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Abstract. Swept volume, the volume displaced by a moving object, is
an ideal distance metric for sampling-based motion planning because it
directly correlates to the amount of motion between two states. How-
ever, even approximate algorithms are computationally prohibitive. Our
fundamental approach is the application of deep learning to efficiently
estimate swept volume computation within a 5%-10% error for all robots
tested, from rigid bodies to manipulators. However, even inference via the
trained network can be computationally costly given the often hundreds
of thousands of computations required by sampling-based motion plan-
ning. To address this, we demonstrate an efficient hierarchal approach
for applying our trained estimator. This approach first pre-filters samples
using a weighted Euclidean estimator trained via swept volume. Then, it
selectively applies the deep neural network estimator. The first estimator,
although less accurate, has metric space properties. The second estima-
tor is a high-fidelity unbiased estimator without metric space properties.
We integrate the hierarchical selection approach in both roadmap-based
and a tree-based sampling motion planners. Empirical evaluation on the
robot set demonstrates that hierarchal application of the metrics yields
up to 5000 times faster planning than state of the art swept volume ap-
proximation and up to five times higher probability of finding a collision-
free trajectory under a fixed time budget than the traditional Euclidean
metric.

1 Introduction

Illustrated in Figure 1, swept volume, SV(c1, c2), is the measure of the volume
displaced by an object moving between two configurations, c1 and c2, [1, 2].
Swept volume computation has proven useful in several applications including
machining verification, geometric modeling, collision detection, mechanical as-
sembly, ergonomic studies, and product lifecycle management [3]. Additionally,
swept volume was identified as an ideal sampling-based planning distance metric
because it directly correlates to amount of motion required to transition between
two collision-free configurations [4]. Yet, swept volume has not been commonly
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(a) Start configuration (b) End configuration (c) Swept volume

Fig. 1: Example start (a) and end (b) configurations and the corresponding volume
swept (c) for a Kuka LBR IIWA 14 R820 manipulator.

used in sampling-based planning due to the complexities in its computation. The
problem lies in the intractability of exact swept volume computation, due to the
frequent requirement of the construction of a complex non-linear geometry. As a
result, most algorithms focus on generating approximations [5], such as occupa-
tion grid-based and boundary-based methods [5, 3, 6, 7, 1]. However, even these
approximations are too computationally expensive to be used as a practical dis-
tance metric in sampling-based motion planners [4, 8] since distance metric calls
are one of the most common operations [9].

Sampling-based planners select a subset of configurations to attempt expen-
sive local planning operations that make connections in roadmap-based, e.g., a
probabilistic roadmap method (PRM) [10], or tree extensions in tree-based plan-
ners, e.g., a rapidly-exploring random tree (RRT) [11]. The configurations are
typically selected w.r.t. some distance metric. Intuitively, a good metric limits
the local planning operations to those most likely to succeed, i.e., lowest collision
probability between the two configurations without prior knowledge of obstacle
distribution. Yet, the commonly chosen metrics suffer from several issues. For
example, the configuration space Euclidean distance metric does not represent
collision probability well [4, 9], and the weighted Euclidean distance metric is
difficult to tune [9].

Our fundamental approach lies in the ability of a deep neural network (DNN)
to approximate swept volume. Trained off-line with swept volume examples for
a given robot in an obstacle-free space, the DNN captures the complex and
nonlinear relationship between trajectories in the robot’s C-space. In this paper,
we show that successful learning is feasible since DNNs have been proven to be
able to approximate any continuous bounded function [12], and swept volume
possesses these properties in a finite C-space. Also, through empirical evaluation
on a variety of robot types, from a rigid body to manipulators, we find that
the DNN estimators are able to capture swept volumes within a 5-10% error
at speeds 3500 to 5000 times faster than traditionally used approximate swept
volume computation.

