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Locality-preserving fermion-to-qubit mappings are especially useful for simulating lattice fermion
models (e.g., the Hubbard model) on a quantum computer. They avoid the overhead associated with
non-local parity terms in mappings such as the Jordan-Wigner transformation. As a result, they
often provide solutions with lower circuit depth and gate complexity. A major obstacle to achieving
near-term quantum computation is quantum noises. Interestingly, locality-preserving mappings
encode the fermionic state in the common +1 eigenstate of a set of stabilizers, akin to quantum
error-correcting codes. Here, we discuss a couple of known locality-preserving mappings and their
abilities to correct/detect single-qubit errors. We also introduce a locality-preserving map, whose
stabilizers are products of Majorana operators on closed paths of the fermionic hopping graph. The
code can correct all single-qubit errors on a 2-dimensional square lattice, while previous locality-
preserving codes can only detect single-qubit errors on the same lattice. Our code also has the
advantage of having lower-weight logical operators. We expect that error-mitigating schemes with
low overhead to be useful to the success of near-term quantum algorithms such as the variational
quantum eigensolver.

We are closer to realizing the potential of quantum
computation [1–3] with the recent rapid advances in
quantum computing devices such as ion traps [4–6] and
superconducting qubits [7, 8]. While performing fault-
tolerant quantum computation [9] is widely regarded as
the ultimate goal, the substantial overheads prevent it
from being implemented in the immediate future [10, 11].
In the meantime, error-mitigation schemes are likely to
be an essential component for the success of near-term
quantum algorithms [12–19].

Fermionic systems must be mapped to spin systems
before they can be simulated on a digital quantum com-
puter [20]. Mappings such as the Jordan-Wigner (JW)
transformation introduce nonlocal parity terms when the
spatial dimension is greater than one. These terms add
considerable overhead to quantum simulations of local
fermionic systems. Clever circuit compilation methods
have been introduced to reduce the overhead of the par-
ity terms on digital quantum computers with all-to-all
connections [21, 22].

The non-locality resulting from parity becomes more
prominent on near-term quantum devices, where only ge-
ometrically local two-qubit gates are available [23, 24].
To overcome this difficulty, the fermionic SWAP gate
can be used to bring together fermonic modes encoded
far apart in the JW transformation [25]. It was shown
that fermionic SWAP network offers asymptotically opti-
mal solution to simulating quantum chemistry problems
in terms of circuit depth [26–28]. For other problems,
such as the two-dimensional (2D) fermionic Fourier trans-
formation, the fermionic SWAP network is not optimal;
this transformation can be implemented with a quadrat-
ically shorter circuit depth by going between different
bases [29].

∗ qzj@google.com

Locality-preserving fermion-to-qubit mappings avoid
the parity terms and can be extremely useful for sim-
ulating geometrically local fermionic systems on a quan-
tum computer. Bravyi and Kitaev [25] discovered a way
to map fermionic operators defined on a graph to qubit
operators on its vertex-to-edge dual graph; a stabilizer
operator (also called gauge operator in the literature)
is introduced for each closed path in the graph. The
fermionic state is encoded in the common +1 eigenspace
of the stabilizers. This mapping is called Bravyi-Kitaev
superfast (BKSF) transformation [30] or superfast encod-
ing [31], referring to “superfast simulation of fermions
on a graph.” It is not to be confused with the widely
known Bravyi-Kitaev (BK) transformation introduced in
the same paper [25]; the difference is that the BK trans-
formation does not preserve locality and requires no more
qubits than the number of fermionic modes.

Locality-preserving maps are closely related to lattice
gauge theories. Levin and Wen [32, 33] showed that
particular fermionic lattice models can be described in
terms of gauge fields in lattice spin models. Ball [34] ex-
tended the Levin-Wen result to general fermionic hop-
ping Hamiltonians by introducing auxiliary Majorana
modes; Verstraete and Cirac [35] discussed a similar
map for fermions on d-dimensional square lattices, where
d − 1 auxiliary qubits are introduced for each fermionic
mode. This approach is called the Ball-Verstraete-Cirac
(BVC) transformation or the auxiliary fermion approach.
Chen et al. introduced a map similar to the one by BKSF
with examples from free fermions on square and hon-
eycomb lattices to the Hubbard model [36]. Recently,
Steudtner and Wehner [37] constructed a class of locality-
preserving fermion-to-qubit mappings by concatenating
the JW transformation with quantum codes. Some appli-
cations of locality-preserving mappings to quantum sim-
ulation were discussed in [30, 38].

Locality-preserving fermion-to-qubit mappings share
many similarities with quantum error-correcting codes,
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where the fermionic states are encoded in the common +1
eigenspace of the stabilizer operators. Very recently, Se-
tia et al. [31] discussed a generalized version of the BKSF
transformation and their relations to error-correcting
codes. We expect error-mitigating methods to be useful
in near-term quantum algorithms, such as the variational
quantum eigensolver (VQE) [39]. A crucial step in either
VQE or phase estimation is to prepare the initial state,
which is often taken to be the ground state of a meanfield
approach such as Hartree-Fock. In chemistry, the differ-
ence between the meanfield energy and the exact energy
is referred to as the “correlation energy”, and despite de-
termining essential elements of chemical bonding, it often
only amounts to between 1-5% of the total energy [40, 41].
Physically, this is because a large fraction of the energy
comes from core electrons that contribute very little di-
rectly to essential chemical bonding. However, because of
the energy scale difference, even small errors in this part
of the calculation can overwhelm any refinements a quan-
tum computer can provide. Therefore, even a 1% error
in the preparation of the mean-field state could render
any correlations added by the rest of the circuit fruitless.
One can drastically reduce the error rate in state prepa-
ration by using an error-detecting code and post selecting
the measurement outcomes [14, 15, 18, 19]. Furthermore,
error-detecting codes can also be used for quantum error
suppression by creating an energy gap between the code
subspace and the orthogonal subspace [42–44].

A no-go theorem was proven recently in [31] showing
that the BKSF defined on graphs with vertex degree
d ≤ 6 cannot correct all single-qubit errors. We intro-
duce a new type of locality-preserving mappings based on
the BKSF, called Majorana loop stabilizer code (MLSC).
The MLSC on a square lattice (vertex degree 4) can cor-
rect all single-qubit errors while the BKSF can only de-
tect single-qubit errors. Moreover, the logical operators
in MLSC have lower weights than those in BKSF, making
it easier to implement.

