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Abstract—In order to accurately model the behaviors of a
voice coil actuator (VCA), the three-dimensional (3-D) method is
preferred over a lumped model. However, building a 3-D model of
a VCA is often very computationally expensive. The computation
efficiency can be limited by the spatial discretization, the multi-
physics nature, and the nonlinearities of the VCA. In this work,
we propose incorporating the recurrent neural network (RNN)
into the multiphysics simulation to enhance its computation
efficiency. In the proposed approach, the multiphysics problem
is first solved with the finite element method (FEM) at full 3-D
accuracy within a portion of the required time steps. A RNN is
then trained and validated with the obtained transient solutions.
Once the training completes, the RNN can make predictions on
the transient behaviors of the VCA in the remaining portion
of the required time steps. With the proposed approach, it
avoids solving the 3-D multiphysics problem at all time steps
such that a significant reduction of computation time can be
achieved. The training cost of the RNN model can be amortized
when a longer duration of transient behaviors is required. A
loudspeaker example is used to demonstrate the enhancement
of the computation efficiency by using RNN in the multiphysics
modeling. Various structures of neural networks and tunable
parameters are investigated with the numerical example in order
to optimize the performance of the RNN model.

Index Terms—Finite element method, gated recurrent unit,
long short-term memory, machine learning, multiphysics, recur-
rent neural network, voice coil actuator.

I. INTRODUCTION

Voice coil actuators (VCAs) utilize the interaction between
the current going through the voice coil and the magnetic
field from a permanent magnet to produce force. The working
principle of VCAs first appears in loudspeakers and has there-
after been extended to many applications. For example, voice
coils are adopted in digital cameras to achieve shorter focusing
time [1]. Voice coils are also designed as critical components
in positioning systems with precision control in microscopy,
lithography, and alignment [2], [3]. There are also consumer
electronics that integrate voice coils into the touch input [4],
[5]. The prevalence of voice coils leads to an increasing
demand on accurately modeling VCAs for both design and
optimization purposes. The types of approaches of modeling
VCAs falls into two major categories, namely, lumped and
three-dimensional (3-D) models. In general, building a lumped
model is computationally efficient. One significant drawback
of a lumped model is its accuracy [6]. For example, in a
lumped model of a loudspeaker where a set of parameters are
used to describe the stiffness, mass, and damping, the accuracy
of the model can only be retained up to a certain frequency
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Fig. 1: The parts in a loudspeaker.

beyond which the motion pattern can no longer be assumed
as piston. In order to achieve adequate accuracy, the model
has to consider the physical quantities of all three dimensions,
known as 3-D models. Owing to its unmatched capabilities
in modeling complex geometries and material properties, the
finite element method (FEM) [7], [8] has become one of the
most popular approaches in 3-D modeling.

It is well known that generating 3-D models can be very
computationally expensive. The computation burden primarily
results from the spatial discretization and is further exacer-
bated by the multiphysics nature of and the nonlinearities
involved in VCAs. In this work, we describe the formulation of
the 3-D FEM-based multiphysics modeling approach through
a loudspeaker example. As shown in Fig. 1, the voice coil
is connected to the diaphragm through the former. When a
time-varying current is applied to the voice coil, the coil
moves up and down due to its interactions with the magnetic
field of the permanent magnet. Consequently, the former and
the diaphragm moves up and down, and the later pushes
the air and creates sound. The 3-D FEM-based multiphysics
modeling approach consists of two parts: one electromagnetic
analysis and one mechanical analysis. The electromagnetic
analysis solves for the Lorentz force on the voice coil, which
is taken as the excitation in the mechanical analysis. The
mechanical analysis solves for the deformation, the velocity,
and the acceleration of the diaphragm. The coupling between
the electromagnetic and the mechanical analyses is one way
through the Lorentz force. At higher amplitude the loudspeaker
behaves nonlinearly, generating signal components that do not
exist in the input signal [8]. The nonlinearities are caused by
the transducer principle and are directly related to, the voice
coil, the suspension, and the material properties [9]. Therefore,
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the 3-D FEM-based multiphysics modeling approach has to be
formulated in the transient regime such that the nonlinearities
can be properly addressed. In order to address the nonlinear-
ities, Newton-like iterations are required at every time step in
the transient simulation.