Despite the increased speedup by using a DNN for swept volume estima-
tion, inference via the DNN can remain prohibitive due to the often hundreds
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of thousands or more of inference calls required in difficult sampling-based mo-
tion planning problems. In addition, SV(c1, c2) does not form a metric space as
it does not satisfy the triangle inequality. This prevents utilization of efficient
nearest neighbor data structures such as GNAT [13] common for sampling-based
planners. Therefore, we also propose an efficient hierarchal approach for applying
our trained estimator, Hierarchical Neighbor Search (HNS). Specifically, during
nearest neighbor selection in sampling-based planning when comparison via met-
ric is applied, we pre-filter configurations using a weighted Euclidean estimator
trained via swept volume. This first estimator is a single layer neural network
that has metrics properties but less accuracy. Then, we can selectively apply
the DNN, a high-fidelity estimator without metric properties. The hierarchical
combination in HNS demonstrates both metric properties and high-fidelity, thus
enabling efficient selection of configurations with low swept volume using existing
nearest neighbor data structures that require metric space properties.

We achieve feasible swept volume integration with sampling-based planning
in three steps. First, we generate the training data using an occupation grid-
based [6] swept volume approximation. This is by far the most computationally
intensive step, as the swept volume is computed for random configuration pairs.
Second, we train the models needed for swept volume estimation. The training
is also computationally intensive, but less so than the data generation. Both
steps are done once, prior to planning. Lastly, sampling-based planners such as
RRT and PRM use nearest neighbors computed with the metrics to attempt the
connections between configurations. We use an efficient nearest neighbor data
structure, GNAT [13], with the metric estimators.

Evaluation of the metrics and HNS on three robots, a 6 Degree Of Freedom
(DOF) rigid body, a 15 DOF fixed-based planar manipulator, and a 7 DOF Kuka
LBR IIWA 14 R820 in a cluttered, a narrow corridor, and a real-application
inspired environment. Two popular sampling-based planners, PRM and RRT
are integrated with our metrics. Planners that use HNS are: 1) up to five times
more likely to identify a collision-free path on a fixed time budget and 2) able to
return paths with a smaller swept volume. These advantages are consistent for all
three robots and are particularly significant for robots with a highly articulated
body. The video in the supplementary material contains visualization of the
simulations.

The contributions of this paper include learning a high-precision swept vol-
ume estimator, datasets for learning, and demonstrations of the metrics within
planning. Specifically, we highlight the utility of high-fidelity DNN swept volume
models and efficient hierarchical combination of learned metrics, HNS, for sample
neighbor selection during roadmap connection and tree expansion. The weighted
Euclidean metric and datasets are publicly available for the three robots used
in this paper, and can be readily used by other researchers without any modifi-
cations. In addition, this paper might be of interest to the larger motion plan-
ning community as an example of a machine learning’s role within the motion
planning. It is a proof of concept that a computation of a highly complex and
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non-linear, yet Lipschitz continuous and bounded, metric can be learned ahead
of time off-line from examples, reducing the complexity of planning.

2 Related Work

Modern approximate swept volume algorithms can be roughly classified as oc-
cupation grid-based and boundary-based methods. Occupation grid-based ap-
proaches decompose the workspace, e.g., into voxels, in order to record the
robot’s occupation in the workspace as it executes a trajectory [3, 6]. The result-
ing approximation has a resolution-tunable accuracy and is conservative, which
can be critical for applications such as collision avoidance [14]. The boundary-
based methods extract the boundary surface [7, 5, 1]. Despite more than four
decades of study, swept volume computation is still too slow to be used online
by sampling-based motion planners [4, 8]

Swept volume has been used in motion planning in various ways. In [14],
swept volume of a bipedal robot for 276 step patterns are computed offline
and queried online by an RRT-based planner to speed up collision detection
for robot footstep planning. Similarly, in this paper we compute swept volume
approximations offline. However, our learned estimators can generalize to unseen
configuration pairs. Swept volume had also been used directly as a distance
metric as a comparison method in [8]. However, due to the exceedingly high
swept volume computation cost, the performance is reported to be orders of
magnitude worse than weighted euclidean distance metrics.

A distance metric that accurately predicts a local planner’s success rate is
critical for sampling-based motion planners [15]. On the other hand, distance
metric calculations also need to be fast since they are one of the most numer-
ous sampling-based planners operations [9]. Carefully tuned weighted Euclidean
distance metrics have been empirically shown to outperform other metrics [9].
This conclusion is echoed in [16] where a weighted Euclidean distance metric
is tuned to approximate swept volume. However, a weighted Euclidean distance
metric may not be expressive enough to approximate swept volume as it is clearly
nonlinear, i.e., each joint DOF affects one another in an articulated body.

