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Abstract

Dynamic mechanisms are a powerful technique in designing revenue-maximizing repeated auctions. Despite

their strength, these types of mechanisms have not been widely adopted in practice for several reasons, e.g., for

their complexity, and for their sensitivity to the accuracy of predicting buyers’ value distributions. In this paper, we

aim to address these shortcomings and develop simple dynamic mechanisms that can be implemented e�ciently,

and provide theoretical guidelines for decreasing the sensitivity of dynamic mechanisms on prediction accuracy

of buyers’ value distributions. We prove that the dynamic mechanism we propose is provably dynamic incentive

compatible, and introduce a notion of buyers’ regret in dynamic mechanisms, and show that our mechanism achieves

bounded regret while improving revenue and social welfare compared to a static reserve pricing policy. Finally, we

con�rm our theoretical analysis via an extensive empirical study of our dynamic auction on real data sets from

online adverting. For example, we show our dynamic mechanisms can provide a +17% revenue lift with relative

regret less than 0.2%.

1 Introduction
The majority of online advertising platforms run a sequence of repeated auctions to sell their inventory of page-views.

While much of the existing literature for such ad auctions discuss static one-shot auctions, using dynamic auctions

optimized across di�erent time periods could potentially bring signi�cant gains both in terms of revenue and social

welfare. The power of dynamic mechanisms has been observed by a number of recent papers [Bergemann and

Välimäki, 2002; Parkes and Singh, 2004; Cavallo, 2008; Athey and Segal, 2013; Kakade et al., 2013; Pai and Vohra, 2013;

Pavan et al., 2014; Devanur et al., 2015; Chawla et al., 2016]. We refer to the survey by Bergemann and Said [2011] for

a comprehensive treatment on the subject.

Even though dynamic mechanisms can be much more e�ective in maximizing revenue and social welfare, they

have not been widely adopted in practice. The main issues therein are partially the shortcomings of dynamic

mechanisms: One major issue is the complexity induced by the exponentially growing design space, making it di�cult

to solve or even to describe such mechanisms. Another issue is that the incentives under dynamic environments rely

on the consistency between the seller and buyers on the impact of current actions on future outcomes, while such

consistency requires a higher order common knowledge assumption that generally does not hold in practice. For

example, the accuracy of the seller’s prediction of the buyer’s valuations plays a key role in the level of dynamic

incentive compatibility ensured by the mechanism; the less accurate the seller’s belief about buyer’s valuation, the

more incentive constraints are violated. This becomes more challenging in high-dimensional settings where learning

buyers’ value distributions is very hard, and the estimates may be noisy.

Recently, a series of work has made signi�cant progress on the �rst issue of complexity described above. For

example, Ashlagi et al. [2016] and Mirrokni et al. [2016c] show that an ϵ-approximate optimal dynamic mechanism

∗
We thank the anonymous reviewers for their helpful comments.

†
The work was done when this author was an intern at Google.

‡
Contacts: {mirrokni, renatoppl, rren}@google.com

§
Contact: songzuo.z@gmail.com

1



 Electronic copy available at: https://ssrn.com/abstract=2956713 

can be e�ciently computed via a dynamic program. However, such an approach relies on the forecast of the sequence

of future items and then solves large linear programs recursively via backward induction. Mirrokni et al. [2016a]

introduce the so-called bank account mechanisms that have simple structure and can achieve the optimal revenue

with ex-ante individual rationality in single buyer cases. Later on, the authors extend the bank account framework to

guarantee ex-post individual rationality and show a simple randomized construction that 5-approximates the optimal

revenue for general multiple buyer cases [Mirrokni et al., 2016b]. Balseiro et al. [2017] consider a similar single buyer

setting with i.i.d. values over the items across di�erent periods and design simple and deterministic mechanisms that

approach the optimal revenue in the limit.

Despite all these improvements made on the complexity issue, the existing approaches above for multiple buyer

cases still require randomized allocation rules
1

that are undesirable in real applications. More importantly, none of

them has discussed the unavailability of the accurate prior knowledge on the distributions of buyer values in practice,

yet all of them adopt the dynamic incentive notion that is sensitive to the prediction errors on the buyer values.

Impacts of Learning on Incentives A central problem in the intersection of game theory and machine learning

is how to learn optimal mechanism from data (see for example the papers by Morgenstern and Roughgarden [2015,

2016]). For static mechanism design (the case studied in previous papers), errors in estimating distributions can hurt

revenue but don’t hurt incentive constraints. In dynamic mechanism design, the estimation error also harms incentive

compatibility. To the best of our knowledge, we are the �rst paper to formally de�ne and estimate a measure of

the robustness of the mechanism with respect to learning errors (buyer regret). This is particularly important since

dynamic mechanisms o�er a promise of quite signi�cant improvements in both revenue and allocation e�ciency

(both in theory and in data).

Our Contribution Firstly, we propose a family of special bank account mechanisms, coined Dynamic Second

Price Auctions (DSP), for general multiple buyer settings, which addresses the practical issues raised in the previous

paragraph. The auctions have a very common auction format (second price auctions with reserves) except that the

reserves are adjusted dynamically depending on the history of the auction.
2

Our main goal in this paper is not to

design the revenue optimal auction but instead to o�er a pragmatic design of dynamic mechanisms that can be

implemented in practice and is easy to switch from a second price auction with reserves, which is a default auction

run by most advertising exchanges.