There are efforts in developing novel numerical techniques
to enhance the computation efficiency while dealing with this
multiphysics problem. In previous work, domain decompo-
sition and parallel computing have been incorporated into
the multiphysics simulations, which significantly reduces the
computation time [10]–[12]. In this work, we take a different
route and use machine learning methods, to be specific,
the recurrent neural networks (RNNs) [13] to improve the
computation efficiency. RNNs have been successfully applied
to tasks related to time-sequence modeling such as speech
recognition and natural language processing [14], [15]. We
incorporate RNN into the multiphysics modeling and use it to
predict the transient behaviors of VCAs. Instead of solving the
multiphysics problem at all required time steps, we first obtain
the results from the 3-D FEM-based multiphysics simulation
within only a portion of the required time steps, with which a
RNN is trained and validated. Once the training completes, the
RNN can start making predictions on the transient behaviors
of VCAs in the remaining time steps. There are several
advantages of employing RNN in the multiphysics modeling:
with RNN, one does not have to solve the nonlinear system
associated with the multiphysics problem repeatedly at all time
steps, which leads to a significant reduction of computation
time; the training cost can be amortized if transient behaviors
at additional time steps are in need; the simulation with RNN
does not require specific domain knowledge as the predictions
are simply achieved through inference. It is worth mentioning
that the proposed multiphysics simulation methodology with
RNN can be easily mitigated to broader applications related
to transient electromechanical analysis [12], [16] beside the
voice coil actuators demonstrated in this work.

It is known that a vanilla RNN cannot remember things for
very long durations due to the issue of vanishing gradients.
One remedy to this problem is to design a more sophisticated
activation function with gating units, for example, the long
short-term memory (LSTM) unit [17], [18] and the gated
recurrent unit (GRU) [19]. Through the loudspeaker example,
we compare the vanilla RNN, LSTM network, and GRU
network on their performances in the multiphysics modeling.
It is found that the vanilla RNN does not achieve adequate
accuracy in the multiphysics modeling due to the limitation
imposed by the temporal dependency. We also investigate
the performance of the LSTM network in predicting transient
behaviors of VCAs with respect to various tunable parameters
such as the optimization methods and activation functions.

II. 3-D FEM-BASED MULTIPHYSICS MODELING

In this section, we describe the detailed formulation of
the 3-D multiphysics modeling approach based on the finite
element method. We also illustrate the causes of nonlinearities
in the loudspeaker example shown in Fig. 1 including the
nonuniform distribution of magnetic field over the gap and
the nonlinear material properties.

A. Electromagnetic Analysis

The governing equation describing the interaction of the
current-carrying voice coil with the magnetic field of a per-
manent magnet is derived from Maxwell’s equations

∇×H = J (1)

∇×E = −∂B
∂t

(2)

∇ ·B = 0, (3)

where E is the electric field, H is the magnetic field,
B denotes the magnetic flux density, and J represents the
conduction current. The derivation of the governing equation
also relies on the constitutive relations

B =
↔
µ ·H (4)

J = σE, (5)

where
↔
µ and σ are the permeability tensor and the conductivity

of the material, respectively. The current density J can be
represented by the auxiliary vector potential T as

J = ∇× T . (6)

Consequently, the magnetic field H can be written as

H = T +∇Ω + Hs, (7)

where Ω is the magnetic scalar potential and the source field
Hs is due to known current densities in the conductors. There-
fore, the governing equation of the electromagnetic analysis
can be derived as

∇ ·
(
↔
µ · ∇Ω

)
= −∇ ·

(
↔
µ ·Hs

)
(8)

in the nonconducting regions and

∇×
(

1

σ
∇× T

)
+
↔
µ · ∂

∂t
(T +∇Ω) = −↔µ · ∂

∂t
Hs (9)

in the conducting regions. It can be seen that the T -Ω
formulation employs vector potential only within conductors.

