
i’sFree: Eyes-Free Gesture Typing via a
Touch-Enabled Remote Control
Suwen Zhu

Department of Computer Science
Stony Brook University

Stony Brook, New York, USA
suwzhu@cs.stonybrook.edu

Jingjie Zheng
Google

Kitchener, Ontario, Canada
jingjie@acm.org

Shumin Zhai
Google

Mountain View, California, USA
zhai@acm.org

Xiaojun Bi
Department of Computer Science

Stony Brook University
Stony Brook, New York, USA
xiaojun@cs.stonybrook.edu

ABSTRACT
Entering text without having to pay attention to the key-
board is compelling but challenging due to the lack of visual
guidance. We propose i’sFree to enable eyes-free gesture typ-
ing on a distant display from a touch-enabled remote control.
i’sFree does not display the keyboard or gesture trace but
decodes gestures drawn on the remote control into text ac-
cording to an invisible and shifting Qwerty layout. i’sFree
decodes gestures similar to a general gesture typing decoder,
but learns from the instantaneous and historical input ges-
tures to dynamically adjust the keyboard location. We de-
signed it based on the understanding of how users perform
eyes-free gesture typing. Our evaluation shows eyes-free
gesture typing is feasible: reducing visual guidance on the
distant display hardly affects the typing speed. Results also
show that the i’sFree gesture decoding algorithm is effec-
tive, enabling an input speed of 23 WPM, 46% faster than
the baseline eyes-free condition built on a general gesture
decoder. Finally, i’sFree is easy to learn: participants reached
22 WPM in the first ten minutes, even though 40% of them
were first-time gesture typing users.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CHI 2019, May 4–9, 2019, Glasgow, Scotland UK
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-5970-2/19/05. . . $15.00
https://doi.org/10.1145/3290605.3300678

CCS CONCEPTS
• Human-centered computing → Interaction devices;
Interaction techniques.

KEYWORDS
Text entry; Touchscreen; Gesture typing; Eyes-free text entry

ACM Reference Format:
Suwen Zhu, Jingjie Zheng, Shumin Zhai, and Xiaojun Bi. 2019.
i’sFree: Eyes-Free Gesture Typing via a Touch-Enabled Remote Con-
trol. In CHI Conference on Human Factors in Computing Systems Pro-
ceedings (CHI 2019), May 4–9, 2019, Glasgow, Scotland UK.ACM,New
York, NY, USA, 12 pages. https://doi.org/10.1145/3290605.3300678

1 INTRODUCTION
Eyes-free text entry – entering text without having to pay
attention to the keyboard – is appealing formany reasons. On

gesture typing

gesture typing

gesture typing android

what is gesture typing

Figure 1: i’sFree enables eyes-free gesture typing on devices
like a smart TV using a touch-enabled remote control. The
output display does not visualize the keyboard layout, nor
the gesture trace. The blue stroke on the remote control is
for illustrating the finger motion and is invisible in real use.

https://doi.org/10.1145/3290605.3300678
https://doi.org/10.1145/3290605.3300678

touchscreen direct input devices, it frees a user’s attention
from the keyboard, saves screen real estate, and with an
optimized decoder, it may even lead to better performance
than the typical “eyes-on” input [13, 28, 34].
Eyes-free input can be more valuable when interacting

with a distant display (e.g., a TV) via a remote control. In this
setting, the input and output devices are decoupled, meaning
that users need to regularly switch attention between where
they type and where the output is. The keyboard present on
the distant display also discourages users from transitioning
to eyes-free input, where less attention switch may lead to
more focused interaction and better performance.
Taking advantage of the popular gesture typing input

method [10], we investigated how to support eyes-free ges-
ture typing on a touch-enabled remote control. Why gesture
typing? First, it has certain advantages that are well-suited
for eyes-free input. It allows users to express intended words
by approximating shape finger strokes, rather than precise
taps on the corresponding keys which may be difficult with-
out key visuals. Second, the pictorial effect [18] shows that
humans are better at memorizing shapes than sequences of
letters. Expert users may memorize common word shapes
and execute them efficiently in an eyes-free manner. Third,
gesture typing is favored by some users over the traditional
tap typing on touch-enabled devices. It would benefit those
users greatly if it can be supported on a remote control.
Although eyes-free gesture typing seems appealing, sup-

porting it is not easy. It is challenging for the system to
decode the gesture input without knowing the keyboard lo-
cation. The input signals could be very noisy without the
visual guidance of keys.

To address these challenges, we designed and implemented
i’sFree, a text entry system that supports eyes-free gesture
typing on a touch-enabled remote control. The main differ-
ence from a general gesture typing system [10] is that it
dynamically learns the keyboard position based on the ge-
ometry of current and historical input gestures, and uses a
Monte Carlo method to account for the keyboard location
uncertainty in decoding. It is designed based on the under-
standing of how users perform eyes-free gesture typing.

Our user study showed promising results. First, eyes-free
gesture typing was feasible: reducing the visual guidance on
the distant display hardly affected the input speed. Second,
the i’sFree gesture decoding algorithm was very effective,
enabling an input speed of 23 WPM, 46% faster than the base-
line eyes-free condition built on a general gesture decoder.
Third, i’sFree is also easy to learn: participants reached 22
WPM in the first ten minutes, even though 40% of them were
first-time gesture typing users.

Eyes-free typing on a physical keyboard (a.k.a., touch typ-
ing) has proven feasible and efficient. Likewise, we expect

i’sFree will serve as an efficient text entry method on a re-
mote touchpad, broadening the communication channel be-
tween users and many computing devices.

2 RELATEDWORK
Our work relates to eyes-free text entry, gesture typing tech-
nique, and imaginary UI research.

Eyes-Free Text Entry
Eyes-free text entry has long been desired since the invention
of the keyboard/typewriter. Touch typing – typing without
looking at the keyboard – is considered superior to “hunt-
and-peck”, because the typists can focus the visual attention
on the composition of the text. It has been the standard
typing method taught since at least the 1920’s [9] and was
used for typing on a Twiddler one-handed keyboard and a
mini-Qwerty physical keyboard [4].

As touchscreen devices are becoming increasingly popular,
a considerable amount of research has been conducted to
support eyes-free text entry on touchscreens, including tap
typing on an invisible virtual keyboard with one or two
fingers [24, 34], tap typing on a touchpad with a thumb [13],
ten-finger typing on a flat touchscreen [5], and ten-finger
typing on the back of a tablet [20]. These research showed
that eyes-free text entry was feasible because many users
could well-remember the Qwerty layout.

In addition to tap typing, some research investigated gesture-
based text entry on touchscreen, such as an eyes-free Graf-
fiti text input system [23, 25] and a swipe-based invisible
text entry method with numberpad-like layout on smart-
watches [17].