We assume a baseline static second price auction with personalized reserves. We are agnostic to the nature of

those reserves, they can be either the revenue optimal reserves or chosen with a di�erent goal, e.g., to maximize a

combination of revenue and welfare. Our main theorem shows how to process existing reserves and produce an

auction that is dynamic incentive compatible (Theorem 3.1) and strictly improves over the baseline auction both in

terms of revenue and social welfare (Proposition 3.2). Moreover, we con�rm on data that this improvement is quite

signi�cant (Section 5).

The idea of the DSP is as follows: in static second price auctions, reserves improve revenue at the expense of

e�ciency. DSP �rst improves the e�ciency by introducing dynamic discounts on the reserves based on how much

utility the buyers accumulated in past periods. DSP then also introduces an extra payment (termed “bank account

spent”) that gives the buyer the right to participate in the auction with lower reserves. Such payments will compensate

for the loss in revenue by lowering reserves. The discount policy and the accompanying fees should be carefully

calculated not to harm incentive compatibility and individual rationality.

Secondly, we introduce the notion of buyer regret (or simply regret) to quantify how much the dynamic incentive

compatibility is violated (Section 4). Intuitively, the regret of a buyer means how much the buyer can increase his/her

utility by rejecting all the dynamic discounts. We import the bank account limits studied by Mirrokni et al. [2016a]

to enable a trade-o� between revenue lifts and buyer regrets: the regrets can be bounded by the product of bank

account limits and prediction errors (Theorem 4.2). Such insights provide theoretical guidelines to reduce the regret.

Finally, we conduct empirical studies to justify our insights on real data from online ad auctions (Section 5). To

the best of our knowledge, this is the �rst work that examines the power of simple dynamic auctions on real data sets.

In the �rst part, we simulate DSPs with di�erent baseline reserves and dynamic discounts and show how the revenue

lifts, regrets, and buyer utilities change as bank account limits increase. In particular, the revenue lift could be as

much as +150% comparing to the second price auctions with monopoly reserves [Hartline and Roughgarden, 2009]

1
The dynamic mechanisms by Balseiro et al. [2017] and Mirrokni et al. [2016a] are deterministic but both restricted to single buyer cases.

2
Although the idea is ported from Mirrokni et al. [2016a,b], the mechanism is carefully redesigned to meet the practical requirements (Section 3).
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while incurring relative regret 13% (of the corresponding buyer utility), or +17% revenue lift with relative regret less

than 0.2%. In the second part, we compare the statistics for the same auctions but with empirical distributions of

di�erent levels of accuracy (including simulations on synthetic data generated from known distributions, so we have

access to the ground truth distributions in this case) and observe that the regrets decrease signi�cantly while keeping

the revenue lifts almost unchanged. Combining the observations from both parts, we conclude that the guidelines

from Theorem 4.2 do help in reducing the regrets.

2 Preliminaries
We study a setting where a seller repeatedly interacts with n buyers selling one item per period over T periods. The

value of each agent i ∈ [n] for the item in period t ∈ [T ] is vit ∈ V . If x it ∈ [0, 1] represents the probability that agent

i is allocated the item in period t , his utility is vit · x
i
t .

Throughout this paper, (i) we use superscripts as the indices of agents, bold fonts for vectors of all agents (i.e.,

a = (a1, . . . ,an)), and superscript −i for the vector except the i-th element (i.e., a−i = (a1, . . . ,ai−1,ai+1, . . . ,an)); (ii)

we use subscripts as the indices of periods and a1..t to denote the sequence a1, . . . ,at .
The values vit are assumed to be drawn from independent

3
distributions F it . The distributions F it are assumed to

be common knowledge but the realizations of the random variables are initially unknown for both the agents and the

designer. At each period, the following events happen:

1. each agent i learns his value vit ∼ F it ;

2. each agent i reports value v̂it to the designer;

3. the designer implements an outcome x t ∈ [0, 1]n and charges the agents pt ;

4. each agent accrues utility uit = v
i
t · x

i
t − p

i
t .

A dynamic mechanism can then be described in terms of a pair of maps for each period, which associate the history

of reports v̂1..t = (v̂1, v̂2, . . . , v̂t ) to an outcome x t and payment pt , i.e., x t : Vnt → [0, 1]n and pt : Vnt → Rn .

Therefore we can de�ne:

uit (v
i
t ; v̂1..t ) = v

i
t · x

i
t (v̂1..t ) − p

i
t (v̂1..t )

If x t and pt are only functions of the valuationsvt reported in time t , the mechanism is static.

2.1 Dynamic Incentive Compatibility
A mechanism is incentive compatible if it provides incentives for agents to reveal their true types in each iteration.

Such conditions for dynamic mechanisms can be easily de�ned by backward induction: in the last period, regardless

of the history so far and other agents’ reports, it should be incentive compatible for each agent to report his true

value. This corresponds to the usual notion of incentive compatibility in (static) mechanism design:

viT = arg max

v̂ iT

uiT (v
i
T ; v̂1..T )

for all i, v̂1..T−1, v̂
−i
T ,v

i
T . To simplify notations, from now on we will omit the “for-all” quanti�cation and assume

all expressions are quanti�ed as “for-all” in its free variables. For the next-to-last-period, it should be incentive

compatible for the agent given that he will report truthfully in the following period:

viT−1
= arg max

v̂ iT−1

{
uiT−1
(viT−1

; v̂1..T−1) + E
v iT

[
uiT (v

i
T ; 〈v̂1..T−1,v

i
T , v̂

−i
T 〉)

]}
.