Machine learning has been used to learn distance metrics for kinodynamic
robots [17, 18]. In such systems, the design goal of distance metrics is often quite
different from planning in C-space due to the constrained reachability. Good dis-
tance metrics typically approximate the minimum time to reach between states
[17]. In [17], regression learning algorithms are trained offline to approximate the
time to reach between states. The training data is generated by a near-optimal
controller for unicycle robots. A RRT-based planner then uses the learned dis-
tance metric during online planning. A similar method replaces the near-optimal
controller with an indirect controller to learn both the time to reach and con-
trol inputs [18]. These methods differ from ours, in that our methods identify
neighboring configurations that are likely to succeed in the connect or extend
operations due to expected distance of a trajectory, while distance metrics in
[18, 17] approximate minimum time to reach. Another example of integration
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between deep machine learning and sampling-based planning is PRM-RL [19].
Similar to our method, it uses an offline, once-per robot training to connect
PRM nodes that are most likely to succeed. Unlike our learned distance estima-
tors, PRM-RL learns the local planner for a physical robot moving via sensor
information. Therefore, nodes that are most likely to succeed are connected.

3 Methods

Swept volume, SV : R2df → R, for a trajectory in C-space is

SV(c1, c2) = ‖ ∪t∈[0,1] V((1− t)c1 + tc2)‖, (1)

where c1, c2 ∈ Rdf are the start and end configurations of a robot with df degrees
of freedom, and V(c) is the workspace occupied by the robot in configuration c.
We consider the trajectory between c1 and c2 to be a straight line in C-space.
SV(c1, c2) can be highly complex and nonlinear due to rotational degrees of
freedoms, especially in cases where the robot has an articulated body.

Swept volume estimator models are the trained offline in three steps: 1)
SV training dataset generation described in Section 3.1, 2) learning a weighted
Euclidean distance metric, Dsv

we, using a single layer network in Section 3.2,
and 3) training a deep swept volume estimator in Section 3.3. After the off-line
learning, Section 3.4 describes how HNS efficiently combines the two estimators
into a hierarchical neighbor selector that selects the most promising nodes in
sampling-based planning.

3.1 Training Dataset Generation

The training data (X,y) of size n, where X = [x1, · · · ,xn]>, and each train-
ing sample xi = [ci,1 ci,2] consists of two uniformly-randomly sampled points
from the configuration space. The ground truth labels, y, match swept volume
between two corresponding configurations with respect to the straight line plan-
ner. Since SV is only related to the kinematics of the robot and independent to
the environments it operates in, we do not consider obstacles during the gen-
eration of training data. Ideally, the labels should be computed with (1), but
computing the exact SV is intractable. Instead, we use labels,

y = [y1, · · · , yn]> = [S̃V(c1,1, c1,2), · · · , S̃V(cn,1, cn,2)]>, (2)

approximated with a state of the art octree-based swept volume algorithm [6],
where the robot trajectory is represented by Nlerp intermediate C-space con-
figurations. The details of the octree-based algorithm are in the supplementary
material and the training datasets are available from our website [20].

3.2 Training Weighted Euclidean Distance Estimator, Dsv
we

Weighted Euclidean distance metric, dw(c1, c2) =
√∑df

j=1 wj(c1,j − c2,j)2, often

requires manual tuning of the vector w ∈ Rdf .
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We learn the weights, w∗Dsv
we
, with a single layer network, Dsv

we, that models

the weighted Euclidean distance metric, dw(c1, c2), w.r.t. the training dataset
(2),

Dsv
we(w∗Dsv

we
, c1, c2) = dw∗(c1, c2).

The details of the network are depicted in Figure 2(a). We use a stochastic
gradient descent optimizer to find w∗Dsv

we
that minimizes L2 loss

w∗Dsv
we

= argminw

n∑
i=1

(Dsv
we(w, c1,i, c2,i)− S̃V(c1,i, c2,i))

2. (3)

The network is trained once per robot, and like the analytical representation the
network, Dsv

we, forms a metric space when the weights are positive.

