
Resilient Computing with Reinforcement Learning on a Dynamical
System: Case Study in Sorting

Aleksandra Faust1 James B. Aimone2 Conrad D. James2 Lydia Tapia3

Abstract— This paper formulates general computation
as a feedback-control problem, which allows the agent
to autonomously overcome some limitations of standard
procedural language programming: resilience to errors
and early program termination. Our formulation considers
computation to be trajectory generation in the program’s
variable space. The computing then becomes a sequen-
tial decision making problem, solved with reinforcement
learning (RL), and analyzed with Lyapunov stability theory
to assess the agent’s resilience and progression to the
goal. We do this through a case study on a quintessential
computer science problem, array sorting. Evaluations show
that our RL sorting agent makes steady progress to an
asymptotically stable goal, is resilient to faulty components,
and performs less array manipulations than traditional
Quicksort and Bubble sort.

I. INTRODUCTION

Modern software controls transportation systems,
stock markets, manufacturing plants, and other high-
consequence systems. The software often runs in op-
erating environments that are vastly different, and
changing, from their original scopes [1]. One cause of
changes are soft errors, random and temporary errors
that affect all aspects of computing, such as memory,
registers, and calculations [11]. Undetected and un-
managed, their cumulative effect can be severe. For
example, particle and electromagnetic radiation corrupt
computing in space, at high-altitude, and around nu-
clear reactors, causing silent software failures. Similarly,
current microchip design pushes the physical limits,
causing memory faults and soft computation errors
[7]. Traditional radiation hardening and fault-tolerant
computing consist of physical system redundancy and
material layering. Both increase the complexity and
cost. Resilient algorithms, algorithms that adapt and
work around soft errors, are gaining popularity [1].

Contemporary applications require algorithms to
work with limited resources. For instance, an algorithm
might be not be allowed to self-terminate. Rather it
might be interrupted to yield to a higher priority
problem, and must produce a partial answer no worse
than the quality of the input data. Thus, an early
termination and steady progress toward the solution
become requirements.

Yet, traditional computing works under two funda-
mental assumptions: correctness and program-initiated

1Google Brain, Mountain View, CA, USA,faust@google.com
2Sandia National Labs, Albuquerque, NM, USA.
3University of New Mexico, Albuquerque, NM, USA.

termination. Theoretical computer science considers an
algorithm totally correct if, for a correct input, the algo-
rithm terminates and returns a correct calculation [16].
The total correctness influences traditional software
engineering by developing best practices such as code
reviews [12], design patterns [4], and correctness proofs
[12], intended to guard against faulty specification and
developer-introduced bugs. The total correctness does
not pose any restriction on how computation evolves
over time, the result is correct as long as given the
correct input. That has two consequences. First, the
total correctness offers no adaptation and resiliency
to errors in the input or the program’s dependencies.
Second, there are no guarantees on what algorithm’s
outcome might be if the program is terminated early.

In contrast, feedback control and sequential decision
making in robotics often require error adaptation, and
termination when a sufficient accuracy is achieved.
Robots routinely rely on measurements that contain er-
rors, yet still aim at providing resilient decision making.
Next, in many robot control tasks, it is important how a
robot accomplishes a task, not only that it does so. For
example, among all the trajectories that take the robot
from its current position to the goal, we might want to
choose the shortest, safest, or most fuel-efficient path.
Stable decision making finds trajectories that steadily
progress towards the goal with respect to some metric.

This paper applies the resiliency and stability ideas
from controls to computing aiming to overcome cor-
rectness and termination limitations. Given the simi-
larities in the operating uncertainties of software and
robots, we consider a computation to be a trajectory
generation in the program’s variable space [16]. To
that end, we show that a computer program is a
discrete time dynamical system over the vector space
defined by its variables, and is controlled with vector
transformation matrices with an equilibrium in the
correct output. Adding a reward, we arrive at Markov
Decision Process formulation, which we solve with
reinforcement learning to learn a control Lyapunov
function. Lyapunov stability theory analyzes the qual-
ity of the resulting controlled system, gives theoretical
guarantees for steady progression toward the goal, and
probability of success in the presence of soft errors. As
an example, in order to show how control and decision-
making tools can shape algorithm design, we focus on a
quintessential computer science problem: array sorting.
We model the soft errors as an error-prone comparison



[1], [2]. The resulting agent has the desired resiliency
and stability properties.

This paper contributes a description of a sequential
state-based computational process as a Markov Deci-
sion Process where learning can be applied to produce
a stable and resilient solution. This is achieved through
a novel application of reinforcement learning and Lya-
punov stability theory to develop a resilient sorting
algorithm in environments with a very high probability
of soft errors (up to 50%). Specific contributions of this
work are 1) a controlled dynamical system formulation
for computing in Section IV, 2) a RL sorting agent in
Section IV-B, and 3) stability and resiliency analysis of
the proposed algorithm (Section IV-C). The methods
presented in this paper are general, and it is expected
that they can be generalized to other iterative, resilient
computing algorithms.

II. RELATED WORK

Sorting has been studied as a quintessential com-
puter science problem in resilient computing. Specifi-
cally, in the context of soft-memory faults due to hard-
ware imperfections [11] and ranking applications due
to measuring imprecisions [2]. To sort correctly, the first
model requires registers that are never corrupted and
the known maximum number of memory corruptions
[11]. In contrast, our algorithm requires neither of these.
We assume that, at any point, memory corruption is
possible with some probability. We model the memory
corruption as a p-faulty comparison between two el-
ements, which returns an inaccurate comparison with
probability p. Our algorithm does not need to know the
corruption probability, and the error rate can change
over time, up to 50%. The second error model, ranking,
relies on performing multiple rounds on imprecise
comparisons. Similar to our method, [2] trades time
for accuracy and requires O(n2) comparisons, while
delivering accuracy in probability. RL sort, in addition,
prioritizes element selection.