In Sec. I, we review some properties of the Majorana
fermions that are crucial to the rest of paper. In Sec. II,
we review the BKSF and how it can be used to detect
single-qubit errors. In Sec. III, we introduce the Majo-
rana loop stabilizer code and discuss how to use them to
correct single-qubit errors. In Sec. IV, we discuss how
to encode a single Slater determinant with locality pre-
serving mappings. In Sec. V, we conclude the paper.
In App. A, we briefly review quantum error-correcting
codes. In Apps. B and C, we discuss how to construct
quantum error-correcting/detecting codes from the aux-
iliary fermion approaches.

I. MAJORANA OPERATORS

In this section, we review some properties of the Majo-
rana operators which will be used to construct the map-
pings in the later sections. The Majorana operators have
the advantage of being Hermitian and unitary at the

same time (self-inverse). They also allow for treating all
the fermionic operators on an equal footing. The single-
mode Majorana operators are defined as linear combina-
tions of the fermionic ladder operators

f2k = c†k + ck , f2k+1 = i(c†k − ck) , (1)

where c†k and ck are the fermionic creation and annihi-
lation operators, respectively. They satisfy the simple
relations

f†k = fk , { fj , fk } = 2δj,k , (2)

where {· , ·} is the anticommutator and δ the Kronecker
delta function.

The single-mode Majorana operators f0, f1, . . . , f2n−1,
together with the phase factor i, generate a group M2n.
An arbitrary element in M2n takes the form

ϕfA , fA =
∏
k∈A

fk , (3)

where ϕ ∈ {±1,±i} is an overall phase factor. The set
A ⊆ {0, 1, . . . , 2n − 1} is the support of the Majorana
operator. The order of the operators in the product fA
matters, and we follow the convention that the index k
increases monotonically from left to right. The weight
of a Majorana operator equals the number of fermionic
modes that it acts nontrivially on, i.e., the weight of fA is
|A|. Two Majorana operators fA and fB either commute
or anticommute,

fAfB = (−1)|A|·|B|+|A∩B| fBfA . (4)

The commutation relationship is determined by the par-
ity of the overlap |A ∩B| when either |A| or |B| is even.

In terms of Majorana operators, the fermionic occupa-
tion operator reads

c†kck =
1

2

(
11 + if2kf2k+1

)
, (5)

where 11 is the identity operator. The fermionic hopping
term takes the form

c†jck + h.c. =
i

2

(
f2jf2k+1 − f2j+1f2k

)
. (6)

We focus on problems where fermions can only hop be-
tween neighboring vertices of a undirected graphG(V,E),
with vertices V and edges E. Consider the following set
of quadratic Majorana operators

ηk = if2kf2k+1 , for each vertex k ∈ V , (7a)

ξjk = if2jf2k , for each edge (j, k) ∈ E. (7b)

The occupation term (5) and the hopping term (6) can
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be expressed as

c†kck =
1

2

(
11 + ηk

)
, (8a)

c†jck + h.c. = − i
2

(
ξjkηk + ηjξjk

)
. (8b)

The operators in Eq. (7) generate a groupMeven
2n , consist-

ing of Majorana operators of even weights. Any physical
fermionic Hamiltonian can be written as a sum of ele-
ments in the group Meven

2n .
The quadratic Majorana generators in Eq. (7) are both

Hermitian and unitary. They satisfy the commutation
relations

ηjηk = ηkηj , (9a)

ηlξjk = (−1)δjl+δklξjkηl , (9b)

ξlmξjk = (−1)δjl+δkl+δjm+δkmξjkξlm . (9c)

To have a complete description of the algebra, we need
to introduce the following condition on any closed path
in the graph G,

(−i)` ξk0k1ξk1k2 · · · ξk`−1k0 = 11 , (10)

where ` is the length of the path. This relation implies
that the generators in Eq. (9) are not independent. The
total number of independent closed paths is NE−NV +1,
where NV (NE) is the total number of vertices (edges)
of the graph G. In the next section, we will see that the
condition (10) is not automatically satisfied when the
fermion operators are mapped to qubit operators.

II. THE BRAVYI-KITAEV SUPERFAST
TRANSFORMATION

In this section, we first review the fermion-to-qubit
mapping introduced by Bravyi and Kitaev that conserves
geometry locality [25]. This mapping was called Bravyi-
Kitaev superfast (BKSF) transformation [30] or super-
fast encoding [31], referring to “superfast simulation of
fermions on a graph.” Concerning the Hubbard model,
it was shown that the BKSF has an advantage over the
JW transformation and the BK transformation in terms
of total number of gates [45]. Here, we also show how to
use the BKSF to detect (but not correct) all single-qubit
errors on a 2D square lattice.

Bravyi and Kitaev considered fermionic hopping prob-
lem defined on a graphs G, where fermions can hop be-
tween neighboring vertices. One qubit is introduced for
each edge of the graph G, and the fermionic state is en-
coded in a subspace of the qubits, see Fig. 1. The goal
is to find qubit operators that share the same algebra
as the fermionic operators, e.g., Eqs. (9) and (10). To
achieve that, we first choose an arbitrary ordering of the
incident edges for each vertex of G, e.g., (l, k) < (j, k)
means that the edge (l, k) is placed before (j, k) among

F0 F1

F2F3

F4

F5

Q01

Q12Q03

Q23

Q05

Q35

Q34 Q24Q45

FIG. 1. BKSF on a graph: the vertices (blue circles) of the
graph represent fermionic modes; fermions can hop between
neighboring vertices. One qubit (orange ellipses) is introduced
for each edge of the graph. The fermionic state is mapped to
a subspace of the qubits.

all the incident edges of the vertex k. The quadratic Ma-
jorana operators in Eq. (9) can be mapped to the qubit
operators by

ηk 7→ η̃k =
∏

j: (j,k)∈E

Zjk , (11)

ξjk 7→ ξ̃jk = εjkXjk

∏
l: (l,k)<(j,k);

(l,k)∈E

Zlk
∏

m: (m,j)<(k,j);
(m,j)∈E

Zmj ,

(12)

where the antisymmetric coefficients εjk = −εkj = ±1
can be chosen arbitrarily for each edge (j, k). The qubit

operators η̃k and ξ̃jk satisfy the same commutation rela-
tions as those of the fermionic operators in Eq. (9).