Another option for eyes-free text entry is speech input,
which has advanced greatly since the rise of deep learning
technique. However, speech input suffers from some inherent
limitations: it may raise privacy concerns; it is socially inap-
propriate in quiet environments; the recognition accuracy
may suffer in noisy environments (e.g., parties, playing video
games); it is also unfeasible for speech-impaired users. Thus,
speech input is usually complemented by other methods.
Complementary to the existing eyes-free input methods,

we focus on inputting on a full-size Qwerty keyboard via a
touch-enabled remote control. It is well suited for scenarios
where the displays are decoupled from the input region, e.g.,
TVs, game consoles, head-mounted displays in virtual or
augmented reality.

Gesture Typing
First proposed by Zhai and Kristensson [10, 31–33], gesture
typing has gained broad adoption across the world, and has
been extended to a variety of input modalities. Bi et al. [3]
created a bimanual gesture keyboard, which allowed one
word to be entered by multiple strokes using both hands.

Markussen et al. [16] investigated gesture typing in mid-air.
Their text entry system, Vulture, projects users’ hand move-
ment onto the display, and uses pinch as a word delimiter.
Their studies showed that users could achieve 20.6 WPM
after a 10-session study, and could reach 28.1WPM if trained
on a few phrases. Additionally, Yu et al. [30] explored us-
ing head movement to perform gesture typing, while Yeo et
al. [27] investigated using device tilt angle for gesture typ-
ing. Building on the existing gesture typing technique, our
research explores how to support it in the eyes-free mode
via a remote control, which had not been explored.

Imaginary UIs
Research on imaginary interfaces showed that users can per-
form spatial interaction without visual feedback, providing
empirical evidence on the feasibility of eyes-free text input.

Virtual Shelves [11] and Yan et al. [26] showed that users
could effectively select targets in a body-centric virtual space
or a VR environment with their kinesthetic and spatial mem-
ory. Gustafson et al. [6] discovered that users were able to
draw single stroke characters and simple sketches in a user-
defined imaginary space with a recognition rate of 94.5%.
Imaginary Phone [7] showed that users could build up spa-
tial memory automatically by interacting with a physical
device, and transfer the spatial knowledge from physical to
imaginary interfaces. Lin et al. [12] also showed that users
can accurately distinguish targets on their forearms while
no visual references were provided.
As shown in literature, interacting with computers with

little or no visual feedback is always appealing. However,
no research has investigated how to support it for gesture
typing on a touchpad, which is the main research question
we aimed to address in this work.

3 EXPERIMENT 1: UNDERSTANDING EYES-FREE
GESTURE TYPING

To support eyes-free gesture typing on a touch-enabled re-
mote control, we first conducted a user study to investigate
users’ typing behavior.

Experiment Setup
Design and Tasks. We designed a Wizard-of-Oz experiment
to collect users’ unbiased eyes-free gesture typing behaviors.
Participants were instructed to transcribe phrases displayed
on a 46-inch smart TV via a touchscreen phone that func-
tioned as a touchpad. To reflect the eyes-free typing condi-
tion, no keyboard or gesture trace was displayed on the TV
or the touchpad. Participants were asked to gesture type as
naturally as possible, and assume that the underlying text
entry system could correctly decode the input.

Figure 2: The setup of Experiment 1. A user was seated in
front of a TV and performing eyes-free gesture typing.

Participants and Apparatus. We recruited 12 participants (5
female, all right-handed), aged from 24 to 34 (M = 27.8).
Their median familiarity with Qwerty layout was 4.5 (1: very
unfamiliar; 5: very familiar). 1 user had no prior experience
with gesture typing. The median familiarity with gesture
typing was 3.5. Participants were asked to use their preferred
posture throughout the study: 6 participants used one thumb,
and 6 used one index finger. The phrases were selected from
a subset of the MacKenzie and Soukoreff phrase set [15, 29].
The same set were used for all participants.

Similar to Lu et al.’s work [13], we used a Nexus 5X de-
vice as a remote touchpad. The screen on the device was
completely black and provided no visual feedback. Partici-
pants were seated on a chair 2 meters away from a smart TV.
The phrase to be transcribed was shown on the TV, and the
current target word was underlined. The task consisted of
4 blocks and each block had 10 phrases. Participants were
allowed to take a short break after completing each block.

In total, the study included: 12 participants × 4 blocks ×
10 phrases = 480 trials.

Results
To understand how a user locates the imaginary keys in eyes-
free gesturing, we first inferred imaginary key positions from
the observed gesture traces and analyzed their distributions.

Inferring Key Position from Gestures.
Unlike tap typing in which it is easy to map touch points to
key positions, it is challenging to obtain the imaginary key
positions from a continuous gesture trace. It is reasonable
to assume that the starting and ending points on a gesture
trace correspond to the starting and ending letters in a word,
but much less obvious to assign key positions for the letters
in between.
We located the imaginary key position based on the ges-

tural shape, using the dynamic time warping (DTW) algo-
rithm [19], a widely used algorithm for matching sequential

Input gesture

Template pattern

Figure 3: An example of inferring key positions of the word
nice from its gesture. The solid line shows the gesture trace,
while the dotted line shows the gesture template.

data. Assuming u was an input gesture for wordw , we first
created the template pattern v ofw by connecting the cen-
ters of corresponding keys on a regular Qwerty layout. We
used the Android AOSP keyboard on Nexus 5X to create the
template. We then translated the centroids of u and v to the
origin, sampled u and v into N (N = 100) equidistant points,
and applied DTW to generate an optimal match between u
andv . For a given letter c in the wordw , it had a correspond-
ing key center in the template pattern v , denoted by vc . Its
matching point in u, denoted by uc , was the imaginary key
center. If there were multiple points in u that matched vc ,
we calculated the centroid of these points as the imagined
key position. Figure 3 shows an example. As shown, this
matching method satisfied our expectation that the starting
and ending points on a gesture trace corresponded to the
starting and ending letters in a word.

Distributions of Imaginary Key Positions.
Figure 4a shows the distributions of the imaginary key po-
sitions extracted from gestures. The imaginary positions of
each key approximately followed a Gaussian distribution,
with greater variance in y-direction. The mean standard de-
viation of imaginary key positions was 10.64mm in y, more
than twice as great as the mean standard deviation in x
(4.88mm). It was probably because the left and right edges
of a touchpad served as references to bound the touch point
distributions in x-direction.

Normalizing Imaginary Keyboard Vertical Position.
The large variance in the imagined key positions will likely
cause ambiguity in decoding. However, we discovered that
normalizing the keyboard vertical position can substantially
reduce the variance.
Specifically, we first assumed there existed a keyboard k

on the bottom of the remote control whose dimensions were
identical to an Android AOSP keyboard. Given a gesture
u, we vertically translated u so that the average distance
between the imaginary key positions inu and corresponding
key centers on the keyboard k was minimized.

a

b
c

d

e

f
g h

i

j
k l

mn

o p
q r

s

t

u

v

w

x

y

z

(a)

−→

a

bc

d

e

f
g h

i

j

k l

mn

o pq r

s

t
u

v

w

x

y

z

(b)

Figure 4: Touch point distribution on the imaginary key-
board (95% confidence ellipses) before (left) and after (right)
normalizing the keyboard vertical position. The borders il-
lustrate boundaries of the touchpad.