Our solution differs from the previous resilient meth-
ods in the applications and tools we use. First, our
method makes little to no assumptions about the source
and frequency of errors. Faulty comparisons that we
choose to work with might be symptomatic of many
different causes, such as I/O, transmission, or compu-
tation errors. Second, our method uses reinforcement
learning to learn the near-optimal element selection
policy, which is then used to repeatedly choose element
to move and its destination.

Reinforcement programming [20] uses Q-learning to
generate a sorting program in absence of errors, using
more traditional programming constructs such as coun-
ters, if statements, while loops, etc., as MDP actions.
The output is a program ready for execution, tailored
for a specific array. Our implementation, in contrast,
considers element insertion as the only possible ac-
tion. Instead of producing an executable program, our

agent directly sorts a given array. In other agent-based
work, Kinnear uses genetic programming [14], which
produces Bubble sort as its most-fit solution.

Error measurement of the intermediate results of tra-
ditional sorting algorithms reveals a cyclical structure
of errors with respect to several metrics [13]. The error
oscillations during program execution mean that the
results of traditional sorting algorithms, if interrupted
before completion, can be worse than the starting state.
Our RL sort makes steady progress, and, if interrupted,
is guaranteed to return a more sorted array than the
one it started with.

III. BACKGROUND

Trajectory generation over time can be described as
a discrete time, controlled, nonlinear dynamical system
at time step n,

D : xn+1 = f (xn,un), (1)

for a nonlinear function f : X × U → X, where the
system state x ∈ X, and the input, or action, u ∈ U,
influences the system, and changes its current state.
Here, we consider fully observable systems, i.e., y = x.

A deterministic Markov decision process (MDP), a tuple
(X, U, D, R) with states X ⊂ Rds and action U ⊂ Rda ,
that assigns immediate scalar rewards R : X → R to
states in X, formulates a task for the system (1) [6].
A solution to a MDP is a control policy π : X → U
that maximizes the cumulative discounted reward over
an agent’s lifetime (state-value function), V(x(0)) =
∑∞

i=0 γiR(x(i)), where 0 ≤ γ ≤ 1 is a discount. System
D in (1) is a state transition function.

RL solves MDP through interactions with the system
and is appropriate when state transition function D
or reward R are not explicitly known [6]. Approximate
value iteration (AVI) [8] finds a near-optimal state-value
function, V : X → R approximated with a feature map

V̂(x) = θTF (x) (2)

AVI works in two phases, learning and trajectory gen-
eration. The learning phase takes a user-provided fea-
ture vector F (x) and learns weights θ in expectation-
maximization (EM) manner. After the learning, AVI
enters the trajectory generation phase, with an initial
state, the feature vector, and the learned parametriza-
tion. It creates trajectories using a greedy closed loop
control policy with respect to the state-value approx-
imation, πV̂(x) = argmaxu∈A V̂(x′), where state x′

is the result of applying action u to state x, x′ =
D(x,u). AVI was used in a wide class of problems
from control of unmanned aerial vehicles (UAVs) [5], to
UAVs with a suspended load [9] and electrical power
control systems [8], among others.

Lyapunov stability theory gives us tools to assess the
stability of an equilibrium. An equilibrium is globally
asymptotically stable in sense of the Lyapunov if outcomes
of any two initial conditions converge to each other



over time [3]. The Lyapunov direct method gives suf-
ficient conditions for stability of the origin [3]. The
method requires construction of a positive definite
scalar function of state W : X → R that monotoni-
cally decreases along a trajectory and reaches zero at
equilibrium. This function can be loosely interpreted
as the system’s energy, positive and deceasing over
time until it is depleted and the system stops. Task
completion of a RL-planned motion can be assessed
with Lyapunov stability theory, for example, to choose
between predetermined control laws in order to guar-
antee task completion [17], or to construct a state-value
function such that it is a control Lyapunov function [9]
[10]. We use the latter method here.

IV. METHODS

We first pose general computing as a controlled
dynamical system in Section IV. Section IV-B focuses
on a sorting problem, and develops a RL agent, which
is analyzed in Section IV-C.

A. Computing as a Dynamical System
We consider deterministic programs, where a pro-

gram’s outcome is determined by two factors: the initial
state of its variables, and the sequence of steps (algo-
rithm) that solve the problem. The control-flow con-
structs, if-then-else, and loops, are controller switches.
Instructions are performed at discrete time steps per
internal clock tick. The state transitions are determined
by executing instructions in the instruction register.
A program seen this way is a control policy for a
dynamical system determined by the change in the
state of variables over time until the computation stops.
Computation is a trajectory in the variable space start-
ing with an initial state of variables (initial vector) and
terminating at the goal state (goal vector).

At runtime the program’s in-scope variables and the
location of the instruction counter uniquely determine
the program’s state (configuration) [16]. Regardless of
how a program got into a certain configuration, the
computation unfolds the same from that point. Thus,
a program’s state space is the space of all variable
values, and satisfies the Markovian property. Without
loss of generality, we assume all variables to be real
numbers. Thus, a state space for a program with ds
variables is X = Rds , a ds-dimensional vector. Oper-
ations and programming constructs that change the
variables, such as assignment, arithmetic operations, and
changing instructions, are the action space. Proposition
4.1 shows that in such a setup a program is a nonlinear
dynamical system because the states are vectors and
the operations are vector transformations, which can
be represented with the transformation matrices.