Proceeding by backward induction for all periods, we require that:

vit = arg max

v̂ it

uit (v
i
t ; v̂1..t ) +U

i
t (v̂

i
1..t |v̂

−i
1..T ) (DIC)

3
In practice, it is still fair to assume that the values of the agents (buyers) are independent conditional on each particular inventory and cookie.

If not independent, the weak version of truthfulness still holds, i.e., truthful if all other buyers bid truthfully.
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where the second term is the continuation utility, i.e., the expected utility obtained from the subsequent periods of the

mechanism assuming the agent reports truthfully:

U i
t (v̂

i
1..t |v̂

−i
1..T ) := E

v it+1. .T

[
T∑

τ=t+1

uiτ (v
i
τ ; 〈v̂1..t ,v

i
t+1..τ , v̂

−i
t+1..τ 〉)

]
A well-known fact in dynamic mechanism design is that DIC implies that agent i’s expected overall utility U i

0
(v̂−i

1..T )

is maximized by reporting truthfully in each period.

2.2 Ex-Post Individual Rationality
Another desirable constraint is ex-post individual rationality which says that an agent should derive non-negative

utility from the mechanism for every realization of the values:

T∑
t=1

uit (v
i
t ;v1..t ) ≥ 0 (eP-IR)

We will focus on the problem of maximizing revenue subject to DIC, eP-IR, and feasibility constraints:

max Rev = E

[
T∑
t=1

n∑
i=1

pit (v1..t )

]
s.t. (DIC), (eP-IR), and feasibility:

n∑
i=1

x it (v1..t ) ≤ 1

2.3 Bank Account Mechanisms
The space of mechanisms satisfying DIC and eP-IR is very broad and unstructured. We restrict our attention in this

section to a subclass of dynamic mechanisms introduced by Mirrokni et al. [2016a] called bank account mechanisms.

The mechanisms are simple, dynamic incentive compatible by design and have the notable feature that for any

distribution, there is a revenue-optimal bank account mechanisms. More precisely, for any dynamic mechanism

satisfying DIC and eP-IR there is a bank account mechanism with at least the same welfare and revenue.

Bank account mechanisms keep a state for each buyer, which is a scalar called balance. Each period depends

on the previous periods through the vector of buyer balances. Another main feature is that in this framework, the

designer needs to specify single-period auctions that are single-period incentive compatible together with a valid

balance update policy. That is, once a valid balance update policy is in place, all the designer needs to worry about

are single-period incentive compatibility constraints.

A bank account mechanism B is de�ned in terms of the following functions for each period:

• A static single-period auction parametrized by a balance vector b ∈ Rn+, xBt (vt ,b), pBt (vt ,b), that is (single-

period) incentive-compatible for each b, i.e.:

vit · x
B,i
t (vt ,b) − p

B,i
t (vt ,b) ≥ v

i
t · x

B,i
t (〈v̂

i
t ,v
−i
t 〉,b) − p

B,i
t (〈v̂

i
t ,v
−i
t 〉,b). (IC)

Note that we do not require the mechanism to be (single-period) individually rational. We also require the

utility of the agent to be balance independent in expectation, i.e., that:

E
v it∼F

i
t

[
vit · x

B,i
t (vt ,b) − p

B,i
t (vt ,b)

]
is a non-negative constant not depending on b . (BI)

• A balance update policy bBt (vt ,b) which maps the previous balances and the reports to the current balances,

satisfying the following balance update conditions:

0 ≤ bB,it (vt ,b) ≤ bi +vit · x
B,i
t (vt ,b) − p

B,i
t (vt ,b). (BU)
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Given the balance update functions, we can de�ne bt : Vt → Rn+ recursively as:

b0 = 0 and b1(v1) = b
B
1
(v1, 0) and bt (v1..t ) = b

B
t (vt ,b

B
t−1
(v1..t−1)).

which allows us to de�ne a dynamic mechanism in the standard sense as:

x t (v1..t ) = xBt (vt ,bt−1), pt (v1..t ) = p
B
t (vt ,bt−1).

In what follows we will abuse notations by dropping the superscript B and refer to x t (v1..t ) and x t (vt ,bt−1)

interchangeably. One important theorem from previous studies is that any bank account mechanism satis�es the

stronger notions of DIC and eP-IR.

Theorem 2.1 (Mirrokni et al. [2016b]). Any bank account mechanism satisfying IC, BI, and BU is dynamic incentive

compatible (DIC) and ex-post individually rational (eP-IR).

2.4 Limits on Bank Accounts
The balance of each buyer is a non-negative variable bi that changes over time. Mirrokni et al. [2016a] show that the

balance can be used as a measure of inter-period dependency. One extreme are mechanisms that always keep balance

at zero for all buyers. Since bank account mechanisms can only depend on previous periods via balance, if balances

are constant equal to zero the mechanism must run independent static auctions in each period.

Based on this observation, the authors propose the design of bank account mechanisms with a limit as a way to

limit inter-period dependencies. Formally, the limit Li on the bank account of buyer i means that a bank account

mechanism satis�es an additional bank account limit constraint,

∀t , 0 ≤ bit ≤ Li . (BL)

Later in Section 4, we show how bank account limits could help on establishing a trade-o� between the DIC guarantee

and the revenue lifts under the presence of prediction errors on buyer values.