3.3 Training Deep Swept Volume Distance Estimator, Dsv
dnn

(c1 � c2)

Sq

Sq

…

w � DSV
we (c1, c2)

(a) Weighted Euclidean Metric model, Dsv
we

Input	Layer

…

…

Hidden	Layers Output	Layer

c1

c2

k

…

…

DSV
dnn(c1, c2)

(b) Deep Swept Volume Model, Dsv
dnn

Fig. 2: Neural network architectures used to estimate S̃V(c1, c2). c1 and c2 are the start and end
configurations of the trajectory, respectively. (a) Weighted Euclidean Metric model, Dsv

we(w, c1, c2).
The input, c1 − c2, is fed to df neurons (one per DOF) with a square activation function, i.e.,

f(x) = x2. The output is the absolute value of the weighted sum of activations. (b) Deep Swept
Volume Model, Dsv

dnn(w, c1, c2). The inputs are 2df . The activation function of the first layer are
identities. The input layer is connected to the k hidden layers each with Ni ReLU neurons. The
output layer has one neuron corresponding to the swept volume estimate.

The weighted Euclidean distance metric cannot approximate S̃V well because
the model may not be expressive enough to capture non-linearities. Therefore,
we also use a deep neural network, Dsv

dnn, to learn a non-linear swept volume
model. Dsv

dnn is a fully-connected feed-forward DNN. The inputs, outputs, and
the architecture of the Dsv

dnn are described in Figure 2 (b). The inputs are 2df
input neurons. The first df correspond to c1, while the second df correspond
to c2. The k hidden layers consist of ReLu [21] neurons. Finally, the output
is a neuron estimating the swept volume between two configuration points and
outputs zero if the network prediction is negative. Stochastic gradient descent
backprop finds the weights and biases w.r.t. L2 loss and the dataset (2),

(W ∗, b∗)Dsv
dnn

= argmin(W ,b)

n∑
i=1

(Dsv
dnn((W , b), c1,i, c2,i)− S̃V(c1,i, c2,i))

2.

(4)
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3.4 Hierarchical Neighbor Search, HNS

In this section we propose Hierarchical Neighbor Search, HNS, that combines the
trained swept volume estimators introduced above to be used for neighbor selec-
tion within sampling-based planning. This hierarchical combination efficiently
selects neighbors with low swept volume distance, by first filtering all candidates
using the extremely fast learned Dsv

we and then filtering this smaller subset with
Dsv

dnn. In this paper, we implement this filtering by using the k-closest neighbor
selection method at each level, but other neighbor connection strategies can be
used, such as a distance cutoff [22]. Our implementation first identifies kc can-
didate nearest neighbors of configuration c using Dsv

we (output of the weighted
Euclidean metric model). Next, HNS uses the Dsv

dnn (output of the deep swept
volume model) to choose the final knn < kc nearest neighbors among the candi-
dates.

Using the following notation to denote selecting nearest neighbors and the
corresponding swept volume estimates from a given start configuration c to any
element in a given set of configurations X:

NNDsv
we

(X) = {(x,Dsv
we(w∗Dsv

we
, c,x))|x ∈ X}, (5)

and

NNDsv
dnn

(X) = {(x,Dsv
dnn((W ∗, b∗)Dsv

dnn
, c,x))|x ∈ X}, (6)

Algorithm 1 depicts the HNS.

Algorithm 1 Hierarchical Neighbor Search for Sampling-based Planning, HNS

Input: w∗Dsv
we

: Learned weights in (3).
Input: (W ∗, b∗)Dsv

dnn
: Learned weights in (4).

Input: DSE : Efficient nearest neighbors data structure.
Input: C : set of available configurations.
Input: c : start configuration.
Input: knn : Number of nearest neighbors to return.
Input: kc : Number of nearest neighbor candidates.
Output: Cknn(c) configurations in C closest to c w.r.t. learned swept volume.

1: // Find neighbors from c w.r.t. fast, low-fidelity Dsv
we model. Total of kc returned.