Proposition 4.1: A program P with ds local variables
and assignment, summation, and swap operations is a
nonlinear discrete time and input system of the form

xn+1 = Mxn, for M ∈ U,

where state is a vector xn ∈ Rds , and M ∈ U ⊂ Rds×ds

is a vector transformation matrix of the state space.
The proof is in Appendix. All programs that ma-

nipulate variables are nonlinear control systems per
Proposition 4.1, and the control theory tools can be
applied for program analysis.

Having formulated programs as dynamical systems
(X, U, D), we only need to provide a reward to formu-
late MDP [15], [19]. The reward is a scalar feedback on
state quality. Typically, the reward is given only when
the goal is reached [18], or using a simple metric of a
state when available. The next section formulates the
reward using sorting as an example.

B. RL Sorting Agent

In this section we develop a stable and resilient RL
sorting agent. It learns once, on small arrays, and uses
the learned policy to sort an array of arbitrary length.
Next, we define MDP and features.

The array sorting state space is the ds-element array
itself, x = [x1, . . . , xds ]

T ∈ Rds . The control space is
the discrete set of possible element repositions, U =
{(i, j)|i, j = 1..ds}. Action (i, j), acts as a list insert.
It removes the array’s ith element and inserts it into
the jth position. Treating arrays as vectors, the actions
are permutations of the vector’s coordinates, and can
be represented with a transformation matrix, Mi,j =

[mi,j
k,l ], i, j = 1 . . . ds. It repositions the ith element to the

jth position, x′ = Mi,jx, when its elements are defined
as

mi,j
k,l =

1 k = l, (k < i or k > j)
1 (k = j, l = i) or (i ≤ k < j, l = k− 1)
0 otherwise

, i ≤ j or

mi,j
k,l =

1 k = l, (k < j or k > i)
1 (k = j, l = i) or (j < k ≤ i, l = k + 1)
0 otherwise

, i ≥ j.

Matrices Mi,j, insert the ith element at the jth position,
shift all the elements in between, and do not change
elements outside the [i, j] range.

The reward consists of two components: the sum of
displaced adjacent elements plus a bonus for reaching
a sorted array, R(x) = ∑ds

i=2(xi − xi−1) · id(xi − xi−1 <
0) + 1000 · id(r1(x) == 0), where id(cond) equals one
when the condition is true, and zero otherwise.

The state-value function approximation, V, given
in (2), is a linear map of a two-dimensional feature
vector. We choose features that give an advantage to
first sorting areas of the array that are highly un-
sorted, because our goal is for the agent to perform
the most with limited resources. The feature vector is
two dimensional. The first feature, F1, is the number
of adjacent out-of-order elements. The second feature
ranks arrays with similar elements close together as



more sorted than arrays with large variations between
adjacent elements.

F (x) = [F1(x) F2(x)]
T (3)

=

[
ds

∑
i=2

id(xi−1 > xi)
ds

∑
i=2
‖xi−1 − xi‖2

0

]T

(4)

where ‖xi−1 − xi‖2
0 = ((xi − xi−1)

2id(xi − xi−1 < 0)).
To learn V, AVI algorithm finds the parametrization θ.

Once the feature weights are learned, the RL sorting
agent moves to a trajectory generation phase where it
sorts arrays without further learning. Instead, at every
time step, the algorithm evaluates the current array and
chooses an element to move and its new position

(i, j) = argmax
(k,l)∈[1,..,ds ]2

θTF (Mk,lx). (5)

The chosen action, which maximizes the gain, is ap-
plied to the array. The algorithm stops when there are
no more displaced elements, i.e., the array is sorted.

C. Analysis
This section analyzes RL sort. We show that the

algorithm is stable, then evaluate its computational
complexity and discuss its resiliency.

1) Stability Analysis: To show RL sort’s stability in
the absence of errors, we analyze the algorithm’s mono-
tonic progression toward the sorted array. The conse-
quence is that the sorted array is an asymptotically
stable equilibrium point of the resulting system.

Proposition 4.2: During execution of policy (5) in the
absence of errors for an arbitrary array with distinct
elements x ∈ Rn, and when both components of the
learned weights θ are negative (θ1 < 0, θ2 < 0), the
following holds:

1) The value function V(x) increases at every itera-
tion of the algorithm, and

2) Upon termination of trajectory generation with
(5), the array is sorted.

The proof, in Appendix , is based on case-by-case anal-
ysis of possible scenarios and construction of control
Lyapunov function. The proof reveals that RL sort
moves elements from the edges into the middle of
previously sorted chains, forming increasingly longer
and more dense chains.

The direct consequence of Proposition 4.2 is that if RL
sort gets interrupted, the intermediate result is a more
sorted array than the original one. Similarly, the impact
of an erroneous comparison sets back the algorithm
temporarily, but because of the MDP formulation the
algorithm continues with the most current array and
without expectations as to how it arrived in that state.

2) Computational Complexity of Element Moves: RL
sort does not modify already sorted arrays. Thus, the
lower bound on the number of element moves is O(1),
and computational complexity is O(d2

s ). The theoretical
upper bound on the number of element moves is O(d2

s ).