3 Dynamic Second Price Auctions
Mirrokni et al. [2016b] propose simple auctions following the bank account framework that are provably near-optimal,

but still rely on randomized allocations for the revenue guarantee. The auction formats in each period are also

non-standard. In contrast, most auctions used in practice are variations over second price auctions with reserves.

Our focus on this paper is to design a family of practical dynamic mechanisms that could be easily implemented

in practice using the current infrastructure for running second price auctions with reserves. Our auction will be still

based on the bank account framework and the twist with respect to usual second price auctions is that the reserves

will be dynamic and adjusted based on reports from past periods.

Before we describe our dynamic auction, we recall the two implementations of second price auctions with

personalized reserve [Dhangwatnotai et al., 2015]. Given reported values vi for each agent and reserves ri the

following auctions are single-period incentive compatible:

• Eager reserves: The winner is the highest bidder such that vi ≥ ri and his payment is the maximum between

his reserve and the bid of the second highest buyer above reserves. If no buyer is above his reserve, there is no

winner.

• Lazy reserves: We select the buyer with the highest bid. If his bid is above reserve he is the winner and his

payment is the maximum of his reserve and the second highest bid (regardless of whether the second highest is

below or above reserve). If the selected buyer is below his reserve, there is no winner.

They di�er in the ordering of �ltering and ranking. In the eager we �rst �lter buyer below reserve and then rank

them. In the lazy we �rst rank buyers based on their bid and then we �lter the top buyer based on his reserve. The

auction we propose is a hybrid where we have for each buyer a vector of eager reserves rEt and a vector of lazy

reserves rLt with r i,Et ≤ r i,Lt . Our auction will have two �ltering phases, one before the winner selection and one after:
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• Step 1: run a second price auction with reserves rEt , tie-breaking lexicographically. Let agent i be the winner

and use w i
t to denote the second highest bid.

• Step 2: for the winner i , run an additional posted price auction at r i,Lt ≥ r i,Et . If vit ≥ r i,Lt , agent i wins the item

and pay max{r i,Lt ,w
i
t }.

We will make the auction dynamic by adjusting the lazy reserves r i,Lt dynamically over time as a function of the

balance bt−1 accumulated in previous steps. Besides the payment de�ned above, each agent will be charged an

additional amount of money (paid by his/her bank account), which we call spent, denoted by sit . The intuition is that

we will charge an upfront fee for the buyer in each step in exchange for a more favorable lazy reserve.

3.1 Auction Description
Our goal in this paper is to design practical dynamic mechanism that are competitive against simple static second

price auctions with reserves. We are agnostic to how reserve prices are computed and we assume instead there is a

baseline auction applying reserve price r it in each iteration. Those could be the revenue-optimal reserves or could be

reserves that are designed, for example, to optimize revenue subject to a constraint on the welfare loss. Our goal will

be to process those reserves and come up with a dynamic auction that improves the original one in terms of both

welfare and revenue.

Our auction will take as input for each buyer i and step t a baseline reserve price r it , distributions F it and bank

account limts Li . Based on r it and F it we will have a pre-processing step that generates reserve lower bounds r it ≤ r it .
In Section 3.2 we will discuss which properties are required from the pre-processing step. For now, we just assume

the DSP auction has access to a range of dynamic reserves [r it , r
i
t ] for each i and t .

Dynamic Second Price Auction (DSP)
Input: F it and [r it , r

i
t ] for each i, t and Li for each i .

Initialize balance of all buyers to zero bi
0
= 0 each timestep t :

1. Agents report their value vit and let j be the agent with the highest bid above r jt .

2. Let w i
t be the highest bid from other agents i ′ , i with bids vi

′

t above r i
′

t or zero in case there is no other

agent i ′ bids vi
′

t above r i
′

t . (Or equivalently, w i
t is the winning bid from step 1, if agent i is removed from

this auction.)

3. We use the balance bit−1
to compute a dynamic lazy reserve r it ∈ [r

i
t , r

i
t ]. Let

sit =

∫
max(r it ,w

i
t )

max(r it ,w
i
t )

(
1 − F it (v)

)
dv

If bit−1
≥ s̄it then we set: r it = r

i
t and sit = s

i
t .

Otherwise, we set sit = b
i
t−1

and �nd r it such that:

bit−1
=

∫
max(r it ,w

i
t )

max(r it ,w
i
t )

(
1 − F it (v)

)
dv .

4. If v jt ≥ r jt , we allocate the item to j and set x jt = 1. For other i , j, x it = 0.

5. Charge buyer i the amount pit = x it max(w i
t , r

i
t ) + s

i
t .

6. Update the bank account to

bit = min

(
bit−1
+vitx

i
t − p

i
t ,L

i ) .
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Theorem 3.1. The DSP de�ned above satis�es IC, BI, and BU. Hence it is DIC and eP-IR. In addition, the bank limit

constraint (BL) is also satis�ed.

Proof of Theorem 3.1. According to the de�nition of DSP, the 2-step auction at each period is incentive compatible,

and the additional payment sit is clearly independent of vit . Hence constraint (IC) is satis�ed.

By substituting pit into the construction of bit , we get

bit−1
− sit ≤ bit ≤ bit−1

+vit · x
i
t (vt ,bt ) − p

i
t (vt ,bt ).

Since sit ≤ bit−1
, constraint (BU) is satis�ed.

We then verify the constraint (BI). Consider the expected utility of agent i from the 2-step auction.