2: // Ckc is a set that contains kc neighbor candidates.
3: NNDsv

we
(Ckc) = DSE .getNeighbors(c, kc,Dsv

we, C)
4:
5: // Compute swept volume estimates for kc neighbors with high accuracy deep model.
6: NNHNS(Ckc) = NNDsv

dnn
({x|(x, d) ∈ NNDsv

we
(Ckc)})

7:
8: // Find the knn closest points w.r.t. trained Dsv

dnn model.
9: // Cknn is a set that contains knn neighbor candidates.

10: Cknn = argminknn
(x)∈Ckc

NNHNS(Ckc)

11: return Cknn
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The hierarchical combination of the metrics within neighbor selection has
several benefits. First, it enables the use of any efficient nearest neighbor data
structure. Second, it greatly reduces the number ofDsv

dnn queries, which are slower
than computing the weighted Euclidean distance. Finally, it employs metrics
trained specifically for swept volume prediction.

4 Swept Volume Properties

DNNs are a universal approximator for any bounded continuous function [12].
In this section we formalize the proposition that swept volume is Lipschitz con-
tinuous and bounded along a continuous trajectory, justifying using DNNs as
approxmators. The detailed proof is included in the supplementary materials for
interested readers.

Proposition 1. SV(c1, c2) along a continuous trajectory between two configu-
ration points c1, c2 in the C-space above is Lipschitz continuous, i.e.

‖SV(c1, c2)− SV(c1 +∆c1, c2 +∆c2)‖ ≤ K‖∆c1 +∆c2‖. (7)

5 Evaluations

We evaluate our method on a 15 DOF planar manipulator, a free-floating rigid
body and a fixed-based Kuka manipulator. A Dsv

we model and a Dsv
dnn model are

trained to learn S̃V for each robot. We compare PRMs and RRTs that use HNS
to ones that use Euclidean distance, DE, and Dsv

we, the most widely used distance
metrics for sampling-based planners [17, 9].

We highlight important settings used in our evaluation below and leave de-
tails in the supplementary material. The three DNNs used to learn S̃V for the
robots share the same hyper-parameters and training dataset construction pa-
rameters. The dataset is composed of one hundred thousand training samples
per robot. Additional ten thousand evaluation samples are generated in the same
manner as the training samples but are unseen by the estimators. We use the
PRM and RRT implemented in OMPL [23]. PRM with HNS identifies knn = 5
nearest neighbors among kc = 10 candidates to connect to, while RRT with
HNS finds kc = 5 candidates in order to identify the nearest configuration in
the tree. With a single metric, PRM simply uses knn = 5, and RRT finds the
nearest configuration without pre-filtering. Figure 3 shows the starts and goals
of the three robots evaluated in four environments. The Kuka manipulator is
evaluated in two pick and place inspired tasks: Retrieve (Figure 3(e, f)) and
Shuffle (Figure 3(g, h)) with complex environments. For the Kuka and the 15
DOF manipulators, the joint angles describe a configuration. The position and
rotation quaternion describe a configuration of the free-floating rigid body.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3: Start (left column) and goal (right column) configurations of the 15 DOF planar manipulator
(a, b), free-floating rigid body (c, d) and Kuka LBR IIWA 14 R820 manipulator in Retrieve task(e,
f) Shuffle task (g, h).

5.1 Learning Results

The weights of Dsv
we for the 15 DOF and Kuka manipulators are approximately

[214, 97, 80, 73, 60, 43, 31, 28, 23, 19, 8, 5, 9, 7, 5] and [1506, 2371, 181, 482, 1, 170, 30],
respectively. As expected, these weights indicate that the joints near the base
impact SV more. The weights of the free-floating rigid body are [120, 140, 140]
for x, y, z and [86, 110, 82, 88] for quaternions. These weights indicate that the
translational degrees of freedom has a higher impact on SV than rotation.

Figure 4 shows the evaluation loss of Dsv
dnn and Dsv

we at each epoch. It is clear
that learning converges for both Dsv

we and Dsv
dnn, but Dsv

dnn has a much smaller

loss than Dsv
we across all robots. This means that Dsv

dnn learns to approximate S̃V
much better than Dsv

we.
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Fig. 4: Learning curves of Dsv
dnn and Dsv

we.