If the array has c sorted chains, then, in the worst case,
there are b ds

c c elements in each, and the elements from
the beginnings and endings of all chains are placed
in the middle of a single chain, leaving the number
of chains and the number of displaced adjacent pairs,
F1(x), unchanged. After at most 2 ∗ b ds

c c element moves
we are left with one less chain, and remaining chains
have b ds

c−1c elements. Because the maximum number
of chains is c = b ds

2 c, the conservative estimate of the

number of element moves is ∑
b ds

2 c
c=1 2 ∗ b ds

c c = O(d2
s ).

The empirical results in Section V show that this es-
timate is very conservative, and that in practice the
algorithm makes less element moves than Quicksort.

The computational complexity of policy (5) is O(d2
s ).

However, action selection with the greedy policy can
be improved in several ways. First, a simple way to
reduce the computational time to O(ds), is to use the
knowledge gained in Table II and restrict the search
to only actions that move elements from the edges to
the middle of sorted chains. Second, the greedy policy
can be parallelized with O(d2

s ) processors, reducing
its computational complexity to O(log ds) time. With
additional O(ds) storage, the policy evaluation can
be done while the elements of the array are being
moved. Lastly, using specialized hardware acceleration
can speed up the action selection by reducing matrix
multiplication to linear time, because computation is
based on matrix multiplication.

3) Resiliency: When RL sort uses a faulty compar-
ison, the assumptions of Proposition 4.2 are violated
and the stability no longer holds. Thus, this section
discusses RL Sort’s stability in probability. Specifically,
we assess the probability of failing to sort an array and
monotonic progression toward the goal. We consider
a p-faulty comparison component to be an id func-
tion that returns an incorrect answer with probability
0 ≤ p ≤ 1, and denote it idp. Similarly, the feature
vector calculated with a p-faulty comparison is denoted
Fp(x) = [Fp

1 (x) Fp
2 (x)]

T . We assume uniform random
probability distribution for id function.

Proposition 4.3: Policy (5) that uses a p-faulty com-
parison terminates and fails to sort an array x ∈
Rds with no further processing with probability P =
(ds

k )pk(1− p)(ds−k), where k is the number of unsorted
adjacent elements k = F2(x).

The proof is in the Appendix. The consequence of
Proposition 4.3 is that highly unsorted arrays are un-
likely to be recognized as sorted. The probability of
terminating by mistake increases as the array becomes
more sorted. It also depends on the array size; long
arrays are less likely to be taken for sorted.

Next, we discuss the probability that RL sort fails to
monotonically progress. Consider a partition of action



set U = G ∪ N ∪W, G ∩ N = G ∩W = N ∩W = ∅.

G = {(i, j)|∆V(x, i, j) > 0}, ‖G‖ = g,
N = {(i, j)|∆V(x, i, j) = 0}, ‖N‖ = n,
W = {(i, j)|∆V(x, i, j) < 0}, ‖W‖ = w,

where ds
2 = g + n + w, and ∆V(x, i, j) = V(Mi,jx) <

V(x) is the residual. Probability of choosing an action
that deceases the value, ∆V(x, i, j) < 0, of the resulting
array is a probability of one of the actions from (i, j) ∈
W ending up having the biggest possible value and
being selected. Let us denote pV as the probability that
the action value changes category (G, N, W) given the
comparison’s failure rate of p. The probability of an
element from W getting the largest value is, and that
value being selected is

Pr((i, j) ∈W|VpV (Mi,jx)) = max
(k,l)∈A

VpV (Mk,lx)

=
w
d2

s
pV

1
d2

s
=

w
d4

s
pV ,

because the probability that VpV (Mi,jx) is the largest,
and therefore selected, is d−2

s .
In conclusion, small and almost sorted arrays are

more likely to have setbacks while using RL sort be-
cause as the array becomes more sorted w becomes
larger. We can expect to see no monotonicity violations
for highly unsorted arrays, and start seeing more set-
backs as the sorting progresses, a trend we see during
empirical tests in Section V. When ds is large, it
becomes unlikely that mistakes will have an important
impact on the algorithm. Extensive decision-making, a
downside from the computational complexity point of
view, is an advantage for resiliency. A large number
of actions that RL sort examines have a favorable, but
not optimal, outcome. Under a favorable outcome, the
algorithm selects an action that increases the value,
although the increase is not maximal, therefore pre-
serving stability. Traditional sorting algorithms gen-
erally perform one array manipulation per decision,
impacting their resiliency and stability. Additionally,
RL sort is more likely to make less severe mistakes as
the probability increases for more sorted arrays.

V. RESULTS

RL sort is compared to Bubble sort and Quicksort,
because the two algorithms represent two sorting ex-
tremes [1]. The Bubble sort repeatedly scans the list and
swaps adjacent out-of-order elements, while Quicksort
selects a pivot element and creates three sublists that
are smaller, equal, and larger then the pivot. Quicksort
then performs a recursive sort on the lesser and greater
elements and merges the three lists together. Quicksort
is a single-pass algorithm making large changes in
element placement. On the other hand, Bubble sort
makes small changes repeatedly until it completes. The
dataset consists of 100 arrays with 10 and 100 uniformly

TABLE I
SORTING CHARACTERISTICS DEMONSTRATING THE IMPACT OF

RANDOM INITIAL DISTANCE, THE ARRAY LENGTH, AND NOISE IN

THE COMPARISON ROUTINE AVERAGED OVER 100 TRIALS.
MEASURES THE NUMBER OF ARRAY ELEMENT MOVES.

