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Abstract

Despite the impressive recent advances in reinforcement learning (RL) research,
the deployment of RL-based controllers to real-world physical systems is often
complicated by unexpected events, limited data and the potential for expensive
failures. In this paper, we describe an application of RL “in the wild” to the task of
regulating temperatures and airflow inside a large-scale data center (DC). Adopting
a data-driven, model-based approach, we demonstrate that an RL agent with little
prior knowledge is able to effectively and safely regulate conditions on a server
floor after just a few hours of exploration, while improving operational efficiency
relative to existing PID controllers.

1 Introduction

Recent years have seen considerable research advances in reinforcement learning (RL), with algo-
rithms achieving impressive performance on game playing and simple robotic tasks [24, 29, 27].
However, applying RL to the control of real-world physical systems is complicated by unexpected
events, safety constraints, limited observations and the potential for expensive or even catastrophic
failures. In this paper, we describe an application of RL to the task of data center (DC) cooling.
DC cooling is a test bed that is well-suited for RL deployment because it involves control of a com-
plex, large-scale dynamical system, non-trivial safety constraints and the potential for considerable
improvements in energy efficiency.

Cooling is a critical part of DC infrastructure, since multiple servers operating in close proximity
produce a considerable amount of heat and high temperatures may lead to lower IT performance
or equipment damage. There has been considerable progress in improving cooling efficiency, and
best-practice physical designs are now commonplace in large-scale DCs [7]. However, on the
software side, designing resource-efficient control strategies is still quite challenging, due to complex
interactions between multiple non-linear mechanical and electrical systems. Most existing controllers
tend to be fairly simple, somewhat conservative, and hand-tuned to specific equipment architectures,
layouts, and configurations. This leaves potential for efficiency improvement and automation using
more adaptive, data-driven techniques.

As the number of DCs increases with the adoption of cloud-based services, data growth, and hardware
affordability, power management is becoming an important challenge in scaling up. In 2014, DCs
accounted for about 1.8% of the total power usage in the U.S. and about 626 billion liters of water
were consumed by DC operations [28]. There has been increased pressure to improve operational
efficiency due to rising energy costs and environmental concerns. This includes cooling, which
constitutes a non-trivial part of the DC power overhead.
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Recently, DeepMind demonstrated that it is possible to improve DC power usage efficiency (PUE)
using a machine learning approach [13]. In particular, they developed a predictive model of PUE in a
large-scale Google DC, and demonstrated that it can be improved by manipulating the temperature of
the water leaving the cooling tower and chilled water injection setpoints. In this work, we focus on a
complementary aspect of DC cooling: regulating the temperature and airflow inside server floors by
controlling fan speeds and water flow within air handling units (AHUs).

Our approach to cooling relies on model-predictive control (MPC). Specifically, we learn a linear
model of the DC dynamics using safe, random exploration, starting with little or no prior knowledge.
We subsequently recommend control actions at each time point by optimizing the cost of model-
predicted trajectories. Rather than executing entire trajectories, we re-optimize at each time step. The
resulting system is simple to deploy, as it does not require historical data or a physics-based model.
The main contribution of the paper is to demonstrate that a controller relying on a coarse-grained
linear dynamics model can safely, effectively, and cost-efficiently regulate conditions in a large-scale
commercial data center, after just a few hours of learning and with minimal prior knowledge. By
contrast, characterizing and configuring the cooling control of a new data center floor typically takes
weeks of setup and testing using existing techniques.

2 Background and related work

Among approaches in the literature, the most relevant to our problem is linear quadratic (LQ) control.
Here it is assumed that system dynamics are linear and the cost is a quadratic function of states and
controls. When the dynamics are known, the optimal policy is given by constant linear state feedback
and can be solved efficiently using dynamic programming. In the case of unknown dynamics, open-
loop strategies identify the system (i.e., learn the parameters of a dynamics model) in a dedicated
exploration phase, while closed-loop strategies control from the outset, updating models along the
way [20].