This translation essentially normalized the imaginary key-
board vertical position to the same location. Figure 4b shows
the distribution of imaginary key positions after this pro-
cess. The variances iny-direction were substantially reduced.
The mean standard deviation in y-direction across letters
was reduced to 4.60mm, 57% smaller than the value before
normalization. The drastic reduction showed that the great
y-variance in imaginary key positions was largely caused by
the unknown vertical location of the imaginary keyboard.
In other words, normalizing the keyboard vertical position
greatly reduced the y-variance of key distribution.

Figure 4b also showed that after normalization, the height
and width of the keyboard were close to those of an An-
droid keyboard across users and trials. It was probably be-
cause users often imagined the keyboard according to the
virtual keyboards they used, and the common virtual key-
boards shared the similar shape (3 × 10 Qwerty layout) and
aspect ratio. For example, on a Nexus 5X device, the An-
droid keyboard was 64.85×27.62mm; the Microsoft Swiftkey
keyboard was 64.85 × 26.42mm; the Swype keyboard was
64.85×25.82mm. All were similar in dimensions. Participants
were largely influenced by their daily typing experience on
virtual keyboards.

Discussion
Our analysis led to the following findings.

Finding 1. Large key position variances caused by
the unknownkeyboard vertical position. Figure 4 shows
that normalizing the keyboard vertical position reduced the
key variance in y-direction by almost 50%, indicating a large

amount of variance was caused by the unknown keyboard
vertical location. The reason, according to participants’ com-
ments, was the lack of visual or physical bounds to vertically
locate the keyboard. In contrast, the horizontal position of
the keyboard was easy to locate, because the left and right
physical edges of the touchpad naturally defined the left and
right boundaries of the keyboard.
Figure 4 also shows that after normalization, the width

and height of the imaginary keyboard were close to that of a
regular virtual keyboard on Android devices. That is, these
two parameters did not deviate too much from a regular
virtual keyboard in eyes-free input.

Finding 2. Small keyboard position offset from pre-
vious gesture. Although there was a large variance in key-
board vertical locations, the difference in the keyboard verti-
cal position between the current gesture (denoted by Yt) and
the immediate previous gesture (denoted by Yt−1) was small.
In the previous normalization procedure, assuming we

needed to vertically translate Yt by dt for normalization, and
translate Yt−1 by dt−1 for normalization. The mean (SD) of
| dt −dt−1 |, which reflected the absolute difference between
Yt andYt−1, was 3.09mm (2.99mm), accounting for only 10.4%
of the keyboard height.
It showed that within a phrase, Yt−1 often served as a

reference (or anchor) for the upcoming Yt ; a user tended to
keep keyboard position relatively stable from word to word
within a trial.

4 I’SFREE: SUPPORTING EYES-FREE GESTURE
TYPING

As any text entry system, the key component is the decoding
algorithm. Our eyes-free gesture decoding algorithm was
designed based on the findings from Experiment 1 and the
general gesture decoding principle [10, 32]. In this section,
we first briefly review the principle of general gesture de-
coding, explain how eyes-free gesture decoding work, and
introduce the implementation of i’sFree.

General Gesture Typing Decoding Algorithm
As outlined by Kristensson and Zhai [10, 32], a general ges-
ture decoding algorithm takes a gesture trace (u) on a key-
board as input, and outputs N -best words with probabilities.
In principle, it consists of the following two components:

• A language model that provides a prior probability of
a wordw based on the language context, denoted by
l(w).

• A spatial model that provides the likelihood of the ges-
ture (feature) distribution for a given wordw based on
the geometry and location of gesture trace u, denoted
by c(w).

The final probability (score) of a word w given a gesture u
is obtained by combing the language score l(w) and spatial
score c(w) as:

s(w) =
l(w)c(w)∑
i ∈W l(i)c(i)

, (1)

whereW is the set of words in the dictionary. The detailed
description of such a decoder can be found in [10, 32].

i’sFree Gesture Decoding Algorithm
Decoding Principle.
The problem of applying the general decoding algorithm for
eyes-free input is that it requires knowledge of the keyboard
location and dimensions to calculate the spatial score c(w).
However, as shown in Experiment 1, although the keyboard
width (W), height (H), and its horizontal position (i.e., X
of top-left corner) remained largely unchanged, the verti-
cal location of the keyboard (i.e., Y of top-left corner) was
unknown in eyes-free input.

To address this problem, we introduce a keyboard vertical
location learner in the decoding algorithm (Figure 5), which
takes a gesture u as input, and outputs a range of possible
keyboard vertical location: Y ∈ [Yhiдhest ,Ylowest], where
Yhiдhest /Ylowest is the highest/lowest possible keyboard ver-
tical location. Note that Ylowest ⩾ Yhiдhest , because the pos-
itive y direction is down in Android OS and iOS.
The algorithm then uses a Monte Carlo-based method to

calculate the spatial score c(w). It samplesn keyboard vertical
locations from this range, denoted by Y1,Y2,Y3, ...,Yn :

Y1 = Yhiдhest ,

Yi = Yi−1 + ∆,
(2)

where ∆ = (Ylowest − Yhiдhest)/n.
For each Yi , we use a regular gesture typing decoding al-

gorithm (e.g., [10, 32]) to calculate the spatial score ci (w,Yi).
As informed by Experiment 1, we hypothesize that the key-
board widthW is the same as the remote control width, the
keyboard height H is the same as the height of an Android
AOSP keyboard, and X is the left edge of the remote control
(i.e., 0).

Assuming these n keyboard vertical positions are equally
probable, the final spatial score ofw is the average of these
n scores:

c(w) =

∑n
i=1 c(w,Yi)

n
, (3)

where c(w,Yi) is the spatial score ofw given the keyboard’s
vertical location is at Yi .

With both Equation (3) and Equation (1), we can calculate
the final probability (score) of a word w given the input
gesture u. The wordw∗ with the highest probability (score)
is the intended word for u. The decoding task ends here.

Input Gesture (g)

Gesturing on a touchpad

Keyboard Vertical
Location Learner Spatial Model Language Model

Scoring Component:
combining spatial

and language scores

N-best List

Output Word

User selects the
intended word

Figure 5: Architecture of the eyes-free gesture decoder. The
only difference from a regular gesture typing decoder is
the introduction of the Keyboard Vertical Location Learner
highlighted in blue.

Figure 5 shows the architecture of the decoder. As shown,
the only difference between the i’sFree and the general ges-
ture typing decoding algorithm is the introduction of the
keyboard vertical location learner. The following section
explains in details how it works.

Keyboard Vertical Location Learner.
This module takes a gesture trace u as input, and outputs a
range of possible keyboard vertical positions (i.e., [Yhiдhest ,
Ylowest]). It includes the following two components working
in parallel: a geometric component which makes estimation
from the shape and location of input gesture u, and a histori-
cal component which learns from the historical typing data.