The qubit operator corresponding to the conserved
quantity in Eq. (10) is

Sk0k1 ···k`−1
= (−i)` ξ̃k0k1 ξ̃k1k2 · · · ξ̃k`−1k0 , (13)

which remains unchanged under any cyclic permutation
of the indices k0, k1, . . . , k`−1. These loop operators form
an Abelian group, and the fermionic state is encoded
in their common +1 eigenspace. We refer these opera-
tors as stabilizer operators. They are also called gauge
operators in the literature, not to be confused with the
noncommuting gauge operators in subsystem quantum
error-correcting codes [46]. As a consequence of the com-
mutation relations (9), the stabilizers commute with all

the logical operators η̃k and ξ̃jk. They also commute with
each other, and their common +1 eigenspace define the
code subspace C,

|ψ 〉 ∈ C , if and only if Sk0k1 ···k`−1
|ψ 〉 = |ψ 〉 , (14)

for all closed paths (k0, k1, . . . , k`−1, k0) in the graph G.
Hence the restriction of the closed loop stabilizers to the
code space act as the identity, as in the case of the Ma-
jorana operators.

The mapping (11) artificially introduces an extra con-
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served quantity,

NV −1∏
k=0

η̃k = 11 , (15)

which corresponds to the even-parity subspace of the
original fermionic system. To simulate the odd-parity
subspace, one can change the sign in the mapping (11)
for a particular value of k, say k = 0,

η̃k 7→ (−1)δk,0

∏
j: (j,k)∈E

Zjk . (16)

The stabilizer operators in the BKSF can be used for
quantum error detection/correction if implemented prop-
erly. This ideas were also discussed very recently in [38],
where a no-go theorem was proved: the BKSF cannot
correct all single-qubit errors if d ≤ 6, where d is the
vertex degree of the graph G. Here, we show that BKSF
can detect all single-qubit errors on a 2D square lattice
by properly choosing the orders of the incident edges.

Consider the BKSF encoding of spinless fermionic
modes on a 2D lattice, see Fig. 2; the ordering of the
edges associated with a vertex is indicated by the num-
bers next to it. We use the convention that εjk = 1 if the

i j k

l m n

o p q

1

3

02

1

3

02

1

3

02

1

3

02

1

3

02

1

3

02

1

3

02

1

3

02

1

3

02

FIG. 2. BKSF on a 2D lattice with a specific ordering of the
incident edges. This code can detect all single-qubit errors.

site k is to the right or below the site j; under this con-
vention, we have εk0k1εk1k2 · · · εk`−1k0 = 1 for any closed
path. The closed paths containing the smallest number
of edges are plaquettes. The stabilizer operator corre-
sponding to the plaquette (m,n, q, p,m) is the product
of the corresponding edge operators, see Fig 3,

Smnqp = ξ̃mn ξ̃nq ξ̃qp ξ̃pm

= XmnXnqZnqXqpZqpXpmZjmZlm

= −XmnYnqYqpXpmZjmZlm , (17)

where we used the condition εmnεnqεqpεpm = +1. These
plaquette operators generate the stabilizer group,

S =
{
Sk0k1k2k3 | for all plaquettes

}
. (18)

m n

qp

X

Y

Y

X

Z

Z

FIG. 3. Plaquette stabilizer for the BKSF code given the ver-
tex and edge ordering in Fig 2, up to an overall minus sign.
From the chosen ordering, the above figure specifies the stabi-
lizer that results from any generating plaquette in the graph.
In the case of the infinite or periodic lattice, it is uniform.
In the case of a finite lattice, the structure stays roughly the
same, however the dangling Z operators are removed in the
case there is no edge they connect to in the graph, and the
adjacent edges may change from X to Y .

The syndrome of a Pauli error can be described by the set
of plaquette stabilizers with which it anticommutes. The
single-qubit error Zlm anticommutes with two stabilizers,
Sijml and Slmpo. In general, a Pauli-Z error anticom-
mutes with all the stabilizers involving the edge it acting
on. The single-qubit error Xlm anticommutes with only
two stabilizers, Sijml and Smnqp. The same holds true
for the single-qubit error Xjm; therefore, these two errors
have the same syndrome and can only be detected but
not corrected. The Pauli error Ylm anticommutes with
Slmpo and Smnqp, which has the same syndrome as Zmp.
In App. F, we list the syndromes of all the single qubit
errors for the BKSF on an infinite lattice with the specific
edge ordering in Fig. 2. These results show that all single-
qubit errors can be detected, but some of which share the
same syndromes and cannot be corrected. One has to be
careful for open-boundary conditions; for example, the
Pauli-Y errors at the bottom of an open lattice commute
with all stabilizers and cannot be even detected.

III. MAJORANA LOOP STABILIZER CODES

A nature question to ask is whether the BKSF on a
square lattice can correct all single-qubit errors. The no-
go thereom in [31] implies that the BKSF on a 2D (or
even 3D) square lattice cannot correct all single-qubit
errors. An example was also given in [31] to get around
the no-go theorem lattice by introducing extra ancillary
vertices and edges, which increase the degree of the orig-
inal vertices from 4 to 8 on 2D square lattices. Here,
we introduce a locality-preserving map that correct all
single-qubit errors on 2D square lattices, without intro-
ducing any additional vertices or edges. Compared to the
BKSF, logical operations can also be implemented with
lower-weight Pauli operators with our code.

Similar to the BKSF, the logical operators in our code
satisfy the commutation relations of the quadratic Ma-
jorana operators in Eq. (9). The stabilizers (13) of the
code also correspond to the products of Majorana opera-
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tors on a loop. Therefore, we call such a code Majorana
loop stabilizer code (MLSC); the BKSF is a special case
of the MLSC. The logical operators are allowed to be
non-uniform with respect to vertices as well as to involve
Pauli-Y operators, which allows the MLSC to evade the
no-go theorem in [31]. We discuss the code using the
2D square lattice as an example, see Fig. 4; each cir-

i j k

l m

po

n

q

FIG. 4. The structure of the code: each circle represents a
vertex in the 2D lattice; its color denotes one of the four type
of vertex. Similarly, the color of a plaquette indicates the type
of the corresponding stabilizer.

cle therein represents a vertex (fermionic mode), and its
color indicates the type of the vertex. There is one stabi-
lizer operator associated with each plaquette (4 vertices),
and its color indicates the type of the stabilizer.