E
v it
[ûit ] = E

v it

[
[vit −max{r it ,w

i
t }]
+
]
=

∫ ∞

max{r it ,w
i
t }

(
v −max{r it ,w

i
t }

)
dF it (v) =

∫ ∞

max{r it ,w
i
t }

(
1 − F it (v)

)
dv, (1)

where [x]+ := max{0,x} and the last equality is from integration by parts. Then by the construction of sit ,

E
v it∼F

i
t

[
vit · x

B,i
t (vt ,b) − p

B,i
t (vt ,b)

]
= E
v it
[ûit ] − s

i
t =

∫ ∞

max{r it ,w
i
t }

(
1 − F it (v)

)
dv, (2)

which is a non-negative constant not depending on b. Thus constraint (BI) is satis�ed.

Finally, the bank account limit constraint (BL) is directly implied by the construction of bit . �

3.2 Revenue and Social Welfare Guarantees
We show that the DSP auction can always generate strictly higher revenue and social welfare than the second price

auction with baseline reserves r 1..T , as long as (i) the dynamic lazy reserves r t and r t are properly designed, (ii) the

prior distributions F i
1..T have positive probability densities near the baseline reserves,

4
(iii) and the baseline reserves

are neither obviously too high nor too low.

The DSP auction is particularly e�ective with respect to static second price auctions when bank account balances

bt are su�ciently large such that the dynamic reserves could be set as r t = r t without breaking the BU constraint.

In this case, the allocation in each period is exactly the same as the second price auction with reserves being r t ,
hence higher social welfare than the baseline with larger reserves r t ≥ r t . The improvement is strict if the allocation

probability gets increased by the reduction of reserves, which can be easily achieved via properly chosen r t as long

as the baseline reserves are not obviously too low, i.e., the social welfare has not been maximized by the baseline.

Meanwhile, the revenue strictly increases because the expected buyer utilities decrease. For each buyer i , according

to constraint BI, his/her expected utility is a constant with respect to the balance bt−1, in particular, the same as the

expected utility when bit−1
= 0. In this case, the auction is equivalent to the second price auction with reserves r it

for buyer i and r−it for others from his/her perspective, because the spent sit = 0 (sit ≤ bit−1
) and hence the dynamic

reserve r it is set equal to r it to satisfy constraint BI. Therefore, comparing with the baseline, the expected utility of

buyer i is hurt by the reduction of the reserves of other buyers, independent of the spent sit .
5

If the balances bt are large, the algorithm will choose lazy reserves r it = r it and the social welfare will be an

improvement over the social welfare of the baseline auction. If the balances bt are too low, however, the lazy reserves

r it could be closer to r it and cause the social welfare to be even worse. Let sW be the welfare of the static auction with

reserves r it and dW(bt ) the welfare of the dynamic auciton with balances bt . Then we de�ne:

li� = max

b
dW(b) − sW loss = [sW −min

b
dW(b)]+

Now, if we can guarantee that the balance is high most of the time, then the welfare lift will be closer to li� than

−loss.

The balance bit is a random walk in the interval [0,Li ], where:

E[bit+1
− bit ] = E

[
x ti (v

i
t −max{r it ,w

i
t })

]+
> 0,

4
In fact, the assumption here could be even weaker, as long as the probability that the buyer value v it falls in [r it , r

i
t ] is positive, i.e.,

F it (r
i
t ) < F it (r

i
t ).

5
The readers might wonder if it is possible to design a DSP that generates higher buyer utility at the same time. As we will show in the Section 5

by simulation, it can be done by using slightly lower baseline reserves instead of the given ones.
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and bit+1
− bit ≥ −s

i
t ≥ −(r

i
t − r

i
t ) ≥ −δ for δ = maxi {r

i
t − r

i
t }. By standard arguments from stochastic processes, the

balance is far from Li with probability exponentially decreasing in E[bit+1
− bit ]/δ , therefore:

E[dW(b) − sW] = li� + exp(−1/δ )(li� − loss)

which is positive for su�ciently small δ . In other words, the social welfare is guaranteed to be strictly increased in a

DSP, when r it is su�ciently close to r it .
To summarize, we have the following proposition.

Proposition 3.2 (Revenue & social welfare guarantees). For any given baseline reserves r t , we can always design a

DSP that strictly outperforms the second price auction with reserves being r t both in terms of revenue and social welfare,

except for the following extreme cases:

• the given baseline reserves are obviously too high or too low,

∀i, Pr[vit > r it ] = 0 or Pr[vit < r it ] = 0;

• the probability density near r it is zero, i,e,

∀i, ∃δ > 0, Pr[r it − δ ≤ v
i
t < r it ] = 0.

4 Regret and Bank Account Limits
In the theoretical analysis we made in previous sections, some assumptions are not necessarily satis�ed in practice.

In particular, the ground truth prior distributions F it are unavailable in general. Instead, empirical estimations F̃ it are

commonly used in revenue maximization. In this case, the DIC constraint is no longer guaranteed since the spent sit ,
which is part of the payment, is potentially miscalculated due to the inconsistency between F it and F̃ it .

4.1 Regret
In order to empirically justify the incentive guarantees of dynamic mechanisms, we introduce the notion of buyer

regret, which measures the utility gain of a buyer by disabling his/her bank account (i.e., deposits dit ≡ 0). For �xed

actions of other buyers, the sequence of items, and the valuations of buyer i , the regret of buyer i refers to his/her

utility change from the dynamic mechanism to a copy of this mechanism with the dynamic components disabled for

him/her only. By disabling the dynamic components for a certain buyer, we mean his/her bank account is disabled,

i.e., the balance is �xed to be zero. Hence his/her reserve price of the t-th item will be �xed at r it = r
i
t , independent of

the past periods.

