vector. Colors used for manipulation are presented at
left-upper corners.

Interactive and data-driven image editing. As one of the key applications, we perform interactive
image manipulation by adding, removing, and moving object bounding boxes. Figure 8 illustrates the
results. It shows that our method generates reasonable semantic layouts and images that smoothly
augment content of the original image. In addition to interactive manipulation, we can also automate
the manipulation process by sampling bounding boxes in an image in a data-driven manner. To
demonstrate this idea, we present an application of data-driven image manipulation in Figure 9. In this
demo, we implement box sampling using a simple non-parametric approach; Given a query image, we
first compute its nearest neighbor from the training set based on low-level similarity. Then we compute
the geometric transformation between a query and a training image using SIFT Flow [15], and move

Original Manipulated

Figure 8: Examples of manipulation of multiple objects in images. The line style indicates
manipulation operation (solid: addition, doted: deletion) and the color indicates the object class. See
Figure A.4 and A.5 for detailed manipulation process, and Figure A.6 for more results.
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Source Image Target Image Manipulated Image

Figure 9: Example of data-driven image manipulation. We manipulate the target image by transferring
bounding boxes from source image (blue boxes). See Figure A.7 for more results.

object bounding boxes from one scene to another based on the scene-level transformation. As shown
in the figure, the proposed methods reasonably sample boxes from appropriate locations. However,
directly placing the object (or its mask) may lead to unnatural manipulation due to mismatches
in scene configuration (e.g. occlusion and orientation). Our hierarchical model generates objects
adaptive to the new context.

Results on indoor scene dataset. In addition to Cityscape dataset, we conduct qualitative experi-
ments on bedroom images using ADE20K datasets [32]. Figure 10 illustrates the interactive image
manipulation results. Since objects in the indoor images involve much more diverse categories and
appearances, generating appropriate object shapes and textures aligned with other components in a
scene is much more challenging than the street images. We observe that the generated objects by the
proposed method usually are looking consistent the surrounding context.

Original Manipulated Original Manipulated

Picture Pillow Curtain Cushion Chair Cabinet Dresser Mirror Sconce TV Blinds Bed Table

WindowDoor Carpet Vase Armchair Plant Flower Book Shelf Flowerpot Sofa

Picture Pillow Curtain Cushion Chair Cabinet Dresser Mirror Sconce TV Blinds Lamp Armchair Vase Flower

Figure 10: Examples of image manipulation results on indoor images. See Figure A.8 for more
results.
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5 Conclusions
In this paper, we presented a hierarchical framework for semantic image manipulation. We first learn
to generate the pixel-wise semantic label maps given the initial object bounding boxes. Then we learn
to generate the manipulated image from the predicted label maps. Such framework allows the user to
manipulate images at object-level by adding, removing, and moving an object bounding box at a time.
Experimental evaluations demonstrate the advantages of the hierarchical manipulation framework
over existing image generation and context hole-filing models, both qualitatively and quantitatively.
We further demonstrate its practical benefits in semantic object manipulation, interactive image
editing and data-driven image editing. Future research directions include preserving the object
identity and providing affordance as additional user input during image manipulation.
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Appendix

A Implementation details
Structure generator The structure generator takes the semantic label maps as input and produces
both foreground object and background context in two separate streams. Overall, the structure
generator consists of 3 convolutional downsampling layers, followed by 6 residual convolutional
blocks, and finally 3 convolutional upsampling layers. The downsampling convolutional layers have
64, 96, 128 channels with filter size of 7× 7, 4× 4 and 4× 4, respectively. All residual convolutional
blocks have 256 channels with the filter size of 4× 4. The upsampling convolutional layers have a
symmetric structure as the downsampling convolutional layers.

Image generator Our image generator follows the similar architecture used in high-resolution
image synthesis [25]. It is composed of 3 convoultional downsampling layers followed by 9 residual
blocks and 3 upsampling layers with transposed convolution. All convolutional blocks are imple-
mented by 3 × 3 convolutional filters. For discriminator, we used Patch-GAN [11] style network.
Similar to [25], we used two discriminators in multiple scales that generate predictions on real or
fake over 70× 70 and 140× 140 local image patches, respectively.

B More quantitative results
Ablation study using the predicted layout Table 3 presents an additional ablation study of our
method, which corresponds to the extension of Table 1 in the main paper. In this experiment, we
compare the manipulation performance of various image generators using the predicted layout.
We observe the same trend shown in Table 1, where our method using the two encoder streams
(TwoStream) consistently outperforms other variants in all measures.

Layout SSIM Segmentation (%) Human eval. (%)
SingleStream-Image - 0.285 59.6 20.0
SingleStream-Layout Predicted 0.268 69.4 10.4
SingleStream-Concat Predicted 0.296 76.3 29.9

TwoStream Predicted 0.299 77.8 40.0
Table 3: Comparisons between variants of the proposed method.

Drag-and-drop Ours

Figure A.1: Examples of
ours vs. drag-and-drop.