The logical operators and the stabilizer related to a red
plaquette, e.g., the one consisting of the vertices m, n,
p, and q, are plotted in Fig. 5. The Pauli operators X,

Y

X

Y

X

Y

X

Y

X

m n

qp

Z

Z

Z

X

X

Z

Z

Z

X

X

Z

Z

Z

X

X

Z

Z

Z

X

X

(a)

m n

qp

Z

Z

Z

Z

(b)

FIG. 5. (a) The logical operators associated to the red pla-
quette in Fig. 4. Similar to the BKSF, there is one physical
qubit situated on each edge of the lattice, and X, Y , and
Z denote the corresponding Pauli operators. Each vertex
operator η is mapped to a product of three Pauli-Z opera-
tors linked by a curved dashed line. Each edge operator ξ is
mapped to a product of single-qubit Pauli operators linked by
a solid/dotted line, where the unique Pauli-X operator acts
on the corresponding edge of ξ. The two rightmost (leftmost)
Pauli-X operators are shared by the vertices n and q (m and
p) and the their right (left) neighbors, and similarly for the
two top (bottom) Pauli-X operators. This plaquette has a
rotational symmetry of order 4 (unchanged by a rotation of
angle π/2). (b) The stabilizer operator Smnqp associated to
the plaquette up to a minus sign.

Y , and Z therein act on the qubits on the correspond-
ing edges. Each quadratic Majorana operator in Eq. (7)

is mapped to a product of single-qubit Pauli operators
linked by a line. The vertex operator ηm is mapped to
a product of three Pauli-Z operators linked by a curved
dashed line around the site m, and similar for the other
vertex operators. The edge operator ξmn is mapped to
the Pauli operator Z⊗X⊗Y ⊗Z on the upper dotted line,
where the only Pauli-X operator acts on the edge (m,n).
The same rule applies to the remaining edges operators
ξ, where the Pauli-X operator always acts on the corre-
sponding edge of ξ. These operators satisfy the commu-
tation relations (9), which we checked numerically. The
stabilizer associated to the plaquette is plotted in Fig. 6a,
up to an overall minus sign.

Smnqp = ξ̃mn ξ̃nq ξ̃qp ξ̃pm = −ZmnZnqZqpZpm , (19)

where we use the same definition (13) and convention
as in the BKSF example; εjk = 1 if the site k is to the
right or below the site j. We refer terms such as ξmn,
ξmnηm, ξmnηn, or ξmnηmηn as generalized edge opera-
tors. The weight of any generalized edge operator in the
red plaquette is greater or equal to three. This is a neces-
sary condition for correcting all single-qubit errors. The
BKSF violates this condition on a 2D lattice no matter
how the incident edges are ordered.

The entire code can be constructed by putting together
the four types of vertices illustrated in Fig. 5a, where
each Pauli-X operator is shared by two neighboring ver-
tices. For clarity, we plot the logical operators in the
green plaquette consisting of the vertices l, m, o, and p
in Fig. 6; the logical operators and the stabilizer of the

Y

X

Y

X

Y

X

X

Y

X

XX

X

ml

o p

Z

Z

Z

X

Z

Z

Z

X

Z

Z

Z

X

Z

Z

Z

X

(a)

l m

po

Y

X

Y

X

Z Z

X

ZZ

X

(b)

FIG. 6. (a) The logical operators of the green plaquette con-
sisting of the vertices l, m, o, and p. This plaquette has a
rotational symmetry of order 2 (unchanged by a rotation of
an angle π). (b) The stabilizer Slmpo of the plaquette up to
a minus sign.

yellow plaquette consisting of the vertices i, j, l, and m
are plotted in Fig. 7; the logical operators of the blue
plaquette consisting of the vertices j, k, m, and n are
plotted in Fig. 8. Any generalized edge operator in the
green, yellow, or blue plaquette also has weight w ≥ 3.

We now go a step further to argue that any logical
operator M 6∈ S must have weight w ≥ 3. Such an
operator can be specified as the product (up to an overall
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Y

X
Y

X

Y

X
Y

X

X

X
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ji

Z

Z

Z

Z

Z

Z

Z
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Z

Z

Z

X

X

X

XX

(a)

i j

ml

X

Y

Y

Y

X

Z Z

Z

Z

(b)

FIG. 7. (a) The logical operators of the yellow plaquette
consisting of the vertices i, j, l, m. (b) The corresponding
stabilizer Sijml up to a minus sign.

Y

X
Y

X

Y

X
Y

X

X

X

X

X

m n

j k

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

X

X

X

X

(a)

j k

nm

Y

Y

X

Y

Z

Z

X

ZZ

(b)

FIG. 8. (a) The logical operators of the blue plaquette con-
sisting of vertices j, k, m, and n. These logical operators
are identical to those in Fig. 7a by a π rotation. (b) The
corresponding stabilizer Sjknm up to a minus sign, which is
identical to the one in Fig. 7b by a π rotation.

sign)

M =
∏

(j,k)∈EM

ξ̃jk
∏
l∈VM

η̃l , (20)

where EM and VM are the sets of edges and vertices
that determines M . Without loss of generality, we as-
sume that for any vertex j ∈ VM there must be an edge
(j, k) ∈ EM for some vertex k; otherwise, the weight of
M can be reduced by removing j from VM . We refer a
vertex j as a single-paired vertex if exactly one of its in-
cident edges is in EM ; at least one Pauli-Z operator on
the other three incident edges of j contributes to M no
matter whether j ∈ VM or not. If there are more than
one single-paired vertex in VM , the weight of M must be
greater or equal to three; this is because there must be
some Pauli-X or Y components in M to make it anti-
commute with the vertex operators on the single-paired
vertices, besides at least two Pauli-Z operators associ-
ated with the single-paired vertices. When VM contain
two edges, the only case with less-than-two single-paired

vertices is two parallel edges sitting next to each other.
One can check that the weights of such logical operators
are always greater or equal to three in Figs. 5-8. The
specific choice of the vertex layout in Fig. 4 is important
to preventing the opposite from happening.