Geometric Component: Estimating Yhiдhest and Ylowest based
on shape and location of a gesture trace. It is developed based
on the intuition that a gesture trace should fall within the
imaginary keyboard area when it is being drawn.
As a user is drawing the gesture u, the algorithm first

locates Ph and Pl in u. Ph is the highest touch point in u,
while Pl is the lowest touch point in u. To include both Ph
and Pl in the keyboard area, the keyboard upper bound Y
should be within the following range:

Y ∈ [Phy , Ply − H], (4)

where Phy is the y coordinate of Ph , Ply is the y coordinate
of Pl , and H is the height of the imaginary keyboard, which

𝑃𝑃ℎ

𝑃𝑃𝑙𝑙

𝑌𝑌 ∈ [𝑌𝑌ℎ𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖𝑖𝑖,𝑌𝑌𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖]

𝑌𝑌ℎ𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖𝑖𝑖

𝑌𝑌𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖

good

Figure 6: An example of learning the keyboard vertical lo-
cation from the shape and location of the gesture trace. Ph
and Pl are the highest and lowest points in the input gesture
(green trace). Both of them should be included in the key-
board area. The green and orange boxes show the lower, and
upper bound of the keyboard areas.

we assume is identical to the height of an Android AOSP
keyboard. Figure 6 shows an example of how it works.

Historical Component: Estimating Yhiдhest and Ylowest based
on previous input gesture. This method is developed based
on Finding #2 from Experiment 1: the imaginary keyboard
vertical location of the current gesture had only a small offset
(∼ 100 pixels, 6mm) from that of the previous gesture.

After a user successfully entered the previous wordwt−1
with gesture ut−1, we estimated the keyboard vertical loca-
tion for ut−1, denoted by Yt−1. This value is then used to
estimate Yt of the current gesture ut as:

Yt ∈ [Yt−1 − ϵ/2, Yt−1 + ϵ/2], (5)

where ϵ reflects how much the keyboard top boundary Yt
may deviate from the previous location Yt−1. In our imple-
mentation, we chose ϵ = 6mm, a value observed from Exper-
iment 1.
Yt−1, the vertical location of the previous keyboard, was

calculated as follows. We located the corresponding imag-
ined key positions for all the letters in wt−1, following the
procedure described in Section 3 using the DTW algorithm.
For a letter c inwt−1, if it was a top-row key in Qwerty (e.g.,
“Q”, “W”, “E”), the corresponding keyboard upper bound esti-
mation Yc would be:

Yc = cy − H/6, (6)

where cy is the y coordinate of the imagery key position of
letter c , and H is the imaginary keyboard height.

Equation (6) was derived from the geometric property of
a 3 × 10 Qwerty layout: each row had a height of H/3 and
the center of a top-row key was half a key height away from
the keyboard upper boundary. If c is a middle-row key (e.g.,
“A”, “S”, “D”), the upper bound estimation would be cy −H/2;
if c is a bottom-row key (e.g., “Z”, “X”, “C”), the upper bound
estimation would be cy − 5H/6.

Assuming there are n letters ci (i ∈ [1,n]) in the word
wt−1, each letter ci generates an estimation of the keyboard
upper boundary Yci . The final estimation Yt−1 is the average
of across them:

Yt−1 =

∑n
i=1 Yci
n

. (7)

Using Equation (7) with Equation (5), we can estimate the
keyboard vertical location range of the current input gesture.

Combining Geometric and Historical Components. These two
components work in parallel. Each generates an indepen-
dent estimation of [Yhiдhest ,Ylowest], denoted by Rд (from
geometric component) and Rh (from historical component),
respectively. By default, we useRд∩Rh as the final estimation
of Y range.
We revert to using the geometric component estimation

Rд only in any of the following situations: (1) the user is
entering the first word in an input session, which means
no previous input gesture is available; (2) Rд ∩ Rh is empty,
which means the current keyboard position deviates with a
great offset from its previous location.

After obtaining [Yhiдhest ,Ylowest], the keyboard vertical lo-
cation learner passes it to the spatial model (Figure 5), which
follows Equation (2) and Equation (3) to calculate the spatial
score for a word candidate c(w). We chose n = 5 in our im-
plementation. It is then passed to the Scoring component in
Figure 5 to generate the final score of a word candidatew .

Calculating the spatial score of a wordw given a keyboard
vertical location Yi has been published by Kristensson and
Zhai [10]. Note that the i’sFree gesture decoding algorithm is
orthogonal to the actual implementation of a general decoder.
In addition to the the algorithm described in [10], general
gesture decoding algorithms in other keyboards such as Mi-
crosoft SwiftKey, SlideIt, Touchpal and Google Gboard can
in principle be used as building blocks in the i’sFree gesture
decoding algorithm as well, although they have not been pub-
lished in the scientific literature. We implemented a general
gesture typing decoder following the principle introduced
in [10]: it estimates the spatial scores based on shape and lo-
cation geometry feature distribution givenw is the intended
word.

Note that for each keyboard location (Yi), we used the
means of key center distributions in a normalized keyboard
(Figure 4) as the actual key positions: it reflects where the
user thought the keys were within an imaginary keyboard.
Though the relative key positions largely followed their Qw-
erty orders, there are slight differences from key to key.
We consider our eyes-free decoding algorithm an exten-

sion of the regular gesture typing decoding algorithm [10, 32].
It is simplistic, and based on observations and hypotheses

informed from the findings in Experiment 1. The only dif-
ference from a regular gesture typing decoding algorithm
is the introduction of the keyboard vertical location learner,
which learns the keyboard vertical location from both the
instantaneous and historical input signals. The algorithm
was developed based on the hypotheses that the keyboard
width, height, and horizontal location remain unchanged.

Implementation of i’sFree
We built i’sFree, a text entry system that implemented the
i’sFree gesture decoding algorithm. It was implemented on
top of the open sourced Android keyboard, using a trigram
language model whose lexicon size was 60K. Since it inher-
ited the input method service in Android, it can serve any
Android applications that need text input service, such as
Messenger, Search Bar, and Intelligent Assistant (e.g., Google
assistant).

i’sFree is an eyes-free gesture text entry method in which
the keyboard is completely invisible. Some users, especially
those who are not very familiar with Qwerty layout, might
need to occasionally check the Qwerty location. To accom-
modate the need of these users, we implemented a pop-up
keyboard reference as the training wheel. If a user cannot
recall a certain key position during the eyes-free gesture
typing, she may pause the finger movement (i.e., finger stays
still) on the touchpad for 300 milliseconds and a Qwerty
keyboard will appear on the output display. This keyboard
reference will remain on the display till the input finger fin-
ishes the current gesture stroke. If the user can well recall key
positions, she may gesture ahead and no keyboard reference
will pop up.

The algorithm, models, and keyboard presented here were
developed only for the purpose of testing the feasibility
of eyes-free indirect word-gesture keyboards as a proof-of-
concept input method. We think it is robust enough for em-
pirical and live studies. We believe the concepts, principles,
and empirical findings leading to the algorithm design are
very useful for future more advanced, more accurate, and
more efficient algorithms, if we can prove a sufficient level
of usability of this algorithm in the next section.

5 EXPERIMENT 2: EVALUATING I’SFREE
We conducted a user study to evaluate the performance
of i’sFree. We were especially interested in understanding
whether the i’sFree gesture decoding algorithmwas effective,
and how users would perform eyes-free gesture typing with
i’sFree.