0% Fault 5% Fault
Alg. Len. # Moves # Moves Error

µ σ µ σ µ σ
RL 10 10.6 2.6 11.3 3.0 5.3 23.1

100 284.0 9.4 311.3 13.0 0.5 3.9

Bbbl. 10 23.1 4.9 28.0 6.7 3.1 19.2
100 2466.4 153.2 9836.2 992.4 8.9 4.8

Quick 10 43.8 5.3 42.7 4.9 50.1 52.0
100 846.9 63.4 816.3 42.2 255.8 74.8

randomly drawn elements. We evaluate RL sort with
error-free and 5% faulty comparison.

A. Learning

To learn the parametrization θ, we run the AVI
with discrete actions. The samples are drawn uniformly
from the space of 6-element arrays with values between
zero and one, xs ∈ (0, 1)6. The 6-element arrays pro-
vide a good balance of sorted and unsorted examples
for the learning, determined empirically. We train the
agent for 15 iterations. The resulting parametrization,
θ = [−1.4298− 0.4216]T , has all negative elements and
meets the conditions in Proposition 4.2.

B. Evaluation

Table I summarizes the sorting performance. RL sort
finds a solution with the least changes to the array.
This is because the RL sort does not make the compar-
isons in the same way traditional sorting algorithms
do. Most of its time is spent selecting an action to
perform. In the presence of a faulty comparison (Table
I), the number of changes to the array that RL sort
and Quicksort perform do not change significantly
(less than two standard deviations). The Bubble sort,
however, changes the array twice as much. We expect
RL sort to seldom make severe mistakes, Quicksort
does not reevaluate choices once made, and Bubble
sort corrects the mistakes after additional processing.
Next, we look into array error. The error is a Euclidean
distance, d(xo,xs) = ‖xo − xs‖, between an outcome
of sorting with a faulty comparison, xo ∈ Rds , and the
reliably sorted array, xs ∈ Rds . No error means that
the algorithm returns a sorted array, while high error
indicates big discrepancies from the sorted array. Note
that this similarity metric would have been an ideal
feature vector, but it is impossible to calculate it without
knowing the sorted array. With 5% fault-injection rate,
the RL sort’s error remains consistent and small across
the array sizes, although with a relatively high standard
deviation. Bubble sort has a comparable error level but
makes an order of magnitude more array changes. The
Quicksort completes with an order of magnitude higher



error. It is clear that RL sort is resilient to noise and
changes the array the least.

Fig. 1 visualizes sorting progression of the same
array with the three methods, in the absence of errors.
Runs end at 111, 433, and 608 steps for RL sort,
Quicksort, and Bubble sort respectively. Bubble sort
makes small, local changes and Quicksort’s movements
around the pivot make large-step movements. The
RL sort (Fig. 1a) takes advantage of the structure in
the data: the array is sorted into progressively larger
sorted subgroups. This is because the agent reduces the
number of adjacent out-of-order elements at each step.
Given this, it is no surprise that RL sort needs fewer
array manipulations.

Visualizing the intermediate array values, V(x) =
θTF (x), Figs. 2a and 2b offer another view into the
algorithms’ progression. The RL sort with the reliable
comparison monotonically progresses to the sorted
array, empirically showing asymptotic stability from
Proposition 4.2. Bubble sort and Quicksort have set-
backs and do not progress monotonically. RL sort with
faulty comparison (Fig. 2b) makes steady progress dur-
ing the early phases of computation, and experiences
temporary setbacks later in the processing, as the anal-
ysis in Section IV-C.3 predicted. Quicksort fails to reach
the same value as RL sort because it stops computation
after the first pass. Bubble sort revisits decisions and
corrects the faulty decisions, and it eventually reaches
the same value as the RL sort.

Lastly, the Figs. 2c and 2d evaluate resiliency based
on the fault rate. Fig. 2c shows the percentage of
successfully sorted arrays (out of 100) over the failure
probability of the comparison routine. For fault rates
of 5%, Quick sort has 0 probability of sorting an array,
while Bubblesort fails 100% of the time when the fault
rate is over 10%. RL Sort has a non-zero probability
of sorting an array for fault rates under 50%, con-
firming our theoretical results. Fig. 2d measures mean
and standard deviation of completion error (Euclidean
distance between the terminal state and sorted array).
In this graph, lower numbers are better. RL sort has
consistently the lowest error. Quicksort’s error is a
convex, meaning that even small initial errors result in
big errors in the terminal state array. Overall, RL sort
is more likely to sort an array, and when it fails to sort,
the array it produces will be closer to a fully sorted
array, than other comparative methods.

VI. CONCLUSION

This paper presents that stability and resiliency feed-
back control and sequential decision making concepts
address error and termination limitations of traditional
computing. Treating computing as a trajectory genera-
tion problem, we apply learning methods to develop
an autonomous computing agent, and use Lyapunov
stability theory to analyze it. Specifically, we solve
sorting with a stable and resilient sorting agent. We

prove the stability in the absence of errors, and discuss
the probability of success and to maintaining steady
progress in presence of soft errors.

The advantages to resilient computing are that the
presented method 1) makes very few assumptions
about the source of the error, and 2) does not require
manual programming, just a problem formulation. The
high computational complexity of the resulting agent
improves its resiliency in unreliable conditions. Its
practicality for large-scaled general computing can be
improved with use of hardware acceleration and other
engineering methods.