To make the discussion of the syndromes of the single-
qubit errors easier, we label the stabilizers in Fig. 9. The

i j k

l m

po

n

q

S0 S1 S2 S3

S9

S5

S8

S13

S10

S4

S12

S7S6

S11

S14 S15

FIG. 9. The stabilizers on the plaquettes for syndrome detec-
tion.

syndrome of a single-qubit error can be described by the
stabilizer operators that it anticommutes with. Here, we
list the syndromes of the single-qubit errors on all the
incident edges of the vertex m in Fig. 9,

Xmp : S10, S13, Zmp : S9, S14 , (21)

Xlm : S4, S5, S6, S9, Zlm : S5, S9 , (22)

Xmn : S5, S10, Zmn : S6, S9 , (23)

Xjm : S2, S5, S6, S9, Zjm : S5, S6 . (24)

These single-qubit errors (Pauli-Y errors not listed) have
different syndromes. We have checked that all the single-
qubit errors have different syndromes on a 8 × 8 lattice
with periodic boundary conditions (128 qubits).

To simulate lattice fermion problems, we often need to

implement the hopping term c†jck + c†kcj and the occu-

pation term c†kck, see Eqs. (8a) and (8b). With the 2D
BKSF in Fig. 2, both the vertical and horizontal hopping
terms are mapped to qubit operators of weight 6. With
our code, the hopping terms are mapped to qubit oper-
ators of weight no more than 4 (sometimes 3); the occu-
pation terms can also be implemented with lower-weight
qubit operators. Being able to implement logical oper-
ations with low-weight Pauli operators while correcting
all single-qubit errors is a desired feature for near-term
quantum error-mitigating schemes. In Fig. 10, we sum-
marize the differences between our code and the BKSF
on a 2D lattice.

IV. ENCODING A SLATER DETERMINANT

In this section, we discuss how to encode a single Slater
determinant with MLSC in circuit depth O(1). For sim-
plicity, we only consider Slater determinants in the com-
putational basis; arbitrary Slater determinants can be
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distance occupation hopping

BKSF 2 4 6

Our code 3 3 4 (3)

FIG. 10. A comparison of our code to BKSF on a 2D square
lattice in terms of the code distance, weights of the occupation
terms, and weights of the hopping terms.. The code here
exhibits improved distance and weight properties.

prepared by applying single-particle basis transforma-
tions to these determinants. The encoded Slater deter-
minant is a common eigenstate of the stabilizers and the
vertex operators,

S`|ψdet 〉 = |ψdet 〉, for all ` ∈ L , (25)

η̃k|ψdet 〉 = zk|ψdet 〉, for all k ∈ V , (26)

where L consists of a complete set of independent closed
paths in G, and zk = ±1 indicates whether the kth
fermionic site is unoccupied or occupied. We start from
a product state in the computational basis

Zjk|ψprod 〉 = zjk|ψprod 〉 , (27)

where Zjk is the Pauli-Z operator on the edge (j, k).
We first consider the case of BKSF. The eigenvalues

zjk = zkj are chosen such that∏
j: (j,k)∈E

zjk = zk . (28)

There are some freedoms in assigning the values zjk; one
for each independent closed paths in G. The constraints
in Eq. 28 can be converted to a system of linear equations
over GF (2) by mapping zjk ± 1 to the binary values 0
and 1. When a Hamiltonian path (0, 1, . . . , `− 1) of the
graph G is known, we can assign the values of zjk in the
Hamiltonian path according to

z0,1 = z0 , zk,k+1 = zk zk−1,k , (29)

where k = 1, 2, . . . , ` − 2. We then assign the value +1
to all of the remaining zjk, and the condition (28) is
satisfied. More generally, we can assign values to zjk
with the following four steps: 1. find a spanning tree T
of the graph G, which takes linear time in |V |, 2. assign
the values in T starting from the leaves towards the root;
if j is a parent node of k, assign zjk to be the product of
zk and zkl for all the children l of k, 3. set the value of the
remaining edges that are not in T to +1. This algorithm
requires that the total parity of the vertex operators to
be even as each Pauli-Z on the edges of the spanning
tree appears in two vertex operators. In App. D, we also
present an algorithm to assign values to zjk without using
a Hamiltonian path or a spanning tree.

With the MLSC in Sec. III, not all the incident edges

participate in the vertex operator η̃k, and the condi-
tion (28) is modified to∏

j: (j,k)∈Ek

zjk = zk , for all k ∈ V , (30)

where Ek is the set of edges that are involved in η̃k. We
use the notion E′ to denote the set of edges (j, k) such
that (j, k) ∈ Ej and (j, k) ∈ Ek. One can assign values to
zjk with the following four steps: 1. check the total parity
of the vertex operators for each connected part of the
graph (V,E′), 2. if the parity is odd, find an edge (j, k)
in the connected part such that (j, k) is involved in η̃j but
not η̃k, set the value of zjk to −1, 3. find a spanning tree
of the connected part and use the algorithm for BKSF
to assign the values to the edges in the spanning tree,
4. after going through all the connected parts, set the
values of the remaining edges to +1.

The resulting state |ψprod 〉 is an eigenstate of all the
vertex operators with the prescribed eigenvalues,

η̃k|ψprod 〉 = zk , for all k ∈ V . (31)

We then measure the values of the stabilizer operators
S` and record the measurement results as s`. Since
the stabilizers commute with the operators η̃j , the post-
measurement state satisfies

S` |ψpost 〉 = s` |ψpost 〉 , for all ` ∈ L , (32)

η̃j |ψpost 〉 = zj |ψpost 〉 , for all j ∈ V . (33)

Generally, some of the measurement results of the stabi-
lizers will be −1. One simple way to resolve this problem
is to reassign the values εjk in Eq. (12), and the signs of
the stabilizers change accordingly. This procedure cor-
responds to encoding the fermionic state in a different
subspace of the stabilizers; the signs of logical operators
change accordingly. The reassignment is straightforward
when there is a known Hamiltonian path in G. We keep
εjk unchanged for all the edges (j, k) in the Hamiltonian
path. Any remaining edge εlm along with a section in the
Hamiltonian path form an independent closed path. We
flip the value of εlm if the measurement outcome of the
corresponding stabilizer is −1. More generally, the reas-
signment of εjk can be achieved with three steps: 1. find
a spanning tree T of the graph G, 2. assign the original
value εjk to all of the edges (j, k) in the spanning tree T ,
3. flip the sign of any remaining term if the measurement
outcome of the stabilizer is −1.