Experiment Setup
Tasks. The study was a phrase transcription task. The exper-
iment setup was similar to Experiment 1 (Figure 2). Partici-
pants used a Nexus 5X device running Android 6.0.1 as the

Figure 7: The control region on the phone screen. The green
dotted lines indicated the regions corresponding to the first,
second, and the third candidate word. The yellow arrow
showed a right swipe, corresponding to the submit action.

remote touchpad. The phone screen remained black during
the study session, and no gesture trail feedback was pro-
vided on the device. The gesture sequence was received on
the input device and the decoding results were forwarded
to a computer over Wi-Fi. A 46-inch smart TV was used to
display the phrases and task information. Suggestions were
shown on the TV screen.

To support basic text input, we enabled basic functions in-
cluding choosing suggestions and backspacing on the remote
touchpad. The top portion (1080 × 300 pixels) of the phone
screen was used as the control region, as shown in Figure 7.
The top suggestion was always automatically committed
when users finished drawing a gesture, i.e., lifted the finger
from the touchpad. The next three suggestions were dis-
played on the TV. Users could double tap on the left, middle
or right of the control region to commit the 1st, 2nd or 3rd
candidate word. A left swipe gesture in the control region
was used as the backspace key. Since gesture typing keyboard
performs word-level corrections, the backspace key would
delete an entire word instead of a single letter. To reflect the
natural typing behavior, participants were encouraged to use
backspace and suggestions freely. After entering a phrase,
users performed a right swipe gesture in the control region
to submit the current phrase. Participants were instructed to
enter the phrase as fast and accurately as possible.

The phrases were randomly selected from the MacKenzie
and Soukoreff phrase set [15, 29], and different from the
phrase set used in Experiment 1. The same set of phrases
was used for all the participants but randomized in order for
each participant.

Design. The study was a within-subject design. The indepen-
dent variable was the keyboard condition with 3 levels:

• i’sFree. The keyboard we implemented with previously
described i’sFree gesture decoding algorithm.

• Eyes-free baseline. It was identical to the i’sFree con-
dition, except that it used a regular gesture typing
decoder ([10, 32]). It allowed us to evaluate whether

the proposed i’sFree gesture decoding algorithm was
effective. The keyboard receiving input signals was lo-
cated at the bottom of the touchpad and was invisible.
The keyboard and gesture traces were hidden on the
TV screen. Similar to i’sFree, if a user paused the finger
over 300 ms on the touchpad, a reference keyboard
would be displayed on the TV to help participants
searching for keys.

• Eyes-on baseline. It represented the basic approach of
adopting gesture typing on a remote control: a key-
board receiving input signals was located at the bottom
of the touchpad and was invisible (because the touch-
pad had no display function). A Qwerty layout and the
gesture traces were displayed on TV. It also used a reg-
ular gesture typing decoder following the principles
in [10, 32].
The purpose of including eyes-on baseline was two-
fold: (1) comparing it with eyes-free baseline allowed
us to evaluate how reducing visual guidance would af-
fect gesture typing performance; (2) comparing it with
i’sFree would assess how i’sFree would improve input
performance from the basic approach of performing
gesture typing via a remote control.

The order of the three conditions was counterbalanced across
participants. Before the formal study, participants performed
a practice session with four phrases. Each task consisted of
four blocks, and each block contained eight phrases. Partici-
pants were allowed to take a short break after the completion
of each block.

Participants. 18 subjects (7 female, all right-handed) aged
between 18 and 36 (M = 27.7) participated in the experiment.
The participants were asked to rate their familiarity with
the Qwerty layout on a 1-5 scale (1: very unfamiliar; 5: very
familiar). The median familiarity with Qwerty layout was
4.5. Participants were not required to have experience with
gesture typing: 7 users never used gesture typing before the
study; 3 users performed gesture typing on a daily basis.
Participants used their preferred posture throughout the
study: 11 used index finger, and 7 used thumb.

In total, the study included: 18 participants × 3 conditions
× 4 blocks × 8 phrases = 1728 trials.

Results
Overall Input Speed. This measure showed the overall speed
of entering phrases. The calculation followed MacKenzie’s
equation [14]:

WPM =
|S − 1|
T

×
1
5
, (8)

where S is the length of the transcribed string in character
including spaces, and T is the elapsed time in minutes from
the first gesture stroke to the last word selection.

i'sFree Eyes-free Baseline Eyes-on Baseline0

5

10

15

20

25

W
PM

23.27

15.90 15.37

Figure 8: Means (95% confidence interval) of input speed.

Block 1 Block 2 Block 3 Block 40

10

20

30

W
PM

i'sFree
Eyes-free Baseline
Eyes-on Baseline

Figure 9: Means (95% confidence interval) of overall input
speed by block for each keyboard condition.

Figure 8 shows the average (95% confidence interval) input
speed across all participants. The average (SD) input speed
in WPM were 23.27 (8.02) for i’sFree, 15.90 (6.45) for the
eyes-free baseline, and 15.37 (4.68) for the eyes-on baseline.
There was a significant main effect of keyboard condition on
input speed (F2,34 = 41.47,p < .001). Pairwise t-tests with
Bonferroni adjustment showed the difference was significant
between i’sFree and the two baselines (both p < .001), but
not significant between the eyes-free baseline and the eyes-
on baseline (p = 1).
We also compared the overall input speed by block for

each keyboard condition, as shown in Figure 9. The average
speed within each block for i’sFree was higher than the other
two conditions. There was a significant main effect of the
block number on the input speed (F3,51 = 7.212,p < .001).
A significant keyboard × block interaction effect was also
observed (F6,102 = 2.347,p = .037). Pairwise comparison
with Bonferroni adjustment showed the differences between
Block 1 vs. Block 4 and Block 3 vs. Block 4 were significant
(p = .005, p = .017 respectively).

Gesturing Speed. To understand how fast users drew ges-
tures, we calculated gesturing speed:

S =
∥L∥

t
, (9)

where ∥L∥ is the length of a gesture and t is the elapsed time
between touch down and touch up events for drawing the
gesture. The unit is millimeters per second (mm/s).

The average (SD) gesturing speed was 104.26 (33.50) mm/s
for i’sFree, 93.88 (37.16) mm/s for the eyes-free baseline,
while it dropped to 74.00 (36.31) mm/s for the eyes-on base-
line. The keyboard condition had a significant main effect
on the gesturing speed (F2,34 = 17.16,p < .001). Pairwise
t-tests with Bonferroni adjustment showed the difference
was significant between the eyes-on baseline and the other
two eyes-free gesture typing methods (p < .005), but not for
i’sFree vs. the eyes-free baseline (p = .13).