The simplest closed-loop approach, known as certainty equivalence, updates the parameters of the
dynamics model at each step and applies the control law as if the estimated model were the ground
truth. This strategy is unable to identify the system in general: parameters may not converge, or may
converge to the wrong model, leading to strictly suboptimal control [6]. More recent approaches
[8, 2, 17] use optimism in the face of uncertainty, where at each iteration the algorithm selects
the dynamics with lowest attainable cost from some confidence set. While optimistic control is
asymptotically optimal [8] and has a finite-time regret bound of O(

√
T ) [2], it is highly impractical

as finding the lowest-cost dynamics is computationally intractable. Similar regret bounds can be
derived using Thompson sampling in place of optimization [3, 4, 25], but most of these approaches
make unrealistic stability assumptions about the intermediate controllers, and can in practice induce
diverging state trajectories in early stages.

In the open-loop setting, critical issues include the design of exploratory inputs and estimation error
analysis. Asymptotic results in linear system identification (see [21]) include one simple requirement
on the control sequence, persistence of excitation [5]. A review of frequency-domain identification
methods is given in [10], while identification of auto-regressive time series models is covered in [9].
Non-asymptotic results are limited and often require additional stability assumptions [16, 14]; most
recently, Dean et al. [11] have related the estimation error to the smallest eigenvalue of the finite-time
controllability Gramian.

In the presence of constraints on controls or states, the optimal LQ controller is no longer given by
linear feedback, and it is usually simpler to directly optimize control variables. In model-predictive
control, the controller generates actions at each step by optimizing the cost of a model-predicted
trajectory. Re-optimizing at each time step mitigates the impact of model error and unexpected
disturbances at the expense of additional computation. MPC has previously been used to regulate
building cooling [18, 22, 23, 13, 12], with most approaches relying on historical data and physics-
based models. In the context of DC cooling, MPC has been used to control adaptive-vent floor tiles in
addition to air-conditioning units, with system identification performed via random exploration [30].
In this work, we develop a similar control strategy that relies on open-loop linear system identification,
followed by MPC. We demonstrate that our system can successfully control temperatures and airflow
in a large-scale DC after only a few hours of safe, randomized exploration.
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Figure 1: Data center cooling loop. AHUs on the server floor regulate the air temperature through
air-water heat exchange. Warmed water is cooled in the chiller and evaporative cooling towers.

3 Data center cooling

Figure 1 shows a schematic of the cooling loop of a typical DC. Water is cooled to sub-ambient
temperatures in the chiller and evaporative cooling towers, and then sent to multiple air handling
units (AHUs) on the server floor. Server racks are arranged in rows between alternating hot and cold
aisles. All hot air exhausts into the adjacent hot aisles, which are typically isolated using a physical
barrier to prevent hot and cold air from mixing. The AHUs circulate air through the building; hot air
is cooled through air-water heat exchange in the AHUs, and blown into the cold aisle. The generated
warm water is sent back to the chiller and cooling towers. Naturally, variations of this setup exist.

Our focus is on floor-level cooling, where the primary goal is to regulate cold-aisle temperatures and
differential air pressures. Controlling the cold-aisle temperatures ensures that the machines operate at
optimal efficiency and prevents equipment damage. Maintaining negative differential air pressure
between adjacent hot and cold aisles ensures that cool air flows over servers and improves power
efficiency by minimizing the need for the servers to use their own fans. Our goal is to operate close
to (but not exceeding) upper bounds on temperature and pressure at minimal AHU power and water
usage. Variables relevant to this problem are continuous-valued, and can be grouped as follows:

• Controls are the variables we can manipulate. These are fan speed (controlling air flow) and
valve opening (which regulates amount of water used) for each AHU.

• States collect the process variables we wish to predict and regulate. These include differential
air pressure (DP) and cold-aisle temperature (CAT), measured using multiple sensors along
the server racks. To reduce redundancy and increase robustness to failed sensors, we model
and regulate the median values of local groups of CAT and DP sensors. We also measure
the entering air temperature (EAT) of the hot air entering each AHU, and leaving air
temperature (LAT) of the cooled air leaving each AHU.