An empirical study that compares the RL agent
to two traditional sorting algorithms, confirmed the
theoretical findings, and showed that the RL sorting
agent completes the task with less array manipulations
than even the traditional counterparts. In future work,
we will develop a tighter upper bound and expected
number of array manipulations for RL sort.

ACKNOWLEDGMENTS

The authors thank Vikas Sindhwani, David Ackley, and Marco
Morales. Tapia funded in part by the National Science Foundation
under Grant Numbers IIS-1528047 and IIS-1553266. This work was
supported by Sandia National Laboratories Laboratory Directed Re-
search and Development (LDRD) Program under the Hardware Ac-
celeration of Adaptive Neural Algorithms Grand Challenge project.
Sandia National Laboratories is a multi-mission laboratory managed
and operated by National Technology and Engineering Solutions
of Sandia, a wholly owned subsidiary of Honeywell International,
Inc., for the U. S. Department of Energys National Nuclear Security
Administration under Contract DE-NA0003525. This paper describes
objective technical results and analysis. Any subjective views or
opinions that might be expressed in the paper do not necessarily
represent the views of the U.S. Department of Energy, the United
States Government or National Science Foundation.

APPENDIX

Proof for Proposition 4.1.
Proof: The proof is by construction. The variable manip-

ulations are changes in the vector space, transforming one
vector to another. Finding a transformation matrix between
the vectors proves the proposition.

Assignment: Let x = [x1, ..., xds ]
T ∈ Rds be a vector rep-

resenting the current state of variables, and the assignment
operation xi ← xj assigns the value of the jth variable to the
ith variable. Consider a square ds-by-ds matrix Ma

i,j, where its

elements mi,j
k,l , 1 ≤ k, l ≤ ds are defined as follows:

mi,j
k,l =

{
1 (k = i, l = j) or(k 6= i, k = l)
0 otherwise .

This matrix differs from the identity matrix only in the ith

row, where the ith element is zero, and jth is set to one. Then,
vector x′ = Ma

i,jx, has ith element equal to xj, and others
unchanged. Similarly, Mc

i , where mi
i,i = c, mi

k,k = 1, k 6= i and
zero otherwise, assigns constant c to the ith variable.

Summation: We show construction of the two-variable sum-
mation action matrix. The general case can be shown with
induction. Consider action matrix Ma

i,j1,j2 defined with

mi,j1,j2
k,l =

{
1 (k = l, k 6= i) or(k = i, l ∈ {j1, j2})
0 otherwise



(a) Reliable RL sort (b) Reliable Bubble sort (c) Reliable Quicksort

Fig. 1. Sorting progression. A 50-element random array sorted with AVI, Bubble sort and Quicksort with a reliable comparison (a-c) comparison.
Time steps are on x-axis, and the array element heatmap is on y-axis. Blue colored are the smallest, and red colored are the largest array
elements. Runs end when the array is fully sorted.

10
0

10
1

10
2

10
3

−3

−2

−1

0
x 10

5

V
al

ue

t (# swaps)

 

 

RL Bubble Quick

(a) Reliable

10
0

10
1

10
2

10
3

−3

−2

−1

0
x 10

5

V
al

ue

t (# swaps)

 

 

RL Bubble Quick

(b) 5% unreliable

0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

Comprison failure probability

P
er

ce
nt

 o
f f

ul
ly

 s
or

te
d 

(%
)

 

 

RL Sort

Quick sort

Bubblesort

(c) Success

0 0.1 0.2 0.3 0.4 0.5
0

200

400

600

Comprison failure probability

S
or

tin
g 

er
ro

r

 

 

RL Sort

Quick sort

Bubblesort

(d) Distance from sorted

Fig. 2. (a) and (b) Value progression over time for an array sorted with RL, Bubble sort, and Quicksort with a reliable (a) and 5%-faulty (b).
x-axis is logarithmic. (c) and (d) Percent of successful sorting (a) and average distance from a fully sorted array, and (b) at termination after
at varying comparison fault rate.

TABLE II
VALUE FUNCTION CHANGE (∆V(Mi,jx)) BASED ON POSSIBLE ACTION (i, j)

Placement of the element Destination placement within a sorted chain (j) Conclusion
to be moved (i) Middle Beginning End
within a sorted chain xj−1 < xj xj−1 > xj, xj−1 > xj, xj−1 > xi ,

xi < xj < xj+1 xi < xj

Middle: xi−1 < xi < xi+1 N/A N/A N/A Not possible

Beginning θ1(id(xi−1 > xi+1)− 1)+ N/A N/A > 0 because xi < xi+1
xi−1 > xi , and xi < xi+1 +θ2(‖xi−1 − xi+1‖2

0 − ‖xi−1 − xi‖2
0)

End: xi−1 < xi , and xi > xi+1 θ2(‖xi−1 − xi+1‖2
0 − ‖xi − xi+1‖2

0) N/A N/A > 0 because xi−1 < xi

for i, j1, j2 ∈ [1, . . . ds]. As previously, this matrix differs from
the identity matrix only in the ith row, where only elements
j1 and j2 are non zero. x′ = Ma

i,j1,j2x is a vector where ith

element equals sum of jth1 and jth2 elements x.
Element swapping: Lastly, we construct a transformation

matrix Ms
i,j that swaps xi and xj. Consider

mi,j
k,l =

{
1 (k = i, l = j) or (k = j, l = i) or (k = l, k 6= i, j)
0 otherwise .