The Lorentz force acting on the voice coil can be calculated
by

F =

∫
Ωe

J ×B dV,

where Ωe represents the region in which the excitation current
exists.

B. Mechanical Analysis

The finite element discretization to the transient mechanical
analysis leads to the following system

[M ] {ü}+ [C] {u̇}+ [K] {u} = {F} , (10)

where [M ], [C], and [K] are the mass, damping, and stiffness
matrices, respectively, and {u}, {u̇}, and {ü} are vectors con-
taining the displacement, velocity, and acceleration fields, re-
spectively. The temporal discretization follows the Newmark-
Beta method [20] in the following form

u̇n+1 = u̇n + (1− γ) ∆tün + γ∆tün+1 (11)

un+1 =un + ∆tu̇n +

(
1

2
− β

)
∆t2ün + β∆t2ün+1,(12)
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Fig. 2: The force factor of the overhang and underhung coil-
gap configuration.

in which γ = 0.5 and β = 0.25 are typically used, ∆t is the
time step, and the subscript n denotes the nth time step. Once
the displacement field is obtained, one can use Equations (11)
and (12) to update the corresponding velocity and acceleration
fields, respectively.

C. Nonlinearities of VCAs

One major nonlinearity of the loudspeaker shown in Fig.
1 arises from the nonuniform magnetic flux density over the
gap region. The force factor often used in a lumped model
well explains the nonlinearity of this kind. The force factor
is calculated by integrating the magnetic flux density over the
length of the voice coil. The force factor in both overhung
and underhung configurations are depicted in Fig. 2. It can
be seen from Fig. 2 that the force factor is displacement-
dependent, so as the magnetic flux density in the gap region.
The shape of the force factor depends on the geometry of the
coil-gap configuration [9]. For example, the force factor in the
underhung case where the height of the coil is less than the
gap decreases with displacement without a constant region at
low amplitude.

Another major nonlinearity of the loudspeaker shown in
Fig. 1 results from the stiffness of the suspension system.
As shown in Fig. 1, the suspension system consisting of a
spider and a surround is able to restore the coil back to the
reset position, keeping the coil in the gap. The suspension
system acts as a string, restricting the motion along the axial
direction by suppressing the rocking modes. However, when
the displacement becomes larger than a certain threshold, the
stiffness of the suspension becomes displacement-dependent
such that the restoring force contains nonlinear terms of the
displacement. The stiffness is also frequency-dependent due
to the visco-elastic behavior of the suspension system.

In addition to the displacement-dependent magnetic flux
density and the stiffness of the suspension, material properties
such as the nonlinear relationship between the magnetic field
strength and the flux density described in Equation (4) can
also cause nonlinearities in the loudspeaker shown in Fig. 1.

III. RECURRENT NEURAL NETWORK

Figure 3(a) shows a unit of a vanilla RNN [13], in which
the activation of the hidden state {ht} at time t depends on

(a)

(b)

Fig. 3: A unit of (a) a vanilla RNN and (b) a LSTM network.

both the input of the same time step and the hidden state of
the previous time step. In a vanilla RNN, the output is usually
the same as the hidden state and the update of the later follows{

ht
}

= φ
(
[W ]

{
xt
}

+ [U ]
{
ht−1

})
, (13)

where φ is a smooth, bounded function, for example, a sigmoid
function. Unfortunately, it has been found out that as the span
of the temporal dependencies increases, the gradient-based
optimization becomes increasingly inefficient as the gradients
tend to vanish or explode [21]. In order to handle this problem,
a more sophisticated activation function with gating units has
been developed, for example, the long short-term memory
(LSTM) unit as shown in Fig. 3(b). It can be seen from Fig.
3(b) that there is a second state {c} named the memory state
in additional to the hidden state {h}. The hidden state {h} is
a gated version of the memory state {c}.