• Disturbances are the events and conditions which we cannot manipulate or control, but
which nonetheless affect the conditions inside the server floor. These include server power
usage, which serves as a proxy for the amount of generated heat, as well as the entering
water temperature (EWT) of the chilled water measured at each AHU.

An illustrative schematic of the structure of the DC used in our case study is shown in Figure 1.
The system consists of many dozens of AHUs, with two controls each, and many dozens of state
variables for each row. The existing cooling system relies on local PID controllers (one per AHU),
which are manually tuned and regulate DP measured at nearby sensors and LAT measured at the
same AHU. Directly controlling CAT (the variable of interest) instead of LAT is more complicated,
as temperatures along the server racks take a longer time to respond to changes in controls and
depend on multiple AHUs. Since the local controllers operate independently, they may settle into a
suboptimal state where some AHUs do little work while others run at their maximum capacity to
compensate. This is addressed using a supervisory software layer which heuristically readjusts local
controls to operate in a more balanced state.
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Figure 2: Model structure illustration. Sensor measurements at each location only depend on the
closest AHUs. The regularity of DC layout allows parameters to be shared between local models
with the same structure (arrows with the same color share weights).

Table 1: State variable dependencies

Variable Predictors
DP DP measurements and fan speeds in up to 5 closest aisles / 10 closest AHUs
LAT LAT, EWT, EAT, fan speed, and valve position at the closest AHU
CAT CAT, LAT, and fan speeds in up to 3 closest aisles / 6 closest AHUs
EAT EAT, CAT, fan speeds, and power usage at up to 3 closest aisles / 6 closest AHUs

4 Model predictive control

We consider the use of MPC to remove some of the inefficiencies associated with the existing PID
control system. We: (i) model the effect of each AHU on state variables in a large neighborhood
(up to 5 server rows) rather than on just the closest sensors; (ii) control CAT directly rather using
LAT as a proxy; and (iii) jointly optimize all controls instead of using independent local controllers.
We identify a model of DC cooling dynamics using only a few hours of exploration and minimal
prior knowledge. We then control using this learned model, removing the need for manual tuning. As
we show, these changes allow us to operate at less conservative setpoints and improve the cooling
operational efficiency.

4.1 Model structure

Let x[t],u[t], and d[t] be the vectors of all state, control, and disturbance variables at time t,
respectively. We model data center dynamics using a linear auto-regressive model with exogeneous
variables (or ARX model) of the following form:

x[t] =

T∑
k=1

Akx[t− k] +

T∑
k=1

Bku[t− k] + Cd[t− 1] . (1)

where Ak, Bk, and Ck are parameter matrices of appropriate dimensions. Since we treat sensor
observations as state variables, our model is T -Markov to capture relevant history and underlying
latent state. Each time step corresponds to a period of 30s, and we set T = 5 based on cross-validation.
While the true dynamics are not linear, we will see that a linear approximation in the relevant region
of state-action space suffices for effective control.

We use prior knowledge about the DC layout to impose a block diagonal-like sparsity on the learned
parameter matrices. The large size of the server floor allows us to assume that temperatures and DPs
at each location directly depend only states, controls, and disturbances at nearby locations (i.e., are
conditionally independent of more distant sensors and AHUs given the nearby values).1 Additional
parameter sparsity can be imposed based on variable types; for example, we know that DP directly

1In other words, the nearby sensors and controls form a Markov blanket [26] for specific variables in a
graphical model of the dynamical system.
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Figure 3: An example run of random exploration, followed by control. The figure shows valve
commands and fan speeds for all AHUs, as well as the CAT and DP sensor values at multiple
locations throughout the DC. The system controls DP at a setpoint xDP

sp . CAT control starts at setpoint
xCAT
sp − 1 followed by xCAT

sp ; the temperatures transition between the two values quickly and with
little overshoot.

depends on the fan speeds, but is (roughly) independent of temperature within a narrow temperature
range. We list the features used to predict each state variable in Table 1.