Figures 5 shows the histogram of DE, Dsv
we and Dsv

dnn for the evaluation data

compared to the ground truth S̃V (gray shade). Note that in order to compare to

S̃V, we scale the value of DE such that the average matches the average S̃V of the
evaluation data. The last column of Figure 5 (c, f, i) shows striking similarities

between Dsv
dnn and S̃V, indicating the DNNs learned to approximate S̃V well for

all robots. In contrast, the highly nonlinear S̃V of the 15 DOF (Figure 5 (a,
b)) and Kuka manipulators (Figure 5 (g, h)) are not approximated well by DE

and Dsv
we. These linear metrics only approximate the free-floating rigid body well

(Figure 5 (d, e)). This is expected as the joint angles in the articulated bodies
nonlinearly impact each other.DE andDsv

we provide better approximations for the
7 DOF Kuka manipulator in 3D workspace than the 15 DOF planar manipulator.
This is likely due to the fact that the Kuka manipulator has fewer DOF and
similar lengths between joints. Similar trends can be found in Table 1, which
shows the L1 norm of the error ratio for various distance metrics and robots
w.r.t the evaluation dataset. The average error ratio of Dsv

dnn is 4.38 to 11.67
times smaller than DE and 2.44 to 8.73 times smaller than Dsv

we.

15 DOF Manipulator Rigid Body Kuka Manipulator

DE 76.9% 19.7% 60.7%
Dsv

we 70.7% 11.0% 29.9%
Dsv

dnn 8.1% 4.5% 5.2%

Table 1: L1 norm of error ratio ((D−S̃V)/S̃V) for various distance metrics and robots. The metric
with the lowest error ratio is highlighted for each robot.

We further explored the distance metric performance by comparing S̃V against
each distance metric (Figure 6). In this figure, the black squares, representing

Dsv
dnn, closely track S̃V. They are clustered along the diagonal for all robots. It

is clear that neither DE (red circles) nor Dsv
we (blue diamonds) correlate to S̃V

well for the 15 DOF or Kuka manipulator (Figure 6 (a, c)), especially when S̃V
is large or small.

We also investigated the learning performance of DNNs as impacted by the
number of neurons in the hidden hidden layer and the quantity of training sam-
ples. Figure 7 shows the L2 loss over the evaluation dataset as a function of



Fast Swept Volume Estimation with Deep Learning 11

0 2500 5000 7500 10000
E

0

500

1000

1500

Oc
cu
ra
nc
es

(a)

0 2500 5000 7500 10000
SVWE

0

250

500

750

1000

Oc
cu
ra
nc
es

(b)

0 2000 4000 6000 8000 10000
SV
dnn

0

200

400

Oc
cu
ra
nc
es

(c)

0 500 1000 1500 2000
E

0

200

400

600

Oc
cu
ra
nc
es

(d)

0 500 1000 1500 2000
SVWE

0

200

400

Oc
cu
ra
nc
es

(e)

0 500 1000 1500 2000
SV
dnn

0

200

400

Oc
cu
ra
nc
es

(f)

0 500 1000
E

0

200

400

600

800

1000

Oc
cu
ra
nc
es

(g)

0 500 1000
SVWE

0

200

400

600
Oc

cu
ra
nc
es

(h)

0 500 1000
SV
dnn

0

100

200

300

400

Oc
cu
ra
nc
es

(i)

Fig. 5: Histogram of DE (left column), Dsv
we (middle column) and Dsv

dnn (right column) for the 15
DOF manipulator (top row), free-floating rigid body (middle row) and Kuka manipulator (bottom

row). The gray shade is the Histogram of S̃V.

training epochs as impacted by combinations of training sample and DNN sizes.
It is clear that networks trained with 25,000 training samples (1/4 the original
quantity of samples, shown as dashed lines) have higher loss across all robots
and exhibit over-fitting as the loss increases after the initial decrease. When
trained with the full training dataset (solid curves), large networks (networks
with 1024 and 512 neurons in the first hidden layer) perform similarly across all
robots while small networks demonstrate a larger loss for Kuka and rigid body
robots. These results indicate that a large network and training dataset size are
important to accurately approximate S̃V.