There are three gates within a LSTM unit, namely, the input
gate {i}, the forget gate {f}, and the output gate {o}, which
can be written as{

it
}

= σ
(
[Wi]

{
xt
}

+ [Ui]
{
ht−1

})
(14){

f t
}

= σ
(
[Wf ]

{
xt
}

+ [Uf ]
{
ht−1

})
(15){

ot
}

= σ
(
[Wo]

{
xt
}

+ [Uo]
{
ht−1

})
, (16)

where σ denotes the sigmoid function with the expression

σ(z) =
1

1 + e−z
. (17)

All these three gates make decisions by using the input and the
previous hidden state. The input gates operates on the memory
state candidate and determines whether the later can be used
to update the memory state. The memory state candidate has
the expression of{

c̃t
}

= tanh
(
[Wc]

{
xt
}

+ [Uc]
{
ht−1

})
, (18)

where the hyperbolic tangent function is expressed as

tanh(z) =
ez − e−z

ez + e−z
. (19)
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Similar to the input gate, the forget gate makes an assessment
on whether the previous memory state is useful in computing
the current memory state. With both the input and the forget
gates, the memory state can be updated with the following{

ct
}

=
{
f t
}
◦
{
ct−1

}
+
{
it
}
◦
{
c̃t
}
, (20)

where ◦ represents an element-wise multiplication. Once the
memory state is updated, one can write it to the hidden state
by using the output gate{

ht
}

=
{
ot
}
◦ tanh

({
ct
})
. (21)

The GRU [19] is a popular variant of the LSTM unit. A GRU
keeps the gating functions but merges the memory state into
the hidden state. A GRU looks similar to a vanilla RNN unit as
shown in Fig. 3(a). Therefore, instead of having three gates as
how a LSTM unit is constructed, a GRU has only two gating
functions, namely, a reset gate {r} and an update gate {z},
both of which depend on the input and the previous hidden
state. The update of the hidden state candidate can be achieved
through{

h̃t
}

= tanh
(
[Wh]

{
xt
}

+ [Uh]
({
rt
}
◦
{
ht−1

}))
. (22)

After that, the hidden state can be updated through{
ht
}

=
(
{1} −

{
zt
})
◦
{
ht−1

}
+
{
zt
}
◦
{
h̃t
}
. (23)

Because of the increased complexity of the LSTM unit and
the GRU, it takes longer computation time for the information
to propagate through the network comparing to a vanilla
RNN. The data for training, validation, and test purposes in
building the neural network models are obtained with ANSYS
Workbench [22].

IV. NUMERICAL EXAMPLE

In this section, we use the loudspeaker example to demon-
strate the computation efficiency enhancement of the multi-
physics simulation through the incorporation of RNN. In the
numerical example, a two-tone current is applied to the voice
coil of the loudspeaker, one tone at 50 Hz and the other
one at 1 kHz. The transient behaviors of the loudspeaker
in terms of the current, the induced voltage, and the force
on the voice coil, and the deformation, the velocity, and the
acceleration of the diaphragm can all be captured with the
multiphysics simulation. The multiphysics simulation can also
capture the nonlinearities associated with the loudspeaker. It
can be seen from Fig. 4(a) that the input current has only
nonzero components at 50 Hz and 1 kHz. Because of the
nonlinearities, both harmonic and intermodulation distortions
take place, which is demonstrated through the spectrum of
the induced voltage and the Lorentz force shown in Fig. 4(b)
and (c), respectively. Figure 5 depicts the distribution of the
acceleration field captured by the FEM-based multiphysics
simulation.

In this example, the total number of time steps is 20,000 as
required. The multiphysics simulation is performed on the first
14,000 time steps for training and validation purpose. When
the training completes, the LSTM network takes over the

0 0.5 1 1.5 2 2.5 3

Frequency (kHz)

0

2

4

6

8

10

In
p
u
t 

C
u
rr

en
t 

(A
)

(a)

0 0.5 1 1.5 2 2.5 3

Frequency (kHz)

0

50

100

150

200

In
d
u
ce

d
 V

o
lt

ag
e 

(V
)

(b)

0 0.5 1 1.5 2 2.5 3

Frequency (kHz)

0

10

20

30

40

50

F
o
rc

e 
(N

)

(c)