Since the servers, sensors, and cooling hardware are arranged in a regular physical layout in the DC
we work with, we share parameters between local models for sample efficiency. Thus, our model has
an overall linear convolutional structure, as illustrated in Figure 2.

4.2 System identification

We learn the system dynamics using randomized exploration over controls, starting with a “vacuous”
model that predicts no change in states. While we have access to historical data generated by the
local PID controllers, it is not sufficiently rich to allow for system identification due to the steady
state behaviour of the controllers.2 During the control phase we continue to update the dynamics in
an online or batch-online fashion.

As safe operation during exploration is critical, we limit each control variable to a safe range informed
by historical data. In the absence of such data, the safe range can be initialized conservatively and
gradually expanded. We also limit the maximum absolute changes in fan and valve controls between
consecutive time steps since large changes may degrade hardware over time. Let uci [t] indicate the
value of the control variable c for the ith AHU at time step t, with c ∈ {fan, valve}. Let [ucmin, u

c
max]

be the range of control variable c, and let ∆c be the maximum allowed absolute change in c between
consecutive time steps. Our exploration strategy is a simple, range-limited uniform random walk in
each control variable:

uci [t+ 1] = max(ucmin,min(ucmax, u
c
i [t] + vci )), vci ∼ Uniform(−∆c,∆c). (2)

This strategy ensures sufficient frequency content for system identification and respects safety and
hardware constraints. Figure 3 shows controls and states during an example run of random exploration,
followed by control.

During the exploration phase, we update model parameters using recursive least squares [15]. In the
control phase, we update parameters selectively so as not to overwhelm the model with steady-state
data. In particular, we estimate the noise standard deviation σs for each variable s as the root
mean squared error on the training data, and update the model with an example only if its (current)
prediction error exceeds 2σs.3

2Specifically, the PID controllers operate in too narrow a range of (joint) state-control space to generate data
allowing sufficiently accurate prediction in novel regions.

3In long running operation, triggering further exploration to account for rare exogenous conditions or
disturbances (as well as drift) may be necessary, but we don’t consider this here.
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4.3 Control

Given our model and an initial condition (the T past states, controls, and disturbances for the M
AHUs), we optimize the cost of a length-L trajectory with respect to control inputs at every step.
Let xssp denote the setpoint (or target value) for a state variable s, where s ∈ {DP,CAT,LAT}. Let
xsi [t] denote the value of the state variable s for the ith AHU at time t. We set controls by solving the
following optimization problem:

max
u

t+L∑
τ=t

M∑
i=1

(∑
s

qs(x
s
i [τ ]− xssp)2 +

∑
c

rc(u
c
i [τ ]− ucmin)2

)
(3)

s.t. uci ∈ [ucmin, u
c
max], |uci [τ ]− uci [τ − 1]| ≤ ∆c, d[τ ] = d[τ − 1] (4)

x[τ ] =

T∑
k=1

Akx[τ − k] +

T∑
k=1

Bku[τ − k] + Cd[τ − 1] (5)

t ≤ τ ≤ t+ L, c ∈ {fan, valve}, s ∈ {DP,CAT,LAT}. (6)

Here qs and rc are the weights for the loss w.r.t. state and control variables s and c, respectively,
and i ranges over AHUs. We assume that disturbances do not change over time. Overall, we have a
quadratic optimization objective in 2ML ' 1.2K variables, with a large number of linear and range
constraints. While we optimize over the entire trajectory, we only execute the optimized control
action at the first time step. Re-optimizing at each step enables us to react to changes in disturbances
and compensate for model error.