Error Rate. Since gesture typing keyboard performed word-
level corrections, we measured error rate with word error
rate. The word error rate is based onminimumword distance,
which is the smallest number of word deletions, insertions,
or replacements needed to transform the transcribed string
into the expected string. The word error rate [2, 34] is defined
as:

r =
MWD(S, P)

|P |
× 100%, (10)

where MWD(S, P) is the minimum word distance between
the transcribed phrase S and the target phrase P , and |P |
denotes the number of words in P .
The means (SD) of error rates were 2.14% (2.00%) for

i’sFree, 5.04% (SD = 5.57%) for the eyes-free baseline, and
2.95% (2.90%) for the eyes-on baseline. There was a signifi-
cant main effect of the keyboard condition on the word error
rate (F2,34 = 6.803,p = .003). Pairwise comparison with Bon-
ferroni adjustment showed the differences between i’sFree
and the eyes-free baseline was significant (p = .039), but not
between other pairs.

Backspace Usage. To understand how often users corrected
their mistakes to achieve such a low error rate, we also mea-
sured the backspace key usage.We define backspace to words
ratio as:

d =
Nd

WordsCount(P)
, (11)

where Nd is the number of backspace key presses in one trial,
P is the target phrase in this trial, andWordsCount(P) is the
total number of words in P .

The mean (SD) backspace to word ratio was 0.26 (0.11) for
i’sFree, 0.56 (0.21) for the eyes-free baseline, and 0.44 (0.15)
for the eyes-on baseline. It showed users used backspace
approximately once every 2 words in eyes-on baseline and
eyes-free baseline, but once every 4 words in i’sFree. There
was a significant main effect of the keyboard condition on
the backspace to word ratio (F2,34 = 32.68,p < .001). Pair-
wise comparisons with Bonferroni adjustment showed the
differences were significant for all pairs (p < .05).

Keyboard Pop-up Reference Usage. For i’sFree and the eyes-
free baseline, we analyzed the average duration the keyboard
pop-up was invoked in each trial. The average (SD) duration

Mental
demand

Physical
demand

Effort Frustration Preference0

5

10

15

20

i'sFree Eyes-free Baseline Eyes-on Baseline

Very
Dislike

Dislike

OK

Like

Very
Like

Figure 10: Left: Mean (SD) of the subjective ratings, all in 1-
20 continuous scales where 20 is the most negative rating.
Right: Median preferences on a 5-level scale.

was 2.54 (2.69) seconds for i’sFree, and 3.83 (2.71) seconds
for the eyes-free baseline.
We compared the duration the keyboard reference was

displayed against the trial duration, the average (SD) key-
board reference usage was 15.34% (12.38%) for i’sFree, and
15.48% (9.47%) for the eyes-free baseline. We did not ob-
serve a significant difference between the two conditions
(F1,17 = 0.009,p = .924).

Subjective Measures. Subjective measures were collected at
the end of the study. We used a subset of the questions in
NASA-TLX [8] to measure participants’ perceived workload.
Users were asked to rate the mental demand, physical de-
mand, effort, and frustration of the task on a continuous
numeric scale of 1-20. The results are shown in Figure 10.

i’sFree was rated more positively than the other two condi-
tions across all measures. We performed ANOVAs and there
was a significant effect of the keyboard condition on all mea-
sures (F2,34 = 6.562,p = .004 for mental demand, F2,34 =
8.678,p < .001 for physical demand, F2,34 = 12.81,p < .001
for effort, and F2,34 = 18.39,p < .001 for frustration).
Each participant was asked to give an overall preference

rating for each keyboard condition on a 5-level scale: 1 (very
dislike) - 5 (very like). The median rating was 5 for i’sFree, 3
for the eyes-free baseline and the eyes-on baseline.

Discussion
Our design, development, and evaluation of i’sFree led to the
following findings.
First, eyes-free gesturing is feasible. The similar perfor-

mance between eyes-on baseline and eyes-free baseline indi-
cated that reducing the visual guidance on a distant display
hardly affected the gesture typing performance. Participants
had faster gesture motion speed in eyes-free baseline (proba-
bly because they were freed from tracing letters), but were
more error-prone which resulted in more backspace delete.
The overall performance between these two conditions were
similar.

Second, the i’sFree gesture decoding algorithm was effec-
tive. The input speed of i’sFree was 23.27 WPM, 46% faster
than eyes-free baseline which used a regular gesture typing
decoder. i’sFree reduced the backspace usage by 50% over
eyes-free baseline. i’sFree was also 40.9% faster the eyes-on
baseline.
Compared with reported input speeds from literature,

i’sFree was much faster than the default text entry method
on TV: controlling a cursor to select keys (7.66WPM [13]).
It was also faster than tap typing on a remote touchpad with
keyboard displayed on TV (20.97 WPM [13]).

Third, i’sFree was an easy-to-learn input method. The av-
erage input speed was already 22.44 WPM in the first block,
and around 40% of the subjects had never used gesture typ-
ing before. This promising result was partially due to users’
familiarity with Qwerty layout which allowed them to locate
key positions with limited visual cues. The pop-up keyboard
reference was also helpful for novice too, although it was
not used very often (around 15% of time). Users commented
that they occasionally used it for entering long words.
Note that there are other approaches that enable eyes-

free text entry on a fixed keyboard location, such as using
a physical overlay or providing haptic feedback when the
finger touches the boundaries of the keyboard. i’sFree is
different in that it enables typing anywhere on a regular
touchpad without any augmentation.

6 CONCLUSIONS
We present i’sFree, an eyes-free gesture typing method on
a touch-enabled remote control. The i’sFree gesture decod-
ing algorithm decodes gestures similar to a general gesture
typing decoder, but learns from the instantaneous and his-
torical input gestures to dynamically adjust the keyboard
location. We have designed it based on the understanding of
how users perform eyes-free gesture typing. Overall, i’sFree
effectively supports eyes-free text entry, demonstrating that
eyes-free gesture typing via a touch-enabled remote control
is feasible and promising.
In addition to remote displays, i’sFree could be adopted

in other scenarios such as VR/AR using a touch-enabled
controller. Virtual and augmented Reality has been demon-
strated in a variety of broad use cases. Motivated by recent
advances [1, 21, 22], we envision that mapping the physical
gesture to the virtual text can potentially improve the text
entry efficiency in VR/AR.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful com-
ments. We thank our user study participants. This work was
supported in part by NSF CHS-1815514, and a Google Faculty
Research Award (2018).