One practical feature of this mechanism is that by disabling deposits for one buyer, i.e. dit = 0, the buyer will

face a static auction, in the sense that his/her bids in one iteration don’t a�ect his allocation probability or pricing in

subsequent rounds. This provides a smooth transition where buyers are allow to opt-in to participate in the dynamic

mechanism or otherwise keep participating in a static auction. If we have perfect access to the distributions of buyers,

it should be indi�erent for the buyer’s utility to opt-in to the dynamic component. However, if the priors are not

perfectly calculated, it is possible for buyers to regret the decision to participate in a dynamic auction. In this section

we formally de�ne and bound the notion of buyer regret in a dynamic mechanism.

De�nition 4.1 (Regret). For any �xed sequence of items and valuations, the regret of buyer i from a DSPM is de�ned

as the di�erence of his/her utilities fromM (denoted by ˜Utl

i
(v1..T )) and another DSPM

′
(denoted by ˜Utl

′i
(v1..T )) that

is the same asM except that the dynamic lazy reserves for buyer i are �xed, i.e., r ′it = r
i
t . Formally,

Ri (v1..T ) = ˜Utl

′i
(v1..T ) − ˜Utl

i
(v1..T ).

4.2 Regret, Limits, and Prediction errors
As we mentioned previously, the bank account limits can upper bound the expected regrets under the presence of

prediction errors.

In particular, the following theorem quanti�es an upper bound on the absolute value of the expected regret by the

prediction errors and bank account limits.
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Theorem 4.2 (Regret bounds).

��E[Ri ]�� ≤ T · limit
i · prediction-errori ≤ TLi max

t,r ′∈[r it ,r
i
t ]

������1 −
∫ r it
r ′ (1 − F

i
t (v))dv∫ r it

r ′ (1 − F̃
i
t (v))dv

������
Let us start with the utility that buyer i obtains from period t of mechanism M using estimation F̃ it :

ũit (v
i
t ;vt , ˜bt ) = v

i
t · x̃

i
t (vt , ˜bt ) − p̃

i
t (vt , ˜bt ) = [v

i
t −max{r̃ it ,w

i
t }]
+ − s̃it (

˜bt ), (3)

where the˜sign indicates the terms that might be in�uenced by the estimation F̃ it :

•
˜bt is the balance vector achieved by M at the beginning of period t ,

• r̃ it is the dynamic reserve price of buyer i in period t ,

• and s̃it (
˜bt ) is the spent of buyer i in period t .

Note that the highest bid from other agents, w i
t , is independent of both the balance vector

˜bt and the estimation F̃ it .

The utility from mechanism M ′ can be given as ũit (v
i
t ;vt , ˜b

′

t ), where the only di�erence with the utility from M is

that the bank account of buyer i is disabled, meaning that (i) the dynamic reserve is �xed at r it and (ii) the spent is

always 0, i.e.,

ũit (v
i
t ;vt , ˜b

′

t ) = [v
i
t −max{r it ,w

i
t }]
+. (4)

The following lemma captures the key insight to prove Theorem 4.2:

Lemma 4.3. The expected regret of buyer i from each single period t only comes from the computation error of the spent

caused by the imperfect estimation F̃ it , i.e.,

E
v it∼F

i
t

[
ũit (v

i
t ;vt ,

˜b ′t ) − ũ
i
t (v

i
t ;vt , ˜bt )

]
= s̃it (

˜bt ) − s
i
t (

˜bt ).

Proof of Lemma 4.3. Taking expectation of (3) and (4) over vit ∼ F it , we get the expected utilities
6

E
v it∼F

i
t

[
ũit (v

i
t ;vt , ˜bt )

]
=

∫ ∞

max{r̃ it ,w
i
t }

(
1 − F it (v)

)
dv −

∫
max{r it ,w

i
t }

max{r̃ it ,w
i
t }

(
1 − F̃ it (v)

)
dv,

E
v it∼F

i
t

[
ũit (v

i
t ;vt ,

˜b ′t )
]
=

∫ ∞

max{r it ,w
i
t }

(
1 − F it (v)

)
dv .

Hence their di�erence is

E
v it∼F

i
t

[
ũit (v

i
t ;vt ,

˜b ′t ) − ũ
i
t (v

i
t ;vt , ˜bt )

]
=

∫
max{r it ,w

i
t }

max{r̃ it ,w
i
t }

(
1 − F̃ it (v)

)
−

(
1 − F it (v)

)
dv = s̃it (

˜bt ) − s
i
t (

˜bt ).

�

Proof of Theorem 4.2. We use Lemma 4.3 to bound the expected total regret:��E[Ri ]�� ≤ T∑
t=1

����� Ev it∼F it [
ũit (v

i
t ;vt ,

˜b ′t ) − ũ
i
t (v

i
t ;vt , ˜bt )

] ����� ≤ T∑
t=1

���s̃it ( ˜bt ) − sit ( ˜bt )��� ≤ T∑
t=1

s̃it (
˜bt ) ·max

t ′,b

�����1 − sit ′(
˜b)

s̃it ′(
˜b)

����� .
Note that the spent s̃it (

˜bt ) is no more than the balance
˜bit and the balance is further bounded by the limit Li , hence

T∑
t=1

s̃it (
˜bt ) ≤ TL

i .