5.2 Planning Results

Next we compare the impact of various distance metrics on PRM and RRT.
The top row of Figure 8 shows the cumulative success rate of identifying a
collision-free motion plan as a function of time for PRM and RRT using the
DE (red), Dsv

we (blue) and HNS (black) distance metrics in various environments.
For all scenarios with PRMs, using the HNS distance metric is more likely to
successfully find a solution within the time budget in all cases. The gain in
success rate at 200 s (max planning time allowed) compared to DE ranges from
1.27 to 5 times more while the gain over Dsv

we ranges from 1.08 to 2.14 times
more. In addition, the bottom row of Figure 8 shows that paths identified by
HNS have a smaller swept volume. Comparing across robots, results demonstrate
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(a) (b) (c)

Fig. 6: Scatter plots of S̃V and the distance estimated by DE (red circles), Dsv
we (blue squares) and

the DNN (Dsv
dnn) (black diamonds) for the 15 DOF manipulator (a), free-floating rigid body (b) and

Kuka manipulator (c).

(a) High DOF (b) Rigid body (c) Kuka

Fig. 7: The L2 evaluation loss of DNNs with varied numbers of neurons in the hidden layer as shown
in the legend (solid curves) across robots. The dashed curves show the same network trained with
25,000 training samples (1/4 of the full sample size).

that the advantage of HNS is much less prominent for the rigid body robot.
This is expected since DE and Dsv

we both approximate S̃V reasonably well for
this system. HNS shows a similar performance gain for both the 3D Kuka and
the 2D 15 DOF manipulators. In the RRT case, HNS also enhances planning by
identifying solutions with lower swept volume and identifying solutions where
other metrics failed. For example, Figure 8 (a) clearly shows that the 15 DOF
manipulator in a narrow corridor is very difficult for RRT as neither DE nor Dsv

we

found a solution in 20 runs. In contrast, RRTs using HNS were able to identify a
solution in 2 runs, likely due to the goal bias mechanism of RRT which has been
shown to significantly increase the performance of RRT [11]. In the planning
scenario shown in Figure 1 (a, b), the start and goal have the same joint angles
except for the joint at the base. This means DE between the start and goal is
relatively small. However, the robot must curl towards the base and then extend
in order to reach the goal. These curled configurations require a large DE change
from the goal configuration and therefore are unlikely to be selected by an RRT
using goal bias. As a result, the goal bias is ineffective for the Euclidean-based
metrics as it mostly selects configurations near the start. In contrast, HNS does
not have this problem since the SV between the start and goal is larger than the
SV between any curled configuration and the goal.
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Fig. 8: The cumulative success rate of identifying a path (top row) and path length (in units of S̃V)
of successful runs (bottom row) for PRM (dotted lines) and RRT (solid lines) evaluated on the 15
DOF manipulator (a, e), free-floating rigid body (b, f), Kuka manipulator in the Retrieve task (c,
g) and in the Shuffle task (d, h). The color of bars and curves represents various distance metrics
(red: DE, blue: Dsv

we, black: Dsv
dnn (our method)). The path length data is not available for RRTs

using DE or DWE since there were zero successful runs.

6 Distance Metric Trade-Offs

In Section 5, the advantages of HNS are clear, particularly when DE or Dsv
we can-

not capture S̃V well, i.e., when the robot has a highly articulated body. Here we
investigate the advantages further by empirically evaluating the computational
cost and the quality of returned nearest neighbors for each distance metric.

Training Distance Call
Data Dsv

we Dsv
dnn Compute Compute Compute

Robot Generation Training Training Dsv
we Dsv

dnn S̃V
15 DOF Manipulator 31hr 630.02s 4360.03s 0.081µs 175.1µs 8.85s

Free-floating Rigid Body 2hr 601.53s 4001.53s 0.053µs 164.3µs 0.58s
Kuka Manipulator 14hr 629.33s 4023.35s 0.055µs 164.3µs 4.06s

Table 2: Computation time of various operations broken down by training (Training) and a single
usage as done as a primitive operation in motion planning (Distance Call).