V. CONCLUSION

While hardware that supports full fledged fault-
tolerant schemes is still unavailable, error mitigation
schemes are likely to be an essential part of quantum al-
gorithms in the NISQ era [47]. A merit of these near-term
quantum error-mitigating schemes is to be flexible to the
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hardware and the problem being implemented. We con-
sider error correction/detection in quantum simulation of
many-body fermonic systems with local interactions, e.g.,
the Hubbard model. The locality of the fermion Hamil-
tonian is often lost when they are mapped to qubits using
conventional methods, such as the Jordan-Wigner trans-
formation. Locality-preserving fermion-to-qubit maps
prevent this by encoding the original fermions into a sub-
space of the qubit operators corresponding to the com-
mon +1 eigenstates of a set of stabilizer operators. This
makes sure that parity is conserved when fermions transit
around closed paths.

Locality-preserving mappings also allow for quantum
error correction/detection, and one of the leading candi-
dates is the superfast encoding presented by Bravyi and
Kitaev [25]. Indeed, we show that the Bravyi and Kitaev
encoding can detect all single-qubit errors on a 2D square
lattice when the orders of the incident edges are chosen
properly.

Very recently, it was proved that the Bravyi-Kitaev
superfast encoding cannot correct all single-qubit errors
on graphs with vertex degree less or equal to six [31].
We get around this no-go theorem by introducing a map-
ping that is more general than the original Bravyi-Kitaev
superfast encoding. We call it a Majorana loop stabi-
lizer code, meaning that the stabilizers are constructed
from the qubit correspondences of products of Majorana
fermion operators on closed paths. We show that these
codes can correct all single-qubit errors on 2D square lat-
tices with vertex degree four. The logical operators in our
code can also be implemented with Pauli-operators with
lower weights compared to the Bravyi-Kitaev superfast
encoding. We also discuss how to encode a single Slater
determinant with the Majorana loop stabilizer code in
circuit depth O(1). Future work will include generalizing
the code to other lattices and higher dimensions, design-
ing fast gate sequences to implement the logical oper-
ators, simplifying syndrome measurements, and making
the code more robust to errors.
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Appendix A: A brief review of quantum
error-correcting codes

Quantum devices are vulnerable to decoherence due
to interactions with environments. It was once believed
that decoherence sets an upper limit on time and size
for quantum computation [48]. Such a limitation was
later overcome, at least in theory, with the invention of
quantum error-correcting codes [49–51]. It was shown
that quantum computation can be made robust against

errors when the error rate is smaller than a constant
threshold [52, 53]. The surface code approach is a natural
choice for fault-tolerant quantum computation, which re-
quires only nearest-neighbor couplings and modest gate
fidelity [9, 54].

The error threshold of fault-tolerant protocols are de-
rived by bounding an operator norm such as the diamond
norm [55], which translates to a pretty stringent require-
ment when the amplitudes of coherent errors add to-
gether. For example, if one gate has over-rotation θ, then
a sequence of N gates could produce an over-rotation of
Nθ and an error probability proportional to N2. In order
to get this worst case behavior, however, the errors have
to add together in a coherent way. This is unlikely to
happen in practice, therefore, coherent errors may be no
worse for fault tolerance than incoherent ones. Indeed,
a Pauli- or Clifford-twirling may be used to convert any
noise channel into a simple mixture of Pauli errors or
depolarizing noise [56, 57].

A quantum [[n, k, d]] code specifies a 2k-dimensional
subspace of n physical qubits, with which k logical qubits
can be encoded. The distance d of a quantum error-
correcting code is the minimum weight of a Pauli error
by which an element of the code space can be transformed
into an orthogonal element of the code space, e.g., a log-
ical error happens. The weight of a Pauli error is the
number of qubits on which a non-identity Pauli transfor-
mation acts on. An [[n, k, d]]-quantum code can detect
up to weight d−1 errors, and can correct errors of weight
up to t satisfying 2t < d.

A large class of quantum error-correcting codes can be
described by the stabilizer formalism. Consider the Pauli
group Pn of an n qubit system, and let S be its subgroup
generated by r commuting, independent generators (the
stabilizers). The common +1 eigensubspace of all the
elements in S defines the code subspace of dimension 2k

where k = n − r. Let C(S) be the centralizer of S, the
set of elements in Pn that commute with all elements of
S. The logical operators can be specified by using the
elements in C(S) that satisfy the commutations of Pauli
operators.

Appendix B: The auxiliary fermion approach

In this appendix, we take a different approach to
construct locality-preserving fermion-to-qubit mappings
that can also detect/correct single-qubit errors. This ap-
proach is based on the auxiliary fermion method intro-
duced by Ball [34], and by Verstraete and Cirac [35].
We show that the map itself is not particularly good for
detecting/correcting errors. In the next appendix, we
improve this situation by combining two unit cells as a
block.

Consider fermions hopping between neighboring sites
on a 2D lattice; one auxiliary fermionic mode is intro-
duced for each data fermionic mode. Each vertical hop-
ping term is accompanied with a quadratic Majorana
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operator on the two corresponding auxiliary modes. We
then map the fermions to qubits using the Jordan-Wigner
transformation with row-major order, snake shape, and
data modes interleaved with the corresponding auxiliary
modes. The parity terms from the quadratic Majorana
operator cancel the ones from the vertical hopping terms,
and this makes the resulting Hamiltonian local. To re-
produce the original physics, the state of the auxiliary
subsystem is restricted to the common +1 eigenspace of
the quadratic Majorana operators.

We use f2k and f2k+1 (γ2k and γ2k+1) to denote the
two Majorana operators associated to the kth data (aux-
iliary) mode. Using the JW transformation, the Pauli
operators of the data qubits can be expressed as

Xk = P k−10 f2k , Yk = P k−10 f2k+1 , Zk = if2kf2k+1 ,
(B1)

where the parity operator is the product of all the Majo-
rana operators in a particular interval,

P kj =

k∏
m=j

(
if2mf2m+1

)(
iγ2mγ2m+1

)
, (B2)

The parity operator anticommutes with any single-mode
Majorana operator in its support. Similarly, the Pauli
operators of the auxiliary qubits take the form

X̃k = P k−10 Zkγ2k , Ỹk = P k−10 Zkγ2k+1 , Z̃k = iγ2kγ2k+1 .
(B3)

The horizontal hopping term can be implemented with
local qubit operators,

if2j+1f2j+2 = iP j−10 YjP
j
0Xj+1 = −XjZ̃jXj+1 . (B4)