This matrix differs from the identity matrix in that elements
(i, j) and (j, i) are ones, while the elements (i, i), and (j, j) are
zero.

Finally, when the action space is set of transformation
matrices, U = {Ma

i,j, Mc
i , Ma

i,j1,j2 , Ms
i,j| i, j = 1, . . . , ds, c ∈ R},

the variable space manipulation with an action M ∈ U is a
dynamical system, xn+1 = Mxn.

Proof for Theorem 4.2.
Proof: First, we show that V increases at every itera-

tion. It is sufficient to show that the residual ∆V(x, i, j) =
V(Mi,jx) − V(x) > 0 for an arbitrary unsorted array x.
Moving the ith element to the jth place changes the array
from x = [x0, . . . , xj−1, xj, . . . , xi−1, xi, xi+1, . . . xds+1]

T to

Mi,jx = [x0, . . . , xj−1, xi, xj, . . . , xi−1, xi+1, . . . xds+1]
T .

To simplify the notation without loss of generality, we
append the array with elements x0 and xds+1, such that
x0 is smaller than the minx, and xds+1 > maxx. The two
additional elements will not be moved during execution of
policy (5), because action set U does not contain transform
matrices for the two new elements.

Note that the residual ∆V(x, i, j) depends only on neigh-
borhood of the ith and jth elements

∆V(x, i, j) = V(Mi,jx)−V(x)

= θ1(id(xi > xj−1) + id(xi > xj) + id(xi−1 > xi+1)

− id(xj−1 > xj)− id(xi−1 > xi)− id(xi > xi+1)

+ θ2(‖xi − xj−1‖2
0 + ‖xi − xj‖2

0 + ‖xi−1 − xi+1‖2
0

− ‖xj−1 − xj‖2
0 − ‖xi−1 − xi‖2

0 − ‖xi − xi+1‖2
0,

and when the array x is not sorted V(x) < 0, since θ1, θ2 < 0.
Consider that action (i, j) is selected at an arbitrary itera-

tion. There are three possibilities for element xi; xi is in the
beginning, end, or middle of a sorted chain.

End of chain: Consider xi is at the end of ascending chain,
xi−1 < xi, and xi > xi+1. Then ‖xi − xi+1‖2

0 < ‖xi−1− xi+1‖2
0,

and ∆V(x, i, j) in the neighborhood of xi increases (because
θ2 < 0). Thus, xi is a candidate to be selected.



Beginning of chain: Now, consider that xi is at the beginning
of an ascending chain, xi−1 > xi, and xi < xi+1. Similarly,
‖xi−1 − xi‖2

0 < ‖xi−1 − xi+1‖2
0, ∆V(x, i, j) in the neighbor-

hood of xi increases, and xi is a candidate to be selected.
Middle of chain: Last, consider that xi is in the middle of a

sorted, increasing or decreasing chain, i.e. xi−1 < xi < xi+1
or xi−1 > xi > xi+1. Removing xi does not increase value
function in the neighborhood of the ith element. Assume
that x is not sorted, and xi, which is in the middle of
a sorted chain, is picked by the greedy policy (5). If the
chain is ascending, id(xi−1 > xi) = 0, id(xi > xi+1) = 0,
id(xi−1 > xi+1) = 0. When the chain is decreasing, id(xi−1 >
xi) = 1, id(xi > xi+1) = 1, id(xi−1 > xi+1) = 1, and
‖xi−1− xi‖2

0 + ‖xi− xi+1‖2
0 < ‖xi−1− xi+1‖2

0. Thus, removing
xi from a sorted chain does not increase V(Mi,jx) in the
neighborhood of xi. Because x is not sorted, there is at least
one element xk such that xk−1 > xk. Choosing either xk−1
or xk will increase ∆V(x, i, j) regardless of the direction,
therefore xi that is in the middle of a sorted chain will not
be selected for the move.

Next, we look into the feasibility of the selected element’s
placement. Like before, the selected element xi, can be placed
in the middle, beginning, or end of a sorted chain.

Middle of chain: Assume that xi is moved to middle of an
ascending chain, xj−1 < xj. Then id(xj−1 > xj) = id(xj−1 >
xi) = id(xi > xj) = 0, and ∆V(x, i, j) in the neighborhood of
xj does not change with insertion of xi.

Beginning of chain: When xj is the beginning of an ascending
chain, xj−1 > xj, and xi < xj < xj+1. Then, ‖xj−1 − xj‖2

0 >

‖xj−1 − xi‖2
0 + ‖xi − xj‖2

0. This action will not be chosen
because moving into the middle of a sorted chain results in
smaller ∆V(x, i, j). Note that there are always at least two
sorted chains, one at the beginning and one at the end of the
array, x0 < x1, and xds < xds+1.

End of chain: When xi is at the end of an ascending chain,
using a similar argument we conclude that it will not be
placed at the end of a sorted array.

Table II summarizes how the state-value function residual
changes under different scenarios. A strategy that selects an
element from a beginning or end of an ascending chain,
and places the element into the middle of another sorted
chain, results in a strictly positive change in V(Mi,jx). For an
unsorted array such element and its placement can always be
found. This proves the first part of Propositions 4.2.

Proving the second part of Proposition 4.2, that the compu-
tation progresses towards a sorted array, is simple using the
Lyapunov direct method. Let W(y) = −V(y + x∗), where
x = y + x∗, and x∗ is sorted x.