6
Intermediate steps are omitted, which are similar to (1) and (2) in the proof of Theorem 3.1.
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For the prediction error term, ifw i
t ≥ r it , either spent will be zero, hence no prediction error; otherwise, the integrations

are both from some dynamic reserve r ′ ∈ [r it , r
i
t ] to the baseline reserve r it . Therefore,

max

t,b

�����1 − sit (
˜b)

s̃it (
˜b)

����� = max

t, r̃ it

�������1 −
∫

max{r it ,w
i
t }

max{r̃ it ,w
i
t }

1 − F it (v)dv∫
max{r it ,w

i
t }

max{r̃ it ,w
i
t }

1 − F̃ it (v)dv

������� = max

t,r ′∈[r it ,r
i
t ]

������1 −
∫ r it
r ′ 1 − F it (v)dv∫ r it
r ′ 1 − F̃ it (v)dv

������ .
�

Theorem 4.2 then suggests three possible ways for the mechanism designer to reduce the buyer regret:

• to reduce the bank account limit L;

• to make a better prediction F̃ it ;

• to tune the dynamic region of the lazy reserves [r it , r
i
t ] such that the expected prediction error is small in there.

In the next section, we compare these three methods empirically.

5 Empirical Study
Finally, we use anonymized real bid data from a major ad exchange to evaluate the simple dynamic auction we

proposed and establish the trade-o�s between the regret and the revenue-lift via the limits on bank accounts.

Data Sets The data set is a collection of auction records, where each record corresponds to a real time auction for

an impression and consists of a seller (publisher) id and a set of bid records. Each bid record corresponds to a buyer id

and the value of the bid submitted by that buyer to the auction. Our data set will consist of auctions with bids from 5

large buyers over the period of 2 days. We will partition the data set into a training set consisting of data for the �rst

day and a testing set consisting of data for the second day.

Learning the Valuation Distributions Before running the simulation, we need to do some preprocessing of the

data set to learn the valuation distributions of the buyers. In order to justify our insights about the impact of prediction

errors on regrets from Section 4, we learn several distribution estimators F̃ with di�erent levels of accuracies. In

Section 5.2, we conduct same auctions with these estimators and compare the simulation results.

Empirical Distributions:

• NAIVE: one empirical distribution for the bids of each buyer;

• PUBLISHER: one empirical distribution for the bids of each buyer-publisher pair.

We learn distributions based on real data from the �rst day and evaluate using real data form the second day. This

provides an evaluation for our methods when we have a noisy estimation of distribution.

Parameterized Distributions:

• LOGNORMAL: for each buyer, we �t a lognormal distribution lnN(µ,σ 2), by maximum likelihood estimation.

For parametric distributions, we �t a log normal using real ad data from the �rst day and sample from those

distributions to generate synthetic data for the second day. We do so to evaluate our methods in the case we have a

perfect estimation of the distribution. Hence the only source of regret must be the random noises from generated

data and the numerical errors of the simulation.
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baseline r α = r/r limit L revenue lift social welfare lift buyer utility loss relative regret

MINOPT rM
0% 20 +150% +41.9% −12.0% 12.7%

CAPPED rC
0% 20 +91.5% +19.7% −6.24% 6.25%

ROBUST rR
0% 20 +62.8% +11.6% −4.02% 3.74%

MINOPT rM
25% 0.2 +17.2% +5.04% −1.01% 0.19%

CAPPED rC
25% 0.2 +19.20% +4.07% −1.38% 1.02%

ROBUST rR
25% 0.2 +18.78% +3.35% −1.34% 0.93%

Table 1: The revenue lifts, social welfare lifts, buyer utility losses, and relative regrets for selected DSPs with F̃ = NAIVE.

Baseline Reserve Prices and r We use the following three reserve prices as the baseline r . All of them are

estimated based on the F̃ = NAIVE distribution, since the main purpose of having di�erent valuation estimators is to

compare the e�ects of distribution estimation errors on buyer regrets instead of on the baseline reserve selection.

• MINOPT: the minimum reserve that maximizes the expected monopoly revenue,

rM = min{arg max

r
r (1 − F̃ (r ))}.

• CAPPED: the same with MINOPT but the selling probability must be no less than 15%,

rC = min{arg max

r :F̃ (r )≤0.85

r (1 − F̃ (r ))}.

• ROBUST: the minimum reserve that achieves at least 80% of the revenue of rM
,

rR = min{r : r (1 − F̃ (r )) ≥ 0.8rM(1 − F̃ (rM))}.

The attempt of having CAPPED and ROBUST is to reduce the regrets under the guidance of Theorem 4.2: to avoid r i

falling into the region where 1 − F̃ (v) is too small.

The matching r for those baselines, namely, rM, rC, rR
, are de�ned to be the corresponding baselines rescaled by a

constant α , where α takes a value from {0%, 10%, 25%, 50%} in simulations, rM = αrM
, rC = αrC

, rR = αrR
.

Parameterized DSPs To summarize, each DSP we use in the simulations has four parameters: (i) distribution

estimators F̃ ∈ {NAIVE, PUBLISHER, LOGNORMAL}; (ii) baseline reserves r ∈ {rM
, rC

, rR}; (iii) eager reserves r = αr
where α ∈ {0%, 10%, 25%, 50%}; (iv) �nally the bank account limits L ∈ {0, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20}.7

In particular, for part I (Section 5.1), we run simulations for the DSPs with F̃ = NAIVE; for part II (Section 5.2), we

run simulations for all the DSPs (for those with F̃ = LOGNORMAL, we run simulations on synthetic bids sampled from

F̃ ).