The vertical fermionic hopping term takes the form

if2j+1f2k = iP j−10 YjP
k−1
0 Xk = iYjP

k−1
j Xk , (B5)

where j and k are neighboring qubits in the same column.
To get rid of the non-local parity operator in Eq. (B5),
we introduce the gauge operator of the auxiliary modes,

iγ2j+1γ2k = i
(
P j−10 Zj Ỹj

)(
P k−10 ZkX̃k

)
= iZj ỸjP

k−1
j ZkX̃k , (B6)

where j and k are neighboring sites in the same column.
The hopping term can be implemented locally by attach-
ing the gauge operator to it,

(if2j+1f2k)(iγ2j+1γ2k) = Xj ỸjYkX̃k . (B7)

To retain the same physics, we restrict the state to be a
common +1 eigenstate of the gauge operators,

〈ψ |iγ2j+1γ2k|ψ 〉 = 1 . (B8)

This constrain can be made local by combining two neigh-
boring gauge operators together,

(iγ2j+1γ2k)(iγ2j+3γ2k−2)

= (iZj ỸjP
k−1
j ZkX̃k)(iZj+1Ỹj+1P

k−2
j+1 Zk−1X̃k−1)

= −X̃jZj+1Ỹj+1ZkX̃kỸk−1 . (B9)

The introduction of the stabilizer operators allows for
correcting/detecting certain kinds of errors. The syn-
drome of a Pauli error can be described by the set of
gauge operators that anticommute with it. Any Majo-
rana operator anticommutes with a gauge operator if and
only if it contains exactly one of the two single-mode Ma-
jorana operators in the gauge operator. The code cannot
detect Pauli-Z errors on the data qubits as they are logi-
cal operations and commute with all gauge operators. It
can detect any single-qubit Pauli-X or -Y error on the
data qubits and to correct any single-qubit error on the
auxiliary qubits. The original auxiliary fermion approach
is not especially efficient in correcting errors occurred on
the data qubits.

Appendix C: Combining two unit cells in BVC

In the last example, the Pauli operators of the physical
qubits are expressed in terms of the Majorana fermion op-
erators of the data modes and the auxiliary modes. Here,
we use the same gauge operators defined in Eq. (B6), but
we encode four data Majorana modes and four auxiliary
Majorana modes into a block of 4 physical qubits. This
allows for correcting 10 out of 12 single-qubit errors in
the block and detecting the rest two.

For simplicity of notation, we omit the block indices
in the operators, e.g., f2k+2 is denoted as f2. The Pauli
operators on the kth block are constructed from the Ma-
jorana operators,

X0 = iPf0f1γ1 , Y0 = iPf2f3γ0 , (C1)

X1 = iPf1f2γ3 , Y1 = iPf0f3γ2 , (C2)

X2 = iPf2γ1γ2 , Y2 = iPf0γ0γ3 , (C3)

X3 = iPf3γ1γ3 , Y3 = iPf1γ0γ2 , (C4)

where P is a shorthand of the parity operator P k−10 ,
i.e., the product of all the preceding Majorana opera-
tors. These operators commute with any single-mode
Majorana operator on the first k− 1 blocks and the cor-
responding Pauli operators. These operators satisfy the
commutation relations of the Pauli matrices. Inversely,
the Majorana operators take the form

f0 = PX0Y1Y2Z3 , γ0 = PY0Z1Y2Y3 , (C5)

f1 = −PX0X1Z2Y3 , γ1 = −PX0Z1X2X3 , (C6)

f2 = PY0X1X2Z3 , γ2 = −PZ0Y1X2Y3 , (C7)

f3 = −PY0Y1Z2X3 , γ3 = −PZ0X1Y2X3 . (C8)
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The logical fermionic operators within the cell are

if0f3 = −Z0X2Y3 , if1f2 = −Z0Y2X3 , (C9)

if0f1 = −Z1X2X3 , if2f3 = Z1Y2Y3 (C10)

which correspond to the horizontal hopping terms and
the occupation terms. The inter-block horizontal hop-
ping terms can be constructed by using the inverse re-
lations (C5-C8); the weight of the corresponding logical
operators is seven. All the terms containing one data
Majorana operator and one auxiliary Majorana operator
from the same block are three local, e.g.,

if0γ1 = X1Z2Y3 , if1γ1 = Y1Y2Z3 . (C11)

Vertical hopping terms can be implemented by a 6-local
Pauli operator corresponding to the product of two pairs
of such operators. The stabilizer can be either 6 local
or 14 local depending whether they are intra-block or
inter-blocks.

There are 4 auxiliary Majorana operators γ0,1,2,3 as-
sociated to a block, each of which form a gauge op-
erator with another auxiliary Majorana operator from
the block above or below. To analyze the syndromes of
the single-qubit errors, we first look at the parity term
P k−10 . The parity term anticommutes with gauge op-
erators that share one common single-mode Majorana
operator with it. This set includes two kinds of gauge
operators: 1. those consist of one auxiliary Majorana op-
erator to the left (right) of the kth block and an auxiliary
Majorana operator below it, 2. those consist of one aux-
iliary Majorana operator to the right (left) of the kth
block, including the kth block, and an auxiliary Majo-
rana operator above it, One can determine the block k,
based on the syndromes of P , if a Pauli-X or Y error has
occurred. Any single-qubit Pauli-X or Y error contains
a unique combination of the auxiliary Majorana opera-
tors in the block k, see Eqs. (C1)-(C4). Therefore, their
syndromes are different.

The Pauli-Z errors do no involve the parity term. For
example, the Pauli operator Z0 and Z1 contain the aux-
iliary Majorana operators γ0γ1 and γ2γ3 in the block,
these syndromes allows one to identify the block where
the error has happened. Both of the Pauli errors Z2 and
Z3 contain the same product γ0γ1γ2γ3 and have the same
syndrome. Therefore, the code can correct 10 out of the
12 single-qubit errors in the block and detect the remain-
ing two single-qubit errors Z2 and Z3.

Appendix D: Algorithms to set initial qubit values

In this appendix, we give an algorithm to assign initial
values to the qubits for preparation of a Slater deter-
minant. This algorithm requires neither a Hamiltonian
path nor a spanning tree.