Fig. 4: The spectrum of (a) the input current, (b) the induced
voltage, and (c) the Lorentz force on the voice coil of the
loudspeaker.

multiphysics simulation and predicts the transient behaviors
of the loudspeaker in the remaining 6,000 time steps. For the
electromagnetic analysis based on FEM, it takes 21 iterations
within each time step to achieve the convergence in solving the
nonlinear problem where the residual is set to be 10−4. It takes
34 seconds for the electromagnetic analysis at each time step
to complete solving the nonlinear system with 50,602 degrees
of freedom (DOFs). The computation is performed with Intel
Xeon CPU E5-2680 v2 @2.8GHz.

There are four hidden layers in the LSTM network and
each layer has the width of 20, 30, 10, and 10, respectively.
The training takes 5 epochs and 61 seconds in total for the
residual to drop below 10−4. The training cost is shared by
the 6,000 time steps in the test set. It takes 0.003 seconds for
the LSTM network to make the prediction at one time step
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Fig. 5: Distribution of the acceleration field (m/s2) of the loud-
speaker captured by the FEM-based multiphysics simulation.

through inference. Considering the cost of both training and
inference, it takes about 0.02 seconds for the LSTM network
to produce results at one time step, which is a lot shorter than
the 34 seconds with the FEM-based electromagnetic analysis
in the 3-D simulation.

The prediction by the LSTM network achieves good ac-
curacy. A portion of the predicted waveforms for the input
current, the induced voltage, and the Lorentz force on the
voice coil is provided in Fig. 6(a), (b), and (c), respectively.
The predictions in terms of the mechanical behaviors including
the deformation, the velocity, and the acceleration on the
diaphragm are depicted in Fig. 7(a), (b), and (c), respectively.
It can be seen that the predictions agree very well with the
test set. For example, the root-mean-square error (RMSE) is 32
nm in terms of the predicted deformation through the LSTM
network whereas the actual range of the deformation is from
-701 to 660 nm. The RMSE is approximately 2.4% of the
range of the deformation in the test set.

The comparison among three different structures of neural
networks in terms of the prediction accuracy is provided in
Table I. The comparison is performed based on the RMSE
of the predicted deformation of the loudspeaker diaphragm.
It is worth mentioning that the length of the input sequence,
denoted by n in Table I, measures the number of time steps
used in predicting the behavior at the future time step. As
shown in Table I, when the length of the input sequence
increases from two to ten, the prediction accuracy of the
vanilla RNN improves significantly. It is understood that when
more prior data are included, the temporal dependency is
reduced such that the vanilla RNN achieves better prediction
accuracy. It can also be seen in Table I that LSTM and GRU
networks achieve better prediction accuracy than the vanilla
RNN. The prediction accuracy of LSTM and GRU networks
does not vary significantly with respect to the length of input
sequence because the sophisticated activation with gating units
handles the temporal dependency very well.

Through the numerical example, we investigate the perfor-
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Fig. 6: The predicted (a) input current, (b) induced voltage,
and (c) Lorentz force on the voice coil of the loudspeaker. The
prediction is made through a LSTM network on the test set.

mance of the neural network models with various optimization
methods. With the fixed maximum number of epochs, the
convergence speeds achieved by the different optimization
methods often translate to different prediction accuracies. We
perform the numerical experiment on three variants of the
stochastic gradient descent (SGD) method, namely, the plain
SGD (GradientDescentOptimizer in TensorFlow), the
Adagrad variant (AdagradOptimizer in TensorFlow), and
the Adam variant (AdamOptimizer in TensorFlow) [23]. As
can be seen from Fig. 8, Adagrad achieves significantly better
convergence speed than SGD and Adam while predicting de-
formations. The convergence speed is measured by the mean-
square error (MSE) with respect to the number of epochs. Note
that the data preprocessing is applied prior to the training.