We specify the above objective as a computation graph in TensorFlow [1] and optimize controls using
the Adam [19] algorithm. In particular, we implement constraints by specifying controls as

uci [τ ] = max(ucmin,min(ucmax, u
c
i [τ − 1] + ∆ctanh(zci [τ ]))) (7)

where zci [τ ] is an unconstrained optimization variable. The main motivation for this choice is its
simplicity and speed—the optimization converges well before our re-optimization period of 30s.

5 Experiments

We evaluate the performance of our MPC approach w.r.t. the existing local PID method on a large-
scale DC. Since the quality of MPC depends critically on the quality of the underlying model, we first
compare our system identification strategy to two simple alternatives. One complication in comparing
the performance of different methods on a physical system is the inability to control environmental
disturbances which affect the achievable costs and steady-state behavior. In our DC cooling setting,
the main disturbances are the EWT (temperature of entering cold water) and server power usage (a
proxy for generated heat). These variables also reflect other factors (e.g., weather, time of day, server
hardware, IT load). To facilitate a meaningful comparison, we evaluate the cost of control (i.e., cost
of power and water used by the AHUs) for different ranges of states and disturbances.

5.1 System identification

We first evaluated our system identification strategy by comparing the following three models:

• Model 1: our model, trained on 3 hours of deliberate exploration data with controls following
independent random walks limited to a safe range as described in Section 4.2.

• Model 2: trained on a week of historical data generated by local PID controllers. While
this model is trained on 56 times more data than the others, it turns out that the data is
not as informative. Since local controllers regulate LAT to a fixed offset above EWT, the
model may simply learn this relationship rather than the dependence of LAT on controls.
Furthermore, if state values do not vary much, it may learn to predict no changes in state.

• Model 3: trained on 3 hours of data with controls recommended by a certainty-equivalent
controller (i.e., optimal controls w.r.t. all available data at each iteration, see Section 2),
limited to a safe range. While this data contains a wider range of inputs than Model 2 data,
it contains no exploratory actions.
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Figure 4: Histograms of state variables and disturbances over time and AHUs during steady-state
operation of MPC controllers using three different models.

Table 2: Average power and water cost (% data) for each controller, restricted to time points and
AHUs for which CAT was within 0.25C of xCAT

sp and pressure within 0.004 of xDP
sp , stratified by

values of the disturbances.

Entering water Server load Model 1 Model 2 Model 3
temperature (C) (fraction of max) cost (% data) cost (% data) cost (% data)
≤ 20.5 ≤ 0.7 84.3 (31%) 94.4 (29.9%) 99.6 (13.7%)
> 20.5 ≤ 0.7 85.8 (17.6 %) 93.8 (14.1 %) 112.7 (36.0 %)
≤ 20.5 > 0.7 142.4 (21.9 %) 149.4 (20.4 %) 178.2 (8.3 %)
> 20.5 > 0.7 144.6 (15.3 %) 148.9(12.8 %) 182 .1 (29.9 %)
any any 110.2 (85.8%) 117.9 (77.2%) 140.4 (87.9%)

We controlled median CAT and DP at setpoints xCAT
sp and xDP

sp , using each model for approximately
one day. We examine the steady state behavior of the controllers next. Figure 4 shows histograms
of states and disturbances during the operation of the three controllers, with data aggregated over
both time and sensors. In all three cases, state variables remain close to their targets most of the
time, but the controller based on Model 2 (historical data) had the highest steady-state error (e.g.,
the difference between CAT/DP and their setpoints is close to zero less often with Model 2). The
distribution of server loads during the three tests was similar, while the EWT was somewhat higher
for Model 3. The average cost of controls (fan power and water usage in the objective) was 115.9,
116.6, and 139.9, respectively; however, these are not directly comparable due to differences in steady
state error and disturbances.

Stratifying data by state and disturbance values is somewhat complicated. For example, sensor
measurements at any location are affected by multiple AHUs with different EWTs. Similarly, each
AHU affects measurements at multiple racks with different loads. To simplify analysis, we treat each
group of sensors as dependent on its closest AHU, allowing independent consideration of each AHU.
A lesser complication is the time lag between control changes and state changes. Since controllers
largely operate in steady state, controls do not change often, so we consider time points independently.