Hierarchical manipulation vs. Drag-and-drop In this paper, we ar-
gue that hierarchical manipulation of objects is more appropriate than
copy-and-paste of objects in training data, since the manipulation task
requires to adapt both shape and appearance of objects based on its
surrounding context in a reference image. To clarify this point, we im-
plement drag-and-drop baseline and compare it against ours through
human evaluation. Specifically, we sample bounding boxes from testing
images, and obtain the nearest neighbor object from a training set using
the algorithm presented in the data-driven image editing experiment in
Section 4.3. Then we copy and paste the object after applying auto-
matic color adjustment [20]. We compare it against ours using AMT
by asking 300 annotators to rank two methods over 100 samples, where
our method was favored over the baseline in 76.33%. As presented
in Figure A.1, simple drag-and-drop of the objects sometimes leads to
the objects mismatching with the context. For instance, it has to adjust
shapes considering the occlusion with other objects (first row) or align
its orientation with others (second row). On the other hand, our method
generates the appropriate shapes and appearances aligned with other
parts of the scene, which leads to plausible manipulation results.

C More qualitative results
Qualitative comparison to other methods Figure A.2 presents qualitative comparison to the
existing image manipulation methods presented in Table 2. As it shows, results from both
ContextEncoder and ContextEncoder++ are not visually appealing as the generations are usually
in a low-quality. Pix2PixHD produces high-quality synthesis results but they are easily distinguish-
able from the surroundings as the generation is only based on semantic layout. Due to this property,
the segmentation performance of Pix2PixHD is higher than ours (Table 2), but human tends to prefer
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our results over Pix2PixHD because our method produces visually more natural manipulation results.

Context Layout ContextEncoder ContextEncoder++ Pix2PixHD Ours

Figure A.2: Qualitative comparisons to the existing manipulation methods presented in Table 2.

Semantic object manipulation Figure A.3 illustrates semantic object manipulation results, which
corresponds to Figure 6 of the main paper. As shown in the figure, the proposed method generates
structure and style of the objects adaptively depending on the context. For instance, the model
generates the shape of the vehicles (car, truck, and bus) in such a way that its orientations are aligned
with surrounding geometric environments (e.g. sidewalks and road). Beyond geometric constraints,
the model also learns biases in the scene and generates shapes based on it (e.g. a person standing
on a sidewalk vs. a person walking on a crosswalk). Also, when there are objects overlapped with
the user-defined bounding box, the model internally figures out the order and generates shapes
considering the occlusion between objects (e.g. car behind person and pole).

Figure A.3: Generation results in diverse context.
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Interactive and data-driven image manipulation We present more examples on interactive image
editing, which correspond to Figure 8 in the main paper. Figure A.4 and A.5 illustrate the editing
results obtained by iteratively adding, moving and removing the object bounding boxes. For better
understanding, we also visualize the manipulation results at each step. More examples on interactive
image editing are illustrated in Figure A.6. We can see that the proposed method generates reasonable
manipulation in various scenes.

Figure A.7 illustrates more examples on data-driven image editing, which correspond to Figure 9 of
the main paper.

Input Image Manipulated Image

Object-level Manipulation (green: before; red: after)

Figure A.4: Interactive image manipulation. Given an input image, the user performs interactive
image manipulation by adding or removing one object at a time. The top part demonstrates the
object-level manipulation while the bottom part shows the original input image and the manipulation
result in the end. The bounding box style indicates manipulation operation (solid: addition, doted:
deletion) and the color of bounding box indicates the object class.
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Input Image Manipulated Image

Object-level Manipulation (green: before; red: after)

Figure A.5: Interactive image manipulation. Given an input image, the user performs interactive
image manipulation by adding or removing one object at a time. The top part demonstrates the
object-level manipulation while the bottom part shows the original input image and the manipulation
result in the end. The bounding box style indicates manipulation operation (solid: addition, doted:
deletion) and the color of bounding box indicates the object class.
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Original Manipulated

Figure A.6: More examples on interactive image editing.
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Source Image Target Image Manipulated Image

Figure A.7: Example of data-driven image manipulation. We manipulate the target image by
transferring bounding boxes from source image (blue boxes).
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Results on indoor scene dataset. Figure A.8 illustrates more interactive image editing results
on ADE20K bedroom dataset, which corresponds to Figure 10 of the main paper. Compared
to Cityscape dataset, the indoor images are composed of much more densly populated objects
from various categories exhibiting diverse appearances. Despite of such challenges, the proposed
method generates visually plausible objects aligned with surrounding context in many examples
(e.g. alignement of the manipulated objects with orientation of room layout or other furniture).

Picture Pillow Curtain Cushion Chair Cabinet Dresser Mirror Sconce TV Blinds Bed Table

LampWindowDoor Carpet Vase Armchair Plant Flower Book Shelf Flowerpot Sofa

Figure A.8: Example of interactive image editing on ADE20K indoor scene datset [32]. Manipulated
parts of the images are indicated by arrows.
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