Activation function is another important tunable parame-
ter of neural networks. In a LSTM network, the activation
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TABLE I: The RMSE of the predicted deformation on the diaphragm with vanilla RNN, GRU network, and LSTM network
with varying lengths of input sequence. The length of input sequence, denoted by n, measures the number of time steps used
in predicting the behavior at the future time step.

n = 2 n = 10 n = 50

RNN 146 nm 78 nm 76 nm

GRU 43 nm 33 nm 31 nm

LSTM 41 nm 35 nm 32 nm
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Fig. 7: The predicted (a) deformation, (b) velocity, and (c)
acceleration field of the diaphragm in the loudspeaker. The
prediction is made through a LSTM network on the test set.
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Fig. 8: The convergence speeds achieved by three different
optimization methods, namely, SGD, Adam, and Adagrad. The
convergence speed is measured by the mean-square error of
deformations with respect to the number of epochs.

functions associated with the input, the forget, and the output
gates are fixed as sigmoid functions. It is because the sigmoid
function squashes the signal into the range from 0 to 1, with
0 denoting no flow and 1 representing complete flow of the
information through the gate. The hyperbolic tangent function
cannot be used in this case as it squashes the signal into the
range from -1 to 1. Similarly, the rectified linear unit (ReLU)
cannot be used for the gates as it may amplify the signal when
it is passing through the gate. The selection of the activation
function is further verified by the results shown in Fig. 9.
When the hyperbolic tangent function or ReLU is used for the
recurrent activation, the training process does not converge at
all.

The activation function applied to the memory candidate
and hidden states has to be hyperbolic tangent function in
this example as all the physical quantities describing the
loudspeaker behaviors have both negative and positive values.
It shows in Fig. 10 that when ReLU is used as the activation
function on both the memory candidate and the hidden states,
only the positive values of deformations remain after the
prediction. It can be seen from the numerical results in Figs.
9 and 10 that selecting the appropriate activation functions is
critical in making meaningful and accurate predictions for the
loudspeaker behaviors with neural networks.
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Fig. 9: The convergence speeds achieved by three activation
functions for the gates in LSTM, namely, the sigmoid function,
the hyperbolic tangent function, and the rectified linear unit.
The convergence speed is measured by the mean-square error
of deformations with respect to the number of epochs.
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Fig. 10: The predicted deformation on the diaphragm of a
loudspeaker with the LSTM network where the rectified linear
unit is used as the activation function for both the memory
candidate and the hidden states.

V. CONCLUSION AND DISCUSSION

In this work, we describe the 3-D FEM-based multiphysics
modeling approach for VCAs. The FEM-based multiphysics
simulation integrates an electromagnetic analysis and a me-
chanical analysis, in which the coupling is one-way through
the Lorentz force on the voice coil. The FEM-based multi-
physics simulation is formulated in the transient regime such
that it can address the nonlinearities arising from both the
geometry and the material properties with adequate accuracy.
Through the FEM-based multiphysics simulation, one can
obtain the current, the voltage, and the force on the voice coil
as well as the deformation, the velocity, and the acceleration
on the diaphragm.

In order to improve the computation efficiency, we incorpo-
rate RNNs into the multiphysics simulation. In the proposed
approach, we first apply the FEM-based multiphysics simula-
tion to obtain the transient behaviors of VCAs on a portion
of the required time sequence. The obtained data are used
to train and validate the RNNs. Once the training completes,
the RNNs can make predictions on the transient behaviors
for the rest of the required time sequence. This RNN-based
approach requires no substantial domain knowledge and at
the same time saves complex and expensive 3-D simulations.

Through the loudspeaker example, it demonstrates that RNNs
can make accurate predictions on the transient behaviors of
VCAs in a highly efficient manner. Three types of RNNs, to be
specific, the vanilla RNN, LSTM network, and GRU network
are compared based on their performance in modeling VCAs.
Due to the limitation imposed by the temporal dependency,
the vanilla RNN cannot achieve adequate prediction accuracy
in the loudspeaker example, wheres both the LSTM and GRU
networks provide pretty accurate predictions. Various tunable
parameters including optimization methods and activation
functions associated with the LSTM network are investigated
through the loudspeaker example. It is critical to select the
appropriate activation functions in order for RNNs to make
meaningful and accurate predictions on the transient behaviors
of VCAs.
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