5.1 Part I: Evaluating the Performance
For each DSP M , we evaluate its revenue lift, welfare lift, and buyer utility losses comparing with the second price

auction with reserves being the baseline reserves of M , as well as the relative buyer regrets (buyer regret / buyer

utility). All these statistics are plotted in planes (see Figure 1, Figure 2, Figure 3, and Figure 4 grouped by each statistic

and each baseline reserve) with x-axis being the bank account limit (in log-scale, L = 0 excluded) and points with

the same α are connected as di�erent curves. Therefore, these curves show the trends of the statistics as the bank

account limit increases.

7
The limits are shown in relative numbers for privacy reasons. The actual limit applied in simulation is L · (r i + Ev∼F̃ i [v]).
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(a) Revenue lifts: MINOPT (b) Revenue lifts: CAPPED (c) Revenue lifts: ROBUST

Figure 1: Revenue (y-axis) of DSPs with various baseline reserves changing with bank account limits (x-axis).

(a) Welfare lifts: MINOPT (b) Welfare lifts: CAPPED (c) Welfare lifts: ROBUST

Figure 2: Social welfare (y-axis) of DSPs with various baseline reserves changing with bank account limits (x-axis).

(a) Buyer utility loss: MINOPT (b) Buyer utility loss: CAPPED (c) Buyer utility loss: ROBUST

Figure 3: Buyer utility losses (y-axis) of DSPs with various baseline reserves changing with bank account limits

(x-axis).

(a) Relative regret: MINOPT (b) Relative regret: CAPPED (c) Relative regret: ROBUST

Figure 4: Relative regrets (y-axis) of DSPs with various baseline reserves changing with bank account limits (x-axis).
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(a) NAIVE: revenue-regrets (b) PUBLISHER: revenue-regrets (c) LOGNORMAL: revenue-regrets

(d) NAIVE: revenue-welfare (e) PUBLISHER: revenue-welfare (f) LOGNORMAL: revenue-welfare

Figure 5: (a)(b)(c): Trade-o� between revenue lifts and relative regrets. (d)(e)(f): Improvements on revenue and social

welfare. Absolute numbers are rescaled for privacy reasons.

Interpretation In all these �gures, it can be easily observed that the DSPs tend to be farther from the static baseline

as the bank account limit L becomes larger. In particular, when L is larger than certain thresholds (e.g., 5 for MINOPT
and 1 for ROBUST) the changes become �at. These DSPs are already close to the one with L = ∞.

Moreover, as the bank account limit increases, both the revenue and social welfare increase while the buyer utility

decreases, consistent with our insights in Section 3.2. In particular, as we expect in Proposition 3.2, for all di�erent

r , both the improvements on revenue and social welfare are strictly positive and signi�cant for su�ciently large L
(> 0.2). Concretely, (see Table 1) these improvements can be roughly as large as +150% for revenue and +41.9% for

welfare when r = MINOPT (+91.5% and +19.7% for CAPPED, +62.8% and +11.6% for ROBUST). Surprisingly, signi�cant

improvements (+17.2% revenue and +5.04% welfare) can be achieved even with little buyer utility loss −1.01% and

relative regret 0.19%.

In addition, as L becomes small, the regrets get reduced as suggested by the guidelines from Theorem 4.2.

5.2 Part II: Understanding the Regrets
For each estimator F̃ , we draw two graphs, each of them containing all the DSPs using F̃ as their estimator. In Figure 5,

the �rst row of graphs shows the trade-o�s between revenue lifts (x-axis) and relative buyer regrets (y-axis); the

second row of graphs shows the improvements on revenue (x-axis) and social welfare (y-axis).

Interpretation In each of the subgraphs of Figure 5, almost linear trade-o�s between revenue lifts and relative

regrets can be observed, where the slopes (for estimators NAIVE and PUBLISHER) are roughly 0.03 to 0.08. In particular,

the better trade-o�s (�atter slopes) can be achieved by either choosing less aggressive baselines (ROBUST ≺ CAPPED ≺
MINOPT) or using more accurate estimators (LOGNORMAL � PUBLISHER � NAIVE), in the same spirit of Theorem 4.2.

Similarly, as shown in Figure 5, the revenues and social welfares from di�erent DSPs are quasi-linearly related.

The more accurate estimator being used, the closer the slopes of the trends are to 1 (cf. the 45
◦

line), which means the

less revenue comes from buyer utility losses.

Finally, attentive readers may notice that the numbers for estimator LOGNORMAL are quite di�erent from the

corresponding ones for the other two estimators, like the revenue lifts or the revenue versus social welfare in Figure 5.

Such “unexpected” di�erences in fact come from the di�erences between the revenue and social welfare of the baseline

auctions (second price auctions with reserves) from di�erent simulations, caused by the stochastic di�erences between
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the real bids from the test set and the synthetic bids generated by the lognormal distribution learned from the training

set. As we mentioned previously, the training set and test set consist of bids from the �rst and the second day. The

phenomenon we just observed re�ects one fundamental di�culty in minimizing the prediction errors, that is, the

distribution of buyer values is probably evolving over time. Therefore, the methodology of reducing the regret in the

presence of prediction errors is necessary in applying dynamic mechanisms, because the prediction errors might be

inevitable.
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