REFERENCES
[1] Mahdi Azmandian, Mark Hancock, Hrvoje Benko, Eyal Ofek, and

Andrew D. Wilson. 2016. Haptic Retargeting: Dynamic Repurpos-
ing of Passive Haptics for Enhanced Virtual Reality Experiences. In
Proceedings of the 2016 CHI Conference on Human Factors in Com-
puting Systems (CHI ’16). ACM, New York, NY, USA, 1968–1979.
https://doi.org/10.1145/2858036.2858226

[2] Xiaojun Bi, Shiri Azenkot, Kurt Partridge, and Shumin Zhai. 2013. Oc-
topus: Evaluating Touchscreen Keyboard Correction and Recognition
Algorithms via. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’13). ACM, New York, NY, USA,
543–552. https://doi.org/10.1145/2470654.2470732

[3] Xiaojun Bi, Ciprian Chelba, Tom Ouyang, Kurt Partridge, and Shumin
Zhai. 2012. Bimanual Gesture Keyboard. In Proceedings of the 25th
Annual ACM Symposium on User Interface Software and Technology
(UIST ’12). ACM, New York, NY, USA, 137–146. https://doi.org/10.
1145/2380116.2380136

[4] James Clawson, Kent Lyons, Thad Starner, and Edward Clarkson. 2005.
The Impacts of Limited Visual Feedback on Mobile Text Entry for
the Twiddler and Mini-QWERTY Keyboards. In Proceedings of the
Ninth IEEE International Symposium on Wearable Computers (ISWC
’05). IEEE Computer Society, Washington, DC, USA, 170–177. https:
//doi.org/10.1109/ISWC.2005.49

[5] Leah Findlater, Jacob O. Wobbrock, and Daniel Wigdor. 2011. Typing
on Flat Glass: Examining Ten-finger Expert Typing Patterns on Touch
Surfaces. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’11). ACM, New York, NY, USA, 2453–2462.
https://doi.org/10.1145/1978942.1979301

[6] Sean Gustafson, Daniel Bierwirth, and Patrick Baudisch. 2010. Imagi-
nary Interfaces: Spatial Interaction with Empty Hands and Without
Visual Feedback. In Proceedings of the 23Nd Annual ACM Symposium
on User Interface Software and Technology (UIST ’10). ACM, New York,
NY, USA, 3–12. https://doi.org/10.1145/1866029.1866033

[7] Sean Gustafson, Christian Holz, and Patrick Baudisch. 2011. Imaginary
Phone: Learning Imaginary Interfaces by Transferring Spatial Memory
from a Familiar Device. In Proceedings of the 24th Annual ACM Sympo-
sium on User Interface Software and Technology (UIST ’11). ACM, New
York, NY, USA, 283–292. https://doi.org/10.1145/2047196.2047233

[8] Sandra G Hart and Lowell E Staveland. 1988. Development of NASA-
TLX (Task Load Index): Results of empirical and theoretical research.
In Human Mental Workload. Advances in psychology, Vol. 52. North-
Holland, Oxford, England, 139–183.

[9] Yamada Hisao. 1980. A Historical Study of Typewriters and Typing
Methods: from the Position of Planning Japanese Parallels. Journal of
Information Processing 2, 4 (feb 1980), 175–202.

[10] Per-Ola Kristensson and Shumin Zhai. 2004. SHARK2: A Large Vo-
cabulary Shorthand Writing System for Pen-based Computers. In Pro-
ceedings of the 17th Annual ACM Symposium on User Interface Soft-
ware and Technology (UIST ’04). ACM, New York, NY, USA, 43–52.
https://doi.org/10.1145/1029632.1029640

[11] Frank Chun Yat Li, David Dearman, and Khai N. Truong. 2009. Virtual
Shelves: Interactions with Orientation Aware Devices. In Proceedings
of the 22Nd Annual ACM Symposium on User Interface Software and
Technology (UIST ’09). ACM, New York, NY, USA, 125–128. https:
//doi.org/10.1145/1622176.1622200

[12] Shu-Yang Lin, Chao-Huai Su, Kai-Yin Cheng, Rong-Hao Liang, Tzu-
Hao Kuo, and Bing-Yu Chen. 2011. Pub - Point Upon Body: Exploring
Eyes-free Interaction and Methods on an Arm. In Proceedings of the
24th Annual ACM Symposium on User Interface Software and Technology
(UIST ’11). ACM, New York, NY, USA, 481–488. https://doi.org/10.
1145/2047196.2047259

[13] Yiqin Lu, Chun Yu, Xin Yi, Yuanchun Shi, and Shengdong Zhao.
2017. BlindType: Eyes-Free Text Entry on Handheld Touchpad by
Leveraging Thumb’s Muscle Memory. Proc. ACM Interact. Mob.
Wearable Ubiquitous Technol. 1, 2, Article 18 (June 2017), 24 pages.
https://doi.org/10.1145/3090083

[14] I. Scott MacKenzie. 2015. A Note on Calculating Text Entry Speed.
http://www.yorku.ca/mack/RN-TextEntrySpeed.html.

[15] I. Scott MacKenzie and R. William Soukoreff. 2003. Phrase Sets for
Evaluating Text Entry Techniques. In CHI ’03 Extended Abstracts on
Human Factors in Computing Systems (CHI EA ’03). ACM, New York,
NY, USA, 754–755. https://doi.org/10.1145/765891.765971

[16] Anders Markussen, Mikkel Rønne Jakobsen, and Kasper Hornbæk.
2014. Vulture: A Mid-air Word-gesture Keyboard. In Proceedings of the
32Nd Annual ACM Conference on Human Factors in Computing Systems
(CHI ’14). ACM, New York, NY, USA, 1073–1082. https://doi.org/10.
1145/2556288.2556964

[17] Aske Mottelson, Christoffer Larsen, Mikkel Lyderik, Paul Strohmeier,
and Jarrod Knibbe. 2016. Invisiboard: Maximizing Display and Input
Space with a Full Screen Text Entry Method for Smartwatches. In
Proceedings of the 18th International Conference on Human-Computer
Interaction with Mobile Devices and Services (MobileHCI ’16). ACM, New
York, NY, USA, 53–59. https://doi.org/10.1145/2935334.2935360

[18] Douglas L Nelson, Valerie S Reed, and John R Walling. 1976. Pictorial
superiority effect. Journal of Experimental Psychology: Human Learning
and Memory 2, 5 (1976), 523.

[19] Hiroaki Sakoe and Seibi Chiba. 1978. Dynamic programming algo-
rithm optimization for spoken word recognition. IEEE transactions on
acoustics, speech, and signal processing 26, 1 (February 1978), 43–49.
https://doi.org/10.1109/TASSP.1978.1163055

[20] Oliver Schoenleben and Antti Oulasvirta. 2013. Sandwich Keyboard:
Fast Ten-finger Typing on a Mobile Device with Adaptive Touch Sens-
ing on the Back Side. In Proceedings of the 15th International Con-
ference on Human-computer Interaction with Mobile Devices and Ser-
vices (MobileHCI ’13). ACM, New York, NY, USA, 175–178. https:
//doi.org/10.1145/2493190.2493233

[21] Qi Sun, Anjul Patney, Li-Yi Wei, Omer Shapira, Jingwan Lu, Paul
Asente, Suwen Zhu, Morgan Mcguire, David Luebke, and Arie Kauf-
man. 2018. Towards Virtual Reality InfiniteWalking: Dynamic Saccadic
Redirection. ACM Trans. Graph. 37, 4, Article 67 (July 2018), 13 pages.
https://doi.org/10.1145/3197517.3201294

[22] Qi Sun, Li-Yi Wei, and Arie Kaufman. 2016. Mapping Virtual and
Physical Reality. ACM Trans. Graph. 35, 4, Article 64 (July 2016),
12 pages. https://doi.org/10.1145/2897824.2925883