1) W(0) = V(x∗) = 0
2) W(y) is always positive outside of origin, because

V(x) < 0 for unsorted arrays.
3) ∆W(y) = −V(MT

i,j(y + x∗)) + V(y + x∗) =

−V(MT
i,j(x − x

∗ + x∗)) + V(x − x∗ + x∗) = −∆V(x) < 0,
since we showed earlier that V(x) increases in subsequent
stops, when y 6= 0.

From the above, W(y) is a control Lyapunov function, and
x∗ is an asymptotically stable equilibrium. Consequently, the
computation with respect to the control policy (5) will ensure
that the computation progresses to the sorted array starting
at an arbitrary initial array. This proves the total correctness
part of the proposition, and concludes the proof.
Proof for Proposition 4.3. Proof: Trajectory generation
terminates for an unsorted array x, only if faulty comparison
causes θTF (x) to evaluate as 0 in (5). The probability of F (x)
evaluating as 0 is if all calls to id(xi−1 > xi), i = 2, . . . , ds
return 0. Since there are k adjacent elements that are displaced

in x the probability

Pr(Fp(x) = 0) =

=
ds

∏
i=2

(Pr(idp(xi−1 ≤ xi)|id(xi−1 > xi))

· Pr(idp(xi−1 ≤ xi)|id(xi−1 ≤ xi)))

=

(
ds

k

)
pk(1− p)(ds−k),

because there are k unsorted adjacent elements.

REFERENCES

[1] D. H. Ackley. Beyond efficiency. Commun. ACM, 56(10):38–40,
Oct. 2013.

[2] M. Ajtai, V. Feldman, A. Hassidim, and J. Nelson. Sorting
and selection with imprecise comparisons. In Proceedings of
the 36th International Colloquium on Automata, Languages and
Programming: Part I, ICALP ’09, pages 37–48, Berlin, Heidelberg,
2009. Springer-Verlag.

[3] K. J. Astrom and R. M. Murray. Feedback Systems: An Introduction
for Scientists and Engineers. Princeton University Press, Apr. 2008.

[4] L. Bass, P. Clements, and R. Kazman. Software Architecure in
Practice, 2nd ed. Addison Wesley, 2003.

[5] H. Bou-Ammar, H. Voos, and W. Ertel. Controller design for
quadrotor uavs using reinforcement learning. In IEEE Interna-
tional Conference on Control Applications (CCA), pages 2130–2135,
2010.

[6] L. Buşoniu, R. Babuška, B. De Schutter, and D. Ernst. Re-
inforcement Learning and Dynamic Programming Using Function
Approximators. CRC Press, Boca Raton, Florida, 2010.

[7] S. Caminiti, I. Finocchi, and E. G. Fusco. Local dependency
dynamic programming in the presence of memory faults. In In
STACS, volume 9 of LIPIcs, pages 45–56, 2011.

[8] D. Ernst, M. Glavic, P. Geurts, and L. Wehenkel. Approximate
value iteration in the reinforcement learning context. applica-
tion to electrical power system control. International Journal of
Emerging Electric Power Systems, 3(1):1066.1–1066.37, 2005.

[9] A. Faust, I. Palunko, P. Cruz, R. Fierro, and L. Tapia. Automated
aerial suspended cargo delivery through reinforcement learning.
Artif. Intell., 247:381 – 398, 2017. Special Issue on AI and
Robotics.

[10] A. Faust, P. Ruymgaart, M. Salman, R. Fierro, and L. Tapia. Con-
tinuous action reinforcement learning for control-affine systems
with unknown dynamics. Acta Automatica Sinica, in press, 2014.

[11] I. Finocchi and G. F. Italiano. Sorting and searching in faulty
memories. Algorithmica, 52(3):309–332, Oct. 2008.

[12] D. Hamlet and J. Maybee. The Engineering of Software. Addison
Wesley, 2001.

[13] T. B. Jones and D. H. Ackley. Comparison criticality in sorting
algorithms. In 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN 2014, Atlanta, GA, USA,
June 23-26, 2014, pages 726–731. IEEE, 2014.

[14] K. E. Kinnear, Jr. Evolving a sort: Lessons in genetic program-
ming. In International Conference on Neural Networks, volume 2,
pages 881–888, San Francisco, USA, April 1993. IEEE Press.

[15] F. L. Lewis, D. Vrabie, and K. G. Vamvoudakis. Reinforcement
learning and feedback control: Using natural decision methods
to design optimal adaptive controllers. IEEE Control Systems
Magazine, 32(6):76–105, Dec 2012.

[16] C. Moore and S. Mertens. The Nature of Computation. Oxford
University Press, 2011.

[17] T. J. Perkins and A. G. Barto. Lyapunov design for safe
reinforcement learning. The Journal of Machine Learning Research,
3:803–832, 2003.

[18] R. Sutton and A. Barto. A Reinforcement Learning: an Introduction.
MIT Press, MIT, 1998.

[19] R. S. Sutton, A. G. Barto, and R. J. Williams. Reinforcement
learning is direct adaptive optimal control. IEEE Control Systems
Magazine, 12(2):19–22, April 1992.

[20] S. White, T. Martinez, and G. Rudolph. Automatic algorithm de-
velopment using new reinforcement programming techniques.
Computational Intelligence, 28(2):176–208, 2012.


	Introduction
	Related Work
	Background
	Methods
	Computing as a Dynamical System
	RL Sorting Agent
	Analysis
	Stability Analysis
	Computational Complexity of Element Moves
	Resiliency


	Results
	Learning
	Evaluation

	Conclusion
	Appendix
	References