The computation time required by the distance metrics is shown in Table
2. Recall that Dsv

we and Dsv
dnn are trained once per robot (columns 3 and 4) and

utilized one hundred thousand training samples (column 2). After training, the
computation time for a single inference to Dsv

dnn is at or just under 175µs (column

6). Comparing a single inference to times required to generate S̃V for each robot

shows that Dsv
dnn inference is 3500 to 5000 times faster than state of the art S̃V

computation. In addition, the computation time of Dsv
dnn is only slightly affected

by the DOF of the robot and is independent to the robot’s 3D model complexity.
On the other hand, computing Dsv

we (column 5) is about 2000 to 3000 times faster
than querying Dsv

dnn. These results suggest HNS can reduce computation time
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as it identifies candidate nearest neighbors using the fast Dsv
we before the slower,

more accurate, Dsv
dnn.

Percent of Non-Matching Neighbors Percent Additional Volume Swept
Robot DE Dsv

we Dsv
dnn HNS DE Dsv

we Dsv
dnn HNS

15 DOF 87% 80% 32% 65% 180% 160% 14% 61%
Rigid body 65% 22% 11% 11% 38% 7% 2% 2%

Kuka 87% 33% 12% 15% 56% 8% 1% 2%

Table 3: Comparison of neighboring configurations selected by various distance metrics as compared

to those selected by S̃V. The Percent of Non-Matching Neighbors columns demonstrate the quantity

of neighboring configurations that do not match those selected by S̃V. The Additional Swept Volume
columns capture the amount of additional volume swept by the neighboring configurations selected

by the metrics as over that of the S̃V configurations. The best metric of each robot is highlighted.

It is clear from Section 5 that nearest neighboring configurations selected
w.r.t. DE and Dsv

we are very different from ones selected by HNS. However, lit-
tle is known about the quality of neighboring configurations returned by the
distance metrics. We evaluate this by comparing neighbors returned by each
metric to those returned by S̃V comparison. Since a full comparison during a
planning run would be computationally prohibitive, we randomly sample 100
starting configurations (c1) and 100 potential neighbor configurations (c2) for
each robot. For each c1, five nearest configurations among c2 are identified using
DE, Dsv

we, Dsv
dnn and HNS (kc = 10). Then, these configurations are compared to

the configurations selected by S̃V. Table 3 captures the quantity and quality
differences in the returned neighbor configurations. First, the percentage of con-
figurations returned by each metric that do not match those returned by S̃V
are shown. Next, the quality of the returned configurations for each metric is
demonstrated by tallying the additional volume swept by the returned neighbors
over the baseline provided by the configurations returned by S̃V. These values
demonstrate that DE selects very different neighboring configurations than S̃V,
in one example incurring a 171% increase in swept volume. In contrast, Dsv

we, with

weights optimized to mimic S̃V, chooses more similar neighboring configurations
with only an up to 7% increase in additional volume swept for the L-shaped and
Kuka manipulator robot. However, the simple weights face difficulty capturing
the highly nonlinear SV of the 15 DOF manipulator well, resulting in a 166%
increase in volume swept. In contrast, HNS chooses neighboring configurations
closest to S̃V, and the additional volume swept is much lower than any other
Euclidean-based metric, i.e., 2.7 to 3.5 times smaller than Dsv

we. As expected,

Dsv
dnn selects neighboring configurations closest to S̃V for all robots tested. How-

ever, computing Dsv
dnn is much slower than HNS, and efficient nearest neighbor

data structures cannot be used since Dsv
dnn does not form a metric space.
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7 Conclusion

The ability of DNNs to approximate any continuous bounded function makes
them especially well suited to estimate swept volume. We demonstrated this
ability for several multibody systems, from a rigid body to manipulator systems.
To further enhance efficiency for use in complex sampling-based motion planning
scenarios, we integrated the DNN with a trained weighted Euclidean metric.
The hierarchical combination of learned metrics retains metric space properties
along with high-fidelity. This hierarchical combination of metrics improved the
performance of both RRT and PRM planners in all scenarios tested, particularly
when the robot has a highly articulated body.
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