[23] Hussain Tinwala and I. Scott MacKenzie. 2010. Eyes-free Text Entry
with Error Correction on Touchscreen Mobile Devices. In Proceedings
of the 6th Nordic Conference on Human-Computer Interaction: Extending
Boundaries (NordiCHI ’10). ACM, New York, NY, USA, 511–520. https:
//doi.org/10.1145/1868914.1868972

[24] Keith Vertanen, Haythem Memmi, and Per Ola Kristensson. 2013. The
Feasibility of Eyes-free Touchscreen Keyboard Typing. In Proceedings
of the 15th International ACM SIGACCESS Conference on Computers
and Accessibility (ASSETS ’13). ACM, New York, NY, USA, Article 69,
2 pages. https://doi.org/10.1145/2513383.2513399

[25] Cheng-Yao Wang, Min-Chieh Hsiu, Po-Tsung Chiu, Chiao-Hui Chang,
Liwei Chan, Bing-Yu Chen, and Mike Y. Chen. 2015. PalmGesture:
Using Palms As Gesture Interfaces for Eyes-free Input. In Proceedings
of the 17th International Conference on Human-Computer Interaction
with Mobile Devices and Services (MobileHCI ’15). ACM, New York, NY,
USA, 217–226. https://doi.org/10.1145/2785830.2785885

[26] Yukang Yan, Chun Yu, Xiaojuan Ma, Shuai Huang, Hasan Iqbal, and
Yuanchun Shi. 2018. Eyes-Free Target Acquisition in Interaction Space
Around the Body for Virtual Reality. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems (CHI ’18). ACM,

https://doi.org/10.1145/2858036.2858226
https://doi.org/10.1145/2470654.2470732
https://doi.org/10.1145/2380116.2380136
https://doi.org/10.1145/2380116.2380136
https://doi.org/10.1109/ISWC.2005.49
https://doi.org/10.1109/ISWC.2005.49
https://doi.org/10.1145/1978942.1979301
https://doi.org/10.1145/1866029.1866033
https://doi.org/10.1145/2047196.2047233
https://doi.org/10.1145/1029632.1029640
https://doi.org/10.1145/1622176.1622200
https://doi.org/10.1145/1622176.1622200
https://doi.org/10.1145/2047196.2047259
https://doi.org/10.1145/2047196.2047259
https://doi.org/10.1145/3090083
http://www.yorku.ca/mack/RN-TextEntrySpeed.html
https://doi.org/10.1145/765891.765971
https://doi.org/10.1145/2556288.2556964
https://doi.org/10.1145/2556288.2556964
https://doi.org/10.1145/2935334.2935360
https://doi.org/10.1109/TASSP.1978.1163055
https://doi.org/10.1145/2493190.2493233
https://doi.org/10.1145/2493190.2493233
https://doi.org/10.1145/3197517.3201294
https://doi.org/10.1145/2897824.2925883
https://doi.org/10.1145/1868914.1868972
https://doi.org/10.1145/1868914.1868972
https://doi.org/10.1145/2513383.2513399
https://doi.org/10.1145/2785830.2785885

New York, NY, USA, Article 42, 13 pages. https://doi.org/10.1145/
3173574.3173616

[27] Hui-Shyong Yeo, Xiao-Shen Phang, Steven J. Castellucci, Per Ola
Kristensson, and Aaron Quigley. 2017. Investigating Tilt-based Ges-
ture Keyboard Entry for Single-Handed Text Entry on Large De-
vices. In Proceedings of the 2017 CHI Conference on Human Factors
in Computing Systems (CHI ’17). ACM, New York, NY, USA, 4194–4202.
https://doi.org/10.1145/3025453.3025520

[28] Bo Yi, Xiang Cao, Morten Fjeld, and Shengdong Zhao. 2012. Ex-
ploring User Motivations for Eyes-free Interaction on Mobile De-
vices. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’12). ACM, New York, NY, USA, 2789–2792.
https://doi.org/10.1145/2207676.2208678

[29] Xin Yi, Chun Yu, Weinan Shi, Xiaojun Bi, and Yuanchun Shi. 2017.
Word Clarity As a Metric in Sampling Keyboard Test Sets. In Pro-
ceedings of the 2017 CHI Conference on Human Factors in Comput-
ing Systems (CHI ’17). ACM, New York, NY, USA, 4216–4228. https:
//doi.org/10.1145/3025453.3025701

[30] Chun Yu, Yizheng Gu, Zhican Yang, Xin Yi, Hengliang Luo, and
Yuanchun Shi. 2017. Tap, Dwell or Gesture?: Exploring Head-Based

Text Entry Techniques for HMDs. In Proceedings of the 2017 CHI Con-
ference on Human Factors in Computing Systems (CHI ’17). ACM, New
York, NY, USA, 4479–4488. https://doi.org/10.1145/3025453.3025964

[31] Shumin Zhai and Per-Ola Kristensson. 2003. Shorthand Writing on
Stylus Keyboard. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’03). ACM, New York, NY, USA,
97–104. https://doi.org/10.1145/642611.642630

[32] Shumin Zhai and Per Ola Kristensson. 2012. The Word-gesture Key-
board: Reimagining Keyboard Interaction. Commun. ACM 55, 9 (Sept.
2012), 91–101. https://doi.org/10.1145/2330667.2330689

[33] Shumin Zhai, Per Ola Kristensson, Pengjun Gong, Michael Greiner,
Shilei Allen Peng, Liang Mico Liu, and Anthony Dunnigan. 2009.
Shapewriter on the Iphone: From the Laboratory to the Real World.
In CHI ’09 Extended Abstracts on Human Factors in Computing Sys-
tems (CHI EA ’09). ACM, New York, NY, USA, 2667–2670. https:
//doi.org/10.1145/1520340.1520380

[34] Suwen Zhu, Tianyao Luo, Xiaojun Bi, and Shumin Zhai. 2018. Typing
on an Invisible Keyboard. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems (CHI ’18). ACM, New York, NY,
USA, Article 439, 13 pages. https://doi.org/10.1145/3173574.3174013

https://doi.org/10.1145/3173574.3173616
https://doi.org/10.1145/3173574.3173616
https://doi.org/10.1145/3025453.3025520
https://doi.org/10.1145/2207676.2208678
https://doi.org/10.1145/3025453.3025701
https://doi.org/10.1145/3025453.3025701
https://doi.org/10.1145/3025453.3025964
https://doi.org/10.1145/642611.642630
https://doi.org/10.1145/2330667.2330689
https://doi.org/10.1145/1520340.1520380
https://doi.org/10.1145/1520340.1520380
https://doi.org/10.1145/3173574.3174013

	Abstract
	1 Introduction
	2 Related Work
	Eyes-Free Text Entry
	Gesture Typing
	Imaginary UIs

	3 Experiment 1: Understanding Eyes-free Gesture Typing
	Experiment Setup
	Results
	Discussion

	4 i'sFree: Supporting Eyes-Free Gesture Typing
	General Gesture Typing Decoding Algorithm
	i'sFree Gesture Decoding Algorithm
	Implementation of i'sFree

	5 Experiment 2: Evaluating i'sFree
	Experiment Setup
	Results
	Discussion

	6 Conclusions
	Acknowledgments
	References