To compare costs, we first restrict available data to time points and AHUs where temperatures were
within 0.25C of xCAT

sp , and pressures within 0.004 of xDP
sp (i.e., the intersection of histogram peaks

in Figure 4, left). This corresponded to 85.8%, 77.2%, and 87.9% of the data for controllers using
Models 1, 2, and 3, respectively. We then stratified the data by different ranges of EWT and server
load. We evaluated the control cost for each disturbance range. The results are shown in Table 2, and
suggest that the controller based on Model 1 (with explicit exploration data) is the most efficient.

5.2 Comparison to local PID controllers

The existing local PID controllers differ from ours in that they regulate LAT to a constant offset
relative to EWT, rather than controlling CAT directly. To compare the two approaches, we ran our
MPC controller with the same LAT-offset setpoints for one day, and compared it to a week of local
PID control. As before, we treat measurements at each group of sensors as depending only on the
closest AHU, and ignore time lags (assuming reasonable control consistency during steady-state
operation). Histograms of states and disturbances during the operation of the two controllers are
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Figure 5: Histograms of state variables and disturbances over time and AHUs during steady-state
operation of the MPC (Model 1) and local PID controllers.

Table 3: Average total cost (% data) of each controller, restricted to time points and fancoils for which
LAT-EWT and DP were within 0.25C and 0.004wg of their respective setpoints, stratified by values
of the disturbances.

Entering water Server load Local controllers Model 1
temperature (C) (frac. max) cost (% data) cost (% data)
≤ 20.5 ≤ 0.7 95.3 (19.8 %) 106.4 (22.6 %)
> 20.5 ≤ 0.7 107.9 (13.8 %) 104.9 (15.0 %)
≤ 20.5 > 0.7 170.3 (20.1%) 130.5 (18.8 %)
> 20.5 > 0.7 187.8 (20.4 %) 128.7 (18.0 %)
any any 142.2 (74.4%) 116.7 (74.1%)

shown in Figure 5. Local controllers track the temperature setpoint more closely, but operate at higher
DP. Server loads are similar, while average EWT is lower during local controller operation.

To compare costs, we restrict data to AHUs and times corresponding to the peaks of histograms in
Figure 5 left (about 74% of the data for both controllers). We stratify this data as above and compare
the total cost in each stratum in Table 3. While local control was more cost efficient under low EWT
and server load, our controller was more efficient under all other conditions and overall.

While the quadratic objective is a reasonable approximation, it does not correspond exactly to the
true dollar cost of control, which is not quadratic and may change over time. After restricting to
temperatures and pressures as in Tables 3 and 2, the average dollar cost (units unspecified) of our
LAT and CAT controllers was 94% and 90.7% of the cost of the local controllers. While precise
quantification of these savings requires longer-term experiments, our approach of jointly optimizing
controls of all AHUs, together with the ability to control process variables at slightly higher values,
has the potential to save about 9% of the current server-floor cooling costs.

6 Discussion

We have presented an application of model-based reinforcement learning to the task of regulating
data center cooling. Specifically, we have demonstrated that a simple linear model identified from
only a few hours of exploration suffices for effective regulation of temperatures and airflow on a
large-scale server floor. We have also shown that this approach is more cost effective than commonly
used local controllers and controllers based on non-exploratory data.

One interesting question is whether the controller performance could further be improved by using
a higher-capacity model such as a neural network. However, such a model would likely require
more than a few hours of exploratory data to identify, and may be more complicated to plan with.
Perhaps the most promising direction for model improvement is to learn a mixture of linear models
that could approximate dynamics better under different disturbance conditions. In terms of overall
data center operational efficiency, further advantages are almost certainly achievable achieved by
jointly controlling AHUs and the range of disturbance variables if possible, or by planning AHU
control according to known/predicted disturbances values rather than treating them as noise.
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