Algorithm 1 Assign values to zjk

Input:
1: G . a connected undirected graph
2: V . the set of vertices of G
3: E . the set of edges of G
4: zk ∈ {±1} . for each vertex k ∈ V

5: procedure RmLeg(k) . remove the leg with the
degree-one vertex k ∈ V , i.e., Deg(k) = 1

6: find j ∈ V such that (j, k) ∈ E
7: zjk ← zk
8: V ← V \{k}
9: E ← E\{(j, k)}

10: if Deg(j) = 0 then V ← V \{j}
11: else if Deg(j) = 1 then RmLeg(j)
12: end if
13: end procedure
14: while there exist degree-one vertex k ∈ V do
15: RmLeg(k)
16: end while
17: while E 6= ∅ do
18: randomly pick an edge (j, k) ∈ E
19: zjk ← +1
20: E ← E\{(j, k)}
21: if Deg(k) = 1 then RmLeg (k)
22: end if
23: if Deg(j) = 1 then RmLeg(j)
24: end if
25: end while

Appendix E: Code on single open plaquette

1. BKSF

Here we work out the simple example of the BKSF sta-
bilizer in a 2×2 graph of vertices, labeled i, j, k, l. In this
case, there are 4 vertices, and 4 edges representing the
physical qubits. There is one stabilizer following the gen-
eral relation NE −NV + 1 for independent closed paths
on the graph. That reduces the total logical space to
3 qubits, representing a parity conserving subspace. A
number of different stabilizers can result from different
edge orderings, however the most convenient for our pur-
poses is one that follows a cycle such that the stabilizer
is

Sijkl = ξ̃ij ξ̃jk ξ̃klξ̃li

= (XijZjk)(XjkZkl)(XklZli)(XliZij)

= (XijZij)(ZjkXjk)(ZklXkl)(ZliXli)

= −YijYjkYklYli (E1)

From this, we see that any individual X or Z error on a
physical qubit of this code anti-commutes with this sta-
bilizer. As a result, it’s possible to detect and post-select
on any single qubit X or Z error, and more generally any
odd number of X or Z errors. However it is easy to see
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that the code fails to detect a Y error on any single qubit
and by extension we cannot correct arbitrary single qubit
errors with this encoding.

Appendix F: Code on BKSF infinite lattice

Here we consider the properties of a BKSF encoding of
a square regular lattice of fermions that extends in each
direction. For this code, the physical qubits on an edge
always participate in two generating plaquettes, and each
edge is treated identically to all others from symmetry.

The following 4 stabilizers involve vertex m, and can
be read directly from Fig 3 as

Sijml = −XijYjmYmlXliZii′Zii′′

Sjknm = −XjkYknYnmXjmZijZjj′′

Slmpo = −XlmYmpYopXolZll′Zli

Smnqp = −XmnYnqYqpXpmZmjZml (F1)

where we have labeled the off figure indices by i′ for to
the left of i and i′′ for above i. Taking these 4 plaquettes
constitute the complete set of stabilizers that act on the
physical edge qubits Emj and Eml. We characterize the
syndromes of each of these errors in table 11.

To determine the possibility of error correction,
one wants to see that for any E†aEb where Ep ∈
{Xmj , Ymj , Zmj , Xml, Yml, Zml} there is a stabilizer op-
erator that anti-commmutes with it. This is sufficient
for a recovery operation to exist for that set of errors.
From table 11, we see this is not the case for all errors.
Hence the BKSF transformation on an infinite square lat-
tice with the given ordering is capable of detecting single
qubit errors, but not correcting them in general.

Appendix G: Code on BKSF torus

Here we look at a patch of the BKSF code under pe-
riodic boundary conditions so that it forms a torus. For
a size lattice that is 3 × 3 or larger, by symmetry it is
again acceptable to look at the representative stabilizers
that involve the vertex m in the figure pictured in the
main text. From the infinite lattice, we can get the cor-
responding stabilizers from appropriate assignment of the
indices with periodic boundary conditions corresponding
to a 2D-torus. This yields the stabilizers involving vertex
m as

Sijml = −XijYjmYmlXliZikZio

Sjknm = −XjkYknYnmXjmZijZjp

Slmpo = −XlmYmpYopXolZlnZli

Smnqp = −XmnYnqYqpXpmZmjZml (G1)

which from inspection we see are qualitatively the same
as the case for the infinite lattice. That is, we expect the

Sijml Sjknm Slmpo Smnqp
Xmj −1 1 1 −1

Ymj 1 −1 1 −1

Zmj −1 −1 1 1

Xml −1 1 1 −1

Yml 1 1 −1 −1

Zml −1 1 −1 1

XmjYmj −1 −1 1 1

XmjZmj 1 −1 1 −1

XmlYml −1 1 −1 1

XmlZml 1 1 −1 −1

XmjXml 1 1 1 1

XmjYml −1 1 −1 1

XmjZml 1 1 −1 −1

XmlYmj −1 −1 1 1

ZmlYmj −1 −1 −1 −1

XmlZmj 1 −1 1 −1

ZmjYml −1 −1 −1 −1

ZmjZml 1 −1 −1 1

FIG. 11. Syndromes of different errors on the infinite square
BKSF lattice. The convention here currently uses −1 to im-
ply anti-commutation with the error and 1 to imply commu-
tation. The first block looks at syndromes of single errors on
the edges for the purpose of detection and the second block
examines the related quantity E†aEb related to the possibility
of correcting those errors.

same commutation relations for the stabilizers and the
representative edges Eml and Emj .

Appendix H: Code on BKSF open section

Considering now a finite square lattice with open
boundary conditions with the standard ordering in this
work, we may again work from Fig 3. In this case, all
the plaquettes except those on the left or upper bound-
aries of the graph are the same, where the dangling Z
operators are truncated.

For interior edges more than 1 plaquette from a bound-
ary, the same detection and correction results from the
infinite case apply. However, at the boundary, there are
now generally edges that are covered by only 1 or 2 pla-
quettes instead of 3, as in the interior cases. As a re-
sult, even error detection at the edges can become prob-
lematic. For example, in the bottom left plaquette of a
square lattice with open boundary conditions, one is in-
capable of detecting a single X error on that edge. This
means that we expect there are a number of undetectable
errors in this case as well, especially at boundaries. This
may still allow the mitigation of some errors, but is less
powerful than the periodic case for this choice of order-
ing. For a finite graph, it may be possible to devise a
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custom or non-uniform ordering that restores the power to detect errors, however we do not investigate